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Mathematical model

Non-isothermal incompressible Navier-Stokes model

Find velocity ~u, pressure p and temperature θ in (0,T)× Ω:

Fluid motion (Navier-Stokes + continuity eq.) ν =
√

Pr/Ra

∂t~u− ~∇ · (ν (~∇~u + ~∇~uT)︸ ︷︷ ︸
=: 2S(~u)

) + (~u · ~∇)~u + ~∇p = ~f

∇ ·~u = 0

Heat transfer (advection-diffusion eq.) a = ν
Pr = 1/

√
Ra · Pr

∂tθ −∇ · (a∇θ) + (~u · ∇)θ = q̇V/cp

Boussinesq approximation ~f = −βθ~g
Turbulence occurs for Rayleigh numbers Ra � 108...109
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Mathematical model

Examples of thermally coupled incompressible flows

Example 1: Rayleigh-Benard problem

Natural convection problem in a box (heating
from below, cooling from top, insulation on
lateral sides)

Numerical simulation with FVM-Code at DLR
Göttingen (Shishkina/ Wagner JFM 2008)

Ra ∼ 109 ... 1010, Pr = 5.4 (water)

Project:

Thermal convection experiment with rotation (up to Ra = 1015) at MPI DS Göttingen

Numerical simulations with FVM-code of DLR and FEM-Code of NAM Göttingen
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Mathematical model

Examples of thermally coupled incompressible flows II

Example 2: Indoor air flow
Mixed convection problem in a room: natural + forced convection

Numerical simulation with FEM-code (TU Dresden/ NAM Göttingen) at
Ra ∼ 1010, Pr = 0.7 (air)
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Mathematical model

Numerical simulation of turbulent flows

Computational costs of DNS, LES and (U)RANS, cf. BREUER [2004]

DNS: almost unfeasible for high Re- and Ra-numbers

Unsteady RANS (URANS) model: as current industrial standard

LES or Detached-eddy simulation (DES): as reasonable (but still very expensive) compromise
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Mathematical model

Non-isothermal URANS model

Statistical turbulence model: ⇒ consider averaged values ~u, p, θ

∂t~u− ~∇ · (2νeS(~u)) + (~u · ~∇)~u + ~∇p = − βθ~g
~∇ ·~u = 0

∂tθ − ~∇ · (ae~∇θ) + (~u · ~∇)θ = q̇V/cp

Eddy viscosity ansatz for turbulent effects:

νe = ν + νt , ae = a + νt/Prt

Variants of URANS models for turbulent viscosity νt:

k-ε, k-ω model + wall functions CODINA/SOTO ’99, LEW ET AL. ’01, TUREK ET AL. ’05

k-ε-v2-f -model (DURBIN ’94) CORSINI ET AL. ’05, HADZIABDIC ’06

Final part: ϕ-f -version of k-ε-v2-f -model (HANJALIC ’04)
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Mathematical model

Non-isothermal k-ε turbulence model

Turbulent viscosity: νt = Cµ k2/ε  νk = ν + νt
Prk
, νε = ν + νt

Prε

∂tk − ~∇ · (νk ~∇k) + (~u · ~∇)k = Pk + G− ε

∂tε− ~∇ · (νε~∇ε) + (~u · ~∇)ε+ C2
ε

k
ε = C1

ε

k
(Pk + G)

Production/ destruction terms and model constants:

Pk = 2νt|S(~u)|2,

G = βCt
k
ε

P
i,j gi
ˆ 2

3 kδij − νt(ui,j + uj,i)
˜
θ,j

Cµ = 0.09, C1 = 1.44, C2 = 1.92, Prt = 0.9, Prk = 1.0,Prε = 1.3

Outlook: Final part of lecture I

Extension to non-isothermal k-ε-ϕ-f turbulence model LAURENCE ET AL. ’04
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Mathematical model

Boundary conditions: σ = 2νeS(~u)− (p + 2
3k)I

Split boundary ∂Ω into
Γ−(~u), Γ+(~u), and Γ0(~u)
depending on

. sign(~n ·~u)

inlet Γ− wall Γ0 = ΓW or on ΓW+δ outlet Γ+

~u, p ~u = ~uin or σ ·~n = σn~n ~u = ~0 σ ·~n = 0
θ θ = θin θ = θW ∇θ ·~n = 0

k k = 3
2 (Tu|~u|)2 k = 0 ~∇k ·~n = 0

ε ε = c3/4
µ k3/2/L ε = 2ν

δ2 kδ on ΓW+δ
~∇ε ·~n = 0

with characteristic turbulence length scale L
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Mathematical model

Summary: Mathematical model

Unsteady Reynolds-averaged Navier-Stokes (URANS) model for
turbulent non-isothermal flow

So far: Standard non-isothermal k-ε model

 Strongly coupled system of nonlinear PDE

Well-posedness of coupled nonlinear model:
 MOHAMMADI/ PIRONNEAU 1994

Later on: k-ε-ϕ-f model = improvement of standard k-ε model
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Time discretization. Linearization. Decoupling.
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Time discretization. Linearization. Decoupling.

Time discretization: Non-isothermal Navier-Stokes block

Linearized BDF(2) scheme: with unconditional A-stability

∂tθ|t=tm ≈
3θm − 4θm−1 + θm−2

2∆tm
; ~Um = 2~um−1 −~um−2, Tm = 2θm−1 − θm−2

 

Non-isothermal Navier-Stokes block:

−~∇ · (2νm
e S(~um)) + (~Um · ~∇)~um +

3~um

2∆tm
+ ~∇pm = −βTm~g +

4~um−1 −~um−2

2∆tm

~∇ ·~um = 0

−~∇ · (am
e
~∇θm) + (~Um · ~∇)θm +

3
2∆tm

θm = c−1
p q̇V m

+
4θm−1 − θm−2

2∆tm

similarly for k-ε-turbulence block
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Time discretization. Linearization. Decoupling.

Treatment of turbulence block

Nonlinear advection-diffusion-reaction system:

−~∇ · (νm
k
~∇km) + ~Um · ~∇km +

“ εm

km +
3

2∆tm

”
km = Pm

k + Gm +
4km−1 − km−2

2∆tm

−~∇ · (νm
ε
~∇εm) + ~Um · ~∇εm +

“C2ε
m

km +
3

2∆tm

”
εm =

C1

T
(Pm

k + Gm) +
4εm−1 − εm−2

2∆tm

Positivity-preserving formulation (!) LEW et.al ’01

”Freeze” non-negative (!) reaction and diffusion coefficients and R.H.S.’s

(Continuous) maximum principle valid for linearized problems !

Maximum principle preserved after semidiscretization with BDF(2) !
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Time discretization. Linearization. Decoupling.

Linearization cycle within each BDF(2) time step

(A): Solve (semidiscretized) non-isothermal Navier-Stokes equations:
via block Gauss-Seidel method with iterative decoupling

Update turbulent viscosities νm
t and am

t

Linearized Navier-Stokes problem for ~um, pm

Linearized advection-diffusion-reaction problem for θm.

(B): Solve (semidiscretized) equations for turbulence quantities:
via block Gauss-Seidel method with iterative decoupling

Update non-negative (!) reaction- and diffusion coefficients and R.H.S.’s

Solve for km, εm (until convergence)

(C): Stopping criterion:
Goto (A) if stopping-criterion for ~um, pm, θm not yet fulfilled. Otherwise goto next time step.

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 15 / 42



Time discretization. Linearization. Decoupling.

Linearization cycle within each BDF(2) time step

(A): Solve (semidiscretized) non-isothermal Navier-Stokes equations:
via block Gauss-Seidel method with iterative decoupling

Update turbulent viscosities νm
t and am

t

Linearized Navier-Stokes problem for ~um, pm

Linearized advection-diffusion-reaction problem for θm.

(B): Solve (semidiscretized) equations for turbulence quantities:
via block Gauss-Seidel method with iterative decoupling

Update non-negative (!) reaction- and diffusion coefficients and R.H.S.’s

Solve for km, εm (until convergence)

(C): Stopping criterion:
Goto (A) if stopping-criterion for ~um, pm, θm not yet fulfilled. Otherwise goto next time step.

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 15 / 42



Time discretization. Linearization. Decoupling.

Summary: Time discretization. Linearization. Decoupling

Alternative time discretizations: SDIRK methods etc.

A-priori analysis for fully coupled nonlinear problem unrealistic ?!

Alternative: A-posteriori analysis required

Open: Interplay of (accurate, robust) linearization and maximum
principle
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Residual-based stabilization of linearized problems: Isotropic meshes
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Residual-based stabilization of linearized problems: Isotropic meshes

Linearized advection-diffusion-reaction model

Advection-diffusion-reaction model: u ∈ {θ, k, ε}

Lu := −~∇ · (a~∇u) + (~b · ~∇)u + cu = f in Ω; u = 0 on ∂Ω

Assumptions: a, c ∈ L∞(Ω), ~b ∈ (H1(Ω))d ∩ (L∞(Ω))d, f ∈ L2(Ω)

a(x) ≥ a0 > 0, (∇ ·~b)(x) = 0,
1

∆t
+ c̃(x) ∼ c(x) ≥ 0 a.e. in Ω

Variational formulation:

Find u ∈ V := H1
0(Ω) s.t. A(u, v) = l(v) ∀v ∈ V

A(u, v) := (a~∇u, ~∇v)Ω + (~b · ~∇u + cu, v)Ω,

l(v) := (f , v)Ω.
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Residual-based stabilization of linearized problems: Isotropic meshes

Residual-based stabilized FEM

Basic SUPG-stabilized FEM: on admissible triangulation Th of Ω

Find u ∈ Vh := {v ∈ H1
0(Ω) ∩ C(Ω̄) | v|T ∈ Pr(T) ∀T ∈ Th }

Arbs(u, v) = Lrbs(v) ∀v ∈ Vh.

Arbs(u, v) := (a~∇u, ~∇v)Ω +
(
~b · ~∇u + cu, v

)
Ω

+
∑
T∈Th

δT (L̂u,~b · ~∇v)T

Lrbs(v) := (f , v)Ω +
∑
T∈Th

δT (f ,~b · ~∇v)T

with orthogonal projection ΠT : [L2(T)]d → [Pr(T)]d and

L̂u|T := −~∇ ·ΠT(a~∇u) + (~b · ~∇)u + cu
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Residual-based stabilization of linearized problems: Isotropic meshes

Analysis of SUPG-FEM - Stability and continuity

Stabilized norm: ‖|v‖| :=
“P

T∈Th

“
‖
√

a~∇v‖2
(L2(T))d + ‖

√
cv‖2

L2(T) + δT‖~b · ~∇v‖2
L2(T)

”” 1
2

Theorem: L., Rapin: CMAME 2006

Set

δT ∼ min

(
hT

r‖~b‖L∞(T)

;
1

‖c‖L∞(T)

;
h2

T

r4µ2
inv‖a‖L∞(T)

)

Stability: Arbs(v, v) ≥ 1
2‖|v‖|

2 ∀v ∈ Vh

Galerkin orthogonality: Arbs(u− uh, v) = 0 ∀v ∈ Vh

A-priori error estimate:

‖|u− uh‖|2 ≤ C
X
T∈Th

h2(l−1)
T

r2(k−1) Mopt
T ‖u‖

2
Hk(T), l = min(r + 1, k)

Mopt
T := ‖a‖L∞(T)

“
1 +

hT‖~b‖(L∞(T))d

r‖a‖L∞(T)| {z }
=:PeT

+
‖c‖L∞(T)h2

T

r2‖a‖L∞(T)| {z }
=:ΓT

+
‖a‖2

Wk−1,∞(T)

‖a‖2
L∞(T)

”
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Residual-based stabilization of linearized problems: Isotropic meshes

Numerical results for SUPG scheme on isotropic meshes:
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Spectral convergence for fixed (isotropic) mesh width h

Results for a = 10−6, c = 0 (left) and a = 10−6, c = 103 (right)
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Residual-based stabilization of linearized problems: Isotropic meshes

Crosswind-stabilization of SUPG method

Problem of SUPG:
Spurious local (!) oscillations in shear layers

 Spurious turbulence quantities !!
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0

0.2

0.4
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0.8

1

1.2
SC
SUPG

Framework of crosswind-stabilized variants:

Find Uh ∈ Vh : Arbs(Uh, v) +
X
T∈Th

(τT(Uh)Dsc∇Uh,∇v)T = Ls(v) ∀v ∈ Vh

Crosswind diffusion schemes with almost linear dependence on R∗T(w):

Dcd
sc :=

(
I − ~b⊕~b

|~b|2
, ~b 6= 0

0, ~b = 0
, τ cd

T (w) := lcd
T (w)

‖L̂w− f‖L2(T)

|w|H1(T) + κT| {z }
=:R∗T (w)

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 22 / 42



Residual-based stabilization of linearized problems: Isotropic meshes

Crosswind-stabilization of SUPG method

Problem of SUPG:
Spurious local (!) oscillations in shear layers

 Spurious turbulence quantities !!

0 0.05 0.1 0.15 0.2 0.25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
SC
SUPG

Framework of crosswind-stabilized variants:

Find Uh ∈ Vh : Arbs(Uh, v) +
X
T∈Th

(τT(Uh)Dsc∇Uh,∇v)T = Ls(v) ∀v ∈ Vh

Crosswind diffusion schemes with almost linear dependence on R∗T(w):

Dcd
sc :=

(
I − ~b⊕~b

|~b|2
, ~b 6= 0

0, ~b = 0
, τ cd

T (w) := lcd
T (w)

‖L̂w− f‖L2(T)

|w|H1(T) + κT| {z }
=:R∗T (w)
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Residual-based stabilization of linearized problems: Isotropic meshes

A-priori analysis of crosswind-stabilized SUPG

Theorem: L./ RAPIN CMAME ’06

Restriction on limiter function: 0 ≤ lcd
T (w) ≤ ρδT R∗T(w), ∀w ∈ Vh,

with appropriate ρ > 0

(∇ · (a∇u))|T ∈ L2(T) and u ∈ Hk(T), k > d
2 for all T ∈ Th ,

 A-priori estimate for crosswind-stabilized SUPG-scheme:

‖|u− Uh‖|2 +
X
T∈Th

‖τ cd
T (Uh) Dcd

sc

1
2∇(u− Uh)‖2

L2(T)| {z }
additional crosswind control

� R.H.S. of SUPG estimate

Remark:
Semi-implicit treatment of nonlinearity within linearization loop !

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 23 / 42



Residual-based stabilization of linearized problems: Isotropic meshes

A-priori analysis of crosswind-stabilized SUPG

Theorem: L./ RAPIN CMAME ’06

Restriction on limiter function: 0 ≤ lcd
T (w) ≤ ρδT R∗T(w), ∀w ∈ Vh,

with appropriate ρ > 0

(∇ · (a∇u))|T ∈ L2(T) and u ∈ Hk(T), k > d
2 for all T ∈ Th ,

 A-priori estimate for crosswind-stabilized SUPG-scheme:

‖|u− Uh‖|2 +
X
T∈Th

‖τ cd
T (Uh) Dcd

sc

1
2∇(u− Uh)‖2

L2(T)| {z }
additional crosswind control

� R.H.S. of SUPG estimate

Remark:
Semi-implicit treatment of nonlinearity within linearization loop !

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 23 / 42



Residual-based stabilization of linearized problems: Isotropic meshes

Numerical experiments: Interior layer – skew to mesh

Example: DC/CD scheme CODINA ’93, ’99

Limiter function lcd
T (w) =:= 1

2 hT max
n

0, β − 2‖a‖L∞(T)
hT R∗T (w)

o
, κT = 0
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Figure: SUPG-FEM without/ with DC/CD for h = 1
64 , r ∈ {1, 4}, β = 0.7, κ = 10−4
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Residual-based stabilization of linearized problems: Isotropic meshes

Linearized Navier-Stokes problem: Oseen-type problem

Assumptions: ν(x) > 0; (~∇ ·~b)(x) = 0; 1
∆t ∼ c = const. ≥ 0

Variational formulation:

Find U = {u, p} ∈W := V×Q := (H1
0(Ω))d × L2

0(Ω), s.t.

A(b; U,V) = L(V) ∀V = {v,q} ∈W

with

A(b; U,V) :=
(

2νS(~u), ~∇~v
)

Ω
+
(

(~b · ~∇)~u + c~u, ~v
)

Ω

− (p, ~∇ ·~v)Ω + (q, ~∇ ·~u)Ω

L(V) := (~f , ~v)Ω
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Residual-based stabilization of linearized problems: Isotropic meshes

Galerkin finite element discretization

Th – admissible triangulation of polyhedral domain Ω
Xr

h := {v ∈ C(Ω̄) | v|T ∈ Pr(T) ∀T ∈ Th}, r ∈ N
Equal-order FE spaces for velocity/ pressure:

Vr
h :=

[
Xr

h ∩ H1
0(Ω)

]d
, Qr

h := Xr
h ∩ L2

0(Ω)

 no discrete LBB-condition !

Galerkin FEM:

Find U = {~u, p} ∈Wr,r
h := Vr

h ×Qr
h, s.t.

A(~b; U,V) = L(V) ∀V = {~v, q} ∈Wr,r
h
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Residual-based stabilization of linearized problems: Isotropic meshes

Remedy: ”Classical” residual-based stabilization

Residual-based scheme:

Find U = {~u, p} ∈Wr,r
h : Arbs(~b; U,V) = Lrbs(V) ∀V = {~v, q} ∈Wr,r

h

Arbs(~b; U,V) = A(~b; U,V) +
X

T

δT

“
L̂Os(~b;~u, p), (~b · ~∇)~v + ~∇q

”
T| {z }

SUPG− and PSPG−stabilization

+ γT

“
~∇ ·~u, ~∇ ·~v

”
T| {z }

grad−div−stabilization

Lrbs(V) = L(V) +
X

T

z }| {
δT

“
~f , (~b · ~∇)~v + ~∇q

”
T

with orthogonal L2-projection ΠT : [L2(T)]d×d → [Pr(T)]d×d and

L̂Os(~b;~u, p) := −~∇ ·ΠT(νS(~u)) + ~∇p + (~b · ~∇)~u + c~u
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Residual-based stabilization of linearized problems: Isotropic meshes

Analysis on isotropic meshes

|[V]|rbs
2 := ‖

√
ν~S(~v)‖2

L2(Ω) + ‖
√

c~v‖2
L2(Ω) +

X
T

“
δT‖(~b · ~∇)~v + ~∇q‖2

L2(T) + γT‖~∇ ·~v‖2
L2(T)

”

Theorem: GL/G. Rapin M3AS 2006

δu
T = δp

T ∼ min{ h2
T

r2‖ν‖L∞(T)
; ∆t; hT

r‖b‖L∞(T)
} (SUPG/PSPG)

γT ∼ h2
T

r2δT
(grad-div) ;

 

Stability: Arbs(~b; V,V) ≥ 1
2 |[V]|rbs

2, ∀V = {~v, q} ∈ Vr
h ×Qr

h

Galerkin orthogonality: Arbs(~b; U − Uh,Vh) = 0 ∀Vh ∈ Vr
h ×Qr

h

A-priori estimate: ‖[U − Uh]‖rbs
2 �

P
T∈Th

MT
h2(l−1)

T
r2(k−1)

“
‖~u‖2

Hk(T) + ‖p‖2
Hk(T)

”
with MT :=

„
‖ν‖L∞(T) +

‖ν‖2
Wk−1,∞(T)
‖ν‖L∞(T)

+
‖~b‖L∞(T)hT

r +
h2

T
r2∆t

«
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Residual-based stabilization of linearized problems: Hybrid meshes

Outline

1 Mathematical model

2 Time discretization. Linearization. Decoupling.

3 Residual-based stabilization of linearized problems: Isotropic meshes

4 Residual-based stabilization of linearized problems: Hybrid meshes

5 Application to buoyancy-driven flows

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 29 / 42



Residual-based stabilization of linearized problems: Hybrid meshes

Application of wall functions

Simplification of nonisothermal boundary layer (BL) equations:

− d
dy

“
νBL

e
duBL

x

dy

”
= −βθBLgx, uBL

x |y=0 = 0, uBL
x |y=y(δ) = ux(yδ)

− d
dy

“
aBL

e
dBL
θ

dy

”
= 0, θBL|y=0 = θW , θBL|y=yδ = θ(yδ)

Overlapping domain decomposition approach:
Matching of BL-solutions with global solution at Γδ

Replace matching conditions at Γδ with wall boundary condition

νe
duBL

x

dy
|y=0 = R, ae

dθBL

dy
|y=0 = S

Application of shooting method to IVP (on a layer-adapted 1D-grid)
until convergence to matching conditions at Γδ
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Residual-based stabilization of linearized problems: Hybrid meshes

Non-isothermal k-ε-ϕ-f turbulence model LAURENCE ET AL. ’04

Turbulent viscosity: νt = Cµ T kϕ  νk = ν + νt
Prk
, νε = ν + νt

Prε

∂tk − ~∇ · (νk ~∇k) + (~u · ~∇)k = Pk + G− ε

∂tε− ~∇ · (νε~∇ε) + (~u · ~∇)ε+
Cε2

T
ε =

Cε1

T
(Pk + G)

∂tϕ− ~∇ · (νk ~∇ϕ) + (~u · ~∇)ϕ+
Pk + G

k
ϕ = f +

2νk

k
~∇ϕ · ~∇k

−L2∆f + f =
(D1 − 1)( 2

3 − ϕ)

T
+

D2(Pk + G)

k
+

2ν
k
~∇ϕ · ~∇k + ν∆ϕ

turbulence time scale T = max
ˆ

min
`

k
ε

; αr
Cµ
√

6 ϕ|S(~u)|

´
; 6
p

ν
ε

˜
turbulence length scale L = CL max

ˆ
min

`√
k3

ε
; αr

√
k

cµ
√

6 ϕ|S(~u)|

´
; Cη

`
ν3

ε

´ 1
4
˜

production terms Pk = 2νt|S(~u)|2, G = βc0
k
ε

P
i,j gi
ˆ 2

3 kδij − νt(ui,j + uj,i)
˜
θ,j
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Residual-based stabilization of linearized problems: Hybrid meshes

Resolution of boundary layers with hybrid meshes

Assume: Shear layer located at wall (here: at xd = 0)

Examples of hybrid meshes for d = 2 and d = 3

T g
h - (unstructured) isotropic mesh away from wall layers

T bl
h - structured anisotropic mesh of tensor product type

isotropic transition region between T g
h and T bl

h

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 32 / 42



Residual-based stabilization of linearized problems: Hybrid meshes

Resolution of boundary layers with hybrid meshes

Assume: Shear layer located at wall (here: at xd = 0)

Examples of hybrid meshes for d = 2 and d = 3

T g
h - (unstructured) isotropic mesh away from wall layers

T bl
h - structured anisotropic mesh of tensor product type

isotropic transition region between T g
h and T bl

h

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 32 / 42



Residual-based stabilization of linearized problems: Hybrid meshes

Analysis on hybrid meshes

Tensor product type mesh in layer zone with refinement in xd-direction s.t.

aspect ratio hmax,T
hmin,T

∼ 1
characteristic length scale at wall xd = 0

Analysis requires local (anisotropic) interpolation: APEL ’99

Modified design for advection-dominated case: h̃T ∈ [hmin,T , hmax,T ]

δT ∼ min

 
h2

min,T

µ2
invν

; ∆t;
h̃T

‖b‖(L∞(T))d

!
, γT ∼

h2
max,T

δT

Isotropic region: Standard design with h̃T ∼ hmax,T

Anisotropic region: Influence of length h̃T (not very sensitive)

h̃T = |T| 1d :  reasonable compromise between accuracy and costs

A-priori error estimates: APEL, KNOPP, L. APNUM 2008

Not shown: Similar approach to advection-diffusion-reaction problems
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Residual-based stabilization of linearized problems: Hybrid meshes

Turbulent flow at Ra = 1.58× 109 in a closed cavity

Left: Boundary layer profiles for vertical velocity component u2
u0

near hot left wall at
y/L = 0.5 and experimental data of [TIAN/ KARAYIANNIS ’00]

Right: Vertical temperature profile T−Tc
Th−Tc

at x/L = 0.5 and experimental data of [TIAN/
KARAYIANNIS ’00]
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Residual-based stabilization of linearized problems: Hybrid meshes

Summary: Residual-based stabilization of linearized problems

Residual-based stabilization of advection–diffusion-reaction model:
Robust a-priori analysis on isotropic meshes (h- and p-version)
Attempt to diminish spurious oscillations of discrete solutions

Residual-based stabilization of linearized Navier-Stokes model:
Equal-order stabilization of velocity/pressure requires stabilization
Robust a-priori analysis on isotropic meshes (h- and p-version)
Extension of a-priori analysis to hybrid meshes with layer refinement

Basic problems:
Implementation rather expensive due to velocity/pressure coupling
Diminishing spurious discrete oscillations for higher order elements
Robust and scalable algebraic preconditioners (w.r.t. to ν, h,∆t)

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 35 / 42



Application to buoyancy-driven flows

Outline

1 Mathematical model

2 Time discretization. Linearization. Decoupling.

3 Residual-based stabilization of linearized problems: Isotropic meshes

4 Residual-based stabilization of linearized problems: Hybrid meshes

5 Application to buoyancy-driven flows
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Application to buoyancy-driven flows

Natural ventilation in a cavity I: Ra ≈ 2 · 1010

Lube/ Knopp/ Gritzki/ Rösler/ Seifert: Intern. J. Comput. Math. 85 (2008) 10

Sketch of cavity with extended domain (left) and prediction for θ at three cross-sections (right)

Thermally insulated cavity with openings

flow induced by temperature difference, heating rod and gravity

simulates displacement ventilation with open windows
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Application to buoyancy-driven flows

Natural ventilation in a cavity II

Non-overlapping domain decomposition:
Enlarge domain for careful numerical prediction of flow at openings

Domain decomposition into internal flow domain (cavity) and external domain

DD-interface conditions instead of inflow/ outflow conditions as inflow field unknown

Comparison of temperature θ = θ(z) measured and calculated at x = 1.215 m, y = 1.10 m and t = 180 s/540 s/7200 s

Quasi-steady solution in reasonably well agreement with experimental data over long-time period of
7200s by HASLAVSKY et.al. ’04

Gert H. Lube (University of Göttingen) Thermally coupled incompressible flows Graz, March 10-12, 2009 38 / 42



Application to buoyancy-driven flows

Simulation with φ-f -model for floor-heating

Room with size 5× 6× 3 [m] with
heating from below

Simulation with front of cold air

Application of full φ-f -model with
anisotropic boundary layer resolution

Draught risk avoided !
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Application to buoyancy-driven flows

Indoor-air flow in atrium I

Numerical simulation in atrium with
cafeteria:

Atrium of size 22m× 22.5m× 17.2m

Formerly: Unpleasant air flow/
temperature conditions (caused by
curved glass roof)

Boundary conditions: from flow
simulation of surrounding buildings

Domain decomposition: into 3
subdomains and 1.2× 106 tetrahedra
(with ≈ 2× 106 unknowns)

Numerical simulation under winter
conditions over two hours
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Application to buoyancy-driven flows

Indoor-air flow in atrium II - Flow and temperature fields

”Optimization” with additional heating system under the roof yields reduction of maximal velocity from
1.5 m/s to 0.5 m/s and almost optimized temperature field
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Application to buoyancy-driven flows

Summary. Outlook

Summary
Simulation of thermally driven turbulent flows via URANS approach

Application to real life problems (ventilation/ heating systems)

A-priori analysis of FEM with residual-based stabilization for linearized
problems

Extension to layer-adapted meshes

Outlook
Application of FEM with local-projection stabilization

Application of LES/DES approach to thermally driven turbulent flows

A-posteriori analysis of fully coupled model

THANKS FOR YOUR ATTENTION !
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