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o Mathematical model

e Time discretization. Linearization. Decoupling.

e Residual-based stabilization of linearized problems: Isotropic meshes
e Residual-based stabilization of linearized problems: Hybrid meshes

e Application to buoyancy-driven flows

Joint work with: G. Rapin (Géttingen), T. Knopp (DLR Géttingen), Th. Apel (Munich),
M. Rosler, R. Gritzki, J. Seifert (TU Dresden) J
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Mathematical model

Outline

@ Mathematical model




Mathematical model

Non-isothermal incompressible Navier-Stokes model

Find velocity i, pressure p and temperature 6 in (0,7) x €

Fluid motion (Navier-Stokes + continuity eq.)

=

Qi —V - (v (Vi + Vi) + (@- V)i +Vp = f
N’

=: 25()

<
S
I

o
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Ma ical model

Non-isothermal incompressible Navier-Stokes model

Find velocity i, pressure p and temperature 6 in (0,7) x €

Fluid motion (Navier-Stokes + continuity eq.)

=

Qi —V - (v (Vi + Vi) + (@- V)i +Vp = f
N’

=: 25()
V-i = 0
Heat transfer (advection-diffusioneq.) a = % =1/v/Ra- Pr
00—V -(aVo)+ (@ -V)0 = ¢"/c,
@ Boussinesq approximation f = —[0g

e Turbulence occurs for Rayleigh numbers Ra = 108...10°
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Examples of thermally coupled incompressible flows

Example 1: Rayleigh-Benard problem

@ Natural convection problem in a box (heating
from below, cooling from top, insulation on
lateral sides)

@ Numerical simulation with FVM-Code at DLR
Gottingen (Shishkina/ Wagner JEM 2008)

@ Ra~10°...10"°, Pr=5.4 (water)

v

@ Thermal convection experiment with rotation (up to Ra = 10'%) at MPI DS Gottingen
@ Numerical simulations with FVM-code of DLR and FEM-Code of NAM Géttingen
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Mathematical model

Examples of thermally coupled incompressible flows 11

Example 2: Indoor air flow
@ Mixed convection problem in a room: natural + forced convection

@ Numerical simulation with FEM-code (TU Dresden/ NAM Goéttingen) at
Ra ~ 10'°, Pr=0.7 (air)

o) I

181920212223 24 25 26 Luftaustausch-

index g,
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Mathematical model

Numerical simulation of turbulent flows

degree of modeling

'y
100% +~4 RANS t——————— — — Reynolds Averaged Navier—Stokes
Large Eddy Simulation
0¥ i DNS = Direct Numerical Simulation
il

} } » computing costs
extremely

high high

Computational costs of DNS, LES and (U)RANS, cf. BREUER [2004]

@ DNS: almost unfeasible for high Re- and Ra-numbers
@ Unsteady RANS (URANS) model: as current industrial standard

@ LES or Detached-eddy simulation (DES): as reasonable (but still very expensive) compromise

Gert H. Lube (Uni

2009
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Mathematical model

Non-isothermal URA

Statistical turbulence model: = consider averaged values i, p, 0

Ot — ¥V - (2uS(id)) + (it - V)i +Vp = — 363
V.i=0
80—V -(a Vo) + @V = /e,
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atical model

model

—

Ot — ¥V - (2uS(id)) + (it - V)i +Vp = — 363
V.i=0
80—V -(a Vo) + @V = /e,

Eddy viscosity ansatz for turbulent effects:

Ve=V+1, ae = a—+ v, /Pry

Variants of URANS models for turbulent viscosity

@ k-¢, k-w model + wall functions CODINA/SOTO *99, LEW ET AL. 01, TUREK ET AL. *05

o k—e—viz—f—model (DURBIN ’94) CORSINI ET AL. *05, HADZIABDIC ’06

@ Final part: (-f-version of k-e-v2-f-model (HANJALIC *04)
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Mathematical model

Non-isothermal k-¢ turbulence model

Ok =V - (uVk) + (it - V)k — P+ G—c
O =V - (Ve + (ii- V)e + Crpe = i (Pi+G)

Gert H. Lube (University of
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Mathematical model

Non-isothermal k-¢ turbulence model

Turbulent viscosity: v, = Cy, k2 J€ ~ y=v+ Pu

ak =V - (1 Vk) + (il - V)k — Pi+G—e
O =V - (Ve + (ii- V)e + Crpe = i (Pi+G)

Production/ destruction terms and model constants:

@ Py = 2u|S(d)[%
e G= BC,E Zig gf[gkd,-j — l/t(uw' =+ uj,,-)] GJ
@ C, =009, Ci=144, C; =192, Pr,=0.9, Pry=1.0,Pre =13

Outlook: Final part of lecture I

Extension to non-isothermal k-e--f turbulence model LAURENCE ET AL. *04
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Mathematical model

Boundary conditions: o =2u,S(id) — (p+ 2k)I

Split boundary 02 into
I'_ (i), I'y (i), and T (&)
depending on

sign(# - i)

Graz, March 10



Mathematical model

Boundary conditions: o =2u,S(id) — (p+ 2k)I

Split boundary 02 into
I'_ (i), I'y (i), and T (&)
depending on

sign(# - i)

‘ H inlet T'_

U, p || U=ty or c-i=0,a | U=0 o-n=0
0 = 0in 0 = Ow Vo -i=0
k= 3(T.|i|)* k=0 Vk-7i=0
e:ci/4k3/2/L €= ks on I'wis Ve-i=0

with characteristic turbulence length scale L

10/42
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Mathematical model

Summary: Mathematical model

o Unsteady Reynolds-averaged Navier-Stokes (URANS) model for
turbulent non-isothermal flow

@ So far: Standard non-isothermal k- model

~+ Strongly coupled system of nonlinear PDE

@ Well-posedness of coupled nonlinear model:
~~» MOHAMMADI/ PIRONNEAU 1994

@ Later on: k-c-p-f model = improvement of standard k- model
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Time discretization. Linearization. Decoupling.

Outline

e Time discretization. Linearization. Decoupling.
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Time discretization. Li

Time discretization: Non- 1sotherma1 Navier-Stokes block

Linearized BDF(2) scheme: with unconditional A-stability

30" — 40" + 0"

010) =, ~ Y U= -, Th=20" -
A
Non-isothermal Navier-Stokes block:
S @IS + (O + S o = gy T
¢ 2At,, rp = & 20t
v.i" = 0
= m= nin m =\ i m —1.ym 49m_] = 0"1_2
V(@ VO") + (U - V)" + ZAtmo = ¢ q +72Atm

similarly for k-e-turbulence block
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Time dis:

Treatment of turbulence block

Nonlinear advection-diffusion-reaction system:

= 5 DN iz 4= =2
—V~(V1TVkm)+Um~Vkm+(;*m+2A3t )kWZP]:n"FGm‘F%

= my= _m m x> _m Coe™ 3 m c m m 4m71_ m2
—V - (Ve + 0" Ve + ( = b Jer = = (B
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Time dis: zation. ion. Decoup!

Treatment of turbulence block

Nonlinear advection-diffusion-reaction system:

= my— g m rm x> m i 3 m in m 4km_]_km_2

—V - (VK" + U™ - VK +(;—m+2m )k = P+ G"+
= m< _m S 2 m Cre™ 3 m C . m 4m71_m—2
—V - (V™) + U™ - Ve +( ;E + a7 )s = %(Pk+c)+527 tE

Positivity-preserving formulation (!) LEWw et.al 01

@ “Freeze” non-negative (!) reaction and diffusion coefficients and R.H.S.’s
@ (Continuous) maximum principle valid for linearized problems !

@ Maximum principle preserved after semidiscretization with BDF(2) !

Gert H. Lube (Univers Thermally coupled incompressible flows Graz, March 10-12, 2009 14742



Time discretization. Linearization. Decoupling.

Linearization cycle within each BDF(2) time step

(A): Solve (semidiscretized) non-isothermal Navier-Stokes equations:

via block Gauss-Seidel method with iterative decoupling
@ Update turbulent viscosities v;" and a;*
@ Linearized Navier-Stokes problem for ", p™

@ Linearized advection-diffusion-reaction problem for 6™.

Gert H. Lube (Univ Thermally coupled i r Graz, March 10-1



Time dis:

Linearization cycle within

(A): Solve (semidiscretized) non-isothermal Navier-Stokes equations:

via block Gauss-Seidel method with iterative decoupling
@ Update turbulent viscosities v;" and a;*
@ Linearized Navier-Stokes problem for ", p™

@ Linearized advection-diffusion-reaction problem for 6™.

(B): Solve (semidiscretized) equations for turbulence quantities:

via block Gauss-Seidel method with iterative decoupling

@ Update non-negative (!) reaction- and diffusion coefficients and R.H.S.’s

@ Solve for K", €" (until convergence)

(C): Stopping criterion:

Goto (A) if stopping-criterion for ™, p™, 8™ not yet fulfilled. Otherwise goto next time step.
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ion. Decoupling.

Summary: Time discretization. Linearization. Decoupling

@ Alternative time discretizations: SDIRK methods etc.

@ A-priori analysis for fully coupled nonlinear problem unrealistic ?!

o Alternative: A-posteriori analysis required

@ Open: Interplay of (accurate, robust) linearization and maximum
principle

Gert H. Lube (University of G Thermally coupled incompressible flows Graz, March 10-12, 2009 16/42



Residual-based stabilization of linearized problems: Isotropic meshes

Outline

e Residual-based stabilization of linearized problems: Isotropic meshes
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ased stabilization of linearized problems: Isotropic meshes

Linearized advection-diffusion-reaction model

- -

Lu:=-V-(@aVu)+ (b -Vu+cu = f  in u=0 on 9N

Assumptions: a,c € L®(Q), be (H'(Q)?N(L=(Q)?, fel*()

1

a(x) 2 a0 >0, (V-b)(x) =0, <

+¢(x) ~c(x) >0 ae. inQ
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Residual-based stabilization of linearized problems: Isotropic meshes

Linearized advection-diffusion-reaction model

Advection-diffusion-reaction model: « € {0k, ¢}

- -

Lu:=-V-(@aVu)+ (b -Vu+cu = f  in u=0 on 9N

Assumptions: a,c € L®(Q), be (H'(Q)?N(L=(Q)?, fel*()

1

a(x) 2 a0 >0, (V-b)(x) =0, <

+¢(x) ~c(x) >0 ae. inQ

Variational formulation:

Find u € V:=H)(Q) st A(u,v) =) YWwev

A(u,v) = (aVu,Vv)q + (b- Vi + cu,v)q,
vy = (f,v)a.

Thermally coupled incompressible flows Graz, March 10-12, 2009 18742



Res:

Res1dua1 based stablhzed FEM

zation of li; d problel sotropic meshes

Basic SUPG-stabilized FEM:
Findu € V), := {v € H}() N C(Q) | v|

Arbs(uav) = Lrbs(v)

on admissible triangulation 7, of €2

71 €P(T)VT €T, }

Yv € V.

Apps(u,v) := (aﬁu, 61/)9 + (l_; Vu + cu, V) + Z or (Lu,b - Vv)r
& TeT,
Lys(v) = (f,v)a + > o (f,b-Vv)r
TeT,
with orthogonal projection Iz : [L*(T)]¢ — [P,(T)]¢ and
Lu|r := =V -Tp(aVu) + (b- V)u + cu

Gert H. Lube (University of Gottingen)
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>d problems: Isotropic meshes

S of SUPG-FEM - Stability and continuity

=

Stabilized norm: V]| = (Syer, (IVaVVIsz o + V@B + 62115 - Fvlagr)) )
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Analysis of SUPG FEM Stablhty and continuity

=

Stabilized norm: V]| = (Syer, (IVaVVIsz o + V@B + 62115 - Fvlagr)) )

Theorem: L., Rapin: CMAME 2006

h 1 h;
&7 ~ min = T ; ; 5 4
r||bHLoo(T) HC||L°°(T) 'Aﬂinv |aHL°°(T)

@ Stability: Aps(v,v) > LI III? Vv € Vi
@ Galerkin orthogonality: Aps(u —up,v) =0 Yvev,

@ A-priori error estimate:

2(1 1)
e =l < € S M Ml 1= min(r 4 1,8)
TeT,
v
hrllBlleoryps | llellioe by lallin-se
MT][ = Ha”Loo(T) (1 + B B )
lalliery " Pl Tl
=:Per =:I'r

Gert H. Lube (Univers Thermally coupled incompressible flows Graz, March 10-12, 2009 20/42



Residu ation of linearized problem: tropic meshes

Numerical results for SUPG scheme on isotropic meshes:

10 10° - - -
— h=1/4 = h=14
-~ h=18 -~ h=1/8
1072 ¢ +- h=1/16 107 - h=1/16
+ h=1/32 + h=132
107+ 10
- -
S0 .10
3 8
g 5
5, s 5. s
10°F R B 10 .
107 + 10 .
1077 + 10" +
107 10"
1 2 3 4 5 6 1 2 3 4 5 6
p p

@ Spectral convergence for fixed (isotropic) mesh width A
@ Results fora = 1075, ¢ = 0 (left) and a = 107%,¢ = 103 (right)
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Residual-based stabilization of linearized problems: Isotropic meshes

Crosswind-stabilization of SUPG method

[ 1
Problem of SUPG: o8 \
Spurious local (!) oscillations in shear layers
~» Spurious turbulence quantities !! o2

Gert H. Lube (Uni



Residual-based stabilization of linearized problems: Isotropic meshes

Crosswind-stabilization of SUPG method

.
Problem of SUPG: o
Spurious local (!) oscillations in shear layers \
~» Spurious turbulence quantities !! o2 \

Framework of crosswind-stabilized variants:

Find Uy € Vi i Ams(Un,v) + D (7r(Un)Ds VU, Vv)7 = Ly(v) Wy € V)
TET,

Crosswind diffusion schemes with almost linear dependence on R (w):

" I — @7 E () ) . I:W _
Dit = o jﬁ ;T w) = (w 2w = Fllizry
g H=A0 Wlai(ry + K1
——

=:R} (w)

Gert H. Lube (Univ Thermally coupled i ressi Graz, March 10-1



Residual-based stabilization of linearized problems: Isotropic meshes

A-priori analysis of crosswind-stabilized SUPG

Theorem: L./ RAPIN CMAME ’06

@ Restriction on limiter function: 0 < & (w) < pdrRy(w),Vw € Vi,
with appropriate p > 0

@ (V- (aVu))|r € L*(T)andu € HY(T),k > & forall T € 7,

~» A-priori estimate for crosswind-stabilized SUPG-scheme:

= Tll> + Y lI75(Un) D;;“V(u— Uiy = RHS. of SUPG estimate
TET,

additional crosswind control

Gert H. Lube (Univers Thermally coupled incompressible flows Graz, March 10-12, 2009



: Isotropic mes

A- pr10r1 analys1s of érossw1hd stabilized SUPG

Theorem: L./ RAPIN CMAME ’06

@ Restriction on limiter function: 0 < & (w) < pdrRy(w),Vw € Vi,
with appropriate p > 0

@ (V- (aVu))|r € L*(T)andu € HY(T),k > & forall T € 7,

~» A-priori estimate for crosswind-stabilized SUPG-scheme:

= Tll> + Y lI75(Un) D;;“V(u— Uiy = RHS. of SUPG estimate
TET,

additional crosswind control

@ Semi-implicit treatment of nonlinearity within linearization loop !

Gert H. Lube (Unive Thermally coupled incompressible flows Graz, March 10-12, 2



Residual-based stabilization of linearized problems: Isotropic meshes

Numerical experiments: Interior layer — skew to mesh

Example: DC/CD scheme CODINA ’93, 99

. . : 2||al| oo
@ Limiter function B (w) =:= %hr max {O,ﬂ = % , kr=0

12 12,
— SC — SC
N -- SUPG . -~ SUPG
1 1 :
08 \ 0.8 \
06 \ 06 \
A
| !
0.4 | 0.4
‘\‘ ‘
i
02 \ 02
A {
0 \\—,»; 0 '\,,—
07 005 01 015 02 025 0%
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Residual-based stabilization of linearized problems: Isotropic meshes

Linearized Navier-Stokes problem: Oseen-type problem

Assumptions: v(x) > 0; (V-b)(x) =0; A ~ ¢ = const. > 0

Gert H. Lube (Univ Thermally coupled i pressible flows Graz, March 10-1



Variational formulation:
Find U= {u,p} e W:=V xQ:= (H}(N) x L}(Q), s.t.
Ab; U, V) = L(V) VV={v,q} €W

with

A v) = (8@, W)Q + (- V)i +ca V)Q

Gert H. Lube (University of Gottingen) Thermally coupled incompressible flows Graz, March 10-12, 2009



Residual-based stabilization of linearized problems: Isotropic meshes

Galerkin finite element discretization

@ 7, - admissible triangulation of polyhedral domain 2

o X; ={veC) |vlreP(T)VT € Ty}, r N
o Equal-order FE spaces for velocity/ pressure:
d r r
V= (X nHy ()", Qp =X, NL§(Q)

~~ no discrete LBB-condition !

Gert H. Lube (University of Gottingen) Thermally coupled incompressible flows Graz, March 10-12, 2009



Residual-based stabilization of linearized problems: Isotropic meshes

Galerkin finite element discretization

@ 7, - admissible triangulation of polyhedral domain 2

o X; ={veC) |vlreP(T)VT € Ty}, r N

o Equal-order FE spaces for velocity/ pressure:

r r d r r
V= (X nHy ()", Qp =X, NL§(Q)

~~ no discrete LBB-condition !

Find U= {i,p} € W,":=V}, xQ}, s.t.
ABUY) = L(V) YV = {7.q} € W}’

Gert H. Lube (University of Got Thermally coupled incompressible flows Graz, March 10-12, 2009



sotropic meshes

Residual-based scheme:

Find U = {#,p} € W} : Aps(b; U, V) = Lps(V) YV ={V,q} €W}’

Gert H. Lube (Univ ttingen) Thermally coupled incompressible flows Graz, March 10-



Residual-ba: bilization of linearized problems: Isotropic meshes

Remedy: “Classical” residual-based stabilization

Residual-based scheme:

Find U = {#,p} € W} : Aps(b; U, V) = Lps(V) YV ={V,q} €W}’

AnB;UV) = AGUY)+ Y 0r(LoBii,p), (B- V)i +Va) +7r(V V7).
T
SUPG— and PSPG— stabilization grad— div— stabilization
Los(V) = L(V)  + Zor(” 5V v+Vq)

with orthogonal L*-projection Ilr : [L*(T)]**? — [P(T)]**¢ and

Los(b; i, p) := —V - Uy (vS(id)) + Vp + (b - V)il + cii

Gert H. Lube (University of Thermally coupled incompressible flows Graz, March 10-12, 2009



[Vl i= VB @Iy + V) + D (37115 )7+ Valry + eIV - 7))
T

Gert H. Lube (Unive f Thermally coupled incompressible flows Graz, March 10-1



Isotropic meshes

alysis on 1sotrop1c meshes

[V)las® 2= IVZS@) () + Vel +Z(6ru )7+ Valliae + 21 Tl )

Theorem: GL/G. Rapin M?AS 2006

@ 5=~ min{rz“yﬁ'fmm ;A } (SUPG/PSPG)

) th”LOQ (1)
2

@ 1~ % (grad-div) ;

@ Stability: Auws(B;V, V) > |[V]|ws?, WV = {¥,q} € V} x Q;
@ Galerkin orthogonality: A (b;U — Uy, Vi) =0 VVi € Vj x Q;,

2(1—1)
© A-priori estimate: [~ Uylll® X Sreq, Mr sy (113 + o )

Il ”wk 1,00 1]l o0 1)k %
1 o (1) LO(DT h
with My .= (“I/”Loo(]") —+ Tl + = 4L Tgt

Gert H. Lube (Univers Thermally coupled incompressible flows Graz, March 10-12, 2009 28 /42



Residua stabilization of linearized problems: Hybrid meshes

Outline

e Residual-based stabilization of linearized problems: Hybrid meshes
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d duB*
,Iy(ny d;) = —B0"g, W l=0=0, U lymys) = (ys)

d BL dgL _ BL _ BL —
) <0 e a0

oo
| \

Overlapping domain decomposition approach

@ Matching of BL-solutions with global solution at I'5
@ Replace matching conditions at I'5 with wall boundary condition

dMBL deBL
VeT; |y=0 = R7 aeTy |y=0 =S

@ Application of shooting method to IVP (on a layer-adapted 1D-grid)
until convergence to matching conditions at I's

Gert H. Lube (Univer: g Thermally coupled incompressible flows Graz, March 10-12, 2009 30/42



Residual-based stabilization of linearized problems: Hybrid meshes

Non-isothermal k—G—(,O—]_C turbulence model Laurence et AL. 04

- D —1)(3 - - =
_pagy 7 o= 220G @)+D2(Pk+G)+2%ch-Vk+uAgp

Gert H. Lube (University of Thermally coupled incompressible flows Graz, March 10-12, 2009



Residual-based stabilization of linearized problems: Hybrid meshes

Non-isothermal k—G—Q,O—]? turbulence model Laurence et AL. *04

= = P+ G 2vp =

Op —V - (Vo) + (- V)p + . ap:f+—v - Vk
- D —1)(% - D> (P, 2
_DAF+ F o= (D1 )(3 99)+ 2 ( k+G)+ I/V -k + vAp
T k k
3 o 3 k
@ turbulence time scale T = max [min (£ ; Cuf ] )5 64/%]
_ (VR a, vk

@ turbulence length scale L = C; max [min (¥X ; m) Cn(% ) }
@ production terms Py =2u|S@)?, G = Beot 3, &i[3kby — viuij + u;,1)] 0,

Gert H. Lube (University of Thermally coupled incompressible flows Graz, March 10-12, 2009 31/42



Resid ed stabilization of 1 d problems: Hybrid meshes

Resolution of boundary layers with hybrid meshes

Assume: Shear layer located at wall  (here: at x; = 0) J

Examples of hybrid meshes ford =2 and d = 3

Gert H. Lube (Uni i r oupled incompressible flows Graz, Mar



Resid ed stabilization of 1 d problems: Hybrid meshes

Resolution of boundary layers with hybrid meshes

Assume: Shear layer located at wall  (here: at x; = 0) J

Examples of hybrid meshes ford =2 and d = 3

@ 7 - (unstructured) isotropic mesh away from wall layers
@ T - structured anisotropic mesh of tensor product type

@ isotropic transition region between 7,° and T

Gert H. Lube (Uni i ' oupled incompressible fl Graz, Mar



Residual-based stabilization of linearized problems: Hybrid meshes

Analysis on hybrid meshes

@ Tensor product type mesh in layer zone with refinement in x;-direction s.t.

hax, T

1
~ -
mmin,r ~ characteristic length scale

aspect ratio atwall x; =0

@ Analysis requires local (anisotropic) interpolation: APEL *99




Re: based stabilization of linearized problems: Hybrid meshes

Analysis on hybrid meshes

@ Tensor product type mesh in layer zone with refinement in x;-direction s.t.

hax, T

i _
hminr " Characteristic length scale ¢ wEll ez =10

aspect ratio

@ Analysis requires local (anisotropic) interpolation: APEL *99

Modified design for advection-dominated case: l~zT € [Pwmin,T> Pmax,T]

. hrzmn T i;lT hrznwc,T
07 ~ min 3 Yo~ ———
MV ||b||(L°° (1))
@ Isotropic region: Standard design with hy ~ Himax,T

@ Anisotropic region: Influence of length hr (not very sensitive)

~» reasonable compromise between accuracy and costs

A-priori error estimates: APEL, KNOPP, L. APNUM 2008

Not shown: Similar approach to advection-diffusion-reaction problems

Gert H. Lube (Uni i r p ompressible flows Graz, March 10



Residual-based stabilization of linearized problems: Hybrid meshes

Turbulent flow at Ra = 1.58 x 10° in a closed cavity

—————— k-e—o-f i
N Tian et al.

PR — ke r

0.8?

i

|

;’_

L
| M | L L L | 0.4" P | - P | L L il
10°  xL 107 10" 10°  xL 10 10"

Left: Boundary layer profiles for vertical velocity component z—g near hot left wall at
y/L = 0.5 and experimental data of [TIAN/ KARAYIANNIS *00]

Right: Vertical temperature profile TTh __TT“{ atx/L = 0.5 and experimental data of [TIAN/

KARAYIANNIS *00]
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Residual-based stabilization of linearized problems: Hybrid meshes

Summar Y. Residual-based stabilization of linearized problems

@ Residual-based stabilization of advection—diffusion-reaction model:

e Robust a-priori analysis on isotropic meshes (s- and p-version)
o Attempt to diminish spurious oscillations of discrete solutions

o Residual-based stabilization of linearized Navier-Stokes model:
e Equal-order stabilization of velocity/pressure requires stabilization
e Robust a-priori analysis on isotropic meshes (s- and p-version)
o Extension of a-priori analysis to hybrid meshes with layer refinement

o Basic problems:
o Implementation rather expensive due to velocity/pressure coupling
e Diminishing spurious discrete oscillations for higher order elements
e Robust and scalable algebraic preconditioners (w.r.t. to v, h, At)

Gert H. Lube (Univ Thermally coupled i ressi Graz, March 10-1



Application to buoyancy-driven flows

Outline

@ Application to buoyancy-driven flows
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Application to buoyancy-driven flows

Natural ventilation in a cavity . Ra ~ 2 - 10!

Lube/ Knopp/ Gritzki/ Rosler/ Seifert: Intern. J. Comput. Math. 85 (2008) 10

external domain
g element

Inmﬁ;maln /é\
P

Sketch of cavity with extended domain (left) and prediction for 6 at three cross-sections (right)

@ Thermally insulated cavity with openings
@ flow induced by temperature difference, heating rod and gravity

@ simulates displacement ventilation with open windows




Application to buoyancy-driven flows

Natural ventilation in a cavity II

Non-overlapping domain decomposition:

@ Enlarge domain for careful numerical prediction of flow at openings

@ Domain decomposition into internal flow domain (cavity) and external domain

@ DD-interface conditions instead of inflow/ outflow conditions as inflow field unknown

t =540s

t=7200s

t=180s
25 T T
4 measurement A
——simulation
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a
— a
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air temperature [°C]

Comparison of temperature § = 6(z) measured and calculated atx = 1.215m,y = 1.10 mand r = 180s/5405/7200 s

@ Quasi-steady solution in reasonably well agreement with experimental data over long-time period of
7200s by HASLAVSKY et.al. *04

air temperature [°C]

air temperature [°C]



Application to buoyancy-driven flows

Simulation with ¢-f-model for floor-heating

@ Room with size 5 X 6 x 3 [m] with
heating from below

@ Simulation with front of cold air

@ Application of full ¢-f-model with
anisotropic boundary layer resolution

DR (%] I

Draught risk avoided !

o C

15161713 19202122

2324262627
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Application to buoy:

Indoor-air flow in atrium I

Numerical simulation in atrium with
cafeteria:
@ Atrium of size 22m x 22.5m X 17.2m

@ Formerly: Unpleasant air flow/
temperature conditions (caused by
curved glass roof)

@ Boundary conditions: from flow
simulation of surrounding buildings

@ Domain decomposition: into 3
subdomains and 1.2 x 10° tetrahedra
(with & 2 x 10% unknowns)

@ Numerical simulation under winter
conditions over two hours

Gert H. Lube (Univers Thermally coupled incompressible flows Graz, March 10-12, 20 40/42



Application to buoyancy-driven flows

Indoor-air flow in atrium II - Flow and temperature fields

| T

12 13 14 15 16 17 18 19 20

”Optimization” with additional heating system under the roof yields reduction of maximal velocity from
1.5 m/s to 0.5 m/s and almost optimized temperature field

Gert H. Lube (University of Gotti oupled inc i 0 Graz, March



Application to buoyancy-driven flows

Summary. Outlook

@ Simulation of thermally driven turbulent flows via URANS approach

@ Application to real life problems (ventilation/ heating systems)

@ A-priori analysis of FEM with residual-based stabilization for linearized
problems

o Extension to layer-adapted meshes

v

o Application of FEM with local-projection stabilization

@ Application of LES/DES approach to thermally driven turbulent flows

@ A-posteriori analysis of fully coupled model

A
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Application to buoyancy-driven flows

Summary. Outlook

@ Simulation of thermally driven turbulent flows via URANS approach

@ Application to real life problems (ventilation/ heating systems)

@ A-priori analysis of FEM with residual-based stabilization for linearized
problems

o Extension to layer-adapted meshes

v

o Application of FEM with local-projection stabilization

@ Application of LES/DES approach to thermally driven turbulent flows

@ A-posteriori analysis of fully coupled model

A

THANKS FOR YOUR ATTENTION !
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