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In this paper, we consider the numerical analysis of quadratic optimal control problems governed
by a linear advection-diffusion-reaction equation without control constraints. In the case of
dominating advection, the Galerkin discretization is stabilized via the one- or two-level variant
of the local projection approach which leads to a symmetric optimality system at the discrete
level. The optimal control problem simultaneously covers distributed and Robin boundary
control. In the singularly perturbed case, the boundary control at inflow and/or characteristic
parts of the boundary can be seen as regularization of a Dirichlet boundary control. Some
numerical tests illustrate the analytical results.
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1. Introduction

In this paper, we consider some aspects of the numerical analysis of the quadratic
optimal control problem
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where (u, qq,qr) € V x Qq X Qr with
V:{’UEHI(Q) ZU|FD :0}, QQ :LZ(Q), QF:LZ(FR)

is subject to the linear mixed boundary value problem of advection-diffusion-reaction
type
—eAu+b-Vu+ou=f+qg inQ,
eVu-n+pfu=g+qr onlp (1.2)
u=0 on I'p.

Here Q C R?% d € {2,3} is a bounded polyhedral domain with Lipschitz boundary
0Q =TrUTp, I'p NIk = () and outer normal unit vector n. We assume that ¢ > 0
and o > 0 are constants and that the advective field b is divergence-free.

In (1.1), the desired states are 4 in © and 4 on I's. The constants Mg, \p > 0
with A3 + A% > 0 describe the weights of different parts whereas agq,apr > 0 with
ad 4+ a} > 0 serve as regularization parameters. The state equation (1.2) describes
the dependence of the state u on the control (gq, qr). Here we consider the problem
without restrictions of the control. The problem with box-constraints for the control
will be considered elsewhere.

The linear-quadratic optimal control problem (1.1)—(1.2) with ' = (), without
and with control constraints has been considered by Becker and Vexler in Ref. 5 for
the singularly perturbed case with 0 < € < 1, see also the references therein. One
goal of the present paper is to consider problem (1.1)—(1.2) simultaneously for dis-
tributed and (Robin) boundary control. Notably, in the singularly perturbed case
0 < e < 1, the Robin control at inflow and/or characteristic parts of the boundary
can be seen as regularization of a Dirichlet boundary control.

The standard Galerkin discretization is stabilized as in Ref. 5 via the local pro-
jection approach (LPS for short below) which leads to a symmetric optimality system
at the discrete level. This implies that the operations “discretization” and
“optimization” commute as opposed to residual-based stabilization techniques like
the standard streamline-diffusion method. Another aim of this paper is a more gen-
eral LPS approach, including the so-called two-level variant (as in Ref. 5) and a one-
level variant introduced in Ref. 13.

Let us emphasize two aspects of the analysis in the present paper: Firstly, the
regularity of the solution of the mixed boundary value problem (1.2) is taken into
account by using Sobolev—Slobodeckij spaces and adapting the analysis of the LPS
method. Secondly, the analysis is performed for shape regular meshes (as opposed to
quasi-uniform meshes in Ref. 5) which allows for (isotropic) mesh refinement at
corners or edges of the domain and in boundary layers.

An outline of the paper is as follows: In Sec. 2, we address the existence,
uniqueness and regularity of the solution of problem (1.1)—(1.2). Then, in Sec. 3, we
consider the discretization of the state equation by means of finite element methods
(FEM) with local projection stabilization and derive the discretized optimality sys-
tems. In Sec. 4, we analyze the convergence properties of the discretized optimal
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control problem. In Sec. 5, we briefly address the interpretation of Robin boundary
control as regularized Dirichlet control. Some numerical experiments will be pre-
sented in Sec. 6.

Throughout this paper, standard notations for Lebesgue and Sobolev spaces are
used. In particular, the L2-inner product and the corresponding norm in a domain
G C Q are denoted by (-,-)g and || - [|o.¢, respectively.

2. Continuous Optimal Control Problem

Here we consider the optimality system for the continuous optimal control problem
(1.1)—(1.2).

2.1. Solvability

To this goal, we first consider the solvability of the state equation (1.2) with f =
f+4qq and § := g+ gr. The variational form of problem (1.2) reads

FindueV:i={ve H(Q): v, =0}, st a(u,v)=fv) YveV, (2.1)
with
a(u,v) := e(Vu, Vv)g + (b - Vu + ou,v)q + (Bu, v)r,,,
f(v) = (F,v)a + (9, V),

The following result provides sufficient conditions for the unique solvability of (2.1).

Lemma 2.1. Let the following assumptions be valid:

(i) b e (L*(Q)7, f € L2(), § € L*(Tg), f € L®(Tp).
(i) e>0,0>0and V-b =0 a.e in .

(iii) >0 and §:=F+4i(b-n) > 3y >0on .

(iv) Let at least one of the following conditions be valid:

(a‘) /j’nfl(]-—‘D) > 07
(b) o >0 and 3y > 0.

Then there ezists a unique solution v € H(Q) of the mized boundary value problem
(2.1).

Proof. The continuity of a(-,-) and f(-) follows via standard inequalities and (i)—
(ii):
la(u, v)| = [e(Vu, Vo)g + ((b- Vu+ ou,v)g + (Bu, v)r,|

n 3
2 —
< (5 +o+ <Z|bi”oo;ﬂ> + Clﬂloc;rﬁ) [ullillvlly = Mollullif[o]l1,
i=1

[f ()] = 1(f,v)a + (g, 0)r,] < (Ifllo + Cllglox,)lvlly = Mol
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Integration by parts of the advective term together with assumption V -b = 0 and
the abbreviation 3 := 3+ 1b - n yield H !-ellipticity of a

- 2 2 IR
a(v,v) = elv| + ollvllg + 1870l o,

as \/a(v,v) is equivalent to the standard norm on H'(2) if one of the assumptions in
(iv) is valid. Finally, the Lax—Milgram theorem delivers the assertion. m|

The following existence result follows by standard arguments in optimal control.**

Theorem 2.1. Under the assumptions of Lemma 2.1, the optimal control problem
(1.1)=(1.2) admits a unique solution (u, g, qr) € V x Qq X Qr.

2.2. Regularity

For the convergence analysis below, statements on the regularity of the solution of
(2.1) are required. In general, the solution of this mixed boundary value problem is
not in W22(Q). A standard approach is to consider weighted Sobolev spaces. Let S be
the set of points (for d = 2) or edges (for d = 3) which subdivide the polyhedral
boundary 0f2 into smooth disjoint connected components. The space ng P(Q) denotes
the closure of C'*°(§2) w.r.t.

1
P

lelly gy = / 2Okt | Doy Pz | |
’ o<k

where r = r(z) = dist(z,S), f € R, k € Nand p > 1. The parameter 3 is defined via
eigenvalues of certain eigenvalue problems (in local coordinate systems at parts of the
set S) being associated with the mixed boundary value problem. As it is not the goal
of this paper to give sufficient conditions for the solution of problem (2.1) to belong to
V/l;p (€2), we refer to standard textbooks such as Refs. 8 and 11. Moreover, we do not
intend to consider graded finite element meshes in the neighborhood of the set S
although the forthcoming numerical analysis allows such kind of refinement. For this
approach to optimal control problems for elliptic problems, we refer, e.g. to Refs. 1
and 2.
Here we consider on a subdomain G C €2, the Sobolev—Slobodeckij spaces

WHA(G) = {v € W (G) : [vlljapc < 0}, (2.2)
1
|Dow(z) — Dou(y)|? '
||v||k+/\,p,G = ||U||I];,p,G + Z / ||$ _ y||d+p/\ dz dy (23)
|a|=k

with k& € Ny, A € [0,1),p € (1,00) and the obvious modifications in case of p = cc.
The spaces W*AP(T'y) are defined in a similar way.

Remark 2.1. The following embeddings VéZ(Q) C With2(Q) ¢ C(Q) are valid for
0<2— g + k with k > 0, cf. Ref. 11. In particular, for the Dirichlet case 92 = I'p in
polyhedral domains there holds 5 < %Jr K,k > 0.
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2.3. Optimality system

As problem (2.1) admits a unique solution, see Lemma 2.1, we may define the affine
linear continuous solution operator

S:L*(Q) x L*(Tg) =V, u=S(gy+ f,ar +9)

Due to the linearity of problem (1.2) we can split S into its linear and affine linear
parts. Inserting u = S(qq + f,qr + 9) = S(ga,qr) + S(f,g) in (1.1), we obtain (with
trace operator ) and the definitions uq := g — S(f,g) and up := @ —y 0 S(f,9)
the reduced cost functional:

. A
i(dos ar) = J(S(g0,4r). g0, ar) = 5 S (g0 ar) — uallfo

A
+ ?F”’Y © S(qQaqF) - UF”(Z);FR

aqQ (8%
+ 7”6.79”%;9 + 7F|\QF||%:FR~ (2.4)

Now the reduced optimization problem reads

Minimize j(qq,qr), (g, qr) € Qo X Qr. (2.5)

Henceforth we denote the optimal control of the problem by (gq, gr) and the cor-
responding optimal state by @ = S(Gq + f, gr + ¢). The reduced cost functional j is
continuously differentiable.

Lemma 2.2. The first-order derivatives of the reduced cost functional j are given by
Dy, (g0, ar) - ko = (@aqo +p, kao)a,  Dg.i(qa;ar) - kr = (argr +p, kr)r,,  (2.6)
where the adjoint state p € V is the solution of the adjoint state problem
Findp € Vi a,q(p,v) = Ao(& — uq)o + Ar(@ — up,v)r, VYveV, (2.7)
with
aqj (P, ) = (Vp, Vv)g — (b - Vp,v)q + a(p,v)q + ((B+b-n)p,v)p,.

Proof. Formula (2.6) follows via standard arguments, see Ref. 14. The solvability of
the adjoint state problem (2.7) is shown as in the proof of Lemma 2.1. O

The necessary (and here also sufficient) optimality conditions for the reduced
control problem (2.5) read

D, i@, ar) - (ko —Ga) = (aoda + D, ko —qa)o =0, Vkq € Qq, (2.8)

D, j@q, qr) - (kr —qr) = (argr +p,kr —qr)r, =0, Ykr € Qr, (2.9)
where p is the associated adjoint state to (g, gr). This leads to

ango+p =0, inQ argr +p =0 on . (2.10)
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The optimality system (KKT-system) for the optimal control problem (1.1)—(1.2)
is formed by (2.10) together with the state problem (1.2) and the adjoint state
problem (2.7).

The second-order derivatives of j(qq, ¢r) do not depend on (gq, gr) and admit the
estimates

Dyind(@0,ar) - (ko ko) > aollkollgo,  Vke € Qq, (2.11)
Dy 9(q0,ar) - (kp, kr) > Oér||kr||(%,rRa Vkr € Qr. (2.12)

Motivated by Remark 2.1, we make the following regularity assumption for the
solution of the optimal control problem which later on allows Lagrangian interp-
olation of the solution.

Assumption 2.1. The optimal solution (4, D, qq,qr) of the optimal control
problem (1.1)—(1.2) belongs to [W1H2(Q)]? x W2 2(T'g) with 1+ A > 4.

Assume that aq,ar > 0. Then assumption 2.1 is valid if the solution u of (2.1)
belongs to W1tA2(Q), 1 + X\ > %, eventually for sufficiently smooth data f, g, 3. Then
the same statement is valid for the solution p of (2.7) for sufficiently smooth data
ugq, ur. Moreover, the regularity of go and gr follows via (2.10).

3. Stabilized Discrete Optimality System

In this section, we introduce the discretized optimal control problem corresponding to
(1.1)—(1.2). In particular, we apply a more general approach to the discretization as
in Ref. 5 by considering shape-regular finite element meshes and a more flexible
stabilization concept.

3.1. Finite element spaces

Consider a family of shape-regular, admissible decompositions 7, of € into
d-dimensional simplices, quadrilaterals for d = 2 or hexahedra for d = 3. Let hy be
the diameter of a cell T' € 7;, and h = maxyeg, hp. Let T be a reference element of
the decomposition 7;,. Assume that, for each T' € 7}, there exists an affine mapping
Fr: T — T which maps T onto T. This quite restrictive assumption for quad-
rilaterals/hexahedra can be weakened to asymptotically affine linear mappings.®

Let us denote by &, the set of element faces (for d = 3) and element edges (for
d = 2) induced by the finite element mesh 7;, on 9f2. Moreover, we assume that the
Robin part I'p of the boundary is exactly triangulated by elements of &,.

Set Py, = {v, € L*(Q);v, 0 Fr € P(T [, T e ’Z}l} with the space P(T") of com-
plete polynomials of degree k € {0,1} deﬁned on T and Qrr, = {vh € L2(Q);vy, 0
Fr e QT ) T € 7;,} with the space Q(T ) of all polynomials on 7" with maximal
degree k in each coordinate direction. We shall approximate the space V by a finite
element space V;, C V such that

VY;LDPLTIIQV or ‘/ILDQLT;?HV-
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Similarly, let Qo C H'(€2) be a finite element space for the control variable and
Qnr = Qpalr, its restriction to I'g.

3.2. Local projection stabilization (LPS) for the state problems

The basic Galerkin discretization of the state problem (2.1) reads: Find w;, € V}, such
that

a(uy,vp) = f(vn), Vv, €V (3.1)

For 0 < £ < 1, the solution w;, of (3.1) may suffer from spurious oscillations. As in
Ref. 5 we consider the local projection stabilization (LPS) approach which results in a
symmetric discrete optimality system. The idea of LPS methods is to split the dis-
crete function spaces into small and large scales and to add stabilization terms of
diffusion-type acting only on the small scales. There are two obvious choices of the
space of large scales:

The two-level variant starts from the given space V,, D P, NVor V, D Q1 7, NV
for simplicial or hexahedral elements. The large scales are determined with the help of
a coarse mesh. This mesh M, is constructed by coarsening the basic mesh 7, such
that each macro-element M € M, is the union of one or more neighboring cells
T €7,. The diameter of M € M, is denoted by h,,. We assume that the
decomposition M, of £ is non-overlapping and shape-regular. In addition, the
interior cells are supposed to be of the same size as the corresponding macro-cell:

3C>0: h]v[ﬁCh]y VTGEL,MGMIL with T'C M. (32)

The discrete space D;, C L?(f) is the discontinuous finite element space of piecewise
constant functions defined on the macro-partition M. The restriction of Dj, on
M € M,, is denoted by Dy (M) := {vy|yr;v, € Di}. The next ingredient is a local
projection 7, : L2(M) — D; (M) which defines the global projection 7, : L2(Q) —
Dy, by (mpv)|as := mas(v|ar) for all M € M,,. A standard variant is the local orthog-
onal L? projection. Denoting the identity on L?(f2) by id, the fluctuation operator
Ky, 2 L2(Q) — L2(Q) is defined by k), := id — m,.

The second approach, the one-level variant, consists in choosing the discontinuous
finite element space D, of piecewise constant functions on the original mesh 7, and
constructing a proper enriched space V},. The same abstract framework as in the first
approach can be used by setting M, = 7,,.

For both variants, the stabilized discrete formulation reads: find wu;, € V}, such that

alps(uhavh) = a(uhavh) + Sh(uhavh) - f(vh)a V’Uh € Vh7 (33)
where the additional stabilization term is given by

sp(up, vp) = Z Tu(kn(b - Vuy), k(b - Vug))ar. (34)
MeM,,

The stabilization s; acts solely on the small scales. The constants 7;; will be
determined later based on a priori error analysis.
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3.3. Some variants of one- and two-level variant

Different variants for the choice of the discrete spaces V}, and D), are given in Ref. 13.
Here we describe some details.

The one-level approach with M, = 7}, starts from a given discontinuous space D),
and uses an enrichment of the spaces P, 7, NV or Q; 7, N V. For simplicial elements,
we set

Dy =Py, Vy:={veViv|poFpeP!"(T)VT €T},

where

d+1

PY(T) = P(T) +b-Py(T), b(&):=(d+1)"* [ \(@)

i=1
with the barycentric coordinates 5\“@ =1,...,d+ 1. For quadrilateral/hexahedral
elements, we can use either Dj, = Fy7 or D, = Q7. Setting D= PU(T) or
D = Q(T), respectively, the spaces V}, are constructed analogously as for simplices
with

Q1) =Qi(T) +b-D, b(#) ::H(1—50§), T=(-1,1)"

Now consider the two-level approach (cf. Fig. 1 for d = 2). For quadrilateral/
hexahedral elements, each M € M, is uniformly refined into 2¢ sub-elements. In the
simplicial case, each M € M, is divided into d+ 1 simplices by connecting the
barycenter of M with the vertices of M. For simplices and for quadrilaterals/hex-
ahedra, respectively, set

Vii=Pi, NV, Dy:=Fy, and V,:=Q7, NV, Dj:=Qnm,-

Note that, for the two-level approach based on simplicial finite elements, the space
V), can be written in the form:

Vi={veV:vyoFyecP(T)®BYMeM,},

where B; ¢ HY(T) is a finite-dimensional space consisting of continuous piecewise
polynomial functions of degree 1. Therefore, the simplicial two-level approach can be
treated as a one-level approach with respect to the mesh M,,.

Fig. 1. Two-level approach with meshes M, (bold lines) and 7;, (fine lines).
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3.4. Discrete optimality system

The discretized control problem to (1.1)—(1.2) is formulated in Vj, X @, X Q)1 as
follows:

min J(uy, @r0, @hr)s  Un € Vie o € Qnos  Gur € Qurs (3.5)
subject to
s (Up, vn) = (f + angsvn) + (9 + aur, vn)r,,  Vou € Vi (3.6)

This discrete optimal control problem admits a unique solution (@, g, o, @nr). Now
we introduce a discrete solution operator S;, : Qq X Qr — Vj, by

s (Sh(@n0y anr)svn) = (f + @, vn)o + (9 + anr, vp)r, Yo, € V.
Moreover, the discrete reduced cost functional is formulated as
jh(‘]h,sz, Qh,r) = J(SIL(Qh,Q; Qh,F)v qns Qh,ﬁr)~

For all kj, o € Qp0,knr € Qpr, the necessary (and sufficient) optimality conditions
read

Dy, in@n0:anr) - (kno —ano) = (@oGno + Ph ko —Gno)o =0, (3.7)
Dy 31 @n0@nr) - (knr —@nr) = (@rd@nr + Dhy knr —qnr)r, = 0, (3.8)
hence
agqpo +pon =0, arqnr +0, =0.

Here the discrete adjoint state p;, € V), is the solution of the discrete adjoint state
problem

s (Vny Pr) = Aa(up, — g, vp)o + Ar(up — up, vp)r,, (3.9)
where u;, = S},(qq, gr) is the associated discrete state to (gq, gr)-

Remark 3.1. The symmetry of the LPS term implies that the operations “optimize”
and “discretize” commute, see Ref. 5.

Finally, the second-order derivatives of j,(gq,gr) do not depend on (gq, gr) and
admit the estimates

Dyoodn(@a. ar) - (knoskna) > aolknallio, Ykio € Qna, (3.10)

Dy g dn(aqsar) - (knrskur) > arlkurllor,.  Ykar € Qur- (3.11)

4. A Priori Error Analysis for the Optimal Control Problem

In this section, we provide the error analysis for the optimal control problem
(1.1)—(1.2).
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4.1. Some auxiliary results

It turns out that additional assumptions for the LPS method are required. In order to
control the consistency error of the stabilization term, the discontinuous space D;, on
the coarse mesh M, has to be large enough; more precisely:

Assumption 4.1. The fluctuation operator k; = id — 7, see Sec. 3.2, satisfies for
s € [0, 1] the following approximation property:

3 C;{ >0: ||K:hq||0,]V[ < Cnth|Q|s,]\/[a Vq € WSQ(M)v VMe Mh~ (41)
Remark 4.1. (i) Assumption 4.1 is valid if the local L2-projection operator 7, is

chosen in the definition of the fluctuation operator x; = id — m,.
(ii) The original version of (4.1) in Ref. 13 only considers s € {0,1}.

Now we construct a special interpolation j, : V' — V), such that the error v — jyv is
L2-orthogonal to Dj, for all v € V. In order to conserve the standard approximation
properties, we additionally assume

Assumption 4.2. There exists a constant 5 > 0 such that, for any M € M,

. (Vn; @)
inf —
@ €Dy (M) v, eY;, (M) lvnllo.azllgnllo.ar

where Y, (M) := {vy,|pr : vp, € Vi, v, = 0 on Q\ M}

> B >0, (4.2)

Remark 4.2. The inf—sup condition (4.2) implies that the space D; must not be too
rich. On the other hand, D; must be rich enough to fulfil the approximation property
(4.1). Assumption 4.2 is valid for the discrete spaces discussed in Sec. 3.3, cf. Ref. 9,
Sec. 4.

Lemma 4.1. Let Assumption 4.2 be satisfied. Then there is an interpolation
operator j, : V. — V), such that

(v—="Jov,qn)a =0, Vg, €Dy, VYveV (4.3)
and
1 .
lv = dovllo.ar + harlv — Jovliar + hillv = dovllop S hﬂ/\”UHHA,z,M (4.4)

for all M € My, and forv e VN WIA(Q) with 1+ X > 4.

Proof. This is a simple extension of the proof with A € {0,1} in Ref. 13. In
particular, the modified analysis takes advantage of the Lagrangian interpolation
properties of the space Vj,

3C>0: o= Lollns < Chg™ "|[vllisnzr, m € {0,1} (4.5)

for ve WI(T), VT €7, with A€ [0,1) such that 1+ X >4
Theorem 2.25 and Remark 2.1. Moreover, for E C 0T one obtains

Ai
3C>0: |v—Iwllor < Chy *|vllirar (4.6)
O

see Ref. 7,
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4.2. Analysis of the state problems

The next goal is to derive error estimates for the state problems (3.6) and (3.9). First,
the stability of the scheme will be given in the mesh-dependent norm

1
llolll = (elelio + ollvlio + 15013 r, + su(@,0)E, Yoe V.

Lemma 4.2. The LPS schemes (3.6) and (3.9) for the discrete state and the adjoint
states admit unique solutions.

Proof. For any v € V| integration by parts yields (b Vuv,v)q = %((b “n)v,V)p,,
hence

=1
ap(v,0) = elo]i g + ool §0 + 182 5r, + sn(v,0) = [I0l]*>, YoeV (47

with § = 3+ +b - n. This implies [[|uy[|* < (frun)o + (§, up)r,, hence existence and
uniqueness of u;, € V, in the scheme (3.6). The result for (3.9) follows similarly. O

The following a priori estimate can be proven using the standard technique of
combining stability and consistency results based on the auxiliary results of the last
subsection. Here, and in the following lemma, we fix some controls (pg,pr) €

Qq X Qr which will be later on, in the proof of the main theorem, chosen as the
Lagrangian interpolants of the optimal controls (gq, gr)-

Lemma 4.3. Let (qq,qr) € Qq X Qr, u=5S(qq,qr) € V. For some (pq,pr) €
Qq X Qr, let wy, = Sy(pa,pr) € V3, be the solution of

apps(wy, vy) = (f + o, vp)a + (9 +pryvp)r, Vo, €V (4.8)

Let the stabilization parameters be chosen as

hyr
TM ™~ . (4.9)
ehyf + bl

Then, under the assumptions of Lemma 2.1, there holds the following a priori error
estimate

llw —wy |l < Callga — palloo + Crllar — prllor,

1
b vu|§2M 2 ’
+C h23H1 = + Cyyllul| / (4.10)
( Z ehyf + bl M A2 A

MeM,,

with

g
Cy = h—M+ ohyr + [Iblli<anye + 1Bl ze@anry) + 10 - 0llL<@mnr )

R R m{ﬁ%}

Q
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Proof. The error is split into u — wy, = (u — jyu) + (jou — wy,). For the approxima-
tion error u — jyu, Lemma 4.1 and Assumption 4.1 with s = 0 yield

1

2

([lu — doulll < ( Z {5+Jh?\l+TAI||b‘|[2L°°(JVI)]d+HBHLOC(OMQFR)hM hi/f\||“||%+,\,2,M> '
J\/fEMh

(4.11)
Now we estimate the remaining part z;, := jyu — wy, using (4.7)

(a + Sh,)(jou — Wp, Zh)

lldow — wylll =
Il2alll
_ (a+ sp)(u—wy, 2;) I (a+ s3)(Jou — u, ) — T IL
[IEAA I Ilznlll

We start with term I. Subtracting (4.8) from (2.1), one obtains the perturbed
Galerkin orthogonality relation

(a + Sh)(u — Wp, Uh) = Sh(ua vh) + (QQ — P U}L)Q =+ (QF — Pr, U}L)Fj?v V’Uh S ‘/h'
(4.12)

Assumption 4.1 yields

o=

1 1
[sn(u, )| < 87, (u, w)s5, (vh, vp) < C( Z Tahirlb - VU|§,2,M> llonlll ¥V op € Vi
MeM,;,

Moreover, under assumption of Lemma 2.1 there holds

. Cp
(g0 — pa,vn)a < Callaa — palloalllvnlll,  Cao = mln{ ==
o \/_

)

e

v~~~

e

. C

(ar = pryvn)r, < Crllgr — prllor,lllvelll,  Cr := min \/ﬂ_; ([
0

—_

=

where C'p denotes the Poincaré constant. Setting v;, = z;,, we obtain

1
2
I< C( Z Tarhirlb - VU§,2,M> + Collga — palloo + Crllar — prllor,-
MeM,

Now we consider the terms of II separately. Integration by parts and the orthogon-

ality property (4.3) and the estimate (4.4) yield for w,, € Vj, that
a(jou — u,wy, 1 ) .
G ) _ (e(V(jou —u), Vwy)q — (ki (b - Vwy), jou — u)g

lwalll Nl

+ 0 (Gou — u,wy)q + (Bou — w), wy)ry,)

1

2

< C( Z h3y e+ (o + TR+ Hﬂ”LO@(E}MﬁFR)hM} ||u||%+)\,2,M> .
MeM,,
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The estimate of the stabilization term follows using (4.1) with s = 0 and (4.4)

sp(Jou — u, w, ?
snlor = 01) o o ™ B bl el e | - (413)
[[0n | MeM,

Summing up all inequalities in this proof gives the assertion

1

2

170w — wpl] < C( E hi{Tulb - Vul3oar + CM||“||%+A,2M}>
MeM,,

+ Callao — palloo + Crllar — prilor, (4.14)
with
Cir = e+ 0ohir+ 72t b3 + Tar Dl e + (1Bll=@arry)
+[[b - 1|~ @rar,) ) -

In the advection-dominated case, the parameters 7, are determined by balancing the

terms 73, h3; ~ T]V[”b”[ZLx(A/[)]d, hence 7, ~ . In the diffusion-dominated

M
1]z, o0 (1))
case, we balance the terms € ~ 73} h%;. The combination of both cases leads to the
choice (4.9). Note that a deterioration of the denominator of 7,; in case of b =0 is

avoided. Finally, the triangle inequality concludes the proof. O

Remark 4.3. The constants Cp and C are critical in the case of 0<e <1
together with 0 < ¢, 8y < 1. Let us discuss some relevant situations:

e For singularly perturbed diffusion-reaction problems, ie. with b=0, it is
reasonable to assume that o > 0 is independent of ¢.

e For singularly perturbed advection-diffusion problems, there occurs the case that
all subcharacteristics of the first-order operator b - V leave the domain € in finite
time. This excludes periodic subcharacteristics and stagnation points of b in Q.
Then it is possible to transform the elliptic operator to the form L = —eL,+
b -V + ¢ with ¢(z) > o with arbitrary large o.

e For Robin boundary control (or regularized Dirichlet control), it is reasonable to
assume ﬂJr%b ‘n > [y >0 with 5, = O(1).

Remark 4.4. In the limit case A =1, i.e. for u € H?(Q2), we obtain the well-known
optimal convergence rate O(h},) with respect to hy;.

Remark 4.5. The LPS method is still a matter of ongoing research. Recent results
provide improved stability and convergence results of the LPS method.

(i) In Lemma 4.1 of Ref. 10, it is shown for the one-level method that the LPS-norm
Il - lll gives control of the weighted streamline derivative (3 g 7x||b - V()| 31{)%
(ii) Theorem 2 of Ref. 9 states that, for simplicial elements, the one- and the two-level
approach are algebraically equivalent to a residual-based stabilization scheme, to
the unusual Galerkin/least-squares stabilization or algebraic subscale method.®

Similarly, we obtain the following a priori error estimate for the adjoint
problem (3.9).
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Lemma 4.4. For (qo,qr) € Qq X Qr, let p € V' be the solution of the adjoint state
problem (2.7) and for some (pq,pr) € Qq X Qr, let y, € V), be the adjoint discrete
solution. Let the stabilization parameters be chosen as in (4.9). Then, there holds the
a priori error estimate

llp = yalll < (CEAq + CEAR)|llu — wy|

2

1
[b-Vp|3.,,
+0< > h*{ MM Clpl s (4.15)

MeM, ehyf + bl (ar)e

with Cyr, Cq and Cr as in the previous lemma.
Proof. The equations for p € V and y;, € V},
a(v,p) = Ag(u — ug,v)g + Ap(u —up,v)p,  YveV
a(Vp, yn) + 81 (Yn, o) = Aa(wy, — ug,vp)o + Av(wy, — up, vp)r,, Yo, €V,
lead to the error equation

CL(U;L,p - yh) + sh(p - yhavh) = Sh(pavh) + AQ (U - whnvh)Q
+ Ap(u—wp,vp)r, Vv, €V

The remaining part of the proof follows the lines of the previous proof. O

Remark 4.6. The term |||u — wy,||| in (4.10) can be further estimated via Lemma 4.3.

4.3. Main result for unconstrained case

We are now in a position to prove the main result for the unconstrained optimal
control problem.

Theorem 4.1. Let the assumptions of Lemma 2.1 and Assumption 2.1 be wvalid.
Moreover, let (4, qo, gr) be the solution of the optimal control problem (1.1)—(1.2)
and (U, Gn.0, Gur) the solution of the discretized problem (3.5)—(3.6). Finally, let
aq,ar > 0. Then there exists a constant C' > 0 depending on \q, \r, aqg, ar, Cq, Cr
such that the following error estimate holds:

lze —analloe + lar —anrllor,

3 3
< C{( Z h}»f/\mﬂﬁﬂ;z,M) +< Z h?”@rﬁﬂ;??E)

MeM,, Ec&,MTy

b V|3 9 :
+ har = + Cyllaliinzm
(Z Mo \ehat + 1Bz (ary) A

M

b VB|3aur _2 d
+ hyr? = + Culpll 14a
(Z ( M byt 4 1Bl (s MIEIA2A0

M

with Cyr, Cq and Cr as in Lemma 4.3.
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Proof. Let (z,0,2,r) € Qno X Qur be arbitrary so far. A straightforward calcu-
lation gives together with (2.11) and (2.12)

Dy 3n(2n.0,@nr) (20 = @h0) = Dedn(@nosanr)(2ho —ano)
= Dy 4030 @n.0:qn1) (200 — Ahos 20 —Tno)
> agllzna _th,Q”g;Qa

Dy n(zng0s 2nr)(War —qnr) — Dy dn@n0,anr)(2ar —anr)
= Dy 0 0(@n.0:Gn1r) (2 —Tnrs 2hr —qnr)

> arllznr — anrllir,-
As the gradient vanishes at the optimal point for the unconstrained case, there holds
Dy, jn@nas @nr)(Zno —@na) = 0= Dy j(@a, Gr)(zn0 —@no), (4.16)
Dy.31@n0» Gnr)(znr —@nr) = 0= Dy j(@a; @r)(znr —Gnr) (4.17)

which leads in the previous inequalities to

aollzno —@nollta < Dydn(zha, @nr)(zna —@na) — Dyil@a, ar)(zna — Gna),

ar||z,r —6}L¢r||<2);r3 < Dy gn@ngs 2nr)(Zhr —Qnr) — Dgd@as @r)(2ar —anr)-

Now the discrete analogue of Lemma 2.2 gives

agllzng —@nallto < (azno + Ynas zna —dna)a — (oo + P, 2n0 —@no)o
= (an(zn0 —da) + Wnao — D), Zno —dno)a;

where y;, o denotes the associated discrete adjoint state to zj, . This implies
_ _ Cq _
2.0 = @nalloe < llzna —Gallo + a—ﬂ|||yh =7l
and via triangle inequality
_ _ Cq _
||‘Zsz *qh,szHo;,sz < 2||Zh,sz *QQHO;Q + a—Q |||yh - p|||~ (4-18)

Similarly we obtain with the associated discrete adjoint state y,p to wy,  that
arllzpr —(?h.,FH(Z);rR < (ar(zpr —qr) + (Ynr — D), 20r —Qnr)r,
and
e = nslo, < 2l = delor, + - lon 71l (419)
The continuous optimality system (1.2), (2.7)—(2.9) gives qq = —if) and qp =

--L p|p Consequently, the regularity of the adjoint state p 1mp11es (@q, qr) €
W1+’\ 2(Q) x W2 2(I'g) with 1 + A > £ This allows one to select 2,  and 2, - as the
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Lagrangian interpolants of g and qr, respectively; hence

1
2
[2n.0 — dallon < C( Z hﬂZ/\|QQ|%+A;2,M> ; (4.20)
MeM;,
%
Ecg,Nl'p

The estimates (4.18), (4.19) together with the latter interpolation estimates,
Lemmas 4.4 and 4.3 with pg := 2;, o and pp := z;,p prove the assertion. O

5. Regularized Dirichlet Control
In applications, a Dirichlet boundary control
u=q

might be desirable. A review of different variants is given in Ref. 12. One possibility is
to approximate the Dirichlet boundary control by a Robin boundary control of the
form

OVu-n+pBu—q) =0, f=0(01)

for & — 40, but the choice of the regularization parameter ¢ is delicate. For the case
of the singularly perturbed problem (1.2), a rather natural choice seems to be § = ¢.
This would allow one to interpret the Robin boundary control within this paper as a
regularization of Dirichlet boundary control. Nevertheless, some care is necessary.
In order to describe potential problems, define the subsets I'_,I'j and ', of the
boundary df, depending on the sign of (b - n)(z), as the inflow, characteristic and
outflow part for the flow field b. Typically, the solution u of problem (1.2) has
boundary layers at the outflow part I', with steep gradient [eVu-n|~ 1 and at
characteristic boundaries I'y with (at most) |[eVu - n| ~ y/e. Clearly, at the inflow
part T'_, one only has |eVu - n| ~ e. This observation motivates one to exclude a
Dirichlet control at the outflow boundary I', whereas the Robin regularization

eVu-n+Bu—q)=0 (5.1)

with 3+ %b -n > [, > 0is a potential approximation of a Dirichlet condition u = ¢
at X COO\T,.
A typical situation is the flow in a domain Q = (0,L) x (—

with the flow field
H K T
b(z) = ((7 - |$2|) ,0> with x > 0.

The case k > 0 corresponds to a no-slip condition of the flow field b whereas k = 0

% , g) of channel type

represents a slip-condition of b. The solution u of (1.2) can be seen as a temperature
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field or as the density of some chemical reactant. Let us describe two potential
applications of Dirichlet control:

(i) Regularization of wall Dirichlet control:
A Dirichlet condition u = ¢ is given at a part X C Iy = (0,L) x {77,7 of
the channel Walls whereas an insulation condition is given on I'j\X. An inflow

condltlon E + Blu—g) =0 with 3 + $b- n > [y > 0 is prescribed on

= {0} x ( 2 , 2) A “do-nothing” condltlon 5 = 0 might be prescribed on
F+:{1}><( 5.5

(ii) Regularization of inflow Dirichlet control:
A Dirichlet condition u = g is given at a part X C I'_ whereas a Robin boundary
condition & 7“ + B(u—g) =0 with 34+1b-n > 3; > 0is prescribed on I'_\ . A
“do-nothing” condition € * d“ =0 mlght be prescribed on I',. An “insulation”

condition € g” =0is glven at the channel walls T'.

Replacing the Dirichlet control on ¥ C T'_ U T, by the Robin boundary control (5.1),
one can take advantage of the results of this paper. We will discuss an example for
case (i) in the next section. An analysis of this approach and numerical experiments
for case (ii) will be reported elsewhere.

6. Numerical Experiments

Meanwhile, several authors contributed to the theoretical and practical investi-
gations of LPS methods. A detailed discussion of pro’s and con’s of the one- and two-
level variant can be found in Ref. 9. As a result of the latter studies, no significant
preference of one of the methods was observed. For the following numerical exper-
iments with the two-level variant of the LPS method, the C+4+ libray deal.II*is
used.

The goal of the first example is to show the effect of stabilization and the con-
vergence of the method for vanishing regularization parameter a,.

Example 6.1. Consider the unconstrained optimization problem

. 1 Qg
min J(go, g, u) := 5 [Ju = ugll72() + > llgall 20
such that

—eAu+b-Vu+ou=gqg inQ=(0,1)2,

.1
u=0 on 0N (6.1)

with e = 1073, b = (=1, —2)%,0 = 1. In order to obtain results on the convergence of
the control in the sense of gy — qq e for ag — 0, we prescribe the control as

doret(T) = (Sin(mh))o'S (Sin(ﬂxz))o'?’-

Then we compute the solution of (6.1) with given source term gq and prescribe the
solution as desired state ugq.
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Table 1. Different error measures for the unstabilized scheme with mesh width h = 275.
Control State

Qg L L2 Hl L L2 IY1

le+0 9.47E-01 6.97E-01 5.98E+400 4.01E-01 1.54E-01 3.45E+00

le-1 6.92E-01 5.16E-01 9.54E4-00 2.54E-01 1.02E-01 2.73E400

le-2 7.23E-01 2.63E-01 1.68E+01 1.51E-01 3.48E-02 4.32E+00

le-3 2.43E4-00 3.41E-01 4.48E+01 1.24E-01 2.07E-02 4.43E+00

le-4 1.04E+401 1.11E+4-00 1.97E+02 7.67TE-02 1.11E-02 2.35E+00

le-5 2.23E+401 2.07E+00 3.87TE+02 2.38E-02 2.84E-03 5.68E-01

le-6 2.64E+401 2.43E+400 4.55E+02 3.19E-03 3.66E-04 7.18E-02

Table 2. Different error measures for LPS-stabilization with 7 = 0.034h and mesh width h = 272,
Control State
an L® L2 H! L® L2 H!

le+0 9.46E-01 6.97E-01 5.89E+00 4.09E-01 1.54E-01 3.55E+00
le-1 6.87E-01 5.12E-01 5.31E400 2.79E-01 1.03E-01 2.60E+00
le-2 5.57E-01 2.23E-01 6.74E+00 8.54E-02 2.77E-02 9.67E-01
le-3 2.96E-01 8.04E-02 5.29E+00 1.94E-02 4.37E-03 2.35E-01
le-4 1.64E-01 2.74E-02 2.85E400 3.57E-03 5.81E-04 4.77E-02
le-5 4.95E-02 6.79E-03 9.53E-01 4.81E-04 7.06E-05 7.77TE-03
le-6 7.08E-03 9.81E-04 1.56E-01 5.12E-05 7.64E-06 9.45E-04

If problem (6.1) is solved without stabilization, then the control tries, in the

case of small values of ag, to reduce the existing oscillations in order to reach the
(smooth) desired state. The convergence of the state is obtained as well for the
unstabilized as for the stabilized case, see Tables 1 and 2. Nevertheless, in the un-
stabilized case, the control is subject to spurious oscillations whereas in the case of
stabilization the convergence of the control is observed.

In the following example we revisit a problem which had been considered in Ref. 5
for the case of box-constraints for the control. Here we consider the case without
constraints. The numerical solution in Ref. 5 for ¢ = 103 with the two-level variant
of the LPS method gave strong oscillations in the boundary layer regions. Here, a
significantly smaller value e = 10~° of the singular perturbation parameter is chosen.

Example 6.2. We consider the optimization problem

such that

ag

. 1
min J(qo, gr, u) := ) lu = ug|| 72 +7HQQH%2(Q)7

—eAu+ (b-Vu+ou=f+qq inQ=(0,1)2

u=20

on 0f)

with go € L2(2) and e = 10°,b = (=1,-2),0 =1, f =1, ug = 1 and ag = 0.1.
Figure 2 shows the stabilized control and state for the problem. We present the
discrete solution on the coarse grid for the two-level approach with @;-elements and
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Fig. 2. Optimal discrete control and state for example with ¢ = 10~° and LPS parameters 7 = 0.1h.

Table 3. Example 6.2 h-convergence of the cost functional.

h=2" J(@n, up) J@n, up) — J(@op, Upp)  Num. conv. rate
2 3.08191E-01 — —
3 2.76675E-01 3.15159E-02 —
4 2.63904E-01 1.27704E-02 1.30
5 2.60156E-01 3.74789E-03 1.77
6 2.59242E-01 9.13856E-04 2.04
7 2.59068E-01 1.74289E-04 2.39
8 2.59057E-01 1.07450E-05 4.01

h = ﬁ. Notice that the spurious oscillations for the discrete control and state in the
boundary layer regions are significantly reduced as compared to the results given in

Ref. 5.

Table 3 gives the convergence history of the cost functional J. Moreover, the

numerical convergence rate is computed. The averaged rate is r ~ 2.30.

Finally, we present a numerical experiment for a regularized Dirichlet control

according to case (i) in Sec. 5.

Example 6.3. We consider the optimization problem

. )‘Q ~ 2 >‘F ~ 2 2
min J(u, go, qr) = > lu— dqgllz2) + > llw — @rl| T2m,) + > llgall 220

ap

+ 5 ||qF||2L2(FR)

such that

ag

—eAu+ (b-Vu=¢qq inQ=(0,2)x <1 1)

272
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with € =107%, b(z) = (3 — |22]),0)T and 4o =1, ar =0 and ag =10%, ar =
1072, \q = 1 and \p = 1073. The boundary conditions are chosen as

1 1
eVu-n+u=g onl_={0}x (—5, 5)

1 1
eVu-n+u=qr onX CIy=(0,2)x {—57 5}

eVu-n=0 onl(\Z

eVu-n=0 onT, ={2} x <—1, 1)
272
with the boundary part ¥ = (3,1) x {—4} U (3,1) x {1} with regularized Dirichlet
control and with g(x) = 1 — 4z3.

The two-level variant of LPS-stabilization with 7 = 0.5h and mesh width h = é is
applied. Figure 3 shows (a) the boundary control gr and (b) the state u. The
interesting result is that, for this singularly perturbed problem, the influence of the
boundary control is strongly restricted to the downstream boundary layer regions, i.e.
the desired influence of the boundary control on the global behavior of the state u in
Q) fails. The explanation is that, for this channel type flows, perturbations of the
boundary data at I'y U T, decay exponentially fast perpendicular to the boundary.
This allows the conclusion that any kind of boundary control at characteristic and
outflow boundaries is not useful here.

The situation is different for channel type flows with boundary control at the
inflow part I'_, see case (ii) in Sec. 5. Another situation is given in the case ¢ = 0 and
f = 0 for cavity-type flows, where no inflow and outflow parts of the boundary exist.
Then the effect of boundary control at characteristic parts I'y of the boundary is
relevant. We will report on results and arising problems elsewhere.

r4

Tl
// ¥ P

Fig. 3. Robin control on part of wall as regularized Dirichlet control: (a) boundary control gr and
(b) state w.
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7. Summary and Outlook

In this paper we considered the numerical analysis of discretized optimal control
problems governed by a linear advection-diffusion-reaction equation without point-
wise control constraints. The standard Galerkin discretization is stabilized via the
local projection approach which leads to a symmetric optimality system at the dis-
crete level. The optimal control problem simultaneously covers distributed and Robin
boundary control. In contrast to Ref. 5, we allow the application of shape-regular,
locally quasi-uniform meshes.

In the singularly perturbed case, the boundary control at certain parts of the
boundary can formally be seen as regularization of a Dirichlet boundary control. Our
first results show that boundary control at characteristic parts of the boundary has
only influence on the boundary layer region. Further investigation will be concerned
with boundary control at inflow boundaries and on boundary control for cavity-type
flows (without in- and outflow). Moreover, it seems to be interesting to consider the
less academic situation of coupled flow problems, e.g. with thermal coupling, as
boundary control (e.g. of temperature) may influence the flow field.
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