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1. Introduction

Incompressible non-isothermal viscous flows of a Newtonian fluid can be modeled by the
Navier-Stokes/ Fourier equations which read: Given a bounded domain Ω ⊂ R3 with a
piecewise smooth boundary ∂Ω, the simulation time T , and force fields f : (0, T ]×Ω→ R3

and Q : (0, T ] × Ω → R3, find a velocity field u : (0, T ] × Ω → R3, a pressure field
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p : (0, T ]× Ω→ R, and a temperature field θ : (0, T ]× Ω→ R such that

∂tu− 2ν∇ ·Du + (u · ∇) u +∇p+ αgθ = f + αgθ0 in (0, T ]× Ω,

∇ · u = 0 in [0, T ]× Ω,

∂tθ − κ∆θ + u · ∇θ = Q in (0, T ]× Ω,

u|t=0 = u0 in Ω,

θ|t=0 = θ0 in Ω,

(1.1)

where ν > 0 is the kinematic viscosity coefficient, κ > 0 is the thermal diffusivity co-
efficient, and Du := 1

2 (∇u + (∇u)T ) denotes the velocity deformation tensor. In sys-
tem (1.1), the Boussinesq approximation is applied with the thermal expansion coefficient
α, the gravitational acceleration vector g, and the reference temperature θ0. (Throughout
this paper, we incorporate, for simplicity, the term αgθ0 into the pressure gradient.) Some
boundary conditions have to be imposed on ∂Ω to obtain a closed set of equations. In the
analysis below, we impose homogeneous Dirichlet conditions for velocity and temperature
for simplicity, but see Remark 2.1. A global-in-time existence result for a more general
Navier-Stokes/ Fourier model can be found in 10, Theorem 3.1.
Relevant dimensionless numbers are the Reynolds number Re := UL/ν, the Peclet
number Pe := UL/κ, the Prandtl number Pr := ν/κ, and the Rayleigh number
Ra := α|g|L3δθ/(νκ) with given characteristic length L, velocity scale U and a char-
acteristic temperature difference δθ. In many industrial applications, simulations of turbu-
lent flows are of major interest. In mixed convection problems, such flows are typically
characterized by large Rayleigh numbers.
The finite-element (FE) method is one of the most popular and mathematically sound vari-
ants of numerical approximation. The standard Galerkin method aims to simulate all per-
sistent scales, but this is not feasible even in next futures for very large numbers of Ra.
Standard residual-based stabilization techniques, like the streamline-upwind (or SUPG)
method and/or the pressure stabilization (or PSPG) technique, add numerical viscosity act-
ing at all scales (see 37 for a representative overview). The classical way of large-eddy
simulation (LES) to simulate only the behavior of large scales accurately has several draw-
backs like commutation errors and the open question of appropriate boundary conditions
for the large scales. For a critical review, we refer to 5.
Alternatively and following ideas in 17,14,18, the idea of variational multiscale (VMS) meth-
ods is to define the large scales by projections into appropriate function spaces. Based on
a three-scale decomposition of the flow field into large, resolved small, and unresolved
scales, the influence of the unresolved small scales is described by a subgrid model acting
directly only on the resolved small scales. A series of numerical studies reports good expe-
rience with VMS methods for standard benchmark problems. Meanwhile, different variants
of VMS methods have been considered. For a review and comparison of different variants
for the incompressible and isothermal case see 13,22.
The numerical analysis of VMS methods for turbulent flows is still in its infancy. Let us
comment on the isothermal case first. The case of equal-order interpolation has been thor-
oughly considered by R. Codina and his co-workers, see, e.g., 32. If inf-sup stable FE pairs
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are applied (as in the present paper), the analysis differs in some aspects from the equal-
order case. Here we refer to the contributions by V. John and his co-workers to projection-
based variants of the VMS method with inf-sup stable FE pairs. A globally constant turbu-
lent viscosity νT together with an elliptic projection for the definition of the large scales is
considered in 19 and analyzed in 20, but the approach leads to some open problems of the el-
liptic projection. As a remedy, an L2-projection together with a Smagorinsky-type subgrid
model is analyzed in 21. The subgrid modelling of the unresolved pressure scales based on
grad-div stabilization is discussed in 31. Moreover, we refer to the paper 36 where a mod-
ified projection-based FE VMS method is discussed which had been presented in 27,19.
Here, the subgrid model for the unresolved velocity scales is based on the L2-projection
ΠH for the definition of the large scales of the velocity deformation tensor. Contrary to the
approach in 21, the so-called fluctuation operator I − ΠH is applied to the velocity defor-
mation tensor whereas the velocity deformation tensor is applied to the fluctuation operator
in 21 first. These operators do not commute in the general case 30.
Unfortunately, there are only very few papers on the numerical analysis of thermally cou-
pled flows. Early papers are on the stationary case in 6,4 and for the time-dependent cases
in 7. An extension of VMS methods to non-isothermal flows based on equal-order interpo-
lation of all unknowns has been considered in 9. To the best of our knowledge, there are no
papers dealing with the numerical analysis of thermally coupled turbulent flows.
In the present paper, we extend the analysis of our former paper 36 to thermally coupled
incompressible flows. We derive an a priori error estimate for the spatially semidiscretized
problem where the definition of the piecewise subgrid models for the unresolved velocity,
pressure, and temperature scales remains rather general. Then we address aspects of the
time discretization of the semidiscrete problem. For the case of free convection flow, we
then specify the velocity subgrid model. Finally, the parametrization of the three subgrid
models is checked for the case of free convection in a closed cavity.
The paper is organized as follows: In Section 2, we introduce the projection-based VMS
method under consideration. Then, in Section 3, we provide the error analysis for the model
after spatial semidiscretization based on inf-sup stable finite element pairs for velocity and
pressure. In Section 4 we discuss aspects of the time discretization. Section 5 provides a
specification of the subgrid models for the case of free convection flows. Then, Section 6
is devoted to the application of the approach to the standard benchmark of natural con-
vection in a closed cavity. Finally, we summarize the results in Section 7 and give some
conclusions.

2. A modified projection-based finite-element variational multiscale method

2.1. Preliminaries

For a bounded domain Ω ⊂ R3, we apply standard notations for Lebesgues spaces Lp(Ω)
and Sobolev spaces Wm,p(Ω), together with the corresponding norms ‖ · ‖Lp(Ω) and ‖ ·
‖Wm,p(Ω) with m ∈ N, 1 ≤ p ≤ ∞. The inner product in [L2(Ω)]3 will be denoted by
(·, ·). A similar notation will be used on subdomains D ⊆ Ω. For clarity we write ‖·‖0 for
the L2 norm ‖·‖L2(Ω) of the whole domain Ω.
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For a normed space X with functions defined on Ω, let Lp(0, t;X) be the space of all
functions defined on (0, t)×X with

‖u‖Lp(0,t;X) :=
(∫ t

0

‖u‖pX ds
)1/p

<∞, 1 ≤ p <∞

and with the obvious modification for p =∞.
Setting

V = [H1
0 (Ω)]3, Q = L2

∗(Ω) := {q ∈ L2(Ω) :
∫

Ω

q dx = 0}, Ψ := H1
0 (Ω),

we consider the variational formulation of the Navier-Stokes/ Fourier model: find
u : [0, T ]→ V , p : (0, T ]→ Q, and θ : [0, T ]→ Ψ satisfying

(∂tu,v) + (2νDu,Dv) + bS(u,u,v)− (p,∇ · v) + α(gθ,v) = (f ,v) ∀v ∈ V,
(q,∇ · u) = 0 ∀q ∈ Q,

(∂tθ, ψ) + (κ∇θ,∇ψ) + cS(u, θ, ψ) = (Q,ψ) ∀ψ ∈ Ψ.
(2.1)

Here, the skew-symmetric trilinear forms

bS(u,v,w) :=
1
2

[((u · ∇)v,w)− ((u · ∇)w,v)]

cS(u, θ, ψ) :=
1
2
[
(u · ∇θ, ψ)− (u · ∇ψ, θ)

]
have the important properties bS(u,v,v) = 0 for all u,v ∈ V and cS(u, ψ, ψ) = 0 for all
(u, ψ) ∈ V ×Ψ.
For the present analysis, we will use Korn’s inequality with constant CKo and the Poincaré-
Friedrichs inequality with constant CF such that

‖∇v‖0 ≤ CKo ‖Dv‖0 and ‖v‖0 ≤ CF ‖∇v‖0 ∀v ∈ V. (2.2)

Remark 2.1. The analysis of this paper can be applied in the case of periodic boundary
conditions for the velocity as well. The proof for Korn’s inequality under such conditions
is very similar to the case of no-slip boundary conditions. It is possible to extend the anal-
ysis to cases where no-slip boundary conditions and periodic boundary conditions appear
simultaneously, e.g. in channel flows.

2.2. Variational multiscale method

Let Th be an admissible triangulation of domain Ω following 11, with maximal diameter
h > 0 of the mesh cells K ∈ Th. The FE spaces Vh ×Qh ⊂ V ×Q of the basic Galerkin
FE method for the Navier-Stokes model will be standard inf-sup stable velocity-pressure
spaces, i.e. with

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(qh,∇ · vh)
‖qh‖0‖∇vh‖0

≥ β > 0 (2.3)
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where β is h-independent. Moreover, let Ψh ⊂ Ψ be a standard FE space for the Fourier
model. Then the Galerkin FE method reads: find uh : [0, T ] → Vh, ph : (0, T ] → Qh, and
θh : (0, T ]→ Ψh such that

(∂tuh,vh) + (2νDuh,Dvh) + bS(uh,uh,vh)

+α(gθh,vh)− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Vh,
(qh,∇ · uh) = 0 ∀qh ∈ Qh,

(∂tθh, ψh) + (κ∇θh,∇ψh) + cS(uh, θh, ψh) = (Q,ψh) ∀ψh ∈ Ψh.

For turbulent flows, let a three-scale decomposition of the flow and pressure fields be given

v = vh+ ṽh+ v̂ ∀v ∈ V ; q = qh+ q̃h+ q̂ ∀q ∈ Q, ψ = ψh+ ψ̃h+ ψ̂ ∀ψ ∈ Ψ.

We search for the resolved scales

(vh, qh, ψh) := (vh + ṽh, qh + q̃h, ψh + ψ̃h) ∈ Vh ×Qh ×Ψh ⊂ V ×Q×Ψ.

Following a variant of the VMS approach of 27, Section 3, we model the influence of the
unresolved small scales on the resolved small scales starting from the following notation:
Let TH be the triangulation of a coarser grid, i.e. H ≥ h. Throughout this paper, Th is a
conforming refinement of TH .
We start with the subgrid model for the small velocity scales. The FE space LH of coarse
scales of the deformation tensor is given by

{0} ⊆ LH ⊆ DVh ⊆ L :=
{
L = (lij) ∈ [L2(Ω)]3×3 | lij = lji

}
.

Let Πu
H : L→ LH ⊂ L be the L2-orthogonal projection. The fluctuation operator is

κu : = Id−Πu
H .

The operator κu takes the resolved small-scale fluctuations of the deformation. Following
our approach to the isothermal case in 36, we assume a cellwise constant turbulent viscosity
coefficient νT (uh, θh) with νT (uh, θh)|K =: νKT (uh, θh) per cell K ⊂ Ω and introduce
as symmetric subgrid viscosity term for the velocities

(νT (uh, θh)κu(Duh),Dvh) =
∑
K∈Th

νKT (uh, θh)(κu(Duh),Dvh)K

=
∑
K∈Th

νKT (uh, θh)(κu(Duh), κu(Dvh))K

= (νT (uh, θh)κu(Duh), κu(Dvh)).

(2.4)

This is, in the context of stabilization techniques based on local projection, strongly related
to the so-called gradient-based local projection stabilization 25. In the first part of the pa-
per, we consider a rather general subgrid model for νT (uh, θh). Later on, we consider a
Smagorinsky/Eidson-type model. Another possibility is Vreman’s subgrid model 39.
In a second step, we incorporate a pressure subgrid scale model using the so-called grad-div
stabilization:

(γ(uh, ph)(∇ · uh),∇ · vh) :=
∑
K∈Th

γK(uh, ph)(∇ · uh,∇ · vh)K
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where γ(uh, θh) denotes a non-negative user-chosen parameter function being cellwise
constant on K ∈ Th. (For simplicity, we introduce no coarse grid space for the pressure.)
Finally, to give a subgrid model for the small temperature scales, we introduce a FE space
MH of coarse scales of the temperature gradient such that

{0} ⊆MH ⊆ ∇Ψh ⊆M :=
{
M = (mi) ∈ [L2(Ω)]3

}
.

Let Πθ
H : L→MH ⊂M be the L2-orthogonal projection. The fluctuation operator is

κθ : = Id−Πθ
H

which takes the resolved small-scale fluctuations of the temperature gradient. We as-
sume a cellwise constant turbulent viscosity coefficient κT (uh, θh) with κT (uh, θh)|K =:
κKT (uh, θh) on each cell K ⊂ Ω and introduce the symmetric subgrid viscosity term for
the temperature

(κT (uh, θh)κθ(∇θh),∇ψh) =
∑
K∈Th

κKT (uh, θh)(κθ(∇θh),∇ψh)K

= (κT (uh, θh)κθ(∇θh), κθ(∇ψh)).
(2.5)

Now the modified VMS method reads: find uh : (0, T ] → Vh, ph : (0, T ] → Qh,
θh : (0, T ]→ Ψh such that

(∂tuh,vh) + 2ν (Duh,Dvh) + bS(uh,uh,vh)− (∇ · vh, ph) + α(gθh,vh)

+(γ(uh, ph)(∇ · uh),∇ · vh) + (νT (uh, θh)κu(Duh), κu(Dvh)) = (f ,vh)

(qh,∇ · uh) = 0

(∂tθh, ψh) + (κ∇θh,∇ψh) + cS(uh, θh, ψh)

+(κT (uh, θh)κθ(∇θh), κθ(∇ψh)) = (Q,ψh)
(2.6)

for all (vh, qh, ψh) ∈ Vh × Qh × Ψh. A possible choice of the spaces LH and Mh with
H = h will be discussed in Section 5. In particular, an adaptive choice of LH following 22

is possible.

3. A Priori Error Analysis of a General VMS Model

In this section, we will consider the a priori analysis of the VMS-scheme (2.6) where the
(nonlinear) coefficients of the subgrid models are not specified yet. Thus we extend our
approach in 36 from the isothermal case to the coupled Navier-Stokes/Fourier model. To
keep the analysis as short as possible, we cite technical results from 36.
In the subsequent analysis, we take advantage of the space of discretly divergence-free
functions

Vh,div : = {vh ∈ Vh | (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

The space Vh,div is not empty since we will use only FE spaces Vh and Qh which fulfill the
discrete Ladyžhenskaya-Babuška-Brezzi condition (2.3). Then problem (2.6) is equivalent
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to: find uh : [0, T ] −→ Vh,div and θh : (0, T ]→ Ψh satisfying

(∂tuh,vh) + 2ν (Duh,Dvh) + bS(uh,uh,vh) + α(gθh,vh)

+(γ(uh, ph)(∇ · uh),∇ · vh) + (νT (uh, θh)κu(Duh), κu(Dvh)) = (f ,vh)

(∂tθh, ψh) + (κ∇θh,∇ψh) + cS(uh, θh, ψh)

+(κT (uh, θh)κθ(∇θh), κθ(∇ψh)) = (Q,ψh)

(3.1)

for all (vh, ψh) ∈ Vh,div ×Ψh.

3.1. Stability

We derive a semidiscrete a priori error estimate for the problem (3.1). Therefore one has to
prove the stability of the continuous and the discrete solutions u and uh. It turns out that
the coupling between the Navier-Stokes model and the Fourier model is rather weak.

Lemma 3.1. Let uh be the solution of (3.1). Assume f ∈ [L1(0, T ;L2(Ω))]3,
Q ∈ L1(0, T ;L2(Ω)), u0 ∈ [L2(Ω)]3, and θ0 ∈ L2(Ω). Then we obtain uh ∈
[L∞(0, T ;L2(Ω))]3, Duh ∈ [L2(0, T ;L2(Ω))]3×3, θh ∈ L∞(0, T ;L2(Ω), and ∇θh ∈
[L2(0, T ;L2(Ω)]3. For all t ∈ (0, T ], there is control of thermal and kinetic energies

‖θh‖L∞(0,t;L2(Ω)) ≤ K1(Q, θ0) := ‖θ0‖0 + ‖Q‖L1(0,t;L2(Ω))

‖uh‖L∞(0,T ;L2(Ω)) ≤ K2(f ,u0, Q, θ0) := ‖u0‖0 + ‖f‖L1(0,t;L2(Ω)) + Cα‖g‖∞K1(Q, θ0),

and control of dissipation and subgrid terms

κ‖∇θh‖2L2(0,t;L2(Ω)) +
∫ t

0

∑
K∈Th

κKT (uh, θh)‖κθ(∇θh)‖2L2(K)) ≤
3
2
K2

1 (Q, θ0),

ν ‖Duh‖2L2(0,t;L2(Ω)) +
1
2

∫ t

0

∑
K∈Th

νKT (uh, θh) ‖κu(Duh)‖2L2(K) dt

+
1
2

∫ t

0

∑
K∈Th

γK(uh, ph) ‖∇ · uh‖2L2(K) dt ≤ 3K2
2 (f ,u0, Q, θ0).

Proof. See Appendix A.

Remark 3.2. One can prove a similar stability result for the solution (u, θ) of the contin-
uous problem (2.1). For this purpose it is easy to adapt the proof in 26.

3.2. A Priori Error Estimate

In a next step, we prove an a priori error estimate for the semidiscretized problem (3.1).
To this goal we have to take into account the regularity of the continuous and discrete
solutions. For the proof of Theorem 3.4, we need that for the continuous solution (u, θ) of
(2.1) and the discrete solution (uh, θh) of (3.1)

∂tθ ∈ L2(0, t;H−1(Ω)), ∂tu, ∂tuh ∈ L2(0, t;H−1(Ω)),

∇θ ∈ L4(0, t;L2(Ω)), ∇u ∈ L4(0, t;L2(Ω)) (3.2)
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holds true. Suppose (ui, θi) ∈ Vdiv × Ψ, i = 1, 2 with Vdiv := {v ∈ V : (q,∇ · v) =
0,∀q ∈ Q} are solutions of the continuous problem (2.1). Then a straightforward appli-
cation of the Gronwall Lemma to the error equations for φ := u1 − u2 ad χ := θ1 − θ2

provides φ = 0, χ = 0 and therefore uniqueness of the solution (u, θ) ∈ Vdiv ×Ψ.
For better readability, we introduce some notation where we will omit the dependence of
the parameters νKT , κKT , and γK on uh, θh, ph. Remind that Πu

H : L → LH ⊂ L and
Πθ
H : M → MH ⊂ M are the L2-orthogonal projections of Subsection 2.2. Using (2.4)

and (2.5), we introduce the elementwise multiscale viscosities

∑
K∈Th

νKT (uh, θh) ‖κuDvh‖2L2(K) =
∑
K∈Th

νKT (uh, θh)
(

1−
‖Πu

HDvh‖2L2(K)

‖Dvh‖2L2(K)

)
︸ ︷︷ ︸

=:νKVMS(vh)≥0

‖Dvh‖2L2(K) ,

∑
K∈Th

κKT (uh, θh) ‖κθ∇ψh‖2L2(K) =
∑
K∈Th

κKT (uh, θh)
(

1−

∥∥Πθ
H∇ψh

∥∥2

L2(K)

‖∇ψh‖2L2(K)

)
︸ ︷︷ ︸

=:κKVMS(ψh)≥0

‖∇ψh‖2L2(K)

where we take advantage of the projector properties of the fluctuation operators. Then we
define the modified elementwise viscosities

νKmod(vh) : = 2ν + νKVMS(vh), κKmod(ψh) : = κ + κKVMS(ψh)

which contain the sums of the model and subgrid viscosities.

Remark 3.3. The subgrid models only formally act on the small resolved scales, but, due
to the properties of the L2-projections Πu

H and Πθ
H , the modified viscosities measure the

influence on all resolved scales. In case of ‖Dvh‖2L2(K) = 0, we set νKVMS(vh) = 0. For

this reason one could demand νKT (uh, θh) = 0 if ‖Duh‖2L2(K) = 0 as in Smagorinsky-
type subgrid models. A similar argument is valid for the temperature-dependent subgrid
viscosity term.

In the analysis below, we will apply mesh-dependent norms according to

|||u(t)|||2 := ‖u(t)‖20 +
∑
K∈Th

∫ t

0

(
νKmod(u)

2
‖Du‖2L2(K) + γK ‖∇ · u‖2L2(K)

)
dt, (3.3)

|[θ(t)]|2 := ‖θ(t)‖20 +
∑
K∈Th

∫ t

0

1
2

κKmod(θ) ‖∇θ‖2L2(K) dt. (3.4)

Theorem 3.4. Let (u, θ) and (uh, θh) be the solutions of (2.1) and of (3.1), respectively.
Let f ∈ [L1(0, T ;L2(Ω))]3, u0 ∈ [L2(Ω)]3, let Ih, Jh, and Ih be interpolation opera-
tors onto L4(0, T ;Vh,div), L2(0, T ;Qh), and L2(0, T ; Ψh), respectively. Suppose that the
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regularity assumption (3.2) is true and let∑
K∈Th

νKVMS(u− Ihu) ‖D(u− Ihu)‖2L2(K) ∈ L
1(0, T ), (3.5)

∑
K∈Th

νKVMS(u) ‖Du‖2L2(K) ∈ L
1(0, T ); (3.6)

then

|||(u− uh)(t)|||2 + |[(θ − θh)(t)]|2 ≤ 2 inf
ũh ∈ L

2(0, t;V divh )

θ̃h ∈ L
2(0, t; Ψh)

|||(u− ũh)(t)|||2 + |[(θ − θ̃h)(t)]|2 (3.7)

+e
R t
0 g3(s)ds inf

ũh ∈ L
4(0, t;V divh )

p̃h ∈ L
2(0, t;Qh)

θ̃h ∈ L
2(0, t; Ψh)

(
‖(uh − ũh)(0)‖20 + ‖(θh − θ̃h)(0)‖20 +

∫ t

0

g2(s)ds
)

with

g3(t) : =
27C4

LT

2 inft∈(0,T ) ν
min
mod(uh − ũh)3

‖Du‖40 + 2α ‖g‖∞

+
8C4

1

inft∈(0,T ) ν
min
mod(uh − ũh) κmin

mod(θh − θ̃h)2
‖∇θ‖40 , (3.8)

and

g2(t) : =2
∑
K∈Th

[
min

(
9C2

Ko

νmin
mod(uh − ũh)

,
1
γK

)(
‖p− p̃h‖2L2(K) + γ2

K ‖∇ · (u− ũh)‖2L2(K)

)
+6
(
ν + νKVMS(u− ũh)

)
‖D(u− ũh)‖2L2(K) +

(
2κ + 4κKVMS(θ − θ̃h)

)∥∥∥∇(θ − θ̃h)
∥∥∥2

L2(K)

+6νKT (uh, θh) ‖κu(Du)‖2L2(K) + 4κKT (uh, θh) ‖κθ(∇θ)‖2L2(K)

]
+ α|g|∞

∥∥∥θ − θ̃h∥∥∥2

0

+
6C2

Ko

νmin
mod(uh − ũh)

‖∂t(u− ũh)‖2−1,Ω +
4

κmin
mod(θ − θ̃h)

∥∥∥∂t(θ − θ̃h)
∥∥∥2

−1,Ω

+
6C2

LT

νmin
mod(uh − ũh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖D(u− ũh)‖20

+
4C2

1CKo

κmin
mod(θh − θ̃h)

(
CFCKo ‖∇θ‖20 ‖D(u− ũh)‖20 + ‖uh‖0 ‖Duh‖0

∥∥∥∇(θ − θ̃h)
∥∥∥2

0

)
(3.9)

where

νmin
mod(uh − ũh) := min

K∈Th
νKmod(uh − ũh), κmin

mod(θh − θ̃h) := min
K∈Th

κKmod(θh − θ̃h).

CF and CKo are the constants of the inequalities of Friedrichs and Korn. CLT and C1 are
related to upper bounds of the advective terms.

Proof. See Appendix B.
Finally we are interested in an L2-error estimate for the pressure.
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Corollary 3.5. Let (u, p) ∈ V × Q and (uh, ph) ∈ Vh × Qh be solutions of (2.1) and
(2.6), respectively; then

‖p− ph‖2L2(0,t;L2(Ω)) ≤ 2
(

1 +
√

3
β

)2

‖p− Jhp‖2L2(0,t;L2(Ω)) + Cu |||(u− uh)(t)|||2

+
14
β2
‖∂t(u− uh)‖2L2(0,t;H−1(Ω)) + 2C2

Fα
2 ‖g‖2∞ ‖θ − θh‖

2
L2(0,t;L2(Ω))

+
14
β2

∫ t

0

∑
K∈Th

νKT (uh, θh)2 ‖κuDu‖2L2(K) dt, (3.10)

where

Cu =
14
β2

(
4ν + max

t̃∈(0,t),K∈Th
3γK(uh) + max

t̃∈(0,t),K∈Th
2νKT (uh, θh)

+ max
t̃∈(0,t)

2C2
LT2 (‖Duh‖0 + ‖Du‖0)2

νmin
mod(u− uh)

)
. (3.11)

Proof. See Appendix C.

Remark 3.6. The control of the L2-error of pressure in Corollary 3.5 is not complete
so far as only the error terms |||(u− uh)(t)||| and ‖θ − θh‖L2(0,t;L2(Ω)) are bounded
by (3.7). For laminar flows, i.e. without any subgrid model, an estimate of the term
‖∂t(u− uh)‖L2(0,t;H−1(Ω)) can be found in 15, Section 7. The possibility to modify the
analysis of 15 for a projection-based VMS method with globally constant νT is mentioned
in 20, Remark 4.3. In the case of piecewise constant, but possibly nonlinear subgrid coeffi-
cients νT , the corresponding analysis remains open.

3.3. Discussion of the result

Let us briefly discuss the quasi-optimal a-priori estimates of Theorem 3.4 and of Corol-
lary 3.5. First we consider the case of isotropic meshes Th: All right hand side terms in
(3.8)-(3.9) depend on the approximation properties of a standard (quasi)-interpolation op-
erator in the discrete pressure spaceQh, of the fluctuation operators κu/θ = Id−Πu/θ

h , and
of a divergence-preserving interpolation operator Ih in the space Vh,div . The existence of
the operator Ih onto Vh,div and corresponding interpolation estimates were recently shown
in 12.
Let (u, p, θ) ∈ [W k+1,2(Ω)]d ×W k,2(Ω) ×W k+1,2(Ω) for t ∈ (0, T ] with k ∈ N, and
let the FE-spaces Vh × Qh × Ψh of velocity/pressure/temperature be of piecewise order
k, k − 1 and k, respectively. Then, for fixed viscosities ν und κ, the convergence order
of the corresponding left hand side terms in the a priori error estimate (3.7) is O(hk). The
(potentially large) exponential factor in (3.7)-(3.8) reflects a worst-case scenario of solution
of the Navier-Stokes model. For a discussion of the problem and improved estimates for
exponentially stable solutions, we refer to 15.
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An open problem is the existence of appropriate approximation properties of the
divergence-preserving interpolation operator Ih on anisotropic meshes. Numerical experi-
ence with Taylor-Hood elements Vh ×Qh on hexahedral meshes show that at least moder-
ately large aspect ratios of such elements are possible, see Section 6. A preliminary analysis
indicates the dependence of the interpolation estimates on the aspect ratio of the elements.
A potential remedy is to imply on isotropic meshes Dirichlet boundary conditions weakly
in a DG-type penalty formulation, cf. 2,3.
A potential drawback of the estimates in Theorem 3.4 and in Corollary 3.5 is that not all
right-hand side terms in (3.8)-(3.9) are in elementwise fashion. This might be desirable as
the behavior of the continuous solution is usually very different, e.g., in boundary layers,
wakes, and away from layers. Moreover, it would be desirable to apply different turbulence
models in different parts of the domain as is meanwhile standard practice in CFD.

4. Aspects of time discretization

The semidiscrete system (2.6) can be written as a system of differential-algebraic equations
(DAE) of the formMu 0 0

0 Mθ 0
0 0 0

u′h(t)
θ′h(t)
p′h(t)

 =

 fh(t)
qh(t)

0

−
Au(uh, θh) C B

0 Aθ(uh, θh) 0
BT 0 0

uh(t)
θh(t)
ph(t)


(4.1)

with symmetric positive definite mass matrices Mu,Mθ and stiffness matrices
Au(uh, θh), Aθ(uh, θh). Matrix C stems from the discretized Boussinesq term whereas
B and BT represent the discretized gradient and divergence operators, respectively. All
these matrices posess full rank and the DAE could be made semi-explicit upon multiply-
ing the first two equations with M−1

u and M−1
θ at the cost of loosing the sparsity of the

coefficient matrices. Using that BTM−1
u B has a bounded inverse one can show that the

DAE-system has differentiation index 2 8 and perturbation index 2 35.
The time discretization of this DAE-system requires some care. A critical comparison of
different schemes can be rarely found in the literature. The study 23 considered the general-
ized trapezoidal rule and Rosenbrock schemes. One conclusion was that only second-order
methods are sufficient for obtaining accurate results. The paper 24 is focussed on implicit
and linearly implicit schemes; in particular, diagonal-implicit Runge-Kutta (DIRK) and
Rosenbrock-Wanner (ROW) methods were considered in combination with adaptive time
step control.
In the numerical experiments we employ the second order BDF multi-step method, where
the time-derivatives in (4.1) are replaced by a backwards differentiation formula

u′h(tn+1) ≈ 3uh(tn+1)− 4uh(tn) + uh(tn−1)
2

and analogously for θ′h(tn+1). This scheme possesses nice stability properties and does
not suffer from order reduction for the algebraic variables. In order to resolve the non-
linearity one can replace all occurrences of uh(tn+1) in the coefficient matrices with the
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linear extrapolation wh(tn+1) = 2uh(tn)− uh(tn−1). For the non-linear implicit scheme
we use this extrapolation as a starting value for a fixed-point iteration.

5. Specification of the subgrid models for free convection flows

We consider uh, θh to be approximations with adequate resolution (filter width ∆ ≥ 2h) to
the spatially filtered quantities 〈u〉 and 〈θ〉, where 〈·〉 is usually a Gaussian filter. Applying
the filter to the full set of equations (1.1) one obtains the equations for the filtered quantities
with two additional unclosed residual terms. These are the residual stress tensor τR and the
residual temperature flux h:

τR = 〈u⊗ u〉 − uh ⊗ uh, h = 〈u θ〉 − uhθh. (5.1)

We define the residual kinetic energy kr := 1
2

∑d
i=1 τ

R
ii and substract the normal stresses

2
dkrI (acting like pressure forces) from τR to get the anisotropic residual stress tensor
τ r := τR − 2

dkrI. These terms are modeled with the linear eddy-viscosity asumption by
Boussinesq and the gradient-diffusion hypothesis

τ r = −2νtDuh, h = −at∇θh. (5.2)

It remains to parametrize the model parameters νt and at. One very simple and often used
choice is a model based on the work of Lilly and Eidson summarized in 34

νt(Duh,∇θh) = (CE∆)2 max
(

0 , ‖Duh‖2F +
β

Prt
g · ∇θh

)1/2

, at = Pr−1
t νt.

(5.3)

with CE = 0.21 and Prt = 0.4. These expressions are reasonable approximations re-
mote from the wall and are multiplied by a van Driest-type damping function f(y+) =
[1− exp(−y+/A)]2 for reasonable near wall behavior, where y+ is a suitably scaled wall
distance. This model was studied together with a variant with dynamic parameters in 34.
For g · ∇θh = 0 the model reduces to the classical Smagorinsky model. In the numerical
experiments below, we will denote this variant as full Smagorinsky-Eidson model.
An often made observation for this type of models is the fact, that they are too dissipative.
One opinion is, that eddy-viscosity should be limited to modeling the influence of the fourth
order sub-grid scale tensor on the mean velocity and other (non-diffusive) models should
be used for the remaining second order large scale and cross scale terms 5. In order to
reduce the dissipation introduced by the model, we extend the model to

τ r = −2νt κu(Duh), h = −at κθ(∇θh). (5.4)

This restricts the effect of additional dissipation to the small resolved scales ũh and θ̃h and
corresponds to the subgrid viscosity terms present in (2.6). In the numerical experiments
below, we denote this variant as projection-based Smagorinsky-Eidson model. The original
behavior can be recovered by choosing the coarse spaces to be {0} or equivalently setting
κu/θ = Iu/θ.
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Defining νt = νt(κu(Duh), κθ(∇θh)) in terms of the resolved small scales is another way
to further reduce the dissipation. This leads to two variants where either all resolved (all-
small) or only the small resolved scales (small-small) are used for the computation of the
model parameter νt.
For the parameter of the pressure subgrid model we restrict ourselves to the simple choice
γ(uh) = γ = constant. This term is a consistent term (for the continuous model) but serves
the analysis quite well and improves the numerical accuracy of the model in some cases
tremendously 31.

Remark 5.1. It remains to validate the assumptions (3.5) of Theorem 3.4. This can be done
following the approach in 36, Corollary 4.1 for the projection-based Smagorinsky model in
the isothermal case.

6. Numerical experiments for two-dimensional closed cavity flow

Now we apply the method to natural convection in a differentially heated cavity as a stan-
dard benchmark problem for non-isothermal incompressible flows, see, e.g., 29,40,34. Heat-
ing θ = θmax and cooling θ = θmin is performed at lateral boundaries, whereas the
upper and lower boundaries are highly conducting. As suggested in 38 we use experimental
data as boundary conditions on these walls. No-slip conditions u = 0 for velocity are
given at the whole boundary ∂Ω.
Relevant information regarding the boundary layer behavior of (turbulent) natural convec-
tion flow can be found, e.g., in 16.
In the remainder of this paper, let Ω := (0, 1)2. For the spatial discretization we apply
quadrilateral meshes with FE spaces Q2/Q1/Q2 for velocity/pressure and temperature
within the FE package deal.II, see 1.

6.1. Laminar flows

Let us start with results for laminar flows with Rayleigh numbers Ra ≤ 108. In our imple-
mentation, we use a one-level approach withH = h. Results are given on isotropic meshes
with h = 2−l up to level l = 7. For the following simulations we don’t apply any turbu-
lence model, i.e., Lh = {D(Vh)} and Mh = {∇(Ψh)}, but we comment on its influence
below.
In Table 1 we present results for the maximal value and position of stream-function
Φmax, the maximal values and position of u1(0.5, x2) and of u2(x1, 0.5) for different Ra-
numbers. In Table 2 we show results for Nusselt numbers for different Ra-numbers. Here
we use the following definitions:

Nuavg =
∫

Ω

q(x)dx, Nu 1
2

=
∫ 1

0

q(0.5, x2)dx2,

Numin = min
0≤x2≤1

q(0, x2), Numax = max
0≤x2≤1

q(0, x2)

with q(x) = (u1θ − θx1)(x). The results are in very good agreement with benchmark
results of 29.
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Table 1. Maximal value and position of stream-function Φmax, maximal values and position of u1(0.5, x2) and
of u2(x1, 0.5) for different Ra-numbers

Ra Level Φmax x1,Φ x2,Φ u1,max x1,max u2,max x2,max

5 16.7971 0.1263 0.5469 64.8193 0.8496 218.7909 0.0381
106 6 16.8100 0.1484 0.5469 64.8344 0.8496 220.4804 0.0381

7 16.8100 0.1523 0.5469 64.8342 0.8499 220.5943 0.0378
Ref.29 16.8110 0.1500 0.5470 64.8300 0.8500 220.6000 0.0380

5 9.4164 0.0937 0.5469 147.4576 0.8789 720.9979 0.0225
107 6 9.5361 0.0859 0.5547 148.5186 0.8794 696.8134 0.0220

7 9.5386 0,0859 0.5547 148.5846 0.8794 699.8374 0.0212
Ref.29 9.5390 0.0860 0.5560 148.5954 0.8790 699.1796 0.0210

6 5.3392 0,0469 0.5547 322.9088 0.9297 2279.0403 0.0122
108 7 5.3815 0.0469 0.5547 321.6551 0.9277 2224.6928 0.0122

Ref.29 5.3850 0.0480 0.5530 321.9000 0.9280 2222.0000 0.0120

Table 2. Results for Nusselt numbers for different Ra-numbers

Ra Level Numin xmin Numax xmax Nuavg Nu 1
2

5 0.992502 0.9990 18.39393 0.0313 8.814861 9.113911
106 6 0.983896 0.9995 17.73365 0.0391 8.824718 8.877341

7 0.980687 1.0000 17.56368 0.0391 8.825174 8.832769
Ref.29 0.979500 1.0000 17.53600 0.0390 8.822500 8.825000

5 1.433298 1.0000 43.56854 0.0225 16.176103 17.970533
107 6 1.380943 0.9995 41.71878 0.0156 16.509660 16.998765

7 1.371551 0.9998 39.94763 0.0178 16.522482 16.608537
Ref.29 1.366000 0.9990 38.94000 0.0200 16.523000 16.523000

6 1.944536 1.0000 96.35414 0.0112 29.799044 32.687167
108 7 1.934311 0.9998 93.17395 0.0078 30.207906 30.964267

Ref.29 1.919000 1.0000 87.24000 0.0080 30.223000 30.225000

Additionally, we considered the influence of the Smagorinsky-Eidson model for laminar
flows on anisotropic meshes (see Subsec. 6.2). For Ra = 106, we compare in Fig. 1
the velocity and temperature profiles u1(x1, 0.5), u2(0.5, x2) and θ(x1, 0.5), θ(0.5, x2) on
moderate isotropic meshes. The solutions with (blue) and without (black) the projection-
based VMS model are obviously grid-converged, thus indicating a negligible model error.
The solutions with the full Smagorinsky-Eidson model with ∆ = 2diam(K) (green) and
anisotropic choice of ∆ (red) deviate from the solution without turbulence model, thus
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Fig. 1. Velocity profile u1(x1, 0.5) and u2(0.5, x2) (left) and temperature profiles θ(x1, 0.5) and θ(0.5, x2)

(right) with full and projection-based Smagorinsky-Eidson model for Ra = 106 and anisotropic meshes with
32× 32 and nodes (full lines) and 64× 64 nodes (dashed lines).

showing an over-diffusive behavior of the model error.

6.2. Low-turbulence flow

Now we present results for time-averaged quantities of a low-turbulence flow at Ra =
1.58×109. In our implementation, we use a one-level approach withH = h. Computations
were done on two meshes with 64 and 32 cells in each dimension. An anisotropic mesh
refinement had been performed at all boundaries by transforming an equidistant reference
mesh with

x = x̂− 19
40π

sin(2πx̂), y = ŷ − 7
16π

sin(2πŷ) .

The maximum aspect-ratio of cells at the vertical walls was about 36:1. In the Smagorinsky-
Eidson subgrid model we apply for the filter width ∆ an anisotropic scaling matrix that
takes local mesh anisotropy and orientation into account. This approach gave better results
than taking an isotropic filter width (e.g. length of shortest edge).
On both meshes we compare the results for velocity and temperature profiles (see Fig. 2-
4) and of wall shear stress (see Fig. 5). In particular we used the proposed VMS with

• the full Smagorinsky-Eidson parametrization, i.e. Lh = {0}, Mh = {0}, with
van-Driest damping (left column) and

• the projection-based Smagorinsky-Eidson model Lh = Qd×d0 , Mh = Qd0 without
van Driest damping (right column).

Moreover, we used grad-div stabilization with constant γK = 0.3 to improve the mass
conservation properties of the scheme.
In general, the results are in good agreement to experimental data of 38, but the full and the
projection-based variants behave in a different way. The solutions for the full Smagorinsky-
Eidson model are obviously not grid-converged, but the solution on the fine mesh compares
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Fig. 2. Boundary layer profiles for horizontal velocity profile v(x, 0.5) with full (left) and projection-based (right)
Smagorinsky-Eidson model and experimental data 38
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Fig. 3. Temperature profile on vertical centerline T (0.5, y) with full (left) and projection-based (right)
Smagorinsky-Eidson model and experimental data of 38
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Fig. 4. Temperature profile on vertical centerline T (0.5, y) with full (left) and projection-based (right)
Smagorinsky-Eidson model and experimental data of 38

very well with the experimental data. On the coarse mesh the boundary layers are too thick.
This reflects that this turbulence model is too dissipative. Interestingly, for the projection-
based variant, we observe already almost grid-convergence of the solutions. On the other
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hand, it deviates more from the experimental data.
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Fig. 5. Wall-shear stress with full (left) and projection-based (right) Smagorinsky-Eidson model and experimental
data 38

The results for the wall-shear stress in Fig. 5 – and similar results for the Nusselt number
(not shown) – show grid-dependence of both variants together with better behavior for the
full Smagorinsky-Eidson model.
One critical point of the simulation is the separation of the flow at the vertical walls and
its reattachment at the horizontal walls. Experiments show small counter-rotating vortices
in these corners, which we also found in our simulations on the fine mesh. On the coarse
mesh these vortices are missing and the wall shear stress at reattachment is too small.

7. Summary

In this paper, we applied a variational multiscale model to the time-dependent Navier-
Stokes/Fourier model of incompressible and non-isothermal flows. For the case of piece-
wise nonlinear subgrid models for the unresolved velocity, temperature, and pressure fluc-
tuations, an a priori analysis of the nonlinear semidiscrete problem was given. Then we
specified the subgrid model for natural convection flow based on the classical Smagorinsky-
Eidson model. Finally, we applied the approach to the standard benchmark problem of nat-
ural convection problem in a two-dimensional differentially heated two-dimensional cavity.
For laminar flows we observed already for the method without stabilization (or turbulence
model) very good agreement with benchmark results. For a low-turbulence flow we found
good agreement of the VMS-based turbulence models with experimental data.
Some open problems are the extension to the three-dimensional case of the closed cav-
ity, to Rayleigh-Benard convection and to mixed convection problems in indoor air-flow
simulation. This will be considered in future research.

Appendix A: Proof of the stability estimate (Lemma 3.1)

The proof is a variant of a similar proof in 26, Section 1. Setting ψh = θh and vh = uh in
(3.1) and using bS(uh,uh,uh) = 0, cS(uh, θh, θh) = 0, one gets global balance of kinetic
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energy and of heat energy:

1
2
∂t ‖θh‖20 + κ‖∇θh‖20 +

∑
K∈Th

κKT (uh, θh)‖κθ(∇θh)‖2L2(K) = (Q, θh) (7.1)

1
2
∂t ‖uh‖20 + 2ν ‖Duh‖20 +

∑
K∈Th

(
γK(uh, ph) ‖∇ · uh‖2L2(K) (7.2)

+νKT (uh, θh) ‖κu(Duh)‖2L2(K)

)
= (f − αgθh,uh).

The non-negativity of the parameters ν,κ, νKT (uh, θh),κKT (uh, θh), γK(uh, ph) implies
via Cauchy-Schwarz inequality that ∂t‖θh‖0 ≤ ‖Q‖0 and ∂t‖uh‖0 ≤ ‖f‖0+α‖g‖∞‖θh‖0
and, after integrating

‖θh‖L∞(0,t;L2(Ω)) ≤ ‖θ0‖0 + ‖Q‖L1(0,t;L2(Ω)) ≡ K1

‖uh‖L∞(0,t;L2(Ω)) ≤ ‖u0‖0 + ‖f‖L1(0,t;L2(Ω)) + α‖g‖∞‖θh‖L1(0,t;L2(Ω))

for all t ∈ (0, T ]. Then, the inequality ‖θh‖L1(0,t;L2(Ω)) ≤ C‖θh‖L∞(0,t;L2(Ω)) implies the
first part.
For the second part, we first use (7.1) and integrate on (0, t) to obtain

κ‖∇θ(t)‖2|L2(0,t;L2(Ω)) +
∫ t

0

∑
K∈Th

κT (uh, θh)‖κθ(∇θh)‖20,K ≤
1
2
‖θ0‖20 +

∫ t

0

(Q, θh) dt.

As in 36 one observes via the first part of the Lemma together with the Cauchy-Schwarz
and Young inequalities∫ t

0

(Q, θh) dt′ ≤ 1
2
‖θ0‖20 +

3
2
‖Q‖2L1(0,t;L2(Ω)).

thus

κ‖∇θh‖2L2(0,t;L2(Ω)) +
∫ t

0

∑
K∈Th

κT (uh, θh)‖κθ(∇θh)‖20,K) ≤ 1
2
‖θ0‖20 +

3
2
‖Q‖2L1(0,t;L2(Ω))

≤ 3
2
K2

1 (Q, θ0).

Similarly we obtain ∫ t

0

(f − αgθh,uh) dt′ ≤ 3K2
2 (f ,u0, Q, θ0)

via (7.2), hence

ν ‖Duh‖2L2(0,t;L2(Ω)) +
1
2

∫ t

0

∑
K∈Th

νKT (uh, θh) ‖κu(Duh)‖2L2(K) dt

+
1
2

∫ t

0

∑
K∈Th

γK(uh, ph) ‖∇ · uh‖2L2(K) dt ≤ 3K2
2 (f ,u0, Q, θ0).
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Appendix B: Proof of the a priori error velocity estimate (Theorem 3.4)

We split the errors into model errors euh, e
θ
h and approximation error εu, εθ

uh − u = (uh − ũh)− (u− ũh) =: euh − εu,

θh − θ = (θh − θ̃h)− (θ − θ̃h) =: eθh − εθ,

Now one can subtract (2.1) from (3.1), use euh ∈ Vh,div and eθh ∈ Ψh, respectively, as test
functions and obtain

1
2
∂t ‖euh‖

2
0 +

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) +

∑
K∈Th

γK ‖∇ · euh‖
2
L2(K)

= (∂tεu, euh) + (2νDε,Deuh) + bS(u,u, euh)− bS(uh,uh, euh)− (p− λh,∇ · euh)

+
∑
K∈Th

γK (∇ · εu,∇ · euh)K +
∑
K∈Th

νKT (uh, θh) (κu(Dεu), κu(Deuh))K

−
∑
K∈Th

νKT (uh, θh) (κu(Du), κu(Deuh))K − α(geθh, e
u
h) + α(gεθ, euh) (7.3)

for all λh ∈ Qh and

1
2
∂t
∥∥eθh∥∥2

0
+
∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)

=
(
∂tε

θ, eθh
)

+ (κ∇εθ,∇eθh) + cS(u, θ, eθh)− cS(uh, θh, eθh)

+
∑
K∈Th

κKT (uh, θh) (κu(Dεu), κu(Deuh))K−
∑
K∈Th

κKT (uh, θh) (κu(Du), κu(Deuh))K .

(7.4)

Next one has to estimate all the terms on the right hand side of (7.3) and (7.4). For conve-
nience, we first summarize from 36 the corresponding linear terms for the error equation of
the Navier-Stokes model:

(∂tεu, euh) ≤ 3C2
Ko

νmin
mod(euh)

‖∂tεu‖2H−1(Ω) +
1
12

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K)

(2νDεu,Deuh) ≤ 6ν ‖Dεu‖20 +
2ν
12
‖Deuh‖

2
0∑

K∈Th

νKT (uh, θh) (κu(Dεu), κu(Deuh))K ≤
∑
K∈Th

6νKVMS(εu) ‖Dεu‖2L2(K)

+
∑
K∈Th

νKVMS(euh)
24

‖Deuh‖
2
L2(K)∑

K∈Th

νKT (uh, θh) (κu(Du), κu(Deuh))K ≤
∑
K∈Th

6νKVMS(u) ‖Du‖2L2(K)

+
∑
K∈Th

νKVMS(euh)
24

‖Deuh‖
2
L2(K) .
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(p− λh,∇ · euh) ≤
∑
K∈Th

min
(

9C2
Ko

νmin
mod(euh)

,
1
γK

)
‖p− λh‖2L2(K)

+
1
12

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) +

∑
K∈Th

γK
4
‖∇ · euh‖

2
L2(K) ,

∑
K∈Th

γK(uh) (∇ · εu,∇ · euh)K ≤
∑
K∈Th

min
(

9C2
Ko

νmin
mod(euh)

,
1
γK

)
γ2
K ‖∇ · εu‖

2
L2(K)

+
1
12

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) +

∑
K∈Th

γK
4
‖∇ · euh‖

2
L2(K) .

For the nonlinear convective term we start in (7.3) as in 36 from

bS(u,u, euh)− bS(uh,uh, euh) = bS(εu,u, euh)− bS(euh,u, e
u
h) + bS(uh, εu, euh).

Using an estimate of the skew-symmetric trilinear form

bS(u,v,w) ≤ CLT ‖u‖
1
2
0 ‖Du‖

1
2
0 ‖Dv‖0 ‖Dw‖0 . (7.5)

in 28, Lemma 2.2 (f), we obtained 36

bS(u,u, euh)− bS(uh,uh, euh) ≤ 27C4
LT

4νmin
mod(euh)3

‖Du‖40 ‖e
u
h‖

2
0

+
3C2

LT

νmin
mod(euh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖Dεu‖20 +

5
12

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) .

For the Boussinesq term in (7.3), we obtain

−α(geθh, e
u
h) + α(gεθ, euh) ≤ α ‖g‖∞

(∥∥eθh∥∥+
∥∥εθ∥∥) ‖euh‖0

≤ α ‖g‖∞ ‖e
u
h‖

2
0 +

α ‖g‖∞
2

(
∥∥eθh∥∥2

0
+
∥∥εθ∥∥2

0
)

Now each term in (7.3) is estimated and we can summarize

1
2
∂t ‖euh‖

2
0 +

1
4

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) +

1
2

∑
K∈Th

γK ‖∇ · euh‖
2
L2(K)

≤
∑
K∈Th

[
min

(
9C2

Ko

νmin
mod(euh)

,
1
γK

)(
‖p− λh‖2L2(K) + γ2

K ‖∇ · εu‖
2
L2(K)

)
+ 6
(
ν + νKVMS(εu)

)
‖Dεu‖2L2(K) + 6νKVMS(u) ‖Du‖2L2(K)

]

+
3C2

Ko

νmin
mod(euh)

‖∂tεu‖2H−1(Ω) +
α‖g‖∞

2

∥∥εθ∥∥2

0

+
3C2

LT

νmin
mod(euh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖Dεu‖20

+
(

27C4
LT

4νmin
mod(euh)3

‖Du‖40 + α ‖g‖∞

)
‖euh‖

2
0 +

α ‖g‖∞
2

∥∥eθh∥∥2

0
.

(7.6)
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Similar estimates of the terms in (7.4) lead to(
∂tε

θ, eθh
)
≤ 2

κmin
mod(eθh)

∥∥∂tεθ∥∥2

H−1(Ω)
+

1
8

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)

(κ∇εθ,∇eθh) ≤ 2κ
∥∥∇εθ∥∥2

0
+

1
8

κ
∥∥∇eθh∥∥2

0

∑
K∈Th

κKT
(
κθ(∇εθ), κθ(∇eθh)

)
K
≤
∑
K∈Th

4κKVMS(εθ)
∥∥∇εθ∥∥2

L2(K)

+
1
16

∑
K∈Th

κKVMS(eθh)
∥∥∇eθh∥∥2

L2(K)

−
∑
K∈Th

κKT
(
κθ(∇θ), κθ(∇eθh)

)
K
≤
∑
K∈Th

4κKVMS(θ) ‖∇θ‖2L2(K)

+
1
16

∑
K∈Th

κKVMS(eθh)
∥∥∇eθh∥∥2

L2(K)

For the advective terms we obtain

cS(u, θ, eθh)− cS(uh, θh, eθh)

= cS(u− ũh + ũh − uh + uh, θ, eθh)− cS(uh, θh − eθh, eθh)

= cS(εu, θ, eθh)− cS(euh, θ, e
θ
h) + cS(uh, θ, eθh)− cS(uh, θ̃h, eθh)

= cS(εu, θ, eθh)− cS(euh, θ, e
θ
h) + cS(uh, εθ, eθh).

Starting from

cS(u, θ, ϑ) ≤ C1 ‖u‖
1
2
0 ‖∇u‖

1
2
0 ‖∇θ‖0 ‖∇ϑ‖0 ,

we obtain

cS(euh, θ, e
θ
h) ≤ C1 ‖euh‖

1
2
0 ‖∇euh‖

1
2
0 ‖∇θ‖0

∥∥∇eθh∥∥0
≤ 2C4

1C
2
Ko

νmin
mod(euh) κmin

mod(eθh)2
‖∇θ‖40 ‖e

u
h‖

2
0

+
1
8

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) +

1
4

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)
,

cS(εu, θ, eθh) ≤ C1 ‖εu‖
1
2
0 ‖∇εu‖

1
2
0 ‖∇θ‖0

∥∥∇eθh∥∥0

≤ 2C2
1CFC

2
Ko

κmin
mod(eθh)

‖∇θ‖20 ‖Dε
u‖20 +

1
8

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)
,

cS(uh, εθ, eθh) ≤ C1 ‖uh‖
1
2
0 ‖∇uh‖

1
2
0

∥∥∇εθ∥∥
0

∥∥∇eθh∥∥0

≤ 2C2
1CKo

κmin
mod(eθh)

‖uh‖0 ‖Duh‖0
∥∥∇εθ∥∥2

0
+

1
8

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)
.
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Now we can summarize the estimates of the terms in (7.4):

1
2
∂t
∥∥eθh∥∥2

0
− 1

8

∑
K∈Th

νKmod(euh) ‖Deuh‖
2
L2(K) +

1
4

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)

≤
∑
K∈Th

[(
2κ + 4κKVMS(εθ)

)∥∥∇εθ∥∥2

L2(K)
+ 4κKVMS(θ) ‖∇θ‖2L2(K)

]

+
2C2

1CKo

κmin
mod(eθh)

(
CFCKo ‖∇θ‖20 ‖Dε

u‖20 + ‖uh‖0 ‖Duh‖0
∥∥∇εθ∥∥2

0

)
+

2
κmin

mod(eθh)

∥∥∂tεθ∥∥2

H−1(Ω)
+

2C4
1C

2
Ko

νmin
mod(euh) κmin

mod(eθh)2
‖∇θ‖40 ‖e

u
h‖

2
0 (7.7)

The next step in the proof will be the application of Gronwall’s Lemma, see 33, Lemma
1.4.1. It states that for gi(t) ∈ L1(0, T ) (i ∈ {1, 2, 3}),

∫ t
0
g1(s)ds,

∫ t
0
g2(s)ds continuous

and non-decreasing on [0, T ], g3(t) non-negative and

∂t

(
‖euh‖

2
0 +

∥∥eθh∥∥2

0

)
+ g1(t) ≤ g2(t) + g3(t)

(
‖euh‖

2
0 +

∥∥eθh∥∥2

0

)
(7.8)

there holds

‖euh(t)‖20 +
∥∥eθh(t)

∥∥2

0
+
∫ t

0

g1(t)dt ≤ exp
(∫ t

0

g3(s)ds
)
× (7.9)

×
(
‖euh(0)‖20 +

∥∥eθh(0)
∥∥2

0
+
∫ t

0

g2(s)ds
)

(7.10)

for all t ∈ [0, T ]. At this point we have to find functions gi which are contained in L1(0, T ).
We set

g1(t) : =
1
4

∑
K∈Th

νKmod(eh) ‖Deuh‖
2
L2(K) +

1
2

∑
K∈Th

κKmod(eθh)
∥∥∇eθh∥∥2

L2(K)

+
∑
K∈Th

γK ‖∇ · eh‖2L2(K) ,

g2(t) : =2
∑
K∈Th

[
min

(
9C2

Ko

νmin
mod(euh)

,
1
γK

)(
‖p− λh‖2L2(K) + γ2

K ‖∇ · εu‖
2
L2(K)

)
+ 6
(
ν + νKVMS(εu)

)
‖Dεu‖2L2(K) +

(
2κ + 4κKVMS(εθ)

)∥∥∇εθ∥∥2

L2(K)

+ 6νKVMS(u) ‖Du‖2L2(K) + 4κKVMS(θ) ‖∇θ‖2L2(K)

]

+
6C2

Ko

νmin
mod(euh)

‖∂tεu‖2H−1(Ω) +
4

κmin
mod(eθh)

∥∥∂tεθ∥∥2

H−1(Ω)
+ α‖g‖∞

∥∥εθ∥∥2

0

+
6C2

LT

νmin
mod(euh)

(
CFCKo ‖Du‖20 + ‖uh‖0 ‖Duh‖0

)
‖Dεu‖20

+
4C2

1CKo

κmin
mod(eθh)

(
CFCKo ‖∇θ‖20 ‖Dε

u‖20 + ‖uh‖0 ‖Duh‖0
∥∥∇εθ∥∥2

0

)
,
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g3(t) : =
27C4

LT

2 inft∈[0,T ]

(
νmin

mod(euh)3
) ‖Du‖40 +

8C4
1

inft∈[0,T ]

(
νmin

mod(euh) κmin
mod(eθh)2

) ‖∇θ‖40
+ 2α ‖g‖∞ .

With these definitions we have (7.8). By using (7.6) and if the L1(0, T ) regularity is
checked the setting will comply the requirements, because the other conditions are straight-
forward. To prove this we will use the stability result of Lemma 3.1 for the terms stemming
from the nonlinearities in g2, all the other terms are directly clear. We obtain∫ t

0

‖uh‖0 ‖Duh‖0 ‖Dε
u‖20 dt

≤ ‖uh‖L∞(0,t;L2(Ω)) ‖Duh‖L2(0,t;L2(Ω)) ‖Dε
u‖2L4(0,t;L2(Ω))

≤
√

2
inft∈[0,T ] ν

min
mod(uh)

(
‖u0‖20 +

3
2
‖f‖2L1(0,t;L2(Ω))

)
‖Dεu‖2L4(0,t;L2(Ω)) <∞,

∫ t

0

‖Du‖20 ‖Dε
u‖20 dt ≤ ‖Du‖2L4(0,t;L2(Ω)) ‖Dε

u‖2L4(0,t;L2(Ω)) <∞,∫ t

0

‖uh‖0 ‖Duh‖0
∥∥∇εθ∥∥2

0
≤ ‖uh‖L∞(0,t;L2(Ω)) ‖Duh‖L2(0,t;L2(Ω))

∥∥∇εθ∥∥2

L4(0,t;L2(Ω))
<∞,

and ∫ t

0

‖∇θ‖20 ‖Dε
u‖20 ≤ ‖∇θ‖

2
L4(0,t;L2(Ω)) ‖Dε

u‖2L4(0,t;L2(Ω)) <∞

via Poincaré-Friedrichs inequality (2.2) and Hölder inequality. With the regularity assump-
tions of Theorem 3.4, in particular assumptions (3.2) and (3.5), we are now able to apply
Gronwall’s Lemma. This gives the estimate for the discretization error according to (7.9).
Finally a careful consideration of the norm definition in (3.3)-(3.4) and the definition of
νKVMS(eh),κKVMS(eθh) shows

|||(u− uh)(t)|||2 + |[(θ−θh)(t)]|2 ≤ 2 |||εu(t)|||2 +2 |||euh(t)|||2 +2|[eθh(t)]|2 +2|[εθ(t)]|2.

This concludes the proof.

Appendix C: Proof of the pressure estimate (Corollary 3.5)

The proof follows closely the proof of Corollary 3.6. in 36 with an additional term from the
Boussinesq coupling. With the definitions eu : = uh − u and eθ : = θh − θ we see that

bS(uh,uh,vh)− bS(u,u,vh) = bS(eu,uh,vh) + bS(u, eu,vh)

≤ CLT2 (‖Duh‖0 + ‖Du‖0) ‖Deu‖0 ‖∇vh‖0

for all vh ∈ Vh, where the constant CLT2 comes from 28, Lemma 2.2 (e) together with
Korn’s inequality.
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For the proof we subtract (2.1) from (2.6) with an arbitrary function vh ∈ Vh and obtain

(∂teu,vh) + 2ν (Deu,Dvh) + bS(uh,uh,vh)− bS(u,u,vh)

+
∑
K∈Th

γK(uh)(∇ · eu,∇ · vh)K + α(geθ,vh) +
∑
K∈Th

νKT (uh, θh)(κu(Deu),Dvh)

+
∑
K∈Th

νKT (uh, θh)(κu(Du),Dvh)− (∇ · vh, (ph − p)) = 0. (7.11)

We split the pressure error as p − ph = (p − Jhp) + (Jhp − ph). The discrete inf-sup
condition (2.3) yields

β ‖ph − p‖0 ≤ β ‖ph − Jhp‖0 + β ‖p− Jhp‖0 ≤
(ph − Jhp,∇ · vh)

‖∇vh‖0
+ β ‖p− Jhp‖0

≤ (ph − p,∇ · vh)
‖∇vh‖0

+
(p− Jhp,∇ · vh)
‖∇vh‖0

+ β ‖p− Jhp‖0

≤ (ph − p,∇ · vh)
‖∇vh‖0

+ (β +
√

3) ‖p− Jhp‖0 .

Furthermore, the remaining fraction can be estimated via (7.11) and the Cauchy-Schwarz
inequality by

(ph − p,∇ · vh)
‖∇vh‖0

≤ 1
‖∇vh‖0

(
(∂teu,vh) + 2ν ‖Deu‖0 ‖Dvh‖0 + [bS(uh,uh,vh)− bS(u,u,vh)]

+α(geθ,vh) +
∑
K∈Th

νKT (uh, θh) ‖κuDeu‖L2(K) ‖Dvh‖L2(K)

+
∑
K∈Th

νKT (uh, θh) ‖κuDu‖L2(K) ‖Dvh‖L2(K)

+
∑
K∈Th

γK(uh) ‖∇ · eu‖L2(K) ‖∇ · vh‖L2(K)

)

≤ (∂teu,vh)
‖∇vh‖0

+ CLT2 (‖Duh‖0 + ‖Du‖0) ‖Deu‖0 + 2ν ‖Deu‖0

+CFα ‖g‖∞ ‖eθ‖+
√∑
K∈Th

νKT (uh, θh)νKVMS(eu) ‖Deu‖2L2(K)

+
√∑
K∈Th

νKT (uh, θh)2 ‖κuDu‖2L2(K) +
√

3
∑
K∈Th

γ2
K(uh) ‖∇ · eu‖2L2(K).
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That is why

(ph − p,∇ · vh)2

7 ‖∇vh‖20
≤ (∂teu,vh)2

‖∇vh‖20
+ C2

LT2 (‖Duh‖0 + ‖Du‖0)2 ‖Deu‖20 + 4ν2 ‖Deu‖20

+C2
Fα

2 ‖g‖2∞ ‖eθ‖
2 +

∑
K∈Th

νKT (uh, θh)νKVMS(eu) ‖Deu‖2L2(K)

+
∑
K∈Th

νKT (uh, θh)2 ‖κuDu‖2L2(K) + 3
∑
K∈Th

γ2
K(uh) ‖∇ · eu‖2L2(K) .

Integration over (0, t) concludes the proof. In particular, the term stemming from the time
derivative can be estimated by∫ t

0

(∂teu,vh)2

‖∇v2
h‖0

dt ≤
∫ t

0

‖∂t(uh − u)‖2H−1(Ω) dt = ‖∂t(uh − u)‖2L2(0,t;H−1(Ω))

since vh is not time-dependent.
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pressure models for the incompressible Navier-Stokes equations, Comp. Meth. Appl. Mech. En-
grg., 198 (2009), pp. 3975–3988.

32. J. PRINCIPE, R. CODINA, AND F. HENKE, The dissipative structure of variational multiscale
methods for incompressible flows, accepted to Comput. Meth. Appl. Mech. Engrg., (2009).

33. A. QUARTERONI AND A. VALLI, Numerical Approximation of Partial Differential Equations,



October 25, 2010 15:22 WSPC/INSTRUCTION FILE M3AS˙LowLu˙2510

A Projection-Based Variational Multiscale Method for Large-eddy Simulation with application to ... 27

Springer, Berlin, Heidelberg, New York, 1997.
34. S.-H. PENG AND L. DAVIDSON, Numerical investigation of turbulent bouyant cavity flow using

large eddy simulation. Int. Symp. Turbulence Heat Mass Transfer 3 (2000), pp. 737–744.
35. J. RANG, Stability estimates and numerical methods for degnerate parabolic differential equa-

tions, Ph.D. thesis, TU Clausthal, Papierflieger-Verlag Clausthal, 2005.
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