Stabilized finite element methods for thermally coupled incompressible flows

Gert H. Lube

Institute for Numerical and Applied Mathematics Georg-August-University of Göttingen D-37083 Göttingen, Germany

Lecture I in DK-Seminar "Numerical Simulations in Technical Sciences" TU Graz, March 10-12, 2009

Gert H. Lube (University of Göttingen)

Graz, March 10-12, 2009 1/4

Outline

Mathematical model

- Time discretization. Linearization. Decoupling.
- 3 Residual-based stabilization of linearized problems: Isotropic meshes
- Presidual-based stabilization of linearized problems: Hybrid meshes
- 5 Application to buoyancy-driven flows

Joint work with: G. Rapin (Göttingen), T. Knopp (DLR Göttingen), Th. Apel (Munich), M. Rösler, R. Gritzki, J. Seifert (TU Dresden)

Outline

Mathematical model

- 2 Time discretization. Linearization. Decoupling.
- 3 Residual-based stabilization of linearized problems: Isotropic meshes
- 4 Residual-based stabilization of linearized problems: Hybrid meshes
- 5 Application to buoyancy-driven flows

Non-isothermal incompressible Navier-Stokes model

Find velocity \vec{u} , pressure p and temperature θ in $(0, T) \times \Omega$:

Fluid motion (Navier-Stokes + continuity eq.)
$$\nu = \sqrt{Pr/Ra}$$

 $\partial_t \vec{u} - \vec{\nabla} \cdot (\nu \underbrace{(\vec{\nabla} \vec{u} + \vec{\nabla} \vec{u}^T)}_{=: 2S(\vec{u})}) + (\vec{u} \cdot \vec{\nabla})\vec{u} + \vec{\nabla}p = \vec{f}$
 $\nabla \cdot \vec{u} = 0$

4/42

Non-isothermal incompressible Navier-Stokes model

Find velocity \vec{u} , pressure p and temperature θ in $(0, T) \times \Omega$:

Fluid motion (Navier-Stokes + continuity eq.)
$$\nu = \sqrt{Pr/Ra}$$

 $\partial_t \vec{u} - \vec{\nabla} \cdot (\nu \underbrace{(\vec{\nabla} \vec{u} + \vec{\nabla} \vec{u}^T)}_{=:2S(\vec{u})}) + (\vec{u} \cdot \vec{\nabla})\vec{u} + \vec{\nabla}p = \vec{f}$
 $\nabla \cdot \vec{u} = 0$

Heat transfer (advection-diffusion eq.) $a = \frac{\nu}{Pr} = 1/\sqrt{Ra \cdot Pr}$

$$\partial_t \theta - \nabla \cdot (a \nabla \theta) + (\vec{u} \cdot \nabla) \theta = \dot{q}^V / c_p$$

- Boussinesq approximation $\vec{f} = -\beta\theta\vec{g}$
- Turbulence occurs for Rayleigh numbers $Ra \succeq 10^8 \dots 10^9$

Examples of thermally coupled incompressible flows

Example 1: Rayleigh-Benard problem

- Natural convection problem in a box (heating from below, cooling from top, insulation on lateral sides)
- Numerical simulation with FVM-Code at DLR Göttingen (Shishkina/ Wagner JFM 2008)
- $Ra \sim 10^9 \dots 10^{10}$, Pr = 5.4 (water)

Project:

- Thermal convection experiment with rotation (up to $Ra = 10^{15}$) at MPI DS Göttingen
- Numerical simulations with FVM-code of DLR and FEM-Code of NAM Göttingen

Mathematical model

Examples of thermally coupled incompressible flows II

Example 2: Indoor air flow

- Mixed convection problem in a room: natural + forced convection
- Numerical simulation with FEM-code (TU Dresden/ NAM Göttingen) at $Ra \sim 10^{10}$, Pr = 0.7 (air)

Numerical simulation of turbulent flows

Computational costs of DNS, LES and (U)RANS, cf. BREUER [2004]

- DNS: almost unfeasible for high Re- and Ra-numbers
- Unsteady RANS (URANS) model: as current industrial standard
- LES or Detached-eddy simulation (DES): as reasonable (but still very expensive) compromise

Non-isothermal URANS model

Statistical turbulence model: \Rightarrow consider averaged values \vec{u}, p, θ

$$\partial_t \vec{u} - \vec{\nabla} \cdot (2\nu_e S(\vec{u})) + (\vec{u} \cdot \vec{\nabla})\vec{u} + \vec{\nabla}p = -\beta\theta\vec{g}$$
$$\vec{\nabla} \cdot \vec{u} = 0$$
$$\partial_t \theta - \vec{\nabla} \cdot (\underline{a_e}\vec{\nabla}\theta) + (\vec{u} \cdot \vec{\nabla})\theta = \dot{q}^V/c_p$$

Non-isothermal URANS model

Statistical turbulence model: \Rightarrow consider averaged values \vec{u}, p, θ

$$\partial_t \vec{u} - \vec{\nabla} \cdot (2\nu_e S(\vec{u})) + (\vec{u} \cdot \vec{\nabla})\vec{u} + \vec{\nabla}p = -\beta\theta\vec{g}$$

 $\vec{\nabla} \cdot \vec{u} = 0$
 $\partial_t \theta - \vec{\nabla} \cdot (a_e \vec{\nabla}\theta) + (\vec{u} \cdot \vec{\nabla})\theta = \dot{q}^V/c_p$

Eddy viscosity ansatz for turbulent effects:

$$\nu_e = \nu + \nu_t , \qquad a_e = a + \nu_t / Pr_t$$

Variants of URANS models for turbulent viscosity ν_1 :

• $k \cdot \epsilon, k \cdot \omega \mod l + \text{wall functions}$ • $k \cdot \epsilon \cdot \overline{v^2} \cdot f \cdot \mod l \pmod{99}$, Lew et al. '01, TUREK et al. '05 • $k \cdot \epsilon \cdot \overline{v^2} \cdot f \cdot \mod l \pmod{99}$ • **Final part:** $\varphi \cdot \overline{f} \cdot \operatorname{version}$ of $k \cdot \epsilon \cdot \overline{v^2} \cdot f \cdot \mod l \pmod{99}$ • **Final part:** $\varphi \cdot \overline{f} \cdot \operatorname{version}$ of $k \cdot \epsilon \cdot \overline{v^2} \cdot f \cdot \mod l \pmod{99}$ Mathematical model

Non-isothermal k- ϵ turbulence model

Turbulent viscosity:
$$\nu_t = C_{\mu} k^2 / \epsilon \quad \rightsquigarrow \quad \nu_k = \nu + \frac{\nu_t}{Pr_k}, \quad \nu_\epsilon = \nu + \frac{\nu_t}{Pr_\epsilon}$$

$$\partial_t k - \vec{\nabla} \cdot (\nu_k \vec{\nabla} k) + (\vec{u} \cdot \vec{\nabla}) k = P_k + G - \epsilon$$
$$\partial_t \epsilon - \vec{\nabla} \cdot (\nu_\epsilon \vec{\nabla} \epsilon) + (\vec{u} \cdot \vec{\nabla}) \epsilon + C_2 \frac{\epsilon}{k} \epsilon = C_1 \frac{\epsilon}{k} (P_k + G)$$

Mathematical model

Non-isothermal k- ϵ turbulence model

Turbulent viscosity:
$$\nu_t = C_{\mu} k^2 / \epsilon \quad \rightsquigarrow \quad \nu_k = \nu + \frac{\nu_t}{Pr_k}, \quad \nu_\epsilon = \nu + \frac{\nu_t}{Pr_\epsilon}$$

 $\partial_t k - \vec{\nabla} \cdot (\nu_k \vec{\nabla} k) + (\vec{u} \cdot \vec{\nabla}) k = P_k + G - \epsilon$
 $\partial_t \epsilon - \vec{\nabla} \cdot (\nu_\epsilon \vec{\nabla} \epsilon) + (\vec{u} \cdot \vec{\nabla}) \epsilon + C_2 \frac{\epsilon}{k} \epsilon = C_1 \frac{\epsilon}{k} (P_k + G)$

Production/ destruction terms and model constants:

•
$$P_k = 2\boldsymbol{\nu_t}|S(\vec{u})|^2$$
,

•
$$G = \beta C_t \frac{k}{\epsilon} \sum_{i,j} g_i \left[\frac{2}{3} k \delta_{ij} - \nu_t (u_{i,j} + u_{j,i}) \right] \theta_s$$

•
$$C_{\mu} = 0.09$$
, $C_1 = 1.44$, $C_2 = 1.92$, $Pr_t = 0.9$, $Pr_k = 1.0$, $Pr_{\epsilon} = 1.3$

Outlook: Final part of lecture I

Extension to non-isothermal $k - \epsilon - \varphi - \overline{f}$ turbulence model LAURENCE ET AL. '04

Gert H. Lube (University of Göttingen)

Boundary conditions:

$$\sigma = 2\nu_e S(\vec{u}) - (p + \frac{2}{3}k)I$$

Split boundary $\partial \Omega$ into $\Gamma_{-}(\vec{u}), \Gamma_{+}(\vec{u}), \text{ and } \Gamma_{0}(\vec{u})$ depending on

 $\operatorname{sign}(\vec{n}\cdot\vec{u})$

Boundary conditions:

$$\sigma = 2\nu_e S(\vec{u}) - (p + \frac{2}{3}k)I$$

Split boundary $\partial \Omega$ into $\Gamma_{-}(\vec{u}), \Gamma_{+}(\vec{u}), \text{ and } \Gamma_{0}(\vec{u})$ depending on

 $\operatorname{sign}(\vec{n}\cdot\vec{u})$

	inlet Γ_{-}	wall $\Gamma_0 = \Gamma_W$ or on $\Gamma_{W+\delta}$	outlet Γ_+
\vec{u}, p	$\vec{u} = \vec{u}_{in}$ or $\sigma \cdot \vec{n} = \sigma_n \vec{n}$	$\vec{u} = \vec{0}$	$\sigma \cdot \vec{n} = 0$
θ	$\theta = heta_{in}$	$\theta = heta_W$	$\nabla \theta \cdot \vec{n} = 0$
k	$k = \frac{3}{2} (T_u \vec{u})^2$	k = 0	$\vec{\nabla}k\cdot\vec{n}=0$
ϵ	$\epsilon = \tilde{c}_{\mu}^{3/4} k^{3/2} / L$	$\epsilon = \frac{2\nu}{\delta^2} k_{\delta}$ on $\Gamma_{W+\delta}$	$\vec{\nabla}\epsilon\cdot\vec{n}=0$

with characteristic turbulence length scale L

Summary: Mathematical model

- Unsteady Reynolds-averaged Navier-Stokes (URANS) model for turbulent non-isothermal flow
- So far: Standard non-isothermal $k \varepsilon$ model
 - \rightsquigarrow Strongly coupled system of nonlinear PDE
- Well-posedness of coupled nonlinear model: ~> MOHAMMADI/ PIRONNEAU 1994
- Later on: $k \varepsilon \varphi f$ model = improvement of standard $k \varepsilon$ model

Outline

Mathematical model

2 Time discretization. Linearization. Decoupling.

3 Residual-based stabilization of linearized problems: Isotropic meshes

4 Residual-based stabilization of linearized problems: Hybrid meshes

5 Application to buoyancy-driven flows

Time discretization: Non-isothermal Navier-Stokes block

Linearized BDF(2) scheme: with unconditional A-stability

$$\partial_t \theta|_{t=t_m} \approx \frac{3\theta^m - 4\theta^{m-1} + \theta^{m-2}}{2\Delta t_m}; \quad \vec{U}^m = 2\vec{u}^{m-1} - \vec{u}^{m-2}, \quad T^m = 2\theta^{m-1} - \theta^{m-2}$$

 $\sim \rightarrow$

Non-isothermal Navier-Stokes block:

$$\begin{aligned} -\vec{\nabla} \cdot (2\nu_e^m S(\vec{u}^m)) + (\vec{U}^m \cdot \vec{\nabla})\vec{u}^m + \frac{3\vec{u}^m}{2\Delta t_m} + \vec{\nabla}p^m &= -\beta T^m \vec{g} + \frac{4\vec{u}^{m-1} - \vec{u}^{m-2}}{2\Delta t_m} \\ \vec{\nabla} \cdot \vec{u}^m &= 0 \\ -\vec{\nabla} \cdot (a_e^m \vec{\nabla}\theta^m) + (\vec{U}^m \cdot \vec{\nabla})\theta^m + \frac{3}{2\Delta t_m}\theta^m &= c_p^{-1} \dot{q}^{Vm} + \frac{4\theta^{m-1} - \theta^{m-2}}{2\Delta t_m} \end{aligned}$$

similarly for k- ε -turbulence block

Treatment of turbulence block

Nonlinear advection-diffusion-reaction system:

$$-\vec{\nabla} \cdot (\nu_k^m \vec{\nabla} k^m) + \vec{U}^m \cdot \vec{\nabla} k^m + \left(\frac{\epsilon^m}{k^m} + \frac{3}{2\Delta t_m}\right) k^m = P_k^m + G^m + \frac{4k^{m-1} - k^{m-2}}{2\Delta t_m}$$
$$-\vec{\nabla} \cdot (\nu_\epsilon^m \vec{\nabla} \varepsilon^m) + \vec{U}^m \cdot \vec{\nabla} \varepsilon^m + \left(\frac{C_2 \varepsilon^m}{k^m} + \frac{3}{2\Delta t_m}\right) \varepsilon^m = \frac{C_1}{T} (P_k^m + G^m) + \frac{4\varepsilon^{m-1} - \varepsilon^{m-2}}{2\Delta t_m}$$

14/42

Treatment of turbulence block

Nonlinear advection-diffusion-reaction system:

$$-\vec{\nabla} \cdot \left(\nu_k^m \vec{\nabla} k^m\right) + \vec{U}^m \cdot \vec{\nabla} k^m + \left(\frac{\epsilon^m}{k^m} + \frac{3}{2\Delta t_m}\right) k^m = P_k^m + G^m + \frac{4k^{m-1} - k^{m-2}}{2\Delta t_m}$$
$$-\vec{\nabla} \cdot \left(\nu_\epsilon^m \vec{\nabla} \varepsilon^m\right) + \vec{U}^m \cdot \vec{\nabla} \varepsilon^m + \left(\frac{C_2 \varepsilon^m}{k^m} + \frac{3}{2\Delta t_m}\right) \varepsilon^m = \frac{C_1}{T} (P_k^m + G^m) + \frac{4\varepsilon^{m-1} - \varepsilon^{m-2}}{2\Delta t_m}$$

Positivity-preserving formulation (!) LEW et.al '01

- "Freeze" non-negative (!) reaction and diffusion coefficients and R.H.S.'s
- (Continuous) maximum principle valid for linearized problems !
- Maximum principle preserved after semidiscretization with BDF(2) !

14/42

Linearization cycle within each BDF(2) time step

(A): Solve (semidiscretized) non-isothermal Navier-Stokes equations:

via block Gauss-Seidel method with iterative decoupling

- Update turbulent viscosities ν_t^m and a_t^m
- Linearized Navier-Stokes problem for \vec{u}^m, p^m
- Linearized advection-diffusion-reaction problem for θ^m .

Linearization cycle within each BDF(2) time step

(A): Solve (semidiscretized) non-isothermal Navier-Stokes equations:

via block Gauss-Seidel method with iterative decoupling

- Update turbulent viscosities ν_t^m and a_t^m
- Linearized Navier-Stokes problem for \vec{u}^m, p^m
- Linearized advection-diffusion-reaction problem for θ^m .

(B): Solve (semidiscretized) equations for turbulence quantities:

via block Gauss-Seidel method with iterative decoupling

- Update non-negative (!) reaction- and diffusion coefficients and R.H.S.'s
- Solve for k^m , ϵ^m (until convergence)

(C): Stopping criterion:

Goto (A) if stopping-criterion for \vec{u}^m, p^m, θ^m not yet fulfilled. Otherwise goto next time step.

Gert H. Lube (University of Göttingen)

• • • • • • • • • • • • • •

Summary: Time discretization. Linearization. Decoupling

- Alternative time discretizations: SDIRK methods etc.
- A-priori analysis for fully coupled nonlinear problem unrealistic ?!
- Alternative: A-posteriori analysis required
- **Open:** Interplay of (accurate, robust) linearization and maximum principle

16/42

Outline

D Mathematical model

2 Time discretization. Linearization. Decoupling.

3 Residual-based stabilization of linearized problems: Isotropic meshes

4 Residual-based stabilization of linearized problems: Hybrid meshes

5 Application to buoyancy-driven flows

Linearized advection-diffusion-reaction model

Advection-diffusion-reaction model: $u \in \{\theta, k, \epsilon\}$

$$Lu := -\vec{\nabla} \cdot (a\vec{\nabla}u) + (\vec{b} \cdot \vec{\nabla})u + cu = f \quad \text{in } \Omega; \quad u = 0 \text{ on } \partial\Omega$$

Assumptions: $a, c \in L^{\infty}(\Omega), \quad \vec{b} \in (H^{1}(\Omega))^{d} \cap (L^{\infty}(\Omega))^{d}, \quad f \in L^{2}(\Omega)$

$$a(x) \ge a_0 > 0$$
, $(\nabla \cdot \vec{b})(x) = 0$, $\frac{1}{\Delta t} + \tilde{c}(x) \sim c(x) \ge 0$ a.e. in Ω

Linearized advection-diffusion-reaction model

Advection-diffusion-reaction model: $u \in \{\theta, k, \epsilon\}$

$$Lu := -\vec{\nabla} \cdot (a\vec{\nabla}u) + (\vec{b} \cdot \vec{\nabla})u + cu = f$$
 in Ω ; $u = 0$ on $\partial\Omega$

Assumptions: $a, c \in L^{\infty}(\Omega), \quad \vec{b} \in (H^1(\Omega))^d \cap (L^{\infty}(\Omega))^d, \quad f \in L^2(\Omega)$

$$a(x) \ge a_0 > 0$$
, $(\nabla \cdot \vec{b})(x) = 0$, $\frac{1}{\Delta t} + \tilde{c}(x) \sim c(x) \ge 0$ a.e. in Ω

Variational formulation:

Find
$$u \in V := H_0^1(\Omega)$$
 s.t. $A(u, v) = l(v)$ $\forall v \in V$

$$\begin{aligned} A(u,v) &:= (a\vec{\nabla}u,\vec{\nabla}v)_{\Omega} + (\vec{b}\cdot\vec{\nabla}u+cu,v)_{\Omega}, \\ l(v) &:= (f,v)_{\Omega}. \end{aligned}$$

Gert H. Lube (University of Göttingen)

3

イロト イロト イヨト イヨト

Residual-based stabilized FEM

Basic SUPG-stabilized FEM:

on admissible triangulation \mathcal{T}_h of Ω

Find $u \in V_h := \{ v \in H^1_0(\Omega) \cap C(\overline{\Omega}) \mid v|_T \in P_r(T) \ \forall T \in \mathcal{T}_h \}$

$$A_{rbs}(u,v) = L_{rbs}(v) \qquad \forall v \in V_h.$$

$$\begin{aligned} A_{rbs}(u,v) &:= (a\vec{\nabla}u,\vec{\nabla}v)_{\Omega} + \left(\vec{b}\cdot\vec{\nabla}u + cu,v\right)_{\Omega} + \sum_{T\in\mathcal{T}_{h}}\delta_{T} (\hat{L}u,\vec{b}\cdot\vec{\nabla}v)_{T} \\ L_{rbs}(v) &:= (f,v)_{\Omega} + \sum_{T\in\mathcal{T}_{h}}\delta_{T} (f,\vec{b}\cdot\vec{\nabla}v)_{T} \end{aligned}$$

with orthogonal projection $\Pi_T : [L^2(T)]^d \to [P_r(T)]^d$ and

$$\hat{L}u|_T := -\vec{\nabla} \cdot \Pi_T(a\vec{\nabla}u) + (\vec{b} \cdot \vec{\nabla})u + cu$$

Analysis of SUPG-FEM - Stability and continuity

Stabilized norm: $|||v||| := \left(\sum_{T \in \mathcal{T}_h} \left(||\sqrt{a}\vec{\nabla}v||^2_{(L^2(T))^d} + ||\sqrt{c}v||^2_{L^2(T)} + \delta_T ||\vec{b} \cdot \vec{\nabla}v||^2_{L^2(T)} \right) \right)^{\frac{1}{2}}$

Residual-based stabilization of linearized problems: Isotropic meshes

Analysis of SUPG-FEM - Stability and continuity

Stabilized norm: $\||v\|| := \left(\sum_{T \in \mathcal{T}_h} \left(\|\sqrt{a}\vec{\nabla}v\|^2_{(L^2(T))^d} + \|\sqrt{c}v\|^2_{L^2(T)} + \delta_T \|\vec{b} \cdot \vec{\nabla}v\|^2_{L^2(T)} \right) \right)^{\frac{1}{2}}$

Theorem: L., Rapin: CMAME 2006

Set

$$\delta_T \sim \min\left\{\frac{h_T}{r\|ec{b}\|_{L^{\infty}(T)}}; \frac{1}{\|c\|_{L^{\infty}(T)}}; \frac{h_T^2}{r^4 \mu_{imv}^2 \|a\|_{L^{\infty}(T)}}
ight\}$$

- Stability: $A_{rbs}(v,v) \ge \frac{1}{2} ||v|||^2 \quad \forall v \in V_h$
- Galerkin orthogonality:

$$A_{rbs}(u-u_h,v)=0 \quad \forall v \in V_h$$

• A-priori error estimate:

$$|||u - u_h|||^2 \le C \sum_{T \in \mathcal{T}_h} \frac{h_T^{2(l-1)}}{n^{2(k-1)}} M_T^{opt} ||u||_{H^k(T)}^2, \qquad l = \min(r+1,k)$$

$$M_{T}^{opt} := \|a\|_{L^{\infty}(T)} \left(1 + \underbrace{\frac{h_{T} \|\vec{b}\|_{(L^{\infty}(T))^{d}}}{r\|a\|_{L^{\infty}(T)}}}_{=:Pe_{T}} + \underbrace{\frac{\|c\|_{L^{\infty}(T)}h_{T}^{2}}{r^{2}\|a\|_{L^{\infty}(T)}}}_{=:\Gamma_{T}} + \frac{\|a\|_{W^{k-1,\infty}(T)}^{2}}{\|a\|_{L^{\infty}(T)}^{2}}\right)$$

Numerical results for SUPG scheme on isotropic meshes:

• Spectral convergence for fixed (isotropic) mesh width *h*

• Results for $a = 10^{-6}$, c = 0 (left) and $a = 10^{-6}$, $c = 10^3$ (right)

Residual-based stabilization of linearized problems: Isotropic meshes

Crosswind-stabilization of SUPG method

Problem of SUPG:

Spurious local (!) oscillations in shear layers

→ Spurious turbulence quantities !!

Residual-based stabilization of linearized problems: Isotropic meshes

Crosswind-stabilization of SUPG method

Problem of SUPG:

Spurious local (!) oscillations in shear layers

→ Spurious turbulence quantities !!

Framework of crosswind-stabilized variants:

Find
$$U_h \in V_h$$
: $A_{rbs}(U_h, v) + \sum_{T \in \mathcal{T}_h} (\tau_T(U_h) D_{sc} \nabla U_h, \nabla v)_T = L_s(v) \quad \forall v \in V_h$

Crosswind diffusion schemes with almost linear dependence on $R_T^*(w)$:

$$D_{sc}^{cd} := \begin{cases} I - \frac{\vec{b} \oplus \vec{b}}{|\vec{b}|^2}, & \vec{b} \neq 0\\ 0, & \vec{b} = 0 \end{cases}, \qquad \tau_T^{cd}(w) := l_T^{cd}(w) \underbrace{\frac{\|\hat{L}w - f\|_{L^2(T)}}{|w|_{H^1(T)} + \kappa_T}}_{=:R_T^*(w)}$$

Gert H. Lube (University of Göttingen)

A-priori analysis of crosswind-stabilized SUPG

Theorem: L./ RAPIN CMAME '06

- Restriction on limiter function: $0 \le l_T^{cd}(w) \le \rho \delta_T R_T^*(w), \forall w \in V_h$, with appropriate $\rho > 0$
- $(\nabla \cdot (a \nabla u))|_T \in L^2(T)$ and $u \in H^k(T)$, $k > \frac{d}{2}$ for all $T \in \mathcal{T}_h$,
- → A-priori estimate for crosswind-stabilized SUPG-scheme:

$$\||u - U_h\||^2 + \underbrace{\sum_{T \in \mathcal{T}_h} \|\tau_T^{cd}(U_h) D_{sc}^{cd^{\frac{1}{2}}} \nabla(u - U_h)\|_{L^2(T)}^2}_{\sim} \leq \text{R.H.S. of SUPG estimate}$$

additional crosswind control

A-priori analysis of crosswind-stabilized SUPG

Theorem: L./ RAPIN CMAME '06

- Restriction on limiter function: $0 \le l_T^{cd}(w) \le \rho \delta_T R_T^*(w), \forall w \in V_h$, with appropriate $\rho > 0$
- $(\nabla \cdot (a\nabla u))|_T \in L^2(T)$ and $u \in H^k(T)$, $k > \frac{d}{2}$ for all $T \in \mathcal{T}_h$,
- → A-priori estimate for crosswind-stabilized SUPG-scheme:

$$|||u - U_h|||^2 + \underbrace{\sum_{T \in \mathcal{T}_h} ||\tau_T^{cd}(U_h) D_{sc}^{cd^{\frac{1}{2}}} \nabla(u - U_h)||_{L^2(T)}^2}_{additional crosswind control} \leq \text{R.H.S. of SUPG estimate}$$

additional crosswind control

Remark:

• Semi-implicit treatment of nonlinearity within linearization loop !

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical experiments: Interior layer - skew to mesh

Example: DC/CD scheme CODINA '93, '99

• Limiter function
$$l_T^{cd}(w) =:= \frac{1}{2}h_T \max\left\{0, \beta - \frac{2\|a\|_{L^{\infty}(T)}}{h_T R_T^*(w)}\right\}, \quad \kappa_T = 0$$

Figure: SUPG-FEM without/ with DC/CD for $h = \frac{1}{64}, r \in \{1, 4\}, \beta = 0.7, \kappa = 10^{-4}$

Linearized Navier-Stokes problem: Oseen-type problem

Assumptions:
$$\nu(x) > 0; \quad (\vec{\nabla} \cdot \vec{b})(x) = 0; \quad \frac{1}{\Delta t} \sim c = \text{const.} \ge 0$$

Linearized Navier-Stokes problem: Oseen-type problem

Assumptions:
$$\nu(x) > 0; \quad (\vec{\nabla} \cdot \vec{b})(x) = 0; \quad \frac{1}{\Delta t} \sim c = \text{const.} \ge 0$$

Variational formulation:

Find
$$U = {\mathbf{u}, p} \in \mathbf{W} := \mathbf{V} \times \mathbf{Q} := (H_0^1(\Omega))^d \times L_0^2(\Omega), \text{ s.t.}$$

 $\mathcal{A}(\mathbf{b}; \mathbf{U}, \mathbf{V}) = \mathcal{L}(\mathbf{V}) \quad \forall \mathbf{V} = {\mathbf{v}, \mathbf{q}} \in \mathbf{W}$

with

$$\begin{aligned} \mathcal{A}(\mathbf{b}; U, V) &:= & \left(2\nu S(\vec{u}), \vec{\nabla} \vec{v} \right)_{\Omega} + \left((\vec{b} \cdot \vec{\nabla}) \vec{u} + c \vec{u}, \vec{v} \right)_{\Omega} \\ & - (p, \vec{\nabla} \cdot \vec{v})_{\Omega} + (q, \vec{\nabla} \cdot \vec{u})_{\Omega} \\ \mathcal{L}(V) &:= & (\vec{f}, \vec{v})_{\Omega} \end{aligned}$$

Galerkin finite element discretization

• T_h – admissible triangulation of polyhedral domain Ω

•
$$X_h^r := \{ v \in C(\overline{\Omega}) \mid v|_T \in P_r(T) \; \forall T \in \mathcal{T}_h \}, \; r \in \mathbf{N}$$

• Equal-order FE spaces for velocity/ pressure:

$$\mathbf{V}_h^r := \begin{bmatrix} X_h^r \cap H_0^1(\Omega) \end{bmatrix}^d, \qquad \mathbf{Q}_h^r := X_h^r \cap L_0^2(\Omega)$$

 \rightsquigarrow no discrete LBB-condition !

Galerkin finite element discretization

• T_h – admissible triangulation of polyhedral domain Ω

•
$$X_h^r := \{ v \in C(\overline{\Omega}) \mid v|_T \in P_r(T) \; \forall T \in T_h \}, \; r \in \mathbf{N}$$

• Equal-order FE spaces for velocity/ pressure:

$$\mathbf{V}_h^r := \begin{bmatrix} X_h^r \cap H_0^1(\Omega) \end{bmatrix}^d, \qquad \mathbf{Q}_h^r := X_h^r \cap L_0^2(\Omega)$$

 \rightsquigarrow no discrete LBB-condition !

Galerkin FEM:

Find
$$U = {\vec{u}, p} \in \mathbf{W}_h^{r,r} := \mathbf{V}_h^r \times \mathbf{Q}_h^r$$
, s.t.
 $\mathcal{A}(\vec{b}; U, V) = \mathcal{L}(V) \quad \forall V = {\vec{v}, q} \in \mathbf{W}_h^{r,r}$

Gert H. Lube (University of Göttingen)

Residual-based stabilization of linearized problems: Isotropic meshes

Remedy: "Classical" residual-based stabilization

Residual-based scheme:

Find
$$U = \{\vec{u}, p\} \in \mathbf{W}_h^{r,r}$$
 : $\mathcal{A}_{rbs}(\vec{b}; U, V) = \mathcal{L}_{rbs}(V) \quad \forall V = \{\vec{v}, q\} \in \mathbf{W}_h^{r,r}$

Residual-based stabilization of linearized problems: Isotropic meshes

Remedy: "Classical" residual-based stabilization

Residual-based scheme:

Find
$$U = \{\vec{u}, p\} \in \mathbf{W}_h^{r,r}$$
 : $\mathcal{A}_{rbs}(\vec{b}; U, V) = \mathcal{L}_{rbs}(V) \quad \forall V = \{\vec{v}, q\} \in \mathbf{W}_h^{r,r}$

$$\mathcal{A}_{rbs}(\vec{b}; U, V) = \mathcal{A}(\vec{b}; U, V) + \sum_{T} \underbrace{\delta_{T} \left(\hat{L}_{Os}(\vec{b}; \vec{u}, p), (\vec{b} \cdot \vec{\nabla}) \vec{v} + \vec{\nabla}q \right)_{T}}_{SUPG- and PSPG-stabilization} + \underbrace{\gamma_{T} \left(\vec{\nabla} \cdot \vec{u}, \vec{\nabla} \cdot \vec{v} \right)_{T}}_{grad-div-stabilization}$$

$$\mathcal{L}_{rbs}(V) = \mathcal{L}(V) + \sum_{T} \underbrace{\delta_{T} \left(\vec{f}, (\vec{b} \cdot \vec{\nabla}) \vec{v} + \vec{\nabla}q \right)_{T}}_{T}$$

with orthogonal L^2 -projection $\Pi_T : [L^2(T)]^{d \times d} \to [P_r(T)]^{d \times d}$ and

$$\hat{L}_{Os}(ec{b};ec{u},p):=-ec{
abla}\cdot\Pi_T(
uS(ec{u}))+ec{
abla}p+(ec{b}\cdotec{
abla})ec{u}+cec{u}$$

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のQQ

Analysis on isotropic meshes

 $\|[V]\|_{rbs}^{2} := \|\sqrt{\nu}\vec{S}(\vec{v})\|_{L^{2}(\Omega)}^{2} + \|\sqrt{c}\vec{v}\|_{L^{2}(\Omega)}^{2} + \sum_{T} \left(\delta_{T}\|(\vec{b}\cdot\vec{\nabla})\vec{v} + \vec{\nabla}q\|_{L^{2}(T)}^{2} + \gamma_{T}\|\vec{\nabla}\cdot\vec{v}\|_{L^{2}(T)}^{2}\right)$

Analysis on isotropic meshes

$$\|[V]\|_{rbs}^{\ 2} := \|\sqrt{\nu}\vec{S}(\vec{v})\|_{L^{2}(\Omega)}^{2} + \|\sqrt{c}\vec{v}\|_{L^{2}(\Omega)}^{2} + \sum_{T} \left(\delta_{T}\|(\vec{b}\cdot\vec{\nabla})\vec{v}+\vec{\nabla}q\|_{L^{2}(T)}^{2} + \gamma_{T}\|\vec{\nabla}\cdot\vec{v}\|_{L^{2}(T)}^{2}\right)$$

Theorem: GL/G. Rapin M³AS 2006

•
$$\delta_T^u = \delta_T^p \sim \min\{\frac{h_T^2}{r^2 \|\nu\|_{L^{\infty}(T)}}; \Delta t; \frac{h_T}{r \|\mathbf{b}\|_{L^{\infty}(T)}}\}$$
 (SUPG/PSPG)
• $\gamma_T \sim \frac{h_T^2}{r^2 \delta_T}$ (grad-div);

 $\sim \rightarrow$

- Stability: $\mathcal{A}_{rbs}(\vec{b}; V, V) \geq \frac{1}{2} |[V]|_{rbs}^2, \quad \forall V = \{\vec{v}, q\} \in \mathbf{V}_h^r \times \mathbf{Q}_h^r$
- Galerkin orthogonality: $\mathcal{A}_{rbs}(\vec{b}; U U_h, V_h) = 0 \quad \forall V_h \in \mathbf{V}_h^r \times \mathbf{Q}_h^r$

• A-priori estimate: $\|[U - U_h]\|_{rbs}^2 \leq \sum_{T \in \mathcal{T}_h} M_T \frac{h_T^{2(\ell-1)}}{r^{2(k-1)}} \left(\|\vec{u}\|_{H^k(T)}^2 + \|p\|_{H^k(T)}^2 \right)$

with
$$M_T := \left(\|\nu\|_{L^{\infty}(T)} + \frac{\|\nu\|_{W^{k-1,\infty}(T)}^2}{\|\nu\|_{L^{\infty}(T)}} + \frac{\|\vec{b}\|_{L^{\infty}(T)}h_T}{r} + \frac{h_T^2}{r^2\Delta t} \right)$$

Outline

Mathematical model

- 2 Time discretization. Linearization. Decoupling.
- 3 Residual-based stabilization of linearized problems: Isotropic meshes

4 Residual-based stabilization of linearized problems: Hybrid meshes

5 Application to buoyancy-driven flows

Application of wall functions

Simplification of nonisothermal boundary layer (BL) equations:

$$\begin{aligned} &-\frac{d}{dy} \left(\nu_e^{BL} \frac{du_x^{BL}}{dy} \right) &= -\beta \theta^{BL} g_x, \quad u_x^{BL}|_{y=0} = 0, \quad u_x^{BL}|_{y=y(\delta)} = u_x(y_\delta) \\ &-\frac{d}{dy} \left(a_e^{BL} \frac{d_\theta^{BL}}{dy} \right) &= 0, \qquad \theta^{BL}|_{y=0} = \theta_W, \quad \theta^{BL}|_{y=y_\delta} = \theta(y_\delta) \end{aligned}$$

Overlapping domain decomposition approach:

- Matching of BL-solutions with global solution at Γ_{δ}
- Replace matching conditions at Γ_δ with wall boundary condition

$$\nu_e \frac{du_x^{BL}}{dy}|_{y=0} = R, \qquad a_e \frac{d\theta^{BL}}{dy}|_{y=0} = S$$

 Application of shooting method to IVP (on a layer-adapted 1D-grid) until convergence to matching conditions at Γ_δ

Non-isothermal $k - \epsilon - \varphi - \overline{f}$ turbulence model LAURENCE ET AL. '04

Turbulent viscosity:
$$\nu_t = C_\mu T k \varphi \quad \rightsquigarrow \quad \nu_k = \nu + \frac{\nu_t}{Pr_k}, \quad \nu_\epsilon = \nu + \frac{\nu_t}{Pr_\epsilon}$$

 $\partial_t k - \vec{\nabla} \cdot (\nu_k \vec{\nabla} k) + (\vec{u} \cdot \vec{\nabla}) k = P_k + G - \epsilon$
 $\partial_t \epsilon - \vec{\nabla} \cdot (\nu_\epsilon \vec{\nabla} \epsilon) + (\vec{u} \cdot \vec{\nabla}) \epsilon + \frac{C_{\epsilon 2}}{T} \epsilon = \frac{C_{\epsilon 1}}{T} (P_k + G)$
 $\partial_t \varphi - \vec{\nabla} \cdot (\nu_k \vec{\nabla} \varphi) + (\vec{u} \cdot \vec{\nabla}) \varphi + \frac{P_k + G}{k} \varphi = \vec{f} + \frac{2\nu_k}{k} \vec{\nabla} \varphi \cdot \vec{\nabla} k$
 $-L^2 \Delta \vec{f} + \vec{f} = \frac{(D_1 - 1)(\frac{2}{3} - \varphi)}{T} + \frac{D_2(P_k + G)}{k} + \frac{2\nu}{k} \vec{\nabla} \varphi \cdot \vec{\nabla} k + \nu \Delta \varphi$

Non-isothermal $k - \epsilon - \varphi - \overline{f}$ turbulence model LAURENCE ET AL. '04

Turbulent viscosity:
$$\nu_{t} = C_{\mu} T k \varphi \quad \rightsquigarrow \quad \nu_{k} = \nu + \frac{\nu_{t}}{Pr_{k}}, \quad \nu_{\epsilon} = \nu + \frac{\nu_{t}}{Pr_{\epsilon}}$$

 $\partial_{t}k - \vec{\nabla} \cdot (\nu_{k}\vec{\nabla}k) + (\vec{u} \cdot \vec{\nabla})k = P_{k} + G - \epsilon$
 $\partial_{t}\epsilon - \vec{\nabla} \cdot (\nu_{\epsilon}\vec{\nabla}\epsilon) + (\vec{u} \cdot \vec{\nabla})\epsilon + \frac{C_{\epsilon2}}{T}\epsilon = \frac{C_{\epsilon1}}{T}(P_{k} + G)$
 $\partial_{t}\varphi - \vec{\nabla} \cdot (\nu_{k}\vec{\nabla}\varphi) + (\vec{u} \cdot \vec{\nabla})\varphi + \frac{P_{k} + G}{k}\varphi = \vec{f} + \frac{2\nu_{k}}{k}\vec{\nabla}\varphi \cdot \vec{\nabla}k$
 $-L^{2}\Delta\vec{f} + \vec{f} = \frac{(D_{1} - 1)(\frac{2}{3} - \varphi)}{T} + \frac{D_{2}(P_{k} + G)}{k} + \frac{2\nu}{k}\vec{\nabla}\varphi \cdot \vec{\nabla}k + \nu\Delta\varphi$
• turbulence time scale $T = \max\left[\min\left(\frac{k}{\epsilon}; \frac{\alpha_{r}}{c_{\mu}\sqrt{6}\varphi|S(\vec{u})|}\right); 6\sqrt{\frac{\nu}{\epsilon}}\right]$
• turbulence length scale $L = C_{L}\max\left[\min\left(\frac{\sqrt{k^{3}}}{\epsilon}; \frac{\alpha_{r}\sqrt{k}}{c_{\mu}\sqrt{6}\varphi|S(\vec{u})|}\right); C_{\eta}\left(\frac{\nu^{3}}{\epsilon}\right)^{\frac{1}{4}}\right]$
• production terms $P_{k} = 2\nu_{t}|S(\vec{u})|^{2}, \quad G = \beta c_{0}\frac{k}{\epsilon}\sum_{i,j}g_{i}\left[\frac{2}{3}k\delta_{ij} - \nu_{t}(u_{i,j} + u_{j,i})\right]\theta_{j}$

Gert H. Lube (University of Göttingen)

Residual-based stabilization of linearized problems: Hybrid meshes

Resolution of boundary layers with hybrid meshes

Examples of hybrid meshes for d = 2 and d = 3

Residual-based stabilization of linearized problems: Hybrid meshes

Resolution of boundary layers with hybrid meshes

Examples of hybrid meshes for d = 2 and d = 3

- T_h^g (unstructured) isotropic mesh away from wall layers
- T_h^{bl} structured anisotropic mesh of tensor product type
- isotropic transition region between \mathcal{T}_h^g and \mathcal{T}_h^{bl}

Analysis on hybrid meshes

• Tensor product type mesh in layer zone with refinement in x_d -direction s.t.

aspect ratio
$$\frac{h_{max,T}}{h_{min,T}} \sim \frac{1}{\text{characteristic length scale}}$$
 at wall $x_d = 0$

• Analysis requires local (anisotropic) interpolation: APEL '99

Analysis on hybrid meshes

as

• Tensor product type mesh in layer zone with refinement in x_d -direction s.t.

spect ratio
$$\frac{h_{max,T}}{h_{min,T}} \sim \frac{1}{\text{characteristic length scale}}$$
 at wall $x_d = 0$

• Analysis requires local (anisotropic) interpolation: APEL '99

Modified design for advection-dominated case: $\tilde{h}_T \in [h_{min,T}, h_{max,T}]$

$$\boldsymbol{\delta_T} \sim \min\left(\frac{h_{\min,T}^2}{\mu_{im}^2 \nu}; \ \Delta t; \ \frac{\tilde{h}_T}{\|\mathbf{b}\|_{(L^{\infty}(T))^d}}\right), \qquad \boldsymbol{\gamma_T} \sim \frac{h_{\max,T}^2}{\delta_T}$$

• Isotropic region: Standard design with $\tilde{h}_T \sim h_{max,T}$

• Anisotropic region: Influence of length \tilde{h}_T (not very sensitive)

• $\tilde{h}_T = |T|^{\frac{1}{d}}$: \rightsquigarrow reasonable compromise between accuracy and costs

A-priori error estimates: APEL, KNOPP, L. APNUM 2008

Not shown: Similar approach to advection-diffusion-reaction problems

Gert H. Lube (University of Göttingen)

Thermally coupled incompressible flows

Turbulent flow at $Ra = 1.58 \times 10^9$ in a closed cavity

Left: Boundary layer profiles for vertical velocity component $\frac{u_2}{u_0}$ near hot left wall at y/L = 0.5 and experimental data of [TIAN/ KARAYIANNIS '00]

Right: Vertical temperature profile $\frac{T-T_c}{T_h-T_c}$ at x/L = 0.5 and experimental data of [TIAN/ KARAYIANNIS '00]

Summary: Residual-based stabilization of linearized problems

• Residual-based stabilization of advection-diffusion-reaction model:

- Robust a-priori analysis on isotropic meshes (h- and p-version)
- Attempt to diminish spurious oscillations of discrete solutions

• Residual-based stabilization of linearized Navier-Stokes model:

- Equal-order stabilization of velocity/pressure requires stabilization
- Robust a-priori analysis on isotropic meshes (h- and p-version)
- Extension of a-priori analysis to hybrid meshes with layer refinement

Basic problems:

- Implementation rather expensive due to velocity/pressure coupling
- Diminishing spurious discrete oscillations for higher order elements
- Robust and scalable algebraic preconditioners (w.r.t. to $\nu, h, \Delta t$)

Outline

Mathematical model

- 2 Time discretization. Linearization. Decoupling.
- 3 Residual-based stabilization of linearized problems: Isotropic meshes
- 4 Residual-based stabilization of linearized problems: Hybrid meshes

5 Application to buoyancy-driven flows

Natural ventilation in a cavity I: $Ra \approx 2 \cdot 10^{10}$

Lube/ Knopp/ Gritzki/ Rösler/ Seifert: Intern. J. Comput. Math. 85 (2008) 10

Sketch of cavity with extended domain (left) and prediction for θ at three cross-sections (right)

- Thermally insulated cavity with openings
- flow induced by temperature difference, heating rod and gravity
- simulates displacement ventilation with open windows

Gert H. Lube (University of Göttingen)

Thermally coupled incompressible flows

Natural ventilation in a cavity II

Non-overlapping domain decomposition:

- Enlarge domain for careful numerical prediction of flow at openings
- Domain decomposition into internal flow domain (cavity) and external domain
- DD-interface conditions instead of inflow/ outflow conditions as inflow field unknown

Comparison of temperature $\theta = \theta(z)$ measured and calculated at x = 1.215 m, y = 1.10 m and t = 180 s/540 s/7200 s

• Quasi-steady solution in reasonably well agreement with experimental data over long-time period of 7200s by HASLAVSKY et.al. '04

Simulation with ϕ - \overline{f} -model for floor-heating

- Room with size 5 × 6 × 3 [m] with heating from below
- Simulation with front of cold air
- Application of full φ-f̄-model with anisotropic boundary layer resolution

Draught risk avoided !

Indoor-air flow in atrium I

Numerical simulation in atrium with cafeteria:

- Atrium of size $22m \times 22.5m \times 17.2m$
- Formerly: Unpleasant air flow/ temperature conditions (caused by curved glass roof)
- Boundary conditions: from flow simulation of surrounding buildings
- Domain decomposition: into 3 subdomains and 1.2 × 10⁶ tetrahedra (with ≈ 2 × 10⁶ unknowns)
- Numerical simulation under winter conditions over two hours

Indoor-air flow in atrium II - Flow and temperature fields

"Optimization" with additional heating system under the roof yields reduction of maximal velocity from 1.5 m/s to 0.5 m/s and almost optimized temperature field

Summary. Outlook

Summary

- Simulation of thermally driven turbulent flows via URANS approach
- Application to real life problems (ventilation/ heating systems)
- A-priori analysis of FEM with residual-based stabilization for linearized problems
- Extension to layer-adapted meshes

Outlook

- Application of FEM with local-projection stabilization
- Application of LES/DES approach to thermally driven turbulent flows
- A-posteriori analysis of fully coupled model

Summary. Outlook

Summary

- Simulation of thermally driven turbulent flows via URANS approach
- Application to real life problems (ventilation/ heating systems)
- A-priori analysis of FEM with residual-based stabilization for linearized problems
- Extension to layer-adapted meshes

Outlook

- Application of FEM with local-projection stabilization
- Application of LES/DES approach to thermally driven turbulent flows
- A-posteriori analysis of fully coupled model

THANKS FOR YOUR ATTENTION !