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In this paper, we consider the numerical analysis of quadratic optimal control problems governed

by a linear advection-di®usion-reaction equation without control constraints. In the case of

dominating advection, the Galerkin discretization is stabilized via the one- or two-level variant

of the local projection approach which leads to a symmetric optimality system at the discrete
level. The optimal control problem simultaneously covers distributed and Robin boundary

control. In the singularly perturbed case, the boundary control at in°ow and/or characteristic

parts of the boundary can be seen as regularization of a Dirichlet boundary control. Some

numerical tests illustrate the analytical results.
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1. Introduction

In this paper, we consider some aspects of the numerical analysis of the quadratic

optimal control problem

min Jðu; q�; q�Þ ¼
��

2
jju� ~u�jj2L2ð�Þ þ

��

2
jju� ~u�jj2L 2ð�RÞ þ

��

2
jjq�jj 2L2ð�Þ

þ ��

2
jjq�jj2L 2ð�RÞ; ð1:1Þ
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where ðu; q�; q�Þ 2 V �Q� �Q� with

V ¼ fv 2 H 1ð�Þ : uj�D
¼ 0g; Q� ¼ L2ð�Þ; Q� ¼ L2ð�RÞ

is subject to the linear mixed boundary value problem of advection-di®usion-reaction

type

�"�uþ b � ruþ �u ¼ f þ q� in �;

"ru � nþ �u ¼ gþ q� on �R

u ¼ 0 on �D:

ð1:2Þ

Here � � Rd; d 2 f2; 3g is a bounded polyhedral domain with Lipschitz boundary

@� ¼ �R [ �D , �D \ �R ¼ ; and outer normal unit vector n. We assume that " > 0

and � � 0 are constants and that the advective ¯eld b is divergence-free.

In (1.1), the desired states are ~u� in � and ~u� on �R. The constants ��; �� � 0

with � 2
� þ �2

� > 0 describe the weights of di®erent parts whereas ��; �� � 0 with

�2
� þ �2

� > 0 serve as regularization parameters. The state equation (1.2) describes

the dependence of the state u on the control ðq�; q�Þ. Here we consider the problem

without restrictions of the control. The problem with box-constraints for the control

will be considered elsewhere.

The linear-quadratic optimal control problem (1.1)�(1.2) with �R ¼ ;, without
and with control constraints has been considered by Becker and Vexler in Ref. 5 for

the singularly perturbed case with 0 < " � 1, see also the references therein. One

goal of the present paper is to consider problem (1.1)�(1.2) simultaneously for dis-

tributed and (Robin) boundary control. Notably, in the singularly perturbed case

0 < " � 1, the Robin control at in°ow and/or characteristic parts of the boundary

can be seen as regularization of a Dirichlet boundary control.

The standard Galerkin discretization is stabilized as in Ref. 5 via the local pro-

jection approach (LPS for short below) which leads to a symmetric optimality system

at the discrete level. This implies that the operations \discretization" and

\optimization" commute as opposed to residual-based stabilization techniques like

the standard streamline-di®usion method. Another aim of this paper is a more gen-

eral LPS approach, including the so-called two-level variant (as in Ref. 5) and a one-

level variant introduced in Ref. 13.

Let us emphasize two aspects of the analysis in the present paper: Firstly, the

regularity of the solution of the mixed boundary value problem (1.2) is taken into

account by using Sobolev�Slobodeckij spaces and adapting the analysis of the LPS

method. Secondly, the analysis is performed for shape regular meshes (as opposed to

quasi-uniform meshes in Ref. 5) which allows for (isotropic) mesh re¯nement at

corners or edges of the domain and in boundary layers.

An outline of the paper is as follows: In Sec. 2, we address the existence,

uniqueness and regularity of the solution of problem (1.1)�(1.2). Then, in Sec. 3, we

consider the discretization of the state equation by means of ¯nite element methods

(FEM) with local projection stabilization and derive the discretized optimality sys-

tems. In Sec. 4, we analyze the convergence properties of the discretized optimal
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control problem. In Sec. 5, we brie°y address the interpretation of Robin boundary

control as regularized Dirichlet control. Some numerical experiments will be pre-

sented in Sec. 6.

Throughout this paper, standard notations for Lebesgue and Sobolev spaces are

used. In particular, the L2-inner product and the corresponding norm in a domain

G � � are denoted by ð�; �ÞG and jj � jj0;G, respectively.

2. Continuous Optimal Control Problem

Here we consider the optimality system for the continuous optimal control problem

(1.1)�(1.2).

2.1. Solvability

To this goal, we ¯rst consider the solvability of the state equation (1.2) with ~f :¼
f þ q� and ~g :¼ gþ q�. The variational form of problem (1.2) reads

Find u 2 V :¼ fv 2 H 1ð�Þ : vj�D
¼ 0g; s:t: aðu; vÞ ¼ fðvÞ 8 v 2 V ; ð2:1Þ

with

aðu; vÞ :¼ "ðru;rvÞ� þ ðb � ruþ �u; vÞ� þ ð�u; vÞ�R
;

fðvÞ :¼ ð ~f ; vÞ� þ ð~g; vÞ�R
:

The following result provides su±cient conditions for the unique solvability of (2.1).

Lemma 2.1. Let the following assumptions be valid :

(i) b 2 ðL1ð�ÞÞd; ~f 2 L2ð�Þ; ~g 2 L2ð�RÞ; � 2 L1ð�RÞ.
(ii) " > 0, � � 0 and r � b ¼ 0 a.e. in �.

(iii) � � 0 and ~� :¼ � þ 1
2ðb � nÞ � �0 � 0 on �R.

(iv) Let at least one of the following conditions be valid :

(a) �n�1ð�DÞ > 0;

(b) � > 0 and �0 > 0.

Then there exists a unique solution u 2 H 1ð�Þ of the mixed boundary value problem

(2.1).

Proof. The continuity of að�; �Þ and fð�Þ follows via standard inequalities and (i)�
(iii):

jaðu; vÞj ¼ j"ðru;rvÞ� þ ððb � ruþ �u; vÞ� þ ð�u; vÞ�R
j

� "þ �þ
Xn
i¼1

jjbijj 21;�

 ! 1
2

þ Cjj�jj1;�R

 !
jjujj1jjvjj1 	 Majjujj1jjvjj1;

jfðvÞj ¼ jðf; vÞ� þ ðg; vÞ�R
j � ðjjfjj0 þ Cjjgjj0;�R

Þjjvjj1 	 Mf jjvjj1:
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Integration by parts of the advective term together with assumption r � b ¼ 0 and

the abbreviation ~� :¼ � þ 1
2 b � n yield H 1-ellipticity of a

aðv; vÞ ¼ "jvj21 þ �jjvjj20 þ jj~�
1
2vjj20;�R

as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aðv; vÞ

p
is equivalent to the standard norm on H 1ð�Þ if one of the assumptions in

(iv) is valid. Finally, the Lax�Milgram theorem delivers the assertion.

The following existence result follows by standard arguments in optimal control.14

Theorem 2.1. Under the assumptions of Lemma 2.1, the optimal control problem

(1.1)�(1.2) admits a unique solution ð�u; �q�; �q�Þ 2 V �Q� �Q�.

2.2. Regularity

For the convergence analysis below, statements on the regularity of the solution of

(2.1) are required. In general, the solution of this mixed boundary value problem is

not inW 2;pð�Þ. A standard approach is to consider weighted Sobolev spaces. Let S be

the set of points (for d ¼ 2) or edges (for d ¼ 3) which subdivide the polyhedral

boundary @� into smooth disjoint connected components. The space V k;p
� ð�Þ denotes

the closure of C1ð�Þ w.r.t.

jjvjjV k;p
�

ð�Þ ¼
X
j�j�k

Z
�

rpð��kþj�jÞjD�ujpdx

0
@

1
A

1
p

;

where r ¼ rðxÞ ¼ distðx;SÞ, � 2 R, k 2 N and p > 1. The parameter � is de¯ned via

eigenvalues of certain eigenvalue problems (in local coordinate systems at parts of the

set S) being associated with the mixed boundary value problem. As it is not the goal

of this paper to give su±cient conditions for the solution of problem (2.1) to belong to

V k;p
� ð�Þ, we refer to standard textbooks such as Refs. 8 and 11. Moreover, we do not

intend to consider graded ¯nite element meshes in the neighborhood of the set S
although the forthcoming numerical analysis allows such kind of re¯nement. For this

approach to optimal control problems for elliptic problems, we refer, e.g. to Refs. 1

and 2.

Here we consider on a subdomain G � �, the Sobolev�Slobodeckij spaces

Wkþ�;pðGÞ :¼ fv 2 Wk;pðGÞ : jjvjjkþ�;p;G < 1g; ð2:2Þ

jjvjjkþ�;p;G :¼ jjvjjpk;p;G þ
X
j�j¼k

Z
G

Z
G

jD�uðxÞ �D�uðyÞjp
jjx� yjjdþp�

dx dy

0
@

1
A

1
p

ð2:3Þ

with k 2 N0; � 2 ½0; 1Þ; p 2 ð1;1Þ and the obvious modi¯cations in case of p ¼ 1.

The spaces Wkþ�;pð�RÞ are de¯ned in a similar way.

Remark 2.1. The following embeddings V 2;2
� ð�Þ � W

d
2 þ�;2ð�Þ � Cð�Þ are valid for

� < 2� d
2 þ � with � > 0, cf. Ref. 11. In particular, for the Dirichlet case @� ¼ �D in

polyhedral domains there holds � � 1
2 þ �; � > 0.
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2.3. Optimality system

As problem (2.1) admits a unique solution, see Lemma 2.1, we may de¯ne the a±ne

linear continuous solution operator

S : L2ð�Þ � L2ð�RÞ ! V ; u ¼ Sðq� þ f; q� þ gÞ:

Due to the linearity of problem (1.2) we can split S into its linear and a±ne linear

parts. Inserting u ¼ Sðq� þ f; q� þ gÞ ¼ Sðq�; q�Þ þ Sðf; gÞ in (1.1), we obtain (with

trace operator �) and the de¯nitions u� :¼ ~u� � Sðf; gÞ and u� :¼ ~u� � � 
 Sðf; gÞ
the reduced cost functional:

jðq�; q�Þ ¼ JðSðq�; q�Þ; q�; q�Þ ¼
��

2
jjSðq�; q�Þ � u�jj 20;�

þ ��

2
jj� 
 Sðq�; q�Þ � u�jj20;�R

þ ��

2
jjq�jj 20;� þ ��

2
jjq�jj20;�R

: ð2:4Þ

Now the reduced optimization problem reads

Minimize jðq�; q�Þ; ðq�; q�Þ 2 Q� �Q�: ð2:5Þ

Henceforth we denote the optimal control of the problem by ð�q�; �q�Þ and the cor-

responding optimal state by �u ¼ Sð�q� þ f; �q� þ gÞ. The reduced cost functional j is

continuously di®erentiable.

Lemma 2.2. The ¯rst-order derivatives of the reduced cost functional j are given by

Dq�jðq�; q�Þ � k� ¼ ð��q� þ p; k�Þ�; Dq�jðq�; q�Þ � k� ¼ ð��q� þ p; k�Þ�R
; ð2:6Þ

where the adjoint state p 2 V is the solution of the adjoint state problem

Find p 2 V : aadjðp; vÞ ¼ ��ð�u � u�Þ� þ ��ð�u � u�; vÞ�R
8 v 2 V ; ð2:7Þ

with

aadjðp; vÞ :¼ "ðrp;rvÞ� � ðb � rp; vÞ� þ �ðp; vÞ� þ ðð� þ b � nÞp; vÞ�R
:

Proof. Formula (2.6) follows via standard arguments, see Ref. 14. The solvability of

the adjoint state problem (2.7) is shown as in the proof of Lemma 2.1.

The necessary (and here also su±cient) optimality conditions for the reduced

control problem (2.5) read

Dq�jð�q�; �q�Þ � ðk� � �q�Þ ¼ ð���q� þ �p; k� � �q�Þ� ¼ 0; 8 k� 2 Q�; ð2:8Þ

Dq�jð�q�; �q�Þ � ðk� � �q�Þ ¼ ð���q� þ �p; k� � �q�Þ�R
¼ 0; 8 k� 2 Q�; ð2:9Þ

where �p is the associated adjoint state to ð�q�; �q�Þ. This leads to
���q� þ �p ¼ 0; in � ���q� þ �p ¼ 0 on �R: ð2:10Þ
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The optimality system (KKT-system) for the optimal control problem (1.1)�(1.2)

is formed by (2.10) together with the state problem (1.2) and the adjoint state

problem (2.7).

The second-order derivatives of jðq�; q�Þ do not depend on ðq�; q�Þ and admit the

estimates

Dq�q�jðq�; q�Þ � ðk�; k�Þ � ��jjk�jj20;�; 8 k� 2 Q�; ð2:11Þ

Dq�q�jðq�; q�Þ � ðk�; k�Þ � ��jjk�jj20;�R
; 8 k� 2 Q�: ð2:12Þ

Motivated by Remark 2.1, we make the following regularity assumption for the

solution of the optimal control problem which later on allows Lagrangian interp-

olation of the solution.

Assumption 2.1. The optimal solution ð�u; �p; �q�; �q�Þ of the optimal control

problem (1.1)�(1.2) belongs to ½W 1þ�;2ð�Þ�3 �W
1
2 þ�;2ð�RÞ with 1þ � > d

2.

Assume that ��; �� > 0. Then assumption 2.1 is valid if the solution u of (2.1)

belongs toW 1þ�;2ð�Þ; 1þ � > d
2, eventually for su±ciently smooth data ~f ; ~g; �. Then

the same statement is valid for the solution p of (2.7) for su±ciently smooth data

u�;u�. Moreover, the regularity of �q� and �q� follows via (2.10).

3. Stabilized Discrete Optimality System

In this section, we introduce the discretized optimal control problem corresponding to

(1.1)�(1.2). In particular, we apply a more general approach to the discretization as

in Ref. 5 by considering shape-regular ¯nite element meshes and a more °exible

stabilization concept.

3.1. Finite element spaces

Consider a family of shape-regular, admissible decompositions Th of � into

d-dimensional simplices, quadrilaterals for d ¼ 2 or hexahedra for d ¼ 3. Let hT be

the diameter of a cell T 2 Th and h ¼ maxT2Th
hT . Let T̂ be a reference element of

the decomposition Th. Assume that, for each T 2 Th, there exists an a±ne mapping

FT : T̂ ! T which maps T̂ onto T. This quite restrictive assumption for quad-

rilaterals/hexahedra can be weakened to asymptotically a±ne linear mappings.3

Let us denote by Eh the set of element faces (for d ¼ 3) and element edges (for

d ¼ 2) induced by the ¯nite element mesh Th on @�. Moreover, we assume that the

Robin part �R of the boundary is exactly triangulated by elements of Eh.

Set Pk;Th
:¼ fvh 2 L2ð�Þ; vh 
 FT 2 PkðT̂ Þ;T 2 Thg with the space PkðT̂ Þ of com-

plete polynomials of degree k 2 f0; 1g de¯ned on T̂ and Qk;Th
:¼ fvh 2 L2ð�Þ; vh 


FT 2 QkðT̂ Þ; T 2 Thg with the space QkðT̂ Þ of all polynomials on T̂ with maximal

degree k in each coordinate direction. We shall approximate the space V by a ¯nite

element space Vh � V such that

Vh � P1;Th
\ V or Vh � Q1;Th

\ V :
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Similarly, let Qh;� � H 1ð�Þ be a ¯nite element space for the control variable and

Qh;� ¼ Qh;�j�R
its restriction to �R.

3.2. Local projection stabilization (LPS) for the state problems

The basic Galerkin discretization of the state problem (2.1) reads: Find uh 2 Vh such

that

aðuh; vhÞ ¼ fðvhÞ; 8 vh 2 Vh: ð3:1Þ

For 0 < " � 1, the solution uh of (3.1) may su®er from spurious oscillations. As in

Ref. 5 we consider the local projection stabilization (LPS) approach which results in a

symmetric discrete optimality system. The idea of LPS methods is to split the dis-

crete function spaces into small and large scales and to add stabilization terms of

di®usion-type acting only on the small scales. There are two obvious choices of the

space of large scales:

The two-level variant starts from the given space Vh � P1;Th
\ V or Vh � Q1;Th

\ V

for simplicial or hexahedral elements. The large scales are determined with the help of

a coarse mesh. This mesh Mh is constructed by coarsening the basic mesh Th such

that each macro-element M 2 Mh is the union of one or more neighboring cells

T 2 Th. The diameter of M 2 Mh is denoted by hM . We assume that the

decomposition Mh of � is non-overlapping and shape-regular. In addition, the

interior cells are supposed to be of the same size as the corresponding macro-cell:

9 C > 0 : hM � ChT ; 8T 2 Th;M 2 Mh with T � M : ð3:2Þ

The discrete space Dh � L2ð�Þ is the discontinuous ¯nite element space of piecewise

constant functions de¯ned on the macro-partition Mh. The restriction of Dh on

M 2 Mh is denoted by DhðMÞ :¼ fvhjM ; vh 2 Dhg: The next ingredient is a local

projection �M : L2ðMÞ ! DhðMÞ which de¯nes the global projection �h : L2ð�Þ !
Dh by ð�hvÞjM :¼ �MðvjMÞ for all M 2 Mh. A standard variant is the local orthog-

onal L2 projection. Denoting the identity on L2ð�Þ by id, the °uctuation operator

�h : L2ð�Þ ! L2ð�Þ is de¯ned by �h :¼ id� �h.

The second approach, the one-level variant, consists in choosing the discontinuous

¯nite element space Dh of piecewise constant functions on the original mesh Th and

constructing a proper enriched space Vh. The same abstract framework as in the ¯rst

approach can be used by setting Mh ¼ Th.
For both variants, the stabilized discrete formulation reads: ¯nd uh 2 Vh such that

alpsðuh; vhÞ :¼ aðuh; vhÞ þ shðuh; vhÞ ¼ fðvhÞ; 8 vh 2 Vh; ð3:3Þ

where the additional stabilization term is given by

shðuh; vhÞ :¼
X

M2Mh

	Mð�hðb � ruhÞ; �hðb � rvhÞÞM : ð3:4Þ

The stabilization sh acts solely on the small scales. The constants 	M will be

determined later based on a priori error analysis.
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3.3. Some variants of one- and two-level variant

Di®erent variants for the choice of the discrete spaces Vh and Dh are given in Ref. 13.

Here we describe some details.

The one-level approach with Mh ¼ Th starts from a given discontinuous space Dh

and uses an enrichment of the spaces P1;Th
\ V or Q1;Th

\ V . For simplicial elements,

we set

Dh :¼ P0;Th
; Vh :¼ fv 2 V ; vjT 
 FT 2 P bub

1 ðT̂ Þ 8T 2 Thg;

where

P bub
1 ðT̂ Þ :¼ P1ðT̂ Þ þ b̂ � P0ðT̂ Þ; b̂ðx̂Þ :¼ ðdþ 1Þdþ1

Ydþ1

i¼1

�̂iðx̂Þ

with the barycentric coordinates �̂i; i ¼ 1; . . . ; dþ 1. For quadrilateral/hexahedral

elements, we can use either Dh ¼ P0;Th
or Dh ¼ Q0;Th

. Setting D̂ ¼ P0ðT̂ Þ or

D̂ ¼ Q0ðT̂ Þ, respectively, the spaces Vh are constructed analogously as for simplices

with

Qbub
1 ðT̂ Þ :¼ Q1ðT̂ Þ þ b̂ � D̂; b̂ðx̂Þ :¼

Yd
i¼1

ð1� x̂ 2
i Þ; T̂ ¼ ð�1; 1Þd:

Now consider the two-level approach (cf. Fig. 1 for d ¼ 2). For quadrilateral/

hexahedral elements, each M 2 Mh is uniformly re¯ned into 2d sub-elements. In the

simplicial case, each M 2 Mh is divided into dþ 1 simplices by connecting the

barycenter of M with the vertices of M. For simplices and for quadrilaterals/hex-

ahedra, respectively, set

Vh :¼ P1;Th
\ V ; Dh :¼ P0;Mh

and Vh :¼ Q1;Th
\ V ; Dh :¼ Q0;Mh

:

Note that, for the two-level approach based on simplicial ¯nite elements, the space

Vh can be written in the form:

Vh ¼ fv 2 V : vjM 
 FM 2 P1ðT̂ Þ  B̂18M 2 Mhg;

where B̂1 � H 1
0 ðT̂ Þ is a ¯nite-dimensional space consisting of continuous piecewise

polynomial functions of degree 1. Therefore, the simplicial two-level approach can be

treated as a one-level approach with respect to the mesh Mh.

Fig. 1. Two-level approach with meshes Mh (bold lines) and Th (¯ne lines).
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3.4. Discrete optimality system

The discretized control problem to (1.1)�(1.2) is formulated in Vh �Qh;� �Qh;� as

follows:

min Jðuh; qh;�; qh;�Þ; uh 2 Vh; qh;� 2 Qh;�; qh;� 2 Qh;�; ð3:5Þ

subject to

alpsðuh; vhÞ ¼ ðf þ qh;�; vhÞ þ ðgþ qh;�; vhÞ�R
; 8 vh 2 Vh: ð3:6Þ

This discrete optimal control problem admits a unique solution ð�uh; �qh;�; �qh;�Þ. Now

we introduce a discrete solution operator Sh : Q� �Q� ! Vh by

alpsðShðqh;�; qh;�Þ; vhÞ ¼ ðf þ qh;�; vhÞ� þ ðgþ qh;�; vhÞ�R
8 vh 2 Vh:

Moreover, the discrete reduced cost functional is formulated as

jhðqh;�; qh;�Þ ¼ JðShðqh;�; qh;�Þ; qh;�; qh;�Þ:

For all kh;� 2 Qh;�; kh;� 2 Qh;�, the necessary (and su±cient) optimality conditions

read

Dq�jhð�qh;�;�qh;�Þ � ðkh;� � �qh;�Þ ¼ ð���qh;� þ �ph; kh;� � �qh;�Þ� ¼ 0; ð3:7Þ

Dq�jhð�qh;�;�qh;�Þ � ðkh;� � �qh;�Þ ¼ ð���qh;� þ �ph; kh;� � �qh;�Þ�R
¼ 0; ð3:8Þ

hence

���qh;� þ �ph ¼ 0; �� �qh;� þ �ph ¼ 0:

Here the discrete adjoint state ph 2 Vh is the solution of the discrete adjoint state

problem

alpsðvh; phÞ ¼ ��ðuh � u�; vhÞ� þ ��ðuh � u�; vhÞ�R
; ð3:9Þ

where uh ¼ Shðq�; q�Þ is the associated discrete state to ðq�; q�Þ.

Remark 3.1. The symmetry of the LPS term implies that the operations \optimize"

and \discretize" commute, see Ref. 5.

Finally, the second-order derivatives of jhðq�; q�Þ do not depend on ðq�; q�Þ and
admit the estimates

Dq�q�jhðq�; q�Þ � ðkh;�; kh;�Þ � ��jjkh;�jj 20;�; 8 kh;� 2 Qh;�; ð3:10Þ

Dq�q�jhðq�; q�Þ � ðkh;�; kh;�Þ � ��jjkh;�jj20;�R
; 8 kh;� 2 Qh;�: ð3:11Þ

4. A Priori Error Analysis for the Optimal Control Problem

In this section, we provide the error analysis for the optimal control problem

(1.1)�(1.2).
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4.1. Some auxiliary results

It turns out that additional assumptions for the LPS method are required. In order to

control the consistency error of the stabilization term, the discontinuous space Dh on

the coarse mesh Mh has to be large enough; more precisely:

Assumption 4.1. The °uctuation operator �h ¼ id� �h, see Sec. 3.2, satis¯es for

s 2 ½0; 1� the following approximation property:

9 C� > 0 : jj�hqjj0;M � C�h
s
M jqjs;M ; 8 q 2 W s;2ðMÞ; 8 M 2 Mh: ð4:1Þ

Remark 4.1. (i) Assumption 4.1 is valid if the local L2-projection operator �h is

chosen in the de¯nition of the °uctuation operator �h ¼ id� �h.

(ii) The original version of (4.1) in Ref. 13 only considers s 2 f0; 1g.

Now we construct a special interpolation j0 : V ! Vh such that the error v� j0v is

L2-orthogonal to Dh for all v 2 V . In order to conserve the standard approximation

properties, we additionally assume

Assumption 4.2. There exists a constant � > 0 such that, for any M 2 Mh,

inf
qh2DhðMÞ

sup
vh2YhðMÞ

ðvh; qhÞM
jjvhjj0;M jjqhjj0;M

� � > 0; ð4:2Þ

where YhðMÞ :¼ fvhjM : vh 2 Vh; vh ¼ 0 on �nMg.

Remark 4.2. The inf�sup condition (4.2) implies that the spaceDh must not be too

rich. On the other hand,Dh must be rich enough to ful¯l the approximation property

(4.1). Assumption 4.2 is valid for the discrete spaces discussed in Sec. 3.3, cf. Ref. 9,

Sec. 4.

Lemma 4.1. Let Assumption 4.2 be satis¯ed. Then there is an interpolation

operator j0 : V ! Vh such that

ðv� j0v; qhÞ� ¼ 0; 8 qh 2 Dh; 8 v 2 V ð4:3Þ
and

jjv� j0vjj0;M þ hM jv� j0vj1;M þ h
1
2

M jjv� j0vjj0;E .h 1þ�
M jjvjj1þ�;2;M ð4:4Þ

for all M 2 Mh and for v 2 V \W 1þ�;2ð�Þ with 1þ � > d
2.

Proof. This is a simple extension of the proof with � 2 f0; 1g in Ref. 13. In

particular, the modi¯ed analysis takes advantage of the Lagrangian interpolation

properties of the space Vh

9 C > 0 : jjv� Ihvjjm;T � Ch1þ��m
T jjvjj1þ�;2;T ; m 2 f0; 1g ð4:5Þ

for v 2 W 1þ�;2ðT Þ; 8T 2 Th with � 2 ½0; 1Þ such that 1þ � > d
2, see Ref. 7,

Theorem 2.25 and Remark 2.1. Moreover, for E � @T one obtains

9 C > 0 : jjv� Ihvjj0;E � Ch
�þ 1

2

T jjvjj1þ�;2;T : ð4:6Þ
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4.2. Analysis of the state problems

The next goal is to derive error estimates for the state problems (3.6) and (3.9). First,

the stability of the scheme will be given in the mesh-dependent norm

jjjvjjj :¼ ð"jvj 21;� þ �jjvjj20;� þ jj~�
1
2vjj20;�R

þ shðv; vÞÞ
1
2 ; 8 v 2 V :

Lemma 4.2. The LPS schemes (3.6) and (3.9) for the discrete state and the adjoint

states admit unique solutions.

Proof. For any v 2 V , integration by parts yields ðb � rv; vÞ� ¼ 1
2 ððb � nÞv; vÞ�R

,

hence

alpsðv; vÞ ¼ "jvj 21;� þ �jjvjj20;� þ jj~�
1
2vjj20;�R

þ shðv; vÞ ¼ jjjvjjj2; 8 v 2 V ð4:7Þ

with ~� ¼ � þ 1
2 b � n. This implies jjjuhjjj2 � ð ~f ;uhÞ� þ ð~g;uhÞ�R

, hence existence and

uniqueness of uh 2 Vh in the scheme (3.6). The result for (3.9) follows similarly.

The following a priori estimate can be proven using the standard technique of

combining stability and consistency results based on the auxiliary results of the last

subsection. Here, and in the following lemma, we ¯x some controls ðp�; p�Þ 2
Q� �Q� which will be later on, in the proof of the main theorem, chosen as the

Lagrangian interpolants of the optimal controls ð�q�; �q�Þ.

Lemma 4.3. Let ðq�; q�Þ 2 Q� �Q�, u ¼ Sðq�; q�Þ 2 V . For some ðp�; p�Þ 2
Q� �Q�, let wh ¼ Shðp�; p�Þ 2 Vh be the solution of

alpsðwh; vhÞ ¼ ðf þ p�; vhÞ� þ ðgþ p�; vhÞ�R
8 vh 2 Vh: ð4:8Þ

Let the stabilization parameters be chosen as

	M � hM

"h�1
M þ jjbjj½L1ðMÞ�d

: ð4:9Þ

Then, under the assumptions of Lemma 2.1, there holds the following a priori error

estimate

jjju� whjjj � C�jjq� � p�jj0;� þ C�jjq� � p�jj0;�R

þC
X

M2Mh

h 2�þ1
M

jb � ruj 2�;2;M
"h�1

M þ jjbjj½L1ðMÞ�d
þ CM jjujj21þ�;2;M

( ) ! 1
2

ð4:10Þ

with

CM :¼ "

hM

þ �hM þ jjbjj½L1ðMÞ�d þ jj�jjL1ð@M\�RÞ þ jjb � njjL1ð@M\�RÞ;

C� :¼ min
1ffiffiffi
�

p ;
CPffiffiffi
"

p
� �

; C� :¼ min
1ffiffiffiffiffi
�0

p ;
CPffiffiffi
"

p
( )

:
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Proof. The error is split into u� wh ¼ ðu� j0uÞ þ ðj0u� whÞ. For the approxima-

tion error u� j0u, Lemma 4.1 and Assumption 4.1 with s ¼ 0 yield

jjju� j0ujjj.
X

M2Mh

"þ�h2
M þ 	M jjbjj2½L1ðMÞ�d þ jj ~�jjL1ð@M\�RÞhM

h i
h2�
M jjujj21þ�;2;M

 ! 1
2

:

ð4:11Þ

Now we estimate the remaining part zh :¼ j0u� wh using (4.7)

jjjj0u� whjjj ¼
ðaþ shÞðj0u� wh; zhÞ

jjjzhjjj

¼ ðaþ shÞðu� wh; zhÞ
jjjzhjjj

þ ðaþ shÞðj0u� u; zhÞ
jjjzhjjj

¼: Iþ II:

We start with term I. Subtracting (4.8) from (2.1), one obtains the perturbed

Galerkin orthogonality relation

ðaþ shÞðu� wh; vhÞ ¼ shðu; vhÞ þ ðq� � p�; vhÞ� þ ðq� � p�; vhÞ�R
; 8 vh 2 Vh:

ð4:12Þ

Assumption 4.1 yields

jshðu; vhÞj � s
1
2

hðu;uÞs
1
2

hðvh; vhÞ � C
X

M2Mh

	Mh 2�
M jb � ruj2�;2;M

 ! 1
2

jjjvhjjj 8 vh 2 Vh:

Moreover, under assumption of Lemma 2.1 there holds

ðq� � p�; vhÞ� � C�jjq� � p�jj0;�jjjvhjjj; C� :¼ min
1ffiffiffi
�

p ;
CPffiffiffi
"

p
� �

;

ðq� � p�; vhÞ�R
� C�jjq� � p�jj0;�R

jjjvhjjj; C� :¼ min
1ffiffiffiffiffi
�0

p ;
CPffiffiffi
"

p
( )

;

where CP denotes the Poincar�e constant. Setting vh ¼ zh, we obtain

I � C
X

M2Mh

	Mh2�
M jb � ruj 2�;2;M

 ! 1
2

þ C�jjq� � p�jj0;� þ C�jjq� � p�jj0;�R
:

Now we consider the terms of II separately. Integration by parts and the orthogon-

ality property (4.3) and the estimate (4.4) yield for wh 2 Vh that

aðj0u� u;whÞ
jjjwhjjj

¼ 1

jjjwhjjj
ð"ðrðj0u� uÞ;rwhÞ� � ð�hðb � rwhÞ; j0u� uÞ�

þ �ðj0u� u;whÞ� þ ð~�ðj0u� uÞ;whÞ�R
Þ

� C
X

M2Mh

h 2�
M "þ ð�þ 	 �1

M Þh2
M þ jj~� jjL1ð@M\�RÞhM

� �
jjujj21þ�;2;M

 ! 1
2

:
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The estimate of the stabilization term follows using (4.1) with s ¼ 0 and (4.4)

shðj0u� u;whÞ
jjjwhjjj

� C
X

M2Mh

h 2�
M	M jjbjj2½L1ðMÞ�d jjujj

2
1þ�;2;M

 ! 1
2

: ð4:13Þ

Summing up all inequalities in this proof gives the assertion

jjjj0u� whjjj � C
X

M2Mh

h 2�
M 	M jb � ruj 2�;2;M þ ~CM jjujj21þ�;2;M

� � ! 1
2

þC�jjq� � p�jj0;� þ C�jjq� � p�jj0;�R ð4:14Þ
with

~CM :¼ "þ �h 2
M þ 	 �1

M h 2
M þ 	M jjbjj2½L1ðMÞ�d þ ðjj�jjL1ð@M\�RÞ

þ jjb � njjL1ð@M\�RÞÞhM :

In the advection-dominated case, the parameters 	M are determined by balancing the

terms 	 �1
M h2

M � 	M jjbjj2½L1ðMÞ�d , hence 	M � hM

jjbjj½L1ðMÞ� d
: In the di®usion-dominated

case, we balance the terms " � 	 �1
M h2

M . The combination of both cases leads to the

choice (4.9). Note that a deterioration of the denominator of 	M in case of b ¼ 0 is

avoided. Finally, the triangle inequality concludes the proof.

Remark 4.3. The constants C� and C� are critical in the case of 0 < " � 1

together with 0 � �; �0 � 1. Let us discuss some relevant situations:

. For singularly perturbed di®usion-reaction problems, i.e. with b 	 0, it is

reasonable to assume that � > 0 is independent of ".

. For singularly perturbed advection-di®usion problems, there occurs the case that

all subcharacteristics of the ¯rst-order operator b � r leave the domain �� in ¯nite

time. This excludes periodic subcharacteristics and stagnation points of b in ��.

Then it is possible to transform the elliptic operator to the form L ¼ �"L2 þ
b � r þ ~c with ~cðxÞ � � with arbitrary large �.

. For Robin boundary control (or regularized Dirichlet control), it is reasonable to

assume � þ 1
2 b � n � �0 > 0 with �0 ¼ Oð1Þ.

Remark 4.4. In the limit case � ¼ 1, i.e. for u 2 H 2ð�Þ, we obtain the well-known

optimal convergence rate Oðh
3
2

MÞ with respect to hM .

Remark 4.5. The LPS method is still a matter of ongoing research. Recent results

provide improved stability and convergence results of the LPS method.

(i) In Lemma 4.1 of Ref. 10, it is shown for the one-level method that the LPS-norm

jjj � jjj gives control of the weighted streamline derivative ð
P

K 	K jjb � rð�Þjj 20;KÞ
1
2 .

(ii) Theorem 2 of Ref. 9 states that, for simplicial elements, the one- and the two-level

approach are algebraically equivalent to a residual-based stabilization scheme, to

the unusual Galerkin/least-squares stabilization or algebraic subscale method.6

Similarly, we obtain the following a priori error estimate for the adjoint

problem (3.9).
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Lemma 4.4. For ðq�; q�Þ 2 Q� �Q�, let p 2 V be the solution of the adjoint state

problem (2.7) and for some ðp�; p�Þ 2 Q� �Q�, let yh 2 Vh be the adjoint discrete

solution. Let the stabilization parameters be chosen as in (4.9). Then, there holds the

a priori error estimate

jjjp� yhjjj � ðC 2
��� þ C 2

���Þjjju� whjjj

þC
X

M2Mh

h 2�þ1
M

jb � rpj2�;2;M
"h�1

M þ jjbjj½L1ðMÞ�d
þ CM jjpjj21þ�;2;M

( ) ! 1
2

ð4:15Þ

with CM ;C� and C� as in the previous lemma.

Proof. The equations for p 2 V and yh 2 Vh

aðv; pÞ ¼ ��ðu� u�; vÞ� þ ��ðu� u�; vÞ�R
8 v 2 V

aðvh; yhÞ þ shðyh; vhÞ ¼ ��ðwh � u�; vhÞ� þ ��ðwh � u�; vhÞ�R
; 8 vh 2 Vh

lead to the error equation

aðvh;p� yhÞþ shðp� yh;vhÞ ¼ shðp;vhÞþ��ðu�wh;vhÞ�
þ ��ðu�wh;vhÞ�R

8vh 2 Vh:

The remaining part of the proof follows the lines of the previous proof.

Remark 4.6. The term jjju� whjjj in (4.10) can be further estimated via Lemma 4.3.

4.3. Main result for unconstrained case

We are now in a position to prove the main result for the unconstrained optimal

control problem.

Theorem 4.1. Let the assumptions of Lemma 2.1 and Assumption 2.1 be valid.

Moreover, let ð�u; �q�; �q�Þ be the solution of the optimal control problem (1.1)�(1.2)

and ð�uh; �qh;�; �qh;�Þ the solution of the discretized problem (3.5)�(3.6). Finally, let

��; �� > 0. Then there exists a constant C > 0 depending on ��; ��; ��; ��;C�;C�

such that the following error estimate holds:

jj�q� � �qh;�jj0;� þ jj�q� � �qh;�jj0;�R

� C
X

M2Mh

h1þ2�
M j�q�j21þ�;2;M

 ! 1
2

þ
X

E2Eh\�R

h 1þ2�
E j�q�j21þ�;2;E

 ! 1
2

(

þ
X
M

h1þ2�
M

jb � r�uj2�;2;M
"h�1

M þ jjbjj½L1ðMÞ� d
þ CM jj�ujj21þ�;2;M

 ! ! 1
2

þ
X
M

h 1þ2�
M

jb � r�pj2�;2;M
"h�1

M þ jjbjj½L1ðMÞ�d
þ CM jj�pjj 21þ�;2;M

 ! ! 1
2
)

with CM ;C� and C� as in Lemma 4.3.
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Proof. Let ðzh;�; zh;�Þ 2 Qh;� �Qh;� be arbitrary so far. A straightforward calcu-

lation gives together with (2.11) and (2.12)

Dq�jhðzh;�;�qh;�Þðzh;� � �qh;�Þ �Dq�jhð�qh;�;�qh;�Þðzh;� � �qh;�Þ
¼ Dq�;q�jhð�qh;�;�qh;�Þðzh;� � �qh;�; zh;� � �qh;�Þ
� ��jjzh;� � �qh;�jj20;�;

Dq�jhðzh;�; zh;�Þðwh;� � �qh;�Þ �Dq�jhð�qh;�;�qh;�Þðzh;� � �qh;�Þ
¼ Dq�;q�jhð�qh;�;�qh;�Þðzh;� � �qh;�; zh;� � �qh;�Þ
� ��jjzh;� � �qh;�jj20;�R

:

As the gradient vanishes at the optimal point for the unconstrained case, there holds

Dq�jhð�qh;�; �qh;�Þðzh;� � �qh;�Þ ¼ 0 ¼ Dq�jð�q�; �q�Þðzh;� � �qh;�Þ; ð4:16Þ

Dq�jhð�qh;�; �qh;�Þðzh;� � �qh;�Þ ¼ 0 ¼ Dq�jð�q�; �q�Þðzh;� � �qh;�Þ ð4:17Þ

which leads in the previous inequalities to

��jjzh;� � �qh;�jj 20;� � Dq�jhðzh;�; �qh;�Þðzh;� � �qh;�Þ �Dq�jð�q�; �q�Þðzh;� � �qh;�Þ;
��jjzh;� � �qh;�jj20;�R

� Dq�jhð�qh;�; zh;�Þðzh;� � �qh;�Þ �Dq�jð�q�; �q�Þðzh;� � �qh;�Þ:

Now the discrete analogue of Lemma 2.2 gives

��jjzh;� � �qh;�jj20;� � ð��zh;� þ yh;�; zh;� � �qh;�Þ� � ð���q� þ �p; zh;� � �qh;�Þ�
¼ ð��ðzh;� � �q�Þ þ ðyh;� � �pÞ; zh;� � �qh;�Þ�;

where yh;� denotes the associated discrete adjoint state to zh;�. This implies

jjzh;� � �qh;�jj0;� � jjzh;� � �q�jj0;� þ C�

��

jjjyh � �pjjj

and via triangle inequality

jj�q� � �qh;�jj0;� � 2jjzh;� � �q�jj0;� þ C�

��

jjjyh � �pjjj: ð4:18Þ

Similarly we obtain with the associated discrete adjoint state yh;� to wh;� that

��jjzh;� � �qh;�jj20;�R
� ð��ðzh;� � �q�Þ þ ðyh;� � �pÞ; zh;� � �qh;�Þ�R

and

jj�q� � �qh;�jj0;�R
� 2jjzh;� � �q�jj0;�R

þ C�

��

jjjyh � �pjjj: ð4:19Þ

The continuous optimality system (1.2), (2.7)�(2.9) gives �q� ¼ � 1
��

�p and �q� ¼
� 1

��
�pj�. Consequently, the regularity of the adjoint state �p implies ð�q�; �q�Þ 2

W 1þ�;2ð�Þ �W
1
2þ�;2ð�RÞ with 1þ � > d

2. This allows one to select zh;� and zh;� as the
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Lagrangian interpolants of �q� and �q�, respectively; hence

jjzh;� � �q�jj0;� � C
X

M2Mh

h 1þ2�
M j�q�j21þ�;2;M

 ! 1
2

; ð4:20Þ

jjzh;� � �q�jj0;�R
� C

X
E2Eh\�R

h 1þ2�
E j�q�j21

2 þ�;2;E

 ! 1
2

: ð4:21Þ

The estimates (4.18), (4.19) together with the latter interpolation estimates,

Lemmas 4.4 and 4.3 with p� :¼ zh;� and p� :¼ zh;� prove the assertion.

5. Regularized Dirichlet Control

In applications, a Dirichlet boundary control

u ¼ q

might be desirable. A review of di®erent variants is given in Ref. 12. One possibility is

to approximate the Dirichlet boundary control by a Robin boundary control of the

form


ru � nþ �ðu� qÞ ¼ 0; � ¼ Oð1Þ

for 
 ! þ0, but the choice of the regularization parameter 
 is delicate. For the case

of the singularly perturbed problem (1.2), a rather natural choice seems to be 
 ¼ ".

This would allow one to interpret the Robin boundary control within this paper as a

regularization of Dirichlet boundary control. Nevertheless, some care is necessary.

In order to describe potential problems, de¯ne the subsets ��;�0 and �þ of the

boundary @�, depending on the sign of ðb � nÞðxÞ, as the in°ow, characteristic and

out°ow part for the °ow ¯eld b. Typically, the solution u of problem (1.2) has

boundary layers at the out°ow part �þ with steep gradient j"ru � nj � 1 and at

characteristic boundaries �0 with (at most) j"ru � nj �
ffiffiffi
"

p
. Clearly, at the in°ow

part ��, one only has j"ru � nj � �. This observation motivates one to exclude a

Dirichlet control at the out°ow boundary �þ whereas the Robin regularization

"ru � nþ �ðu� qÞ ¼ 0 ð5:1Þ

with � þ 1
2 b � n � �0 > 0 is a potential approximation of a Dirichlet condition u ¼ q

at � � @�n�þ.

A typical situation is the °ow in a domain � ¼ ð0;LÞ � ð� H
2 ;

H
2 Þ of channel type

with the °ow ¯eld

bðxÞ ¼ H

2
� jx2j

� 	
�

; 0

� 	
T

with � � 0:

The case � > 0 corresponds to a no-slip condition of the °ow ¯eld b whereas � ¼ 0

represents a slip-condition of b. The solution u of (1.2) can be seen as a temperature
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¯eld or as the density of some chemical reactant. Let us describe two potential

applications of Dirichlet control:

(i) Regularization of wall Dirichlet control:

A Dirichlet condition u ¼ q is given at a part � � �0 ¼ ð0;LÞ � f� H
2 ;

H
2 g of

the channel walls whereas an insulation condition is given on �0n�. An in°ow

condition " @u
@x1

þ �ðu� gÞ ¼ 0 with � þ 1
2 b � n � �0 > 0 is prescribed on

�� ¼ f0g � ð� H
2 ;

H
2 Þ. A \do-nothing" condition " @u

@x1
¼ 0 might be prescribed on

�þ ¼ f1g � ð� H
2 ;

H
2 Þ.

(ii) Regularization of in°ow Dirichlet control:

A Dirichlet condition u ¼ g is given at a part � � �� whereas a Robin boundary

condition " @u
@x1

þ �ðu� gÞ ¼ 0 with � þ 1
2 b � n � �0 > 0 is prescribed on ��n�. A

\do-nothing" condition " @u
@x1

¼ 0 might be prescribed on �þ. An \insulation"

condition " @u
@x2

¼ 0 is given at the channel walls �0.

Replacing the Dirichlet control on � � �� [ �0 by the Robin boundary control (5.1),

one can take advantage of the results of this paper. We will discuss an example for

case (i) in the next section. An analysis of this approach and numerical experiments

for case (ii) will be reported elsewhere.

6. Numerical Experiments

Meanwhile, several authors contributed to the theoretical and practical investi-

gations of LPS methods. A detailed discussion of pro's and con's of the one- and two-

level variant can be found in Ref. 9. As a result of the latter studies, no signi¯cant

preference of one of the methods was observed. For the following numerical exper-

iments with the two-level variant of the LPS method, the C++ libray deal.II4 is

used.

The goal of the ¯rst example is to show the e®ect of stabilization and the con-

vergence of the method for vanishing regularization parameter ��.

Example 6.1. Consider the unconstrained optimization problem

min Jðq�; q�;uÞ :¼
1

2
jju� u�jj2L 2ð�Þ þ

��

2
jjq�jj2L 2ð�Þ

such that

�"�uþ b � ruþ �u ¼ q� in � ¼ ð0; 1Þ2;
u ¼ 0 on @�

ð6:1Þ

with " ¼ 10�3;b ¼ ð�1;�2Þ t; � ¼ 1. In order to obtain results on the convergence of

the control in the sense of q� ! q�;ref for �� ! 0, we prescribe the control as

q�;refðxÞ ¼ ðsinð�x1ÞÞ0:3ðsinð�x2ÞÞ0:3:

Then we compute the solution of (6.1) with given source term q� and prescribe the

solution as desired state u�.
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If problem (6.1) is solved without stabilization, then the control tries, in the

case of small values of ��, to reduce the existing oscillations in order to reach the

(smooth) desired state. The convergence of the state is obtained as well for the

unstabilized as for the stabilized case, see Tables 1 and 2. Nevertheless, in the un-

stabilized case, the control is subject to spurious oscillations whereas in the case of

stabilization the convergence of the control is observed.

In the following example we revisit a problem which had been considered in Ref. 5

for the case of box-constraints for the control. Here we consider the case without

constraints. The numerical solution in Ref. 5 for " ¼ 10�3 with the two-level variant

of the LPS method gave strong oscillations in the boundary layer regions. Here, a

signi¯cantly smaller value " ¼ 10�5 of the singular perturbation parameter is chosen.

Example 6.2. We consider the optimization problem

min Jðq�; q�;uÞ :¼
1

2
jju� u�jj 2L2ð�Þ þ

��

2
jjq�jj2L2ð�Þ;

such that

�"�uþ ðb � rÞuþ �u ¼ f þ q� in � ¼ ð0; 1Þ2
u ¼ 0 on @�

with q� 2 L2ð�Þ and " ¼ 10�5;b ¼ ð�1;�2Þ t; � ¼ 1; f ¼ 1; u� ¼ 1 and �� ¼ 0:1:

Figure 2 shows the stabilized control and state for the problem. We present the

discrete solution on the coarse grid for the two-level approach with Q1-elements and

Table 1. Di®erent error measures for the unstabilized scheme with mesh width h ¼ 2�5.

Control State

�� L1 L2 H 1 L1 L2 H 1

1e+0 9.47E-01 6.97E-01 5.98E+00 4.01E-01 1.54E-01 3.45E+00

1e-1 6.92E-01 5.16E-01 9.54E+00 2.54E-01 1.02E-01 2.73E+00
1e-2 7.23E-01 2.63E-01 1.68E+01 1.51E-01 3.48E-02 4.32E+00

1e-3 2.43E+00 3.41E-01 4.48E+01 1.24E-01 2.07E-02 4.43E+00

1e-4 1.04E+01 1.11E+00 1.97E+02 7.67E-02 1.11E-02 2.35E+00
1e-5 2.23E+01 2.07E+00 3.87E+02 2.38E-02 2.84E-03 5.68E-01

1e-6 2.64E+01 2.43E+00 4.55E+02 3.19E-03 3.66E-04 7.18E-02

Table 2. Di®erent error measures for LPS-stabilization with 	 ¼ 0:034h and mesh width h ¼ 2�5.

Control State

�� L1 L2 H 1 L1 L2 H 1

1e+0 9.46E-01 6.97E-01 5.89E+00 4.09E-01 1.54E-01 3.55E+00
1e-1 6.87E-01 5.12E-01 5.31E+00 2.79E-01 1.03E-01 2.60E+00

1e-2 5.57E-01 2.23E-01 6.74E+00 8.54E-02 2.77E-02 9.67E-01

1e-3 2.96E-01 8.04E-02 5.29E+00 1.94E-02 4.37E-03 2.35E-01

1e-4 1.64E-01 2.74E-02 2.85E+00 3.57E-03 5.81E-04 4.77E-02
1e-5 4.95E-02 6.79E-03 9.53E-01 4.81E-04 7.06E-05 7.77E-03

1e-6 7.08E-03 9.81E-04 1.56E-01 5.12E-05 7.64E-06 9.45E-04

392 G. Lube & B. Tews



h ¼ 1
128. Notice that the spurious oscillations for the discrete control and state in the

boundary layer regions are signi¯cantly reduced as compared to the results given in

Ref. 5.

Table 3 gives the convergence history of the cost functional J. Moreover, the

numerical convergence rate is computed. The averaged rate is r � 2:30.

Finally, we present a numerical experiment for a regularized Dirichlet control

according to case (i) in Sec. 5.

Example 6.3. We consider the optimization problem

min Jðu; q�; q�Þ ¼
��

2
jju� ~u�jj 2L2ð�Þ þ

��

2
jju� ~u�jj2L 2ð�RÞ þ

��

2
jjq�jj2L 2ð�Þ

þ ��

2
jjq�jj2L2ð�RÞ

such that

�"�uþ ðb � rÞu ¼ q� in � ¼ ð0; 2Þ � 1

2
;
1

2

� 	

Fig. 2. Optimal discrete control and state for example with " ¼ 10�5 and LPS parameters 	 ¼ 0:1h.

Table 3. Example 6.2 h-convergence of the cost functional.

h ¼ 2�l Jð�qh; �uhÞ Jð�qh; �uhÞ � Jð�q2h; �u2hÞ Num. conv. rate

2 3.08191E-01 — —

3 2.76675E-01 3.15159E-02 —

4 2.63904E-01 1.27704E-02 1.30

5 2.60156E-01 3.74789E-03 1.77

6 2.59242E-01 9.13856E-04 2.04
7 2.59068E-01 1.74289E-04 2.39

8 2.59057E-01 1.07450E-05 4.01

Optimal Control of Singularly Perturbed Advection-Di®usion-Reaction Problems 393



with " ¼ 10�4; bðxÞ ¼ ðð12 � jx2jÞ; 0ÞT and ~u� ¼ 1; ~u� ¼ 0 and �� ¼ 105; �� ¼
10�2; �� ¼ 1 and �� ¼ 10�3. The boundary conditions are chosen as

"ru � nþ u ¼ g on �� ¼ f0g � � 1

2
;
1

2

� 	

"ru � nþ u ¼ q� on � � �0 ¼ ð0; 2Þ � � 1

2
;
1

2

� �

"ru � n ¼ 0 on �0n�

"ru � n ¼ 0 on �þ ¼ f2g � � 1

2
;
1

2

� 	

with the boundary part � ¼ ð12 ; 1Þ � f� 1
2g [ ð12 ; 1Þ � f12g with regularized Dirichlet

control and with gðxÞ ¼ 1� 4x2
2.

The two-level variant of LPS-stabilization with 	 ¼ 0:5h and mesh width h ¼ 1
64 is

applied. Figure 3 shows (a) the boundary control q� and (b) the state u. The

interesting result is that, for this singularly perturbed problem, the in°uence of the

boundary control is strongly restricted to the downstream boundary layer regions, i.e.

the desired in°uence of the boundary control on the global behavior of the state u in

� fails. The explanation is that, for this channel type °ows, perturbations of the

boundary data at �0 [ �þ decay exponentially fast perpendicular to the boundary.

This allows the conclusion that any kind of boundary control at characteristic and

out°ow boundaries is not useful here.

The situation is di®erent for channel type °ows with boundary control at the

in°ow part ��, see case (ii) in Sec. 5. Another situation is given in the case � ¼ 0 and

f 	 0 for cavity-type °ows, where no in°ow and out°ow parts of the boundary exist.

Then the e®ect of boundary control at characteristic parts �0 of the boundary is

relevant. We will report on results and arising problems elsewhere.

(a) (b)

Fig. 3. Robin control on part of wall as regularized Dirichlet control: (a) boundary control q� and
(b) state u.
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7. Summary and Outlook

In this paper we considered the numerical analysis of discretized optimal control

problems governed by a linear advection-di®usion-reaction equation without point-

wise control constraints. The standard Galerkin discretization is stabilized via the

local projection approach which leads to a symmetric optimality system at the dis-

crete level. The optimal control problem simultaneously covers distributed and Robin

boundary control. In contrast to Ref. 5, we allow the application of shape-regular,

locally quasi-uniform meshes.

In the singularly perturbed case, the boundary control at certain parts of the

boundary can formally be seen as regularization of a Dirichlet boundary control. Our

¯rst results show that boundary control at characteristic parts of the boundary has

only in°uence on the boundary layer region. Further investigation will be concerned

with boundary control at in°ow boundaries and on boundary control for cavity-type

°ows (without in- and out°ow). Moreover, it seems to be interesting to consider the

less academic situation of coupled °ow problems, e.g. with thermal coupling, as

boundary control (e.g. of temperature) may in°uence the °ow ¯eld.
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