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aMath. Dept., University of Kiel, D-24098, Germany
bMath. Dept., University of Göttingen, D-37083, Germany

Abstract

For the solution of incompressible fluid models with inf-sup stable finite element pairs for velocity and pres-
sure, interpolaton operators are desirable which preserve the property of discrete zero divergence and enjoy
the same local approximation properties as standard interpolation operators. Girault/Scott

interpolgir
[21] constructed

such an interpolator for the case of isotropic meshes. Here, we consider the existence of such an operator for
special anisotropic meshes by combining their approach with results of Apel

Apel99
[1] on anisotropic interpolation

on meshes of tensor-product type. Finally, we discuss the applicability of anisotropic grid resolution of
boundary layers for incompressible turbulent flow problems.
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1. Introduction
sec:1

Interpolation operators are an important tool for the analysis of finite element schemes. For the solution of
incompressible fluid models with inf-sup stable finite element pairs for velocity and pressure, interpolators are
desirable which preserve the divergence constraint (

eq:divprop
3). Recently, such an interpolator had been constructed

by Girault and Scott
interpolgir
[21] for the case of isotropic (shape-regular) meshes. In practice, anisotropic meshes

are used to represent complicated geometries and to resolve boundary layers for high Reynolds numbers
flow. Then, appropriate interpolators should take the anisotropy of the mesh into account. The partial
derivatives in the corresponding error estimates should be decoupled and weighted with the corresponding
mesh sizes in the different spatial directions.

The construction of optimal anisotropic interpolators is a difficult task as the results of Apel/Matthies
am08
[3]

show. They obtained optimal interpolation results with respect to the aspect ratio of the mesh only for very
special non-conforming finite element pairs for velocity/pressure on meshes of tensor-product type, while
the interpolation operator preserves the discrete divergence. In general, it is very likely that the aspect ratio
of the mesh will influence the interpolation estimates.

Let Ω ⊂ Rd, d ∈ {2, 3}, a domain with polygonal/polyhedral boundary and V := H1
0 (Ω)d the corre-

sponding Sobolev space of L2 functions with weak derivatives in L2 and vanishing traces on the boundary
∂Ω. For a triangulation Th hexahedral cells of Ω, the finite dimensional subspace Vh ⊂ V is the standard
conforming finite element space of cellwise tensor-polynomials of maximal degree r ≥ 0. For the theory of
basic interpolation operators for finite elements, we refer to Ref.

ciarlet78
[15].

In the work of Apel (
apel20082
[5], Thm. 4.5), anisotropic linear interpolation operators Ah, i.e Ah ∈ L(V; Vh), are

constructed on tensor-product meshes (see Section
sec:prelimi
2) with the interpolation property on all cells K ∈ Th:

|v −Ahv|2Hm(K) .
∑

|α|=l−m

h2α
K |Dαv|2Hm(ω(K)) ∀v ∈ H l(ω(K))d , (1)
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Preprint submitted to Elsevier February 16, 2011



with 0 ≤ m ≤ l, 1 ≤ l ≤ r + 1. The expressions hα and Dα for α ∈ Nd are the usual multi-index notations.
Here we use the expression a . b for a ≤ Cb with a h-independent constant C. Moreover, ω(K) is the patch
of all cells K ′ having a common edge/face with element K. Please note that estimate (

eq:interpolApel
1) is still valid on

H1(Ω). Moreover, from Thm. 9 of Ref.
Apel99
[1] we have the existence of an operator Ah for channel geometries,

preserving homogeneous Dirichlet conditions on long edges/faces. The construction of the operator Ah is
based on the the work of Scott and Zhang

interpolscottzhang
[27].

In this paper, we will construct a similar operator Ph ∈ L(V; Vh) on special Cartesian anisotropic meshes
which also fulfills the (potentially non-optimal) anisotropic interpolation property

‖v − Phv‖2L2(K) + h2
d,K |v − Phv|

2
H1(K) .

1

γ2
i

∑
|α|=l

h2α ‖Dαv‖2L2(ω(K)) (2) eq:interpola

where hd,k denotes the shortest edge of element K and γi is the maximal aspect ratio of a patch ω(K)
containing K. Such kind of interpolation property for anisotropic meshes had been observed by others too,
e.g. in Refs.

Braack08,formaggia04
[11, 19]. Following Girault and Scott

interpolgir
[21], we will show that the operator additionally preserves

the discrete divergence in the sense

(qh,div (Phv − v)) = 0 ∀v ∈ V ∀qh ∈ Qh , (3)

for inf-sup stable function spaces Vh, Qh, where Qh is a discrete subspace of

Q : = L2
∗(Ω): =

{
q ∈ L2(Ω) |

∫
Ω

qdx = 0

}
.

The main result of this paper is given in Theorem
thm:main
3.5. Finally, for the lowest order Taylor-Hood element in

the planar case, we discuss the size of the parameter γi, see Theorem
thm:lbb
4.1.

This paper is organized as follows. All notations and assumptions are given in the next Section
sec:prelimi
2. The

anisotropic, divergence preserving interpolation operator Ph will be constructed in Section
sec:construction
3. An essential

ingredient is the availability of a local inf-sup condition which may depend on aspect ratios. As an example,
we consider in Section

sec:th
4 such a dependence in the particular case of the lowest order Taylor-Hood element

in the planar case d = 2. Finally, in Section
sec:applic
6, we will apply the theoretical results to incompressible flow

problems.

2. Preliminaries
sec:prelimi

In this work we consider tensor-product meshes Th in d ∈ {2, 3} dimensions where the transformation
from reference cell K̂ = (−1, 1)d to another cell K ∈ Th can be described by the transformation

x = diag(h1,K , . . . , hd,K) x̂+ aK

with the local mesh sizes hi,K into direction i and a shift aK ∈ Rd. The analysis requires further resrictions
on the mesh which holds for many applications, e.g. for the geometry of a channel flow (possibly after
changing the order of the coordinates):

ass:1 Assumption 1. The mesh size in direction d is locally the smallest one,

hd,K ≤ hi,K ∀i ∈ {1, . . . , d− 1},

whereas the mesh sizes in the remaining directions are isotropic. Moreover, we demand that there is no
abrupt change in the element sizes of neighboring cells,

hi,K′ . hi,K . hi,K′ ∀K,K ′ ∈ Th, K̄ ′ ∩ K̄ 6= ∅ .

The second assumption is related to the set of all inner edges (and boundary edges without Dirichlet
conditions), denoted by Eh. For every K ∈ Th we define a ’unique’ long edge:
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ass:2 Assumption 2. There is an injective map

εh : Th → Eh ,

with the following property:

h1,K . |εh(K)| . h1,K ∀K ∈ Th .

The specific choice of the map εh for certain model configurations will be presented in Section
sec:assert
5. The

space of all polynomials on K̂ with maximal degree r ∈ N in each coordinate direction is denoted by Qr(K̂).
We will use the continuous H1-conforming finite element space

Qh,r :=
{
vh ∈ H1(Ω)

∣∣∣ vh|K ◦ FK ∈ Qr(K̂) ∀K ∈ Th
}
.

For incompressible models, we apply the continuous and discrete spaces

V : = H1(Ω)d and Vh : = V ∩Qdh,r
Q : = L2(Ω) and Qh : = Q ∩Qh,s.

without Dirichlet conditions. Later on, we also treat the case of Dirichlet conditions. Henceforth, the norm
of the Sobolev space H l(D), D ⊂ Ω with l ∈ N0 will be denoted by ‖ · ‖l,D. In case of l = 0, we usually
simply write ‖ · ‖D.

For the description of anisotropic meshes, we take advantage of the standard multiindex notation

hα =

d∏
i=1

hαii,K and Dα =

d∏
i=1

∂αii .

Furthermore, ω(K) ⊂ Ω denotes the neighborhood ofK, i.e. a patch of cells surroundingK ∈ Th. Henceforth
we will use different variants of ω(K).

In the analysis below, we apply the following technical results.

lem:trace Lemma 2.1. It holds for d ∈ {2, 3} on tensor-product meshes fulfilling Assumption
ass:1
1:∫

∂K

|vh| ds .
(

h1,K

h2,K · . . . · hd,K

)1/2

‖vh‖K ∀vh ∈ Vh .

Proof. By transformation back and forth to the reference element, and due to norm equivalence on finite
dimensional spaces we obtain ∫

∂K

|vh| ds =
∑
e∈∂K

he

∫
ê

|v̂h|ds

. h1,K

(∫
K̂

v̂2
hdx

)1/2

= h1,K |K|−1/2

(∫
K

v2
hdx

)1/2

=

(
h1,K

h2,K · . . . · hd,K

)1/2

‖vh‖K .

lem:poincare Lemma 2.2. Let v ∈ H1(K) ∩ C1(K) with
∫
K

vdx = 0 and a domain K ⊂ Rd convex and bounded. Then
it holds

‖v‖K .

(
d∑
r=1

h2
r,K

∥∥∥∥ ∂v

∂xr

∥∥∥∥2

K

)1/2

.

Proof. The assertion is a simple consequence of transformation onto the reference element, application of
the isotropic Poincaré’s inequality (see

dziuk
[18] pp.105) and inverse transformation.
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3. Construction of the operator
sec:construction

In this section we will construct and show the existence of an operator Ph ∈ L(V; Vh) fulfilling a variant
of (

eq:interpolApel
1) and preserves the discrete divergence (

eq:divprop
3), under certain assumptions. To this goal, we will take a

basic anisotropic interpolation operator Ah, e.g. from Ref.
apel20082
[5], and modify it to finally obtain the desired

properties in Theorem
thm:main
3.5.

As a first step we have to prove the existence of operators which fulfill an interpolation property and
preserve the dicrete divergence tested against piecewise constant functions, see Lemma

lem:basicintop
3.3 below. With this

in mind we prove the following lemma.

lem:stab Lemma 3.1 (Stability). Let d ∈ {2, 3} and r ≥ 2 and the triangulation Th fulfills Assumptions
ass:1
1 and

ass:2
2.

Then there exists an operator Lh ∈ L(V,Vh) such that the following properties are fulfilled for every function
v ∈ V:

(i) The discrete divergence is preserved when tested against a piecewise constant function,∫
K

div (v − Lhv)dx = 0.

(ii) The operator is locally stable with respect to the L2-norm, i.e.

‖Lhv‖K . ‖v‖ω(K) .

(iii) The partial derivatives in each direction are locally stable, i.e.

‖∂xiLhv‖K . h−1
i,K ‖v‖ω(K)

for every i ∈ {1, . . . , d}.

Proof. The first step is the construction of the operator. For each K ∈ Th the assigned long edge according
to Assumption

ass:2
2 is εh(K) ∈ Eh. Since r ≥ 2 there is a bubble function in Vh assigned to εh(K) denoted by

ϕεh(K) ∈ Vh. The support of this bubble function consists of two cells, and we present an example of the
support indicated by the grey area in Figure

fig:edges
2. Additionally, we can assume that these bubble functions

are normalized in the sense ∫
∂K′

ϕεh(K) · nds = δK′,K ,

with the Kronecker symbol δK′,K for two cells K ′,K. Then we set

eK(v) :=

∫
∂K

v · nds and Lhv :=
∑
K∈Th

eK(v) · ϕεh(K).

The well-posedness and linearity of Lh : V → Vh is obvious due to the construction. We now show the
properties (i)-(iii). The conservation of divergence (i) can be shown by integration by parts:∫

K′
divLhvdx =

∫
∂K′

Lhv · n ds

=

∫
∂K′

∑
K∈Th

eK(v)ϕεh(K) · n ds

=
∑
K∈Th

eK(v)

∫
∂K′

ϕεh(K) · n ds

=

∫
∂K′

v · n ds

=

∫
K′

div v dx.
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For proving the stability estimate (ii) we use the definition of Lh and obtain

‖Lhv‖2K =

∫
K

( ∑
K∗∈Th

eK∗(v) · ϕεh(K∗)

)2

dx

≤ |eK(v)|2
∥∥ϕεh(K)

∥∥2

K
+ |eK′(v)|2

∥∥ϕεh(K′)

∥∥2

K′
.

Here we used also that supp(ϕεh(K)) only contains two cells denoted by K ′ and K itself. The functions
ϕεh(K) are defined on long edges like in Assumption

ass:2
2, which is why the integral over this edge scales like

the edge itself, i.e. ∥∥ϕεh(K)

∥∥2

K
.
∫
K

h−2
1,Kdx .

h2,K · · ·hd,K
h1,K

for every K ∈ Th. Now it is left to estimate |eK(v)|2, i.e.
∣∣∫
∂K

v · nds
∣∣. Since the normal n has length 1,

Lemma
lem:trace
2.1 provides

‖Lhv‖2K . ‖v‖2K + ‖v‖2K′ . ‖v‖
2
ω(K) .

For showing (iii) we apply an inverse inequality (
ApelLube96
[2], Remark 3.6) in each direction and use (ii)

‖∂xiLhv‖K ≤ h
−1
i,K ‖Lhv‖K . h−1

i,K ‖v‖ω(K) ∀i ∈ {1, . . . , d}.

Let Ah ∈ L(V,Vh) be an interpolation operator, where for m ∈ {0, 1}

|v −Ahv|2m,K .
∑

|α|=r+1−m

h2α
K |Dαv|2m,ω(K) (4) eq:interpolAh

is fulfilled for every v ∈ H l(Ω). The existence of such an operator Ah is shown e.g. in
apel20082
[5] (denoted there by

Eh).

cor:divconst Corollary 3.2. Let r ≥ 2 and the triangulation Th is assumed to fulfill Assumptions
ass:1
1 and

ass:2
2. Let Ah ∈

L(V,Vh) be an operator with property (
eq:interpolAh
4). Then there exists a related operator L̃h ∈ L(V,Vh) with∫

K

div L̃hvdx =

∫
K

div (v −Ahv)dx ∀v ∈ V ∀K ∈ Th , (5) eq:divLA

and with 0 ≤ l ≤ r + 1 the stability properties for every v ∈ V and every K ∈ Th:∥∥∥L̃hv∥∥∥2

K
+ h2

i,K

∥∥∥∂xiL̃hv∥∥∥2

K
.
∑
|α|=l

h2α
K ‖Dαv‖2ω(K) 1 ≤ i ≤ d ,

with a (larger) patch ω(K) of elements surrounding K.

Proof. We set L̃h : = Lh ◦ (id−Ah), where Lh is the operator of Lemma
lem:stab
3.1. The equality (

eq:divLA
5) follows by∫

K

div L̃hvdx =

∫
K

divLhv dx−
∫
K

divLhAhv dx =

∫
K

div (v −Ahv)dx.

The stability estimates follow via L2-stability of Lh in Lemma
lem:stab
3.1 and the interpolation property (

eq:interpolAh
4) of Ah:∥∥∥L̃hv∥∥∥2

K
. ‖v −Ahv‖2ω(K) .

∑
|α|=l

h2α
K ‖Dαv‖2ω(K) .

The stability of the derivatives follows now by an inverse estimate:∥∥∥∂xiL̃hv∥∥∥
K

. h−1
i,K

∥∥∥L̃hv∥∥∥
K
.
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Now we are in the situation to construct an anisotropic interpolation operator which preserves the
divergence at least on each cell:

lem:basicintop Lemma 3.3. Let r ≥ 2 and the triangulation Th fulfill Assumptions
ass:1
1 and

ass:2
2. Then there is an operator

Πh : V→ Vh = [Qh,r]d, such that

(i) for every K ∈ Th and every v ∈ [H1(Ω)]d∫
K

div (v −Πhv) dx = 0

(ii) Approximability for every v ∈ [H1(Ω)]d:

‖v −Πhv‖2K .
∑
|α|=l

h2α
K ‖Dαv‖2ω(K) ,

|v −Πhv|21,K .
∑
|α|=l−1

h2α
K |Dαv|21,ω(K) + h−2

d,K

∑
|α|=l

h2α
K ‖Dαv‖2ω(K) .

Proof. We apply Corollary
cor:divconst
3.2 and set Πh : = Ah + L̃h. With this definition (i) is straight forward. The

L2-estimate follows also directly due to (
eq:interpolAh
4) and Corollary

cor:divconst
3.2. The second estimate in (ii) follows by

|v −Πh(v)|21,K ≤ |v −Ahv|
2
1,K +

∥∥∥∇L̃hv∥∥∥2

K

= |v −Ahv|21,K +

d∑
i=1

∥∥∥∂xiL̃hv∥∥∥2

K
.

rem:homDir Remark 3.4. Since the injective map εh only maps on inner edges, the correction L̃h has no influence on
the values on the boundary. As a consequence, Πh preserves Dirichlet boundary conditions on those parts of
the boundary, where Ah preserved them.

Using this result, we will show the existence of an operator with the desired properties (
eq:interpola
2) and (

eq:divprop
3). But

before starting the proof, we define the spaces we will use, following
interpolgir,gr
[21, 20]. For the given pair (Vh, Qh) of

finite element spaces, we define for each function qh ∈ Qh and each K ∈ Th

τ(qh)|K = qh −
1

|K|

∫
K

qhdx

and set

Q̃h : = {τ(qh) | qh ∈ Qh} .

The functions in Q̃h are piecewise polynomial of the same degree as the functions in Qh, but Q̃h is not
necessarily a subspace of Qh. For the velocities we define the space

Ṽh : =

{
vh ∈ Vh

∣∣∣ ∫
K

div vhdx = 0 ∀K ∈ Th
}

and also local variants of both spaces for macro-elements M ,

Ṽh(M) : =
{

vh ∈ Ṽh | supp(vh) ⊂M
}
,

Q̃h(M) : =
{
q̃h|M | q̃h ∈ Q̃h

}
.
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For our partition of macro-elements {Mi}Ri=1 with Ω̄ = ∪Ri=1Mi we will assume that each Mi is connected
and the union of finitely many cells K ∈ Th. Furthermore Mi 6= Mj for i 6= j has to hold true, even if we
allow the macro-elements to intersect. We only assume that each K only belongs to a bounded number of
macro-elements, which is independent of h. The following assumption is known as Hypothesis H.4 in

gr
[20]

(Section II.1.4).

ass:3 Assumption 3. There is a set of macro elements {Mi}Ri=1 defined as above and constants γi possibly
depending on the aspect ratio of the macro-element Mi such that

inf
qh∈Q̃h(Mi)

sup
vh∈Ṽh(Mi)

(qh, div vh)Mi

‖qh‖Mi
‖∇vh‖Mi

≥ γi. (6) eq:locinfsup

thm:main Theorem 3.5. Under the Assumptions
ass:1
1,

ass:2
2,

ass:3
3 there exists an operator Ph ∈ L(V,Vh) satisfying

(qh, div (Phv − v)) = 0 ∀v ∈ V ∀qh ∈ Qh , (7)

‖v − Phv‖2K + h2
d,K |v − Phv|

2
1,K .

1

γ2
i

∑
|α|=l

h2α
K ‖Dαv‖2ω(K) (8)

for K ⊂Mi.

Proof. First let us give an outline of the proof. We will extend the operator Πh of Lemma
lem:basicintop
3.3 by a correction

Ch, which we get from the local inf-sup condition (
eq:locinfsup
6). Then we define

Ph : = Πh + Ch .

Therefore, in step (i) we will show the construction of Ch, show an interpolation property of Ch in step (ii)
and conclude with (iii) by putting everything together.

Step (i): Since the macro-elements may overlap, we first define a non-overlapping partition of macro-

elements {M̃i}Ri=1 associated to the original partition {Mi}Ri=1. We set M̃1 = M1, denote by M̃2 the union
of elements K ⊆M2 and K *M1. In general,

M̃i =
⋃

K∈Th, K⊆Ni

K, with Ni := Mi \
(
Mi ∩

i−1⋃
j=1

M̃j

)
.

With this construction the M̃i are pairwise disjoint. If a M̃i is empty, we can simply omit it, while we still
have the property

Ω =

R⋃
i=1

M̃i with M̃i ⊆Mi for 1 ≤ i ≤ R.

Let v ∈ V be given. The local inf-sup condition (
eq:locinfsup
6) implies that for each patch Mi there exists a unique

function ch,i ∈ Ṽ⊥h (Mi) (depending on v) with

(qh,div ch,i)Mi = (qh,div (v −Πhv))
M̃i

∀qh ∈ Q̃h(Mi) , (9)

where

Ṽdiv
h (M) : =

{
vh ∈ Ṽh(M) | (qh,div vh)M = 0 ∀qh ∈ Q̃h(M)

}
Ṽ⊥h (M) : =

{
vh ∈ Ṽh(M) | (∇vh,∇wh)M = 0 ∀wh ∈ Ṽdiv

h (M)
}
.

Then we extend each ch,i by zero outside Mi and set

Chv :=

R∑
i=1

ch,i.
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Due to the construction we obtain Chv ∈ Ṽh and for all qh ∈ Qh:

(qh,div Chv)Ω =

R∑
i=1

(qh,div ch,i)Ω

=

R∑
i=1

(qh,div ch,i)Mi

=

R∑
i=1

(qh,div (v −Πhv))
M̃i

= (qh,div (v −Πhv))Ω .

Due to this construction, Ch is a linear operator.
Step (ii): The local inf-sup condition (

eq:locinfsup
6) implies the existence of a discrete pressure qh ∈ Q̃h(Mi), so

that:

(qh,div ch,i) ≥ γi ‖∇ch,i‖Mi
‖qh‖Mi

,

where γi possibly depends on the aspect ratio of the macro-element Mi. Due to the property (
eq:divch
9) of ch,i and

due to Mi ⊂ M̃i it follows

‖∇ch,i‖Mi
≤ (γi ‖qh‖Mi

)−1(qh,div (v −Πhv))
M̃i

≤ γ−1
i ‖div (v −Πhv)‖

M̃i
,

Since ch,i ∈ H1
0 (Mi) for each i, the functions ch,i have vanishing traces on ∂Mi. Hence, the Friedrichs

inequality (
dziuk
[18], p. 55) and Assumption

ass:1
1 gives an interpolation property for each ch,i:

‖ch,i‖Mi
. hd,Ki ‖∇ch,i‖Mi

≤ hd,Ki
γi
‖div (v −Πhv)‖

M̃i
,

with arbitrary elements Ki ∈ Th, Ki ⊂ Mi. In the next step, we will extend the property to Ch. Let us
point out that due to the construction ch,Mi

vanishes outside Mi and Mi only intersects with a bounded
number of other macro-elements. Let us call this number µ and obtain for some new indices j ≤ Ri ≤ µ ≤ R

‖Chv‖2Mi
=

∫
Mi

∣∣∣∣∣∣
Ri∑
j=1

ch,j

∣∣∣∣∣∣
2

≤ µ
∫
Mi

Ri∑
j=1

|ch,j |2 ≤ µ
Ri∑
j=1

‖ch,j‖2Mi∩Mj
≤ µh2

d,Ki

Ri∑
j=1

‖∇ch,j‖2Mi∩Mj
.

A similar estimate for the gradient leads us to

‖Chv‖Mi
+ hd,Ki ‖∇Chv‖Mi

. hd,Kγ
−1
i ‖div (v −Πhv)‖ω(Mi)

. hd,Kiγ
−1
i |v −Πhv|1,ω(Mi),

where ω(Mi) is the union of all M̃j such that Mi and Mj intersect.
Step (iii): Due to the interpolation property of the operator Πh in Lemma

lem:basicintop
3.3 and due to γi ≤ 1, it is

sufficient for the interpolation property of Ph to have a proper bound on

‖Chv‖2K + h2
d,K ‖∇Chv‖2K ,
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for an arbitrary cell K ∈ Th. Let i be the index so that K ⊂ Mi and ω(K) a sufficiently large patch with
ω(Mi) ⊂ ω(K). With help of the local estimate shown in (ii) we conclude

‖Chv‖2K + h2
d,K ‖∇Chv‖2K . h2

d,Kγ
−2
i |v −Πhv|21,ω(Mi)

. γ−2
i

 ∑
|α|=l−1

h2
d,Kh

2α |Dαv|21,ω(K) +
∑
|α|=l

h2α ‖Dαv‖2ω(K)


≤ γ−2

i

∑
|α|=l

h2α ‖Dαv‖2ω(K) .

This finishes the proof.

Let us point out that such an operator does not exist for every finite element, since one can prove inf-sup
stability of the pair Vh, Qh with help of this operator.

Theorem 3.6. A projection operator Ph ∈ L(V,Vh) with the property (
eq:divprop2
7) and (

eq:interpol
8) implies that the finite

element pair Vh×Qh is (globally) inf-sup stable, i.e. there is a constant β > 0, so that for all qh ∈ Qh there
exists vh ∈ Vh with

(qh, div vh)

|vh|1 ‖qh‖0
≥ β .

Proof. Let qh ∈ Qh be given. Due to the inf-sup condition on the continuous level there exists v ∈ V with

(qh,div v)

|v|1 ‖qh‖0
≥ β0 > 0. (10) eq:contLBB

One can find a proof of this continuous inf-sup condition in Chapter I of Ref.
gr
[20], within the proof of

Theorem 5.1. We choose vh : = Phv ∈ Vh and obtain

(qh,div vh) = (qh,div v) + (qh,div (Phv − v)) = (qh,div v) ≥ β0 |v|1 ‖qh‖0 .

Now, we use the triangle inequality and the interpolation property (
eq:interpol
8) of Ph with m = 1:

|Phv|1 ≤ |Phv − v|1 + |v|1 ≤ (1 + C) |v|1 .

The discrete inf-sup condition follows with β : = β0/(1 + C).

4. Local inf-sup condition for the Taylor-Hood element on anisotropic quadrilaterals
sec:th

It is well-known, that the inf-sup condition plays an important role in the analysis of incompressible
flows

babuska, brezzi
[6, 12]. Here we mention only, that in the literature one can find results on the potential dependency

of the global inf-sup constant β on the anisotropy of the domain, β ∼ (aspect ratio)−1, see
WohlmuthDobrowolski08, dob2005lbb, chizhonkov2000, dobrowolski2003lbb
[29, 17, 14, 16].

For a proof of the global discrete inf-sup condition, we refer to Ref.
BrezziFalk91
[13].

We are interested in an approach which takes the possible local anisotropy of the mesh into account. To
this goal, we take advantage of the macro-element approach of Ref.

BolandNikolaides83
[10], see also the presentation in

gr
[20]

(Thm. II.4.2). In this section, we will prove a local inf-sup condition, as Assumption
ass:3
3, for the Taylor-Hood

element on anisotropic quadrilateral tensor grids. Therefore, in this section we suppose that Vh, Qh is the
usual Taylor-Hood element on anisotropic quadrilateral elements in two dimensions. For an extension from
2D to 3D we refer to the techniques published by Boffi

boffi97
[9].

In order to find an adequate set of macro-elements {Mi}Ri=1, we consider all interior vertices σi, i =
1, . . . , R. We define the macro-element Mi as the union of all elements K that have σi as vertex, like
illustrated in Figure

fig:patch
1. By ai we denote the corresponding local aspect ratio

ai = max

{
h1,K

hd,K
: K ⊂Mi

}
.

For this overlapping macro-cell partition we get the following result:

9
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ed
ge e_2

Figure 1: Illustration of a patch M . fig:patch

thm:lbb Theorem 4.1. For the Q2/Q1 Taylor-Hood element on Cartesian meshes fulfilling Assumption
ass:1
1 it holds

the macro-element wise local inf-sup condition (
eq:locinfsup
6) with inf-sup constant

γi = C(1 + a2
i )
−1/2 ,

on patch Mi, i.e. Assumption
ass:3
3 is fulfilled in this case.

Proof. Taking in mind that the variation of the local aspect ratios are bounded due to Assumption
ass:1
1, the

assertion is an immediate consequence of the following Lemma.

lem:lbb Lemma 4.2. Let Ṽh × Q̃h the discrete spaces for the Q2/Q1 Taylor-Hood element on a 2 × 2 patch M =

(0, 2h1)× (0, 2h2) of quadrilaterals. Then for every qh ∈ Q̃h there exists a vh ∈ Ṽh so that

(qh, div vh)M & γM ‖qh‖M ‖∇vh‖M ,

with γM :=
(
1 + (h1/h2)2

)−1/2
.

Proof. In the following we will keep in mind the illustration of an anisotropic patch M in Figure
fig:patch
1. Let σ

be the interior vertex of M and let λ the Lagrange Q1 hat function associated to this node, i.e.,

λ(σ) = 1 and λ|∂M ≡ 0 .

Hence, in the two dimensional case, λ vanishes on two sides of each of the four cells K ⊂ M . Let e1, e2

the remaining two edges of K. The coordinate functions x̄i shall indicate the projection onto the xi-axis
but scaled with a weight h2

i . We define vh up to some sign depending on the location of the cell within the
macro-element by

vh(x) =

(
−∂qh
∂x1

λ(x1, x2)x̄1,−
∂qh
∂x2

λ(x1, x2)x̄2

)
,

where K is the corresponding cell such that x ∈ K. Since the gradient of qh is continuous, vh is continuous
as well. This function is in Ṽh since∫

K

div vKdx =

∫
∂K

vK · nds =

∫
e1

vK ·
(

0
−1

)
ds+

∫
e2

vK ·
(
−1
0

)
ds = 0,

where we used that the first term is zero for x2 = 0 and the second for x1 = 0.
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As next step of the proof, we check the inf-sup condition. Therefore, we will prove the following state-
ments ∫

M

div vhqhdx =

d∑
r=1

|[qh]|2r,M (11)

d∑
r=1

|[qh]|2r,M ≥ γM ‖∇vh‖2M (12)

d∑
r=1

|[qh]|2r,M ≥ ‖qh‖2M , (13)

where |[qh]|r,M will be defined later on. We start with∫
M

div vhqhdx =
∑
K∈M

∫
K

λx̄1

(
∂qh
∂x1

)2

dx+

∫
K

λx̄2

(
∂qh
∂x2

)2

dx

and see that we have to integrate polynomials on each cell. Due to the construction, λ(x1, x2) is bilinear,
x̄i is linear and ∂qh

∂xi
is linear in xj where j 6= i. That is why each function in the argument of the integral

is in Q4. Hence, we choose a quadrature formula which is exact for Q4 functions with quadrature points ξj
in the interior of the cell and the adequate weights wj , for example a Gauss quadrature. With this in mind
we write∫

K

(
λx̄1

(
∂qh
∂x1

)2

+ λx̄2

(
∂qh
∂x2

)2
)
dx = |K|

k∑
j=1

wjλ(ξj)

[
x̄1(ξj)

(
∂qh
∂x1

(ξj)

)2

+ x̄2(ξj)

(
∂qh
∂x2

(ξj)

)2
]

=:

d∑
r=1

|[qh]|2r,K ,

and obtain (
eq:infsupzz1
11). For showing (

eq:infsupzz2
12) we estimate

‖vh‖2K . |K|
k∑
j=1

wj |vh(ξj)|2

= |K|
k∑
j=1

wj

[
λ2(ξj)x̄

2
1(ξj)

(
∂qh
∂x1

(ξj)

)2

+ λ2(ξj)x̄
2
2(ξj)

(
∂qh
∂x2

(ξj)

)2
]

≤ |K|
k∑
j=1

wjλ(ξj)h
2
1

[
λ(ξj)x̄1(ξj)

(
∂qh
∂x1

(ξj)

)2

+ λ(ξj)x̄2(ξj)

(
∂qh
∂x2

(ξj)

)2
]

≤ h2
1

2∑
r=1

|[qh]|2r,K ,

where we used that maxx λ(x) ≤ 1 and the special scaling of x̄i. The application of the inverse inequality
from Remark 3.6 in Ref.

ApelLube96
[2] in every direction leads to

|vh|21,K =

∫
K

(
|∂x1

vh|2 + |∂x2
vh|2

)
dx

≤ h−2
1 ‖vh‖

2
K + h−2

2 ‖vh‖
2
K

=
h2

1 + h2
2

h2
1h

2
2

‖vh‖2K .
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These two estimates together give (
eq:infsupzz2
12) with

γM := min
K⊂M

h2√
h2

1 + h2
2

=
1√
a2
i + 1

,

and where ai = maxK⊂M
h1

h2
. (The i denotes the i−th macro-element in set of macro-elements later on for

Theorem
thm:lbb
4.1.) Now it is left to show the statement (

eq:infsupzz3
13):

‖qh‖20,M =
∑
K∈M

‖qh‖20,K

≤
∑
K∈M

h2
1

∥∥∥∥∂qh∂x1

∥∥∥∥2

K

+ h2
2

∥∥∥∥∂qh∂x2

∥∥∥∥2

K

≤
∑
K∈M

(
min
i=1,2

min
j=1,...,k

(λ(ξj)h
−2
i x̄i(ξj))

)−1

|K|
2∑
i=1

k∑
j=1

wjh
2
iλ(ξj)h

−2
i x̄i(ξj)

(
∂qh
∂xi

(ξj)

)2

≤
∑
K∈M

|K|
k∑
j=1

wj

[
λ(ξj)x̄1(ξj)

(
∂qh
∂x1

(ξj)

)2

+ λ(ξj)x̄2(ξj)

(
∂qh
∂x2

(ξj)

)2
]

=

2∑
r=1

|[qh]|2r,M ,

where we used the variant of Poincaré’s inequality from Lemma
lem:poincare
2.2, the Definition

ass:1
1 of the mesh and the

special choice of x̄i in the definition of vh at the beginning. This proves te claim.

Now we can choose a mesh with respect to Assumption
ass:1
1 and

ass:2
2 and the Q2/Q1 Taylor-Hood element.

Then due to Theorem
thm:lbb
4.1 Assumption

ass:3
3 is fulfilled also and we can apply Theorem

thm:main
3.5 to obtain the following.

cor:anisoop Corollary 4.3. Under the assumptions from above there exists an operator Ph ∈ L(V,Vh) with the prop-
erties (

eq:divprop2
7) and (

eq:interpol
8).

5. Discussion on Assumption
ass:2
2

sec:assert
The Assumption

ass:2
2 implies that the assignment of inner long edges for each K is possible in an injective

manner. This is a certain restriction on the mesh and not always valid in the case of Dirichlet conditions.
For illustration we consider two standard examples.

5.1. Channel flow
sec:channel

A channel flow is usually characterized by Dirichlet conditions at solid walls and sometimes also at the
inflow. The outflow is typically considered as “do-nothing” condition

HeywoodRannacherTurek92
[22]. At high Reynolds numbers, the

mesh size close to the walls should be anisotropic with a small mesh size in direction orthogonal to the walls.
For the definition of εh in Assumption

ass:2
2 we choose the inner long edge εh(K) starting from a boundary cell

K of the two no-slip walls. This procedure is shown schematically in Figure
fig:edges
2 (a) where the arrows in the

figure point from the cell to the chosen edge. We continue this process by choosing successively the longer
edges towards the center of the channel. At the center we have to choose an edge in direction towards the
outflow in order to maintain injectivity of εh. For at least one cell we reach the outflow boundary. Hence,
the cells at the center should be (almost) isotropic for this algorithm. If the outflow boundary is not of
Dirichlet type, the operator may not preserve this condition.
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(a) (b)

Figure 2: Examples of how to choose a long edge for a cell K in Assumption
ass:2
2. The arrows on a cell K reference to the

assigned edge εh(K). (a): configuration of channel-type (Section
sec:channel
5.1), (b): driven cavity with Dirichlet conditions on the entire

boundary (Section
sec:dc
5.2). fig:edges

5.2. Driven cavity flow
sec:dc

For the standard driven cavity problem (here in 2D), Dirichlet conditions are oposed on the entire
boundary. Therefore, the construction as before in the channel with outflow boundary is not possible. We
assume anisotropic cells on all four boundaries with small mesh sizes in normal direction. At the corners
the cells are isotropic, see Figure

fig:edges
2 (b). The construction of εh can be carried out by assigning long edges

as shown schematically in Figure
fig:edges
2 (b). Let us point out that for this type of meshes Assumtion

ass:1
1 is not

fulfilled, since there is not only one direction with small edges. This Assumption is important especially in
the proof of Lemma

lem:lbb
4.2, where we use the geometry with one smaller edges. To extend the proof to meshes

like in Figure
fig:edges
2 (b), we can simply rotate the patches and use the same arguments to obtain the assertion.

6. Application to incompressible flow problems
sec:applic

In this section, we will discuss the applicability of th theoretical results to (turbulent) incompressible flow
problems in a bounded domain Ω ⊆ Rd, d ∈ {2.3} if the standard Taylor-Hood pairs for velocity/pressure
approximation are applied on tensor-product meshes.

The incompressible Navier-Stokes model consists in determining velocity u and pressure p s.t.

∂tu− div (2νDu) + (u · ∇)u +∇p = f in (0, T ]× Ω (14) NaSt1

div u = 0 in [0, T ]× Ω (15) NaSt2

u|t=0 = u0 in Ω. (16) NaSt3

The deformation tensor is denoted by Du = 1
2 (∇u + (∇u)t). For simplicity, we consider no-slip boundary

conditions and thus, for a weak formulation, the spaces V = [H1
0 (Ω)]d, Q = L2

∗(Ω), see Section
sec:1
1.

Let Th be an admissible (possibly anisotropic) mesh s.t. Ω = ∪K∈ThK. We consider the standard
inf-sup stable Taylor-Hood spaces Vh ×Qh ⊂ V×Q for velocity/pressure. The basic Galerkin FE method
reads: find (uh, ph) : [0, T ]→ Vh ×Qh s.t. ∀(vh, qh) ∈ Vh ×Qh

(∂tuh,vh) + (2νDuh,Dvh) + bS(uh,uh,vh)− (ph,div vh) + (qh,div uh) = (f ,vh)

with the skew-symmetric advective term bS(u,v,w) := 1
2 [((u · ∇)v,w)− ((u · ∇)w,v)].

For turbulent flows, we consider the following three-scale decomposition

V 3 v = vh + ṽh︸ ︷︷ ︸
=vh∈Vh

+v̂h; Q 3 q = qh + q̃h︸ ︷︷ ︸
=qh∈Qh

+q̂h

with resolved scales (vh, qh) ∈ Vh ×Qh ⊂ V ×Q. The influence of the small unresolved scales (v̂h, q̂h) on
(ṽh, q̃h) will be modelled following the one-level variational multiscale (VMS) approach, see

BIL06
[8]. Define the

discontinuous space Lh for the deformation tensor on Th s.t.

{0} ⊆ Lh ⊆ L :=
{
L = (lij) | lij = lji ∈ L2(Ω) ∀i, j ∈ {1, 2, 3}

}
and the L2-orthogonal projection operator Πh : L→ Lh. The small unresolved velocity scales are modelled
via the fluctuation operator

κ(Dvh) : = (Id−Πh)(Dvh).
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For the calibration of the subgrid model for velocity, we introduce cellwise constant terms νT (uh) s.t.
νKT (uh) := νT (uh)|K . Here we omit a model of the small unresolved pressure scales by means of the so-
called grad-div stabilization. Finally, the VMS model reads as follows: find (uh, ph) s.t.

(∂tuh,vh) + 2ν (Duh,Dvh) + bS(uh,uh,vh) + (div uh, qh)− (div vh, ph)

+ (νT (uh)κ(Duh), κ(Dvh)) = (f ,vh)
(17) eq:VMS

for all (vh, qh) ∈ Vh ×Qh.
For the analysis, we introduce elementwise multiscale viscosities νKVMS(uh,vh) via

∑
K∈Th

νKT (uh) ‖κ(Dvh)‖20,K =
∑
K∈Th

νKT (uh)

(
1−
‖ΠHDvh‖20,K
‖Dvh‖20,K

)
︸ ︷︷ ︸

=:νKVMS(uh,vh)≥0

‖Dvh‖20,K

where we take advantage of the projector properties of the operator κ. Then we define the mesh-dependent
expression

|||u(t)|||2 := ‖u(t)‖20 +
∑
K∈Th

∫ t

0

1

2
νKmod(u,uh) ‖D(u)‖20,K dt

with modified elementwise viscosities: νKmod(uh,vh) : = 2ν + νKVMS(uh,vh).
The semi-discrete analysis in

RL10
[26] takes advantage of the fact that, for inf-sup stable velocity/pressure

pairs, the space
Vdiv
h := {v ∈ Vh : (qh,div vh) = 0 ∀qh ∈ Qh}

of discretely divergence free functions is not empty. Then we obtain the following a priori estimate for the
semi-discrete scheme.

thm:vms Theorem 6.1. For a sufficiently smooth solution u of the Navier-Stokes model (
NaSt1
14)-(

NaSt3
16) it holds for the

solution of the VMS model (
eq:VMS
17) for all t ∈ (0, T ):

|||(u− uh)(t)|||2 ≤ 2 inf
ũh ∈ L2(0, t;V divh )

|||(u− ũh)(t)|||2

+ exp
(∫ t

0

27C4
LT

2νmin
mod(uh, euh)3

)
‖Du(s)‖40 ds inf

ũh ∈ L4(0, t; Vdiv
h )

p̃h ∈ L2(0, t;Qh)

(
‖(uh − ũh)(0)‖20 +

∫ t

0

A(s)ds

)

with

A(t) : =2
∑
K∈Th

[
6νKT (uh) ‖κDu‖20,K + 6

(
ν + νKVMS(uh, ε

u)
)
‖Dεu‖20,K +

9C2
Ko

νmin
mod(uh, euh)

‖p− p̃h‖20,K

]

+
6C2

LT

νmin
mod(uh, euh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖Dεu‖20 +

6C2
Ko

νmin
mod(uh, euh)

‖∂tεu‖2−1,Ω ,

where νmin
mod(uh, e

u
h) := minK ν

K
mod(uh(t),vh(t)) and

uh − u = (uh − ũh)− (u− ũh) =: euh − εu.

CF and CKo are the constants of the inequalities of Friedrichs and Korn. CLT is related to an upper bound
of the advective term.
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Remark 6.2. Let us briefly review the case of isotropic grids considered in
RL10
[26]. The first r.h.s. term in

the first line of term A(t) is related to the VMS-model error. For the remaining approximation terms in A,
we can apply the interpolation operator by Girault/Scott

interpolgir
[21] in Vdiv

h and a standard interpolation operator
for the pressure. Then these terms are formally of order O(h2k) for FE spaces Qk/Qk−1 or Pk/Pk−1 for
velocity/pressure, the choice LH = [Qdisck−2]3×3, and νKT ∈ [0, Ch2

K ].

6.1. Isothermal channel flow
subsec:5.1

Suppose now a tensor-product mesh Th on a channel domain Ω = (0, 4π)× (−H,H)× (0, 4
3π). Then we

can apply the results of Theorem
thm:main
3.5 to the evaluation of the right-hand side terms in the function space

Vdiv
h in Theorem

thm:vms
6.1.

Consider now a turbulent flow at a moderate Reynolds number Reτ = 180 (corresponding to Re = 5644
in channel center) for which an anisotropic grid resolution of the boundary layer regions is feasible. The
Reynolds number Reτ = Huτ/ν is defined via the half width H = 1 of the channel and wall-friction velocity
uτ satisfying Spalding’s form of the law of the wall

y+ = f(u+) := u+ + e−5.5χ
(
eχu

+

− 1− χu+ − 1

2
(χu+)2 − 1

6
(χu+)3

)
with y+ := yuτ

ν , u+ := ‖uh‖
uτ

, and χ = 0.4.
A careful description of the set-up of the problem (but with different scaling) is given in

JohnRoland07
[23]. For the spa-

tial discretization, we apply tensor-product hexahedral meshes with FE spaces Q2/Q1 for velocity/pressure
within the FE package deal.II, see

dealdesc
[7]. The viscosity model is given by

νT (Duh)κ(Duh).

with the fluctuation operator κ := Id − Πh, the L2-orthogonal projection Πh : L → Lh, and Lh = Qd×d0

together with a model close to the classical Smagorinsky

νT (Duh)|K =
(
CS∆K

)2 ‖κDuh(SK)‖F .

Here, SK denotes the center of gravity of element K. On each element K ∈ Th, the filter width is given
by the geometric mean of the cell ∆K = (meas(K))1/d. The model parameter C2

S = 0.2010 is taken from
Lilly’s argument for isotropic homogeneous turbulence, see

RL10
[26].

We performed simulations with 16 × 24 × 16 grid points, with equidistant distribution of elements in
x1, x3-directions and anisotropic distribution in x2-direction according to

x2 = y = tanh(2(2i/(N)− 1))/ tanh(2), for i = 0, ..., N.

For this mesh, illustrated in Figure
fig:chmesh
3, we obtained a value of the aspect ratio aΩ ≈ 25.

Statistical averaging 〈·〉 is performed over all homogeneous directions x1, x3, t. As an example of first-
order statistics, we present in Fig.

fig:1
4 the mean streamwise velocity U = 〈uh〉~e1 and its normalized variant

U+. Compared to direct numerical simulation (DNS) results of
Moser99
[25], we obtain very good agreement in the

viscous sub-layer whereas slight deviations can be found in the log-layer and in the center of the channel.

remark:5.1 Remark 6.3. An anisotropic resolution of boundary layers seems reasonable for moderate Reynolds numbers
Reτ , but becomes much more expensive with increasing Reτ . Moreover, the applicability of our anisotropic
estimates in Theorem

thm:main
3.5 becomes questionable with very large aspect ratio. Numerical experiments in

Apel03
[4]

with lowest-order Taylor-Hood elements on anisotropic grids show indeed a potential influence of a large
aspect ratio aΩ := maxK hK/ρK where hK and ρK denote the diameter of K resp. the diameter of the
largest ball in K. A remedy is the application of wall-functions for high Reτ .
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Figure 3: Mesh for the Channel flow with 16× 24× 16 grid points, fitting into the framework of Assumption
ass:2
2. fig:chmesh
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Figure 4: Channel flow at Reτ = 180 with 16 × 24 × 16 grid points: Mean streamwise velocity U = 〈uh〉~e1 (left) and its
normalized variant U+ = U/uτ (right) fig:1

6.2. Non-isothermal cavity flow
subsec:5.2

Finally, we demonstrate the applicability of our approach to non-isothermal flow in a cavity. To this goal
we expand model (

NaSt1
14)-(

NaSt3
16) by adding the Fourier model

∂tθ − κ∆θ + u · ∇θ = Q (18) NaSt4

for temperature θ and setting f = αgθ in (
NaSt1
14). The Galerkin formulation of (

NaSt4
18) takes advantage of a skew-

symmetric form of the advective term. Moreover, a variational multiscale stabilization of the temperature
is introduced according to Subsec.

subsec:5.1
6.1. For more details, we refer to

LLR10
[24] where an extension of Theorem

thm:vms
6.1

to the Navier-Stokes/Fourier model (
NaSt1
14)-(

NaSt3
16),(

NaSt4
18) is given as well.

Exemplarily, we apply the method to natural convection in a differentially heated cavity Ω := (0, 1)2.
Heating θ = θmax and cooling θ = θmin is performed at lateral boundaries, whereas the upper and lower
boundaries are highly conducting. No-slip conditions u = 0 for velocity are given at the whole boundary
∂Ω. Strong boundary layers for temperature (and velocity) appear on the lateral boundaries, see Fig.

fig:4
5

(right).
Computations were done on with Q2/Q1/Q2 elements for velocity, pressure, and temperature on two

meshes with 64 and 32 cells in each dimension. An anisotropic mesh refinement had been performed at all
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Figure 5: Anisotropic tensor-product mesh on a cavity (left); Boundary layer profile for temperature profile T (x, 0.5) and
experimental data

TianKara00
[28] (right) fig:4

boundaries by transforming an equidistant reference mesh with

x1 = x̂1 −
19

40π
sin(2πx̂1), x2 = x̂2 −

7

16π
sin(2πx̂2) .

The maximum aspect-ratio of cells at the vertical walls was about 36:1, see Fig.
fig:4
5 (right). It is possible to

show that Assumption 2 is valid for such mesh too.
Results for time-averaged quantities of a low-turbulence flow at Ra = 1.58 × 109 are shown in Fig.

fig:4
5

(right). Here we used the projection-based VMS with a Smagorinsky-Eidson parametrization of the subgrid
model. On the fine grid, we observe a good agreement with the experimental data in

TianKara00
[28].

Remark 6.4. Let us finally remark that Remark
remark:5.1
6.3 remains valid for this application as well.

7. Conclusion

Summarizing, we conclude that under the Assumptions
ass:1
1,

ass:2
2 and

ass:3
3 there exists an anisotropic interpolation

operator, which preserves the discrete divergence (
eq:divprop
3). This was proven in Theorem

thm:main
3.5. Moreover, in 2

dimensions the Taylor-Hood element Q2/Q1 fulfills Assumption
ass:3
3 and we get the existence of an interpolation

operator in this case from Corollary
cor:anisoop
4.3 (with respect to the local aspect ratio). Further the numerical tests

in Section
sec:applic
6 showed good results on anisotropic meshes for complex benchmark problems, i.e. a channel

flow and a cavity flow.
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