
On Robust Parallel Preconditioning for
Incompressible Flow Problems

Timo Heister, Gert Lube, and Gerd Rapin

Abstract We consider time-dependent flow problems discretized via higher
order finite element methods. Applying a fully implicit time discretization or
an IMEX scheme leads to a saddle point system. This linear system is solved
using a preconditioned Krylow method, which is fully parallelized on a dis-
tributed memory parallel computer. We introduce a robust block-triangular
preconditioner and beside numerical results of the parallel performance we
explain and evaluate the main building blocks of the parallel implementation.

1 Introduction

The numerical simulation of time-dependent flow problems is an important
task in research and industrial applications. The flow of Newtonian incom-
pressible fluids is described by the system of the Navier-Stokes equations in
a bounded domain Ω ⊂ Rd, d = 2, 3, where one has to find a velocity field
u : [0, T]×Ω → Rd and a pressure field p : [0, T]×Ω → R such that

∂u
∂t
− ν∆u + (u · ∇) u +∇p = f in (0, T]×Ω,

∇ · u = 0 in [0, T]×Ω.
(1)

Here f : (0, T] × Ω → Rd is a given force field, and ν is the kinematic
viscosity. For brevity initial and boundary conditions are omitted. One has

Timo Heister
Math. Dep., University of Göttingen, Germany, heister@math.uni-goettingen.de

Gert Lube
Math. Dep., University of Göttingen, Germany

Gerd Rapin
VW, Interior Engineering, Wolfsburg, Germany

1

2 Timo Heister, Gert Lube, and Gerd Rapin

to cope with some modifications for turbulent flows, namely using∇·(2νS(u))
with S(u) := 1

2 (∇u+∇uT) instead of ν4u, variable and non-linear viscosity
ν := νconst + νt(u), and additional velocity terms from turbulence models.

In Section 2 this system of equations is discretized in space and time. The
high spatial resolution needed for a typical domain Ω ⊂ R3 leads to a number
of unknowns in the order of millions of degrees of freedom. Together with the
need to calculate the solution at many time-steps, especially for optimization
or inverse problems, this results in a demand for a robust and fast solution
algorithm. We define such an algorithm in Section 3. The memory and per-
formance requirements for the solution process can typically be met by a
distributed memory cluster. Let us state the requirements for the solver:

Flexibility, to allow comparisons between different turbulence models, sta-
bilization schemes, time discretizations, solvers, etc..

Parallelization, ranging from multicore workstations to clusters with hun-
dred or more CPUs.

Scalability, with respect to the number of CPUs and problem size.
Combining these three requirements is a challenge. Research codes are

usually flexible, but lack in the other two requirements. On the other hand
commercial codes often work with lowest order discretizations and are not
flexible enough. For higher accuracy and flexibility we favour a coupled ap-
proach for the saddle point system instead of a splitting scheme. This is not
commonly used in parallel and scalable codes.

The parallel architecture is the standard Multiple Instruction, Multiple
Data streams (MIMD) model. The basis for the parallel implementation are
parallel linear algebra routines running on top of MPI to allow parallel as-
sembling and solving of the linear systems. This is realized by splitting the
data of matrices and vectors row-wise between the CPUs (Section 4). We
conclude the paper with numerical results in Section 5.

2 Discretization

We start by semi-discretizing the continuous equation (1) in time. The
solution (u, p) and the data f are expressed only at discrete time steps
0 = t0 < t1 < . . . < tmax = T of the time interval [0, T], denoted by
the superscript n, e.g. un. Primarily we consider two different discretiza-
tion schemes, the typical implicit time discretization and an implicit-explicit
(short IMEX) scheme, c.f. [1]. The fully implicit time discretization leads to
a sequence of non-linear stationary problems of the form

−ν4un + cun + (un · ∇)un +∇pn = f̂(un−1, pn−1),
∇ · un = 0,

(2)

On Robust Parallel Preconditioning for Incompressible Flow Problems 3

where c ∈ R is a reaction coefficient related to the inverse of the time-step
size τn := tn+1 − tn and f̂ is a modified right-hand side. Note that many
time discretizations fit into this implicit scheme, for instance implicit Euler,
BDF(2) or diagonal-implicit Runge-Kutta schemes. The non-linear system
(2) is linearized by a fixed-point or Newton-type iteration. Hence, we have to
solve a sequence of linear systems with a given divergence-free field b in the
convective term (b · ∇)u.

The iteration for the non-linearity in (2) implies high computational cost.
An explicit time stepping is not desirable because of the strong restrictions on
the time-step size. A remedy is to treat the non-linear term (un · ∇)un in an
explicit way, while the remainder of the equation is kept implicit. These meth-
ods are called IMEX-schemes. An elegant option is to combine an explicit
Runge-Kutta scheme for the convection and an diagonal-implicit scheme, as
used above, for the rest. With this method the non-linearity disappears.

Thus, in both cases we end up with the solution of stationary Oseen prob-
lems:

−ν4u + cu + (b · ∇)u +∇p = f ,

∇ · u = 0,
(3)

which are discretized via Galerkin FEM on quadrilateral meshes with continu-
ous, piece-wise (tensor-) polynomials Qk of order k > 0. The inf-sup-stability
is ensured using a Taylor-Hood pair Qk+1/Qk for velocity and pressure. This
stable discretization leads to a finite-dimensional, linear saddle point system(

A BT

B 0

)(
u
p

)
=
(
f
g

)
(4)

with finite element matrices A containing diffusion, reaction and convection
and the pressure-velocity coupling B.

3 The Solver

In our approach the system (4) is solved using the preconditioned Krylow
subspace method FGMRES. This is a variant of the standard GMRES algo-
rithm, for details see [6]. FGMRES can cope with a changing preconditioner
in each iteration. This is needed in our case, because the preconditioner is not
calculated explicitly as a matrix but is given as an implicit operator which
uses iterative solvers internally.

System (4) is preconditioned with an operator P−1 of block triangular
type: (

A BT

B 0

)
P−1

(
v
q

)
= F with P−1 =

(
Ã BT

0 S̃

)−1

.

4 Timo Heister, Gert Lube, and Gerd Rapin

Here approximations Ã−1 ≈ A−1 and S̃−1 ≈ S−1 for the Schur complement
S := −BA−1BT are used. The choice of the preconditioner is motivated
by the fact that with exact evaluations of A and S the number of outer
(F)GMRES steps is at most two, see [4]. The inverse can be calculated by

P−1 =

(
Ã−1 −Ã−1BT S̃−1

0 S̃−1

)
=
(
Ã−1 0

0 I

)(
I BT

0 −I

)(
I 0
0 −S̃−1

)
.

Therefore, each outer iteration requires the solution of two inner problems:
the applications of Ã−1 and S̃−1. Additionally there is one matrix-vector
product with the matrix BT .

There are several reasons for choosing a coupled approach. Using a projec-
tion method would introduce a CFL-like condition restricting the maximum
time-step size. The main advantage of projection type methods (computa-
tional speed) can be simulated by only applying the preconditioner with a
simple iteration method with a fixed number of steps (e.g. one). The result is
comparable to a projection step method. Furthermore, the coupled approach
fits better to higher order methods. Finally, this method has the advantage
that the approximation qualtiy of Ã−1 and S̃−1 is adjustable at will, because
the outer iteration converges in either way.

The A-block forms a vector-valued convection-diffusion-reaction problem,
which is a lot larger than the Schur complement. It is non-symmetric due to
the convection part and the vector components may be coupled as a result
of modifications for turbulent calculations, c.f. Section 1. An important part
is the (strong) reaction term, which results in low condition number of the
matrix. Thus a BICGStab with Block-ILU preconditioning provides quite
good results for Ã−1.

The approximation of the Schur complement S̃−1 is more difficult, because
S = −BA−1BT is dense and hence cannot be built explicitly as a matrix.
Fortunately, in the case of reaction-dominated A we can simplify

S−1 ≈
[
B(cMu)−1BT

]−1
= c

(
BM−1

u BT
)−1

and approximate p = S̃−1q by a pressure Poisson problem:

−1
c
4p = q (5)

and suitable boundary conditions, see [7]. Note that the correct boundary
conditions stem from BM−1

u BT , which cannot be applied directly. As an
approximation there are Neumann boundary conditions applied for the Schur
complement where Dirichlet data is applied to the velocity in (1). Vice versa
if Neumann boundary conditions are given in (1), homogeneous Dirichlet
boundary conditions are applied in the Schur complement. Periodic boundary
conditions for the velocity can be treated with periodic boundary conditions
in (5), which provide good results, c.f. Section 5.

On Robust Parallel Preconditioning for Incompressible Flow Problems 5

4 Implementation Overview

The implementation of the solver described in this paper is built on top
of a collection of known libraries, see Figure 1. The basis is given by an
MPI implementation for the parallel communication and the library PETSc,
see [2], which supplies us with data structures and algorithms for scalable
parallel calculations: matrices, vectors, iterative solvers and preconditioners.
The finite elements, mesh handling and assembling are performed by deal.II,
see [3], which directly interfaces with the linear algebra objects from PETSc.

For the parallel calculations the rows in the system matrix have to be par-
titioned, such that each row is stored on exactly one CPU. This can be done
with the following algorithm: First, one creates a graph, with cells as ver-
tices and edges between two vertices if the corresponding cells are neighbors.
This graph is partitioned into several mostly equal-sized sets, so that each
CPU “owns” a number of cells. The library METIS minimizes the number
of cutted edges. This reduces the amount of communication in parallel cal-
culations. With the partition of the cells one can finally assign the owner for
each degree of freedom. If two neighboring cells are owned by different CPUs,
degrees of freedom on the shared face have to be assigend to one or the other
CPU. By controlling this allocation one tries to balance the number of local
rows per CPU. This improves the scalabilty of the solution process.

Among other things, the authors did some improvements in the way deal.II
assigns these degrees of freedom, which result in a decrease of the imbalance
of the number of degrees of freedom on the different CPUs up to 50%. This
is done by making a (deterministic) pseudo-random choice.

The main loop is layed out as follows: the outermost loop is the time
stepping. For each time step the inner loop is repeated for each stage of the
time discretization. For an implict discretization a fixed-point iteration, which
is not done for the IMEX-scheme, surrounds the inner part. Finally the inner
part consists of assembling and solving the linear system. The solution process
is done by FGMRES as described before. In each iteration the preconditioner
is applied once. Finally, the preconditioner consists of the preconditioned,
inner solvers for A and S.

Fig. 1 Framework of
used libraries. The basis
is given by MPI, which
is used by the libraries
PETSc and deal.II.

6 Timo Heister, Gert Lube, and Gerd Rapin

5 Numerical Results

First we present a simple parallel scalability test for a vector-valued Poisson
problem on the unit cube with homogeneous Dirichlet boundary conditions

−4u = f in Ω, u = 0 on ∂Ω,

discretized using Q2-elements. This problem is related to the A-block of the
Oseen problem. It is solved via BiCGStab without preconditioning. The par-
allel speed-up versus the number of CPUs is compared in Figure 2. This test
assures a good partitioning and correct algorithms for the following example.
It also presents a practical upper bound for the performance. One observes
a linear scaling of the solution process with respect to the number of CPUs
if the problem size is large enough with respect to the number of CPUs. The
communication overhead has to be sufficiently small compared to the com-
putational work on each CPU. Additionally, the communication can often be
done while doing local calculations and is hence hidden. This doesn’t work
for small local problem sizes.

The second and main example is the simulation of “Homogeneous Decay-
ing Isotropic Turbulence” and is a widespread turbulence benchmark. The
domain is given by a cube [0, 2π]3 with periodic boundary conditions. A
starting value (isotropic random velocity, see Figure 3) from a given energy
spectrum (calculated via Fourier transform) is prescribed. The problem has
a Taylor scale Reynolds number of Reλ =150 and the viscosity is ν ≈ 1.5e-5
(air). As a turbulence model we choose a standard LES Smagorinsky model
with νt = (Cs4h)2|S(u)|, |M | := (2M ·M)

1
2 . The energy dissipation in time

is compared to experimental data from [5], see Figure 3, right. The calcu-
lations were done with Q2 − Q1 elements on a mesh with 163 cells and the
Smagorinsky constant Cs = 0.17. Here the filter-width 4h is given by h. This
constant was not optimized but the results show good agreement to exper-
imental data. The time was discretized using a second order IMEX-scheme
with a time-step size of 0.0087.

48 16 32 64 96 128 192 256
0

50

100

150

200

250

300

1/32
1/48
1/64

48 16 32 64 96 128 192 256
0

50

100

150

200

250

300

1/32
1/48
1/64

Fig. 2 left: speed-up of assembling for different mesh sizes; right: speed-up of solution
process. The dashed line represents perfect linear speed-up.

On Robust Parallel Preconditioning for Incompressible Flow Problems 7

10
0

10
1

10
−4

10
−3

10
−2

10
−1

k

E

Fig. 3 left: iso-surface of initial velocity spectrum; right: energy spectra at t = 0.87
and t = 2.00 (upper and lower line) and corresponding experimental data (symbols)
with starting value

There are several important numerical results. First the number of FGM-
RES iterations is independent of the number of CPUs. This is clear, since
there is no difference to the serial algorithm. Then the number of iterations is
independent of the mesh size and lies between 5 to 6 iterations, see Table 1,
left. This proves that the preconditioner design works well and the accuracy
of Ã−1 and S̃−1 is sufficient.

Now, we consider the so-called strong scalability, where the number of
CPUs n is increased while the mesh size is kept fixed at h = 1/16, see Table
1, right. The scaling up to 16 processors for the solution process and up
to 64 processors for assembling is quite reasonable and comparable to the
scalability tests done before. The performance degrades for larger number of
processors, especially in the solution process. There are two reasons for this.
First, the problem size is getting to small. Second, the solver for the A-block,
which takes most of the time of the whole solution process, does not scale
linearly because of the Block-ILU preconditioner.

Table 2 shows calculations of the same problem, where the problem size
and the number of degrees of freedom are increased at the same time - not
with the same factors, though. Again, the scaling with the number of CPUs
degrades with a large number of CPUs, nevertheless it shows the calculation

Table 1 left: number of FMGRES iterations with respect to mesh size; right: speed-
up and efficiency of assembling and solving.

1/h # DoFs # It.

8 2312 5
16 112724 5
32 859812 5
48 2855668 6
64 6714692 6

CPUs speed-up
assembling

efficency
assembling

speed-up
solving

efficiency
solving

4 1.00 100% 1.00 100%
8 1.93 96% 1.90 95%

16 3.71 93% 3.21 80%
32 6.97 87% 3.50 44%
64 12.15 76% 2.79 17%

8 Timo Heister, Gert Lube, and Gerd Rapin

Table 2 Weak scalability of assembly- and solution-process w.r.t. increasing number
of CPUs and number of degrees of freedom

CPUs 1/h # DoFs ass./speed-up/Eff. solve/speed-up/Eff.

1 8 15468 3.8s 1.00 100% 2.01s 1.00 100%
4 16 112724 8.2s 3.42 85% 5.89s 2.47 62%

32 32 859812 13.5s 15.74 49% 8.41s 13.22 41%
128 48 2855668 54.2s 13.04 10% 11.1s 33.29 26%

of problems with a large number of degrees of freedom. The degradation
compared to Table 1 can be explained with parts of the algorithm scaling
worse than O(n).

6 Summary and outlook

We presented a flexible, parallel and scalable solver framework for the so-
lution of the incompressible Navier-Stokes equations. The numerical results
prove that the design of the preconditioner is promising. Nevertheless there
is much room for improvement. A better solver for the A-Block, e.g. parallel
Multigrid or a Domain Decomposition Method, combined with smaller mesh
sizes should result in good scaling up to a higher number of CPUs.

Acknowledgements T. Heister is partly supported by the DFG through GK 1023.

References

1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods
for time-dependent partial differential equations. Applied Numerical Mathematics:
Transactions of IMACS 25(2–3), 151–167 (1997)

2. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2009).
http://www.mcs.anl.gov/petsc

3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II — a General Purpose Object
Oriented Finite Element Library. ACM Transactions on Mathematical Software
33(4), 27 (2007)

4. Benzi, M., Golub, G.H., Liesen, J.: Numerical Solution of Saddle Point Problems.
Acta Numerica 14, 1–137 (2005)

5. Comte-Bellot, G., Corrsin, S.: Simple eulerian time correlation of full- and narrow-
band velocity signals in grid generated isotropic turbulence. J. Fluid Mech. 48,
273–337 (1971)

6. Saad, Y.: Iterative Methods for Sparse Linear Systems, second edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA (2003)

7. Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Algorithmic and
Computational Approach. Springer, Berlin (1999)

