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Abstract. We present a local projection stabilization (LPS) type finite element
(FE) method for the linearized stationary magnetohydrodynamics (MHD) problem.
In contrast to the residual-based stabilization in [1]-[2], we investigate a symmetric
LPS method comparable to the term-by-term stabilization in [3].

1 Introduction

Following the time discretization and linearization approach in [1]-[2], we
consider the stationary MHD model

−ν∆u + (a · ∇)u +∇p− (∇× b)× d = fu , ∇ · u = 0, (1)

λ∇× (∇× b) +∇r −∇× (u× d) = fb , ∇ · b = 0, (2)

in a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3} with ∇·a = 0. a and d are
the vector-fields for the velocity and magnetic field at linearization. For the
unknown velocity field u, magnetic field b, pressure p and magnetic pseudo-
pressure r (vanishing in the continuous case), we introduce the function spaces

V =
{
v ∈

[
H1(Ω)

]d
: v = 0 on ∂Ω

}
, Q = L2

0(Ω),

C = {c ∈ H(curl ; Ω) : n× c = 0 on ∂Ω} , S = H1
0 (Ω)

where (·, ·) and 〈·, ·〉 are appropriate inner and dual products. The variational
problem reads: Find U := (u,b, p, r) ∈ V × C ×Q× S such that

AG (U,V) = FG (V) , ∀V := (v, c, q, s) ∈ V × C ×Q× S (3)

with

AG (U,V) = ν (∇u,∇v) + 〈a · ∇u,v〉 − (p,∇ · v)− 〈(∇× b)× d,v〉
+ (∇ · u, q)− (b,∇s) (4)

+λ (∇× b,∇× c) + (∇r, c)− 〈∇× (u× d) , c〉,
FG (V) = 〈fu,v〉+ 〈fb, c〉. (5)

Let Th be the primal grid with FE spaces of Taylor-Hood type

Vh ×Qh/Ch × Sh = Pk
Th × Pk−1

Th or Qk
Th ×Qk−1

Th , k ∈ N \ {1}. (6)
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The pair Vh ×Qh is discretely-divergence-free, thus

V div
h := {vh ∈ Vh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} 6= {0}.

Let Mh = Th or Mh = T2h be the macro grid with discontinuous FE

spaces D
u/b
h ⊂ [L2(Ω)]d. The local orthogonal L2-projectors are denoted

as π
u/b
M : [L2(M)]d → D

u/b
h |M . The global projections π

u/b
h : [L2(Ω)]d →

D
u/b
h are given as (π

u/b
h w)|M := π

u/b
M (w|M ). The fluctuation operator κ

u/b
h :

[L2(Ω)]d → [L2(Ω)]d with κ
u/b
h w :=

(
(id − πu/b

h )wi)
d
i=1 is assumed to have

the approximation property

‖κu/bh v‖0,M ≤ ChlM‖v‖l,M ∀v ∈ [W l,2(M)]d, l = 0, . . . , s, s ∈ {0, . . . , k}.
(7)

Let Uh = (uh,bh, ph, rh) ,Vh = (vh, ch, qh, sh) ∈ Vh × Ch ×Qh × Sh ⊂
V × C ×Q× S. Then the LPS terms read

Slps(Uh,Vh) =
∑
M

{τ1 (κuh((aM · ∇)uh), κuh((aM · ∇)vh))M + τ2 (∇ · uh,∇ · vh)M

+τ3
(
κbh((∇× bh)× dM), κbh((∇× ch)× dM)

)
M

+τ4
(
κbh((∇× (uh × dM)), κbh(∇× (vh × dM))

)
M

+ τ5 (∇rh,∇sh)M + τ6 (∇ · bh,∇ · ch)M}

where (·, ·)M is the L2 scalar product on cell M . Here, aM and dM are
elementwise constant approximations of a|M and d|M. The LPS problem
consists of finding Uh ∈ Vh×Ch×Qh×Sh such that for all Vh ∈ Vh×Ch×
Qh × Sh:

Astab(Uh,Vh) = AG(Uh,Vh) + Slps(Uh,Vh) = FG (Vh) . (8)

2 Stability of the proposed method

For k ∈ N0 and D ⊆ Ω, we use the notation | · |k,D := | · |Hk(D) and ‖ ·‖p,D :=
‖ · ‖Lp(D) with 1 ≤ p ≤ ∞. In case of D = Ω, we omit index D.

Lemma 1. For U,V ∈ V ×C×Q×S, it holds for the symmetric LPS terms

(i) Slps (U,U) ≥ 0, (ii) |Slps (U,V)| ≤ (Slps (U,U))
1
2 (Slps (V,V))

1
2 .

Let V = (v, c, q, s) ∈ V ×C×Q×S. Integration by parts yields 〈a·∇v,v〉 = 0
and 〈(∇× c)× d,v〉 = −〈∇× (v × d) , c〉, hence

AG (V,V) = ν‖∇v‖20 + λ‖∇ × c‖20.

We define the following expressions

‖V‖2G = ν‖∇v‖20 + λ‖∇ × c‖20, ‖V‖2lps = Slps (V,V) . (9)
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Symmetric testing Vh = Uh yields

(AG + Slps) (Vh,Vh) = ‖Vh‖2G + ‖Vh‖2lps. (10)

Using Young’s inequality and the definition

‖(fu, fb)‖G,? = sup
(vh,ch)∈Vh×Ch

FG (Vh) /‖Vh‖G,

we get the unique existence of the velocity field via

‖Uh‖2G + 2‖Uh‖2lps ≤ ‖(fu, fb)‖2G,?. (11)

By the discrete Babuška-Brezzi-condition, we have for all ph ∈ Qh the
unique existence of vh ∈ Vh with

∇ · vh = −ph , |vh|1 ≤ β
−1
u ‖ph‖0. (12)

Examining the term (AG + Slps) (Uh, (vh,0, 0, 0)), we end up with

‖ph‖20 ≤ ‖fu‖−1 |vh|1 + ν‖∇uh‖0 |vh|1 + |Slps ((uh,0, 0, 0) , (vh,0, 0, 0))|
− (a · ∇uh,vh) + ((∇× bh)× d,vh)

by using that uh ∈ V div
h . Based on the inequalities

− (a · ∇uh,vh) = (a · ∇vh,uh) ≤ Cp‖a‖∞ |uh|1 |vh|1 , (13)

((∇× bh)× d,vh) ≤ Cp‖d‖∞‖∇ × bh‖0 |vh|1 , (14)

‖(vh,0, 0, 0)‖2lps ≤ max
M

(
τ1|aM|2 + τ2d+ τ4|dM |2

)
|vh|21 (15)

together with (12), we obtain after some calculation the unique existence of
the fluid pressure thanks to

βu‖ph‖0 ≤ ‖fu‖−1 +

(√
ν +

Cp‖a‖∞√
ν

+
Cp‖d‖∞√

λ

)
‖Uh‖G

+
(

max
M

(
√
τ1|aM|) + max

M

√
τ2d+

√
τ4|dM |

)
‖Uh‖lps.

We define the norms

‖c‖C =
√
λ
(
L−10 ‖c‖0 + ‖∇ × c‖0

)
, ‖s‖S = (‖s‖0 + L0‖∇s‖0) /

√
λ (16)

on the spaces C and S with a length-scale L0 ∼ diam(Ω). Using integration
by parts, we define the bilinear form of the Maxwell problem

CMax ((b, r) , (c, s)) = AG ((0,b, 0, r) , (0, c, 0, s)) .

For this problem, the continuous Babuška-Brezzi-condition

inf
(b,r)∈C×S

sup
(c,s)∈C×S

CMax ((b, r) , (c, s))

(‖b‖C + ‖r‖S) (‖c‖C + ‖s‖S)
≥ βm (17)
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holds. Let (bh, 0) ∈ Ch × Sh ⊂ C × S. By (17) there exists a unique (c, s) ∈
C × S with ‖c‖C + ‖s‖S = 1 such that

βm‖bh‖C ≤ CMax ((bh, 0) , (c, s)) (18)

= CMax ((bh, 0) , (c, 0)) + CMax ((bh, 0) , (0, s)) =: I + II

holds. We get with ‖s‖S ≤ 1 and ‖c‖C ≤ 1 the estimates

I = λ (∇× bh,∇× c) ≤
√
λ‖∇ × bh‖0

√
λ‖∇ × c‖0 ≤ ‖Uh‖G, (19)

II = |(∇ · bh, s)| ≤
(∑

M

τ6‖∇ · bh‖20,M
) 1

2
(∑

M

1

τ6
‖s‖20,M

) 1
2

≤ ‖Uh‖lps ·
(

max
M

1
√
τ6

)
·
√
λ
‖s‖0√
λ

= max
M

√
λ

τ6
· ‖Uh‖lps (20)

by the Cauchy-Schwarz inequality. Putting (19) and (20) into (18) leads to

‖bh‖C ≤
1

βm

(
‖Uh‖G + max

M

√
λ

τ6
‖Uh‖lps

)
(21)

and this gives the unique existence of the discrete magnetic field.
Finally, from the equation (AG + Slps) (Uh, (0,0, 0, rh)) = − (bh,∇rh) +∑

M

τ5‖∇rh‖20,M = 0, we conclude by using (16) that

‖∇rh‖0 ≤
(

min
M

√
τ5

)−1
‖bh‖0 ≤ L0

(√
λ min

M

√
τ5

)−1
‖bh‖C . (22)

This implies existence of the unique discrete magnetic pseudo-pressure. As
full control of ∇rh is essential to enforce condition ∇ · bh = 0, (22) and (21)
suggest the choices

τ5 ∼ L2
0/λ, τ6 ≥ Cλ. (23)

3 Error analysis for smooth solutions

Subtracting (3) and (8) gives the approximate Galerkin orthogonality.

Lemma 2. Let U and Uh be the solutions of (3) and (8). Then

(AG + Slps) (U−Uh,Vh) = Slps(U,Vh), ∀Vh ∈ Vh×Ch×Qh×Sh. (24)

Let J =
(
ju, jb, jp, jr

)
be appropriate interpolation operators. In particular,

we assume that juu ∈ V div
h . We therefore decompose the error as

U−Uh = (U− JU)+(JU−Uh) = ε+Eh ≡ (εu, εb, εp, εr)+(eu, eb, ep, er) .

Set now Vh = Eh in (24), thus

‖Eh‖2G + ‖Eh‖2lps = Slps (U,Eh)︸ ︷︷ ︸
=I

−AG (ε,Eh)︸ ︷︷ ︸
=II

−Slps (ε,Eh)︸ ︷︷ ︸
=−III

. (25)
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We obtain

I ≤ (Slps (U,U))
1
2 (Slps (Eh,Eh))

1
2 = ‖U‖lps‖Eh‖lps, (26)

|III| = Slps (ε,Eh) ≤ ‖ε‖lps‖Eh‖lps, (27)

−II ≤ ‖ε‖G‖Eh‖G + IV (28)

IV = (a · ∇εu, eu)− ((∇× εb)× d, eu)− (∇× (εu × d) , eb) (29)

− (εp,∇ · eu) + (∇ · εu, ep) + (∇εr, ep)− (εb,∇er) .

Then we can summarize estimates (25)-(29) as

‖Eh‖2G + ‖Eh‖2lps ≤ (‖ε‖lps + ‖U‖lps) ‖Eh‖lps + ‖ε‖G‖Eh‖G + |IV | . (30)

Integration by parts and Cauchy-Schwarz inequality give for the terms in IV :

(a · ∇εu, eu) = −
(
a · ∇eu, εu

)
≤
(∑

M

‖a‖2∞,M

ν
‖εu‖20,M

) 1
2 ‖Eh‖G,

−
(
εp,∇ · eu

)
≤
(∑

M

min
(d
ν

;
1

τ2

)
‖εp‖20,M

) 1
2 ‖Eh‖lps,

− (εb,∇er) ≤
(∑

M

1

τ5
‖εb‖20,M

) 1
2 ‖Eh‖lps, (31)

− (∇× (εu × d) , eb) = (εu, (∇× eb)× d) ≤
(∑

M

‖d‖2∞,M

λ
‖εu‖20,M

) 1
2 ‖Eh‖G.

The term (∇εr, eb) vanishes since r = jrr ≡ 0. Moreover, term −(ep,∇ · εu)

vanishes via ∇ · u = 0 and since juu ∈ V div
h . Let d ∈

[
W1,∞ (Ω)

]d
. By

formula ∇× (e× f) = f · ∇e − f (∇ · e) − e · ∇f + e (∇ · f), the inequalities
of Cauchy, Schwarz and Poincare, it follows

− ((∇× εb)× d, eu) =
∑
M

(εb,∇× (eu × d))M

≤
(∑

M

ν−1
(
1 +
√
d
)2(‖d‖∞,M + ‖∇d‖∞,M

)2‖εb‖20,M) 1
2 ‖Eh‖G. (32)

We then summarize equations (30)-(32). Using Young’s inequality, we obtain

‖Eh‖2G + ‖Eh‖2lps ≤ S2
1 + S2

2 ,

with

S1 := ‖ε‖G +
(∑

M

1

ν
‖a‖2∞,M‖εu‖20,M

) 1
2

+
(∑

M

1

λ
‖d‖2∞,M‖εu‖20,M

) 1
2

+
(∑

M

ν−1
(
1 +
√
d
)2(‖d‖∞,M + ‖∇d‖∞,M

)2‖εb‖20,M) 1
2

,
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S2 := ‖ε‖lps + ‖U‖lps +
(∑

M

min
(d
ν

;
1

τ2

)
‖εp‖20,M

) 1
2

+
(∑

M

1

τ5
‖εb‖20,M

) 1
2

.

The approximation properties of the FE spaces, see [5], and the local L2-
projector yield for U ∈ [Hk+1(Ω)]d × [Hk+1(Ω)]d ×Hk(Ω)×Hk(Ω) that

S2
1 ≤ C

∑
M

h2kM

[(
ν
(
1 +
‖a‖2∞,Mh

2
M

ν2
)

+ λ
‖d‖2∞,Mh

2
M

λ2
))
|u|2k+1,ωM

+
(
λ+

h2M
ν

(
‖d‖∞,M + ‖∇d‖∞,M

)2)|b|2k+1,ωM

]
, (33)

S2
2 ≤ C

∑
M

h2sM

[(
τ2d

2 + τ1|aM|2 + τ4|dM|2
)
|u|2s+1,ωM

+ min
(d
ν

;
1

τ2

)
|p|2s,ωM

+
(
τ3|dM|2 + τ6d

2 +
h2M
τ5

)
|b|2s+1,ωM

]
(34)

where ωM denotes an appropriate patch around cell M .
Denote the local fluid and magnetic Reynolds numbers by

Ref,M := ‖a‖∞,MhM/ν, Rem,M := ‖d‖∞,MhM/λ.

respectively. We will call an error estimate to be of order k if the coefficients
multiplying corresponding Sobolev norms of the solutions are of order hk

uniformly w.r.t. the problem data. In this case, sufficient conditions can be
found by the following (mild) restrictions on the local mesh width hM
√
νRef,M ≤ C,

√
λRem,M ≤ C, hM (‖d‖∞,M + ‖∇d‖∞,M ) ≤ C

√
ν (35)

and on the stabilization parameters (by using (7))

0 ≤ τ1 ≤ Ch2(k−s)M /|aM|2, 0 ≤ τ3, τ4 ≤ Ch2(k−s)M /|dM|2, Ch2M ≤ τ5. (36)

Condition (23) implies the latter condition on τ5. Moreover, (34) suggests the
balance τ5τ6 ∼ h2M , thus (see also [1],[2])

τ5 ∼ L2
0/λ, τ6 ∼ h2Mλ/L2

0. (37)

A balance of the terms with the div-div parameter τ2 leads to the practi-
cally unfeasible formula τ2 ∼ max

(
0; |p|k,M |/|u|k+1,M − ν

)
. A reasonable

compromise is to set
τ2 ∼ 1. (38)

Theorem 3. Assume that the solution (u,b, p) of (3) belongs to [Hk+1(Ω)]d×
[Hk+1(Ω)]d ×Hk(Ω) and that juu ∈ V div

h . Further, let the LPS parameters
be chosen according to condition (36)-(37) and that the local mesh width hM
is chosen such that (35) is valid. Then we obtain (using r ≡ 0)

‖Uh−JU‖2G + ‖Uh−JU‖2lps ≤ C
∑
M

h2kM

(
|u|2k+1,ωM

+ |b|2k+1,ωM
+ |p|2k,ωM

)
.
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Numerical results for the magnetic part, i.e. u ≡ 0, p ≡ 0, show the
relevance of the parameter design (37) for Taylor-Hood type pairs Ch×Sh. In
particular, this is valid if the magnetic field b does not belong to [H1(Ω)]d.
Such singular solutions can be well approximated on meshes with suitable
macro-element structure, like cross-box elements, see [1]. Our results confirm
this for Taylor-Hood type pairs Ch × Sh as well.

Numerical experiments for the fluid part, i.e. b = 0, r = 0, see [4], show:
The mesh conditions (35) are much less restrictive than the typical ones
on the local Peclet number PeM := hM‖a‖∞,M/ν ≤ 1 in the Galerkin
method for advection-diffusion problems. The div-div stabilization term is
very important for robust estimates in case of Taylor-Hood elements. Com-
pared to the Galerkin method, much better local mass conservation clearly
improves the H1- and L2-error rates for velocity uh. Increasing values of
Ref := ‖a‖∞CP /ν can lead to order reduction. Nevertheless, the choice of
the div-div parameters τ2 is still a question of ongoing discussion. It turns
out that the SUPG-stabilization is much less important than div-div stabi-
lization, thus showing the surprising robustness of the Galerkin-FEM with
div-div stabilization in case of inf-sup stable pairs Vh ×Qh.

4 Improved error estimates

The restrictions (35) on the mesh width are not convincing. Let us assume
the following orthogonality conditions

(v − juv, ζh) = 0 ∀v ∈ V and ∀ζh ∈ [Du
h(M)] , (39)(

c− jbc, ηh
)

= 0 ∀c ∈ C and ∀ηh ∈
[
Db

h(M)
]
. (40)

Sufficient conditions on Th,Mh, the FE and projection spaces for (39)-(40)
can be found in [6] or [4]. In particular, for the one-level approach with
Th =Mh, one has to enrich the velocity space by local bubble functions [6].
Another implication is that juu 6∈ V div

h , hence the mixed term (ep,∇ · εu)
has to be considered. Moreover, a careful selection of the pressure spaces Qh

is required. The critical mixed term vanishes for continuous pressure space
Qh = Pk−1. In case of discontinuous space Qh = P−(k−1), one can introduce
additional pressure jump terms across interior edges to handle it, see [4].

(39)-(40) allow modified estimates of the skew-symmetric terms

(a · ∇εu, eu) = −
(
κuh (a · ∇eu) , εu

)
≤
(∑

M

1

τ1
‖εu‖20,M

) 1
2 ‖Eh‖lps,

− ((∇× εb)× d, eu) =
(
εb, κ

b
h

(
∇×

(
eu × d

)))
≤
(∑

M

1

τ4
‖εb‖20,M

) 1
2 ‖Eh‖lps,

− (∇× (εu × d) , eb) =
(
εu, κ

b
h ((∇× eb)× d)

)
≤
(∑

M

1

τ3
‖εu‖20,M

) 1
2 ‖Eh‖lps.
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Then, a modification of (33) leads to

S2
1 ≤ C

∑
M

h2kM

[(
ν +

h2M
τ1

+
h2M
τ3

)
|u|2k+1,M +

(
λ+

h2M
τ4

)
|b|2k+1,M

]
. (41)

Preserving the choice of div-div parameters according to (38) and of (37), a
calibration of the parameters in (41) and (34) gives

Ch2M ≤ τ1 ≤ C/|aM |2, Ch2M ≤ τ3, τ4 ≤ C/|dM |2, (42)

and allows to omit the restrictions (35). A careful estimation has to consider
the approximation of aM ∼ a and dM ∼ d. For simplicity, we assume here
elementwise constant fields a|M = aM and d|M = bM.

Theorem 4. Let the orthogonality conditions (39)-(40) be valid. Assume
that the solution (u,b, p) of (3) belongs to [Hk+1(Ω)]d×[Hk+1(Ω)]d×Hk(Ω).
Further, let the LPS parameters be chosen according to conditions (38), (37)
and (42). Then we obtain the quasi-optimal error estimate in Theorem 3
without the mesh-width restrictions (35).

Numerical experiments for the fluid part, i.e. b = 0, r = 0, show: One can
omit restriction (35) if conditions (39)-(40) are valid, see [4]. The experiments
indicate that optimal error estimates for the H1- and L2-error rates for the
velocity uh are obtained which are robust with respect to Ref .

Corresponding numerical experiments for the magnetic part and the full
MHD problem are in preparation and will be reported elsewhere.
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