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We present a validation strategy for enhancement of an unstructured industrial
finite-volume solver designed for steady RANS problems for large eddy-type simu-
lation with near-wall modelling of incompressible high-Reynolds number flow. Dif-
ferent parts of the projection-based discretisation are investigated to ensure LES
capability of the numerical method. Turbulence model parameters are calibrated by
using a minimisation of least-squares functionals for first and second order statistics
of the basic benchmark problems decaying homogeneous turbulence and turbulent
channel flow. Then the method is applied to the flow over a backward-facing step at
Reh = 37500. Of special interest is the role of the spatial and temporal discretisation
error for low order schemes. For wall-bounded flows, present results confirm existing
best practice guidelines for mesh design. For free shear layers, a sensor to quantify
the resolution quality of the LES based on the resolved turbulent kinetic energy is
presented and applied to the flow over a backward-facing step at Reh = 37500.
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1 Introduction

CFD has reached such a technology readiness level that it is used as standard
predictive tool in a broad range of application areas. Virtually all of these
tools rely on the (U)RANS approach which solves the statistically averaged
(or: Reynolds averaged) Navier Stokes equations. Since RANS models are de-
signed for problems with steady state solutions, the corresponding numerical
methods traditionally use low order schemes. Here we restrict ourselves to
incompressible flows, for which second order finite volume schemes are still
very popular. The basic algorithms are well-established since more than two
decades, see e.g. [13], and are still used by most research and commercial flow
solvers. For a recent review see e.g. [12].
Comprehensive studies have shown that for certain classes of flows the (U)RANS
modelling approach has become the limiting factor for getting high-quality
numerical predictions. For most engineering simulations at design conditions,
e.g., without (unsteady) flow separation, (U)RANS methods give predictions
of satisfying accuracy. However, there is a strongly growing demand in pre-
dicting flows with incipient and moderate separation because industry requires
more and more reliable predictions at the boundary of the operative range and
for off-design conditions for airfoils, wind turbines, turbo-machinery etc.
The strong interest by research institutions and industry to use LES capa-
bilities leads to the question whether existing RANS solvers or existing LES
solvers should be used. Classical LES codes often provide higher order meth-
ods, but this restricts the applicability to simple geometries. Instead, RANS
solvers are typically low order methods but often support unstructured meshes
of hybrid element types and thus allow to deal with very complex geometries of
industrial relevance easily. Several additional reasons lead to the aim to extend
existing RANS solvers to LES capabilities. As RANS will be the backbone for
industrial applications for the next future, the first application scenario will
be to apply LES to carefully selected configurations after a broad simulation
campaign using (U)RANS was performed. Moreover one has to keep in mind
that development of a flow solver for complex industrial applications requires
large costs for design, implementation, verification and validation until matu-
rity is reached. Another important point is that it takes a long-term experience
for engineers to become familiar with a CFD code and to acquire best-practice
expertise until the code can be used as predictive tool, because there are al-
ways code-specific differences among different flow solvers. Moreover CFD has
to be seen more and more as part of multiphysics applications, although a very
important one. Such coupling of different codes and exchange of suitable data
has been established for existing RANS solvers. Achieving LES capabilities
while maintaining such interfaces is also of considerable interest.
When judging the industrial applicability of LES-type methods, one has to
distinguish between two completely different groups. On the one hand, LES
for complex configurations is naturally a grand challenge problem requiring
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O(104) processors. On the other hand, industrial applicability of LES means
that engineering design studies become feasible, meaning ultimately overnight
LES simulations for configurations of moderate complexity. Currently the ma-
jor part of industrial CFD applications is done by small and middle enterprises
and engineering companies. Making LES amenable for clusters of O(101) pro-
cessors used by this group should be a driving force regarding algorithmic
development. For this purpose all simulations in this paper were performed
on a single processor Linux machine. Acceleration techniques for LES are also
of great interest for large scale applications because then the parameter space
for design optimisation can be extended at the same total computing time.
Having pointed out the industrial need for LES and the reason to use existing
RANS solvers, the question arises, whether it is possible to extend any second
order RANS method to LES capability or not. Whereas (U)RANS solutions
are characterized by smooth large-scale structures, turbulent flows have broad
band spectra and the resolution of the medium to small eddies is crucial, see
[23]. Thus the first question that arises is: Is it possible to adopt second-order
schemes in space and/or time for LES (or do we need higher order schemes)?
It is well-known that there are a variety of second order methods which allow
for adequate LES simulations, e.g. the CDP-α code developed at Stanford uni-
versity, see also e.g. [22]. The theoretical considerations by [9,14] have been
recently reviewed by [27] with much more optimistic conclusions regarding
the magnitude of numerical errors for second-order schemes. From this we
conclude a positive answer for the first question. On the other hand it has to
be mentioned that recent investigations clearly show significant advances of
using sophisticated higher-order methods, see e.g. [5], which confirms earlier
studies by [20,24].
The second question faces the huge computing costs: Which (modelling) ap-
proaches are useful and applicable also to complex configurations to make LES
amenable to high Reynolds number flows? In this paper the focus is on wall-
functions for alleviating the huge costs of wall-resolved LES by one order of
magnitude, see e.g. [37,36]. As an alternative, the DES approach by [34] is
also considered, which has been used as a wall-model for LES in [26]. It has
become obvious that the coupling of a RANS type solution near the wall and
an LES type solution for the outer flow requires special care, see e.g. [18]. This
point will also be addressed in this paper.
The third question is: How reliable are LES results in terms of numerical and
modelling error? This issue cannot be overestimated, in particular from an
industrial point of view. Even when using RANS methods, CFD tools cannot
produce results at the push of a button. Large user experience in choosing the
correct numerical settings (grid design, parameters for the numerical solver)
and turbulence modelling aspects is required. This is much more true for LES.
The quality of the results strongly depends on the experience of the user. In
the present work we focus on role of the discretisation error. For industrial ap-
plications of LES to flows in complex geometries, grid convergence cannot be
reached or ensured by a global mesh refinement study due to extremely large
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computational costs. For this reason we present a sensor based on the resolved
turbulent kinetic energy which measures the resolution quality of the LES for
free shear layers and in regions of separated flow. This sensor may then be
used as a refinement indicator for local mesh adaptation. It is well known that
also the sensitivity of the LES results to the inflow boundary conditions can
be large, see e.g. [3,7,19], but this issue cannot be addressed here.
This fourth question is strongly related to the third one: What are best-practice
guidelines for LES? Due to the extremely high computing costs, industry needs
guidelines for mesh design, time step size and modelling aspects, see [33] as a
very first step. Such guidelines should minimize erroneous computations and
provide some general criteria for ensuring a proper use of LES in terms of
numerical and modelling error. However, even for (U)RANS simulations, only
first versions of best practice guidelines are available, e.g. [1].
In the present paper, we consider the unstructured incompressible finite vol-
ume solver THETA, developed at the German Aerospace Center (DLR) in
Göttingen. At the start of this work, the THETA-code was validated only for
laminar flows and for turbulent flows based on the RANS equations. For time
accurate simulations only a first order accurate time discretisation scheme was
available. Turbulence modelling was restricted to the standard k-ǫ model with
classical wall functions.
The paper is organized as follows: In Section 2, we briefly describe the basic
discretisation. Moreover, the models of LES and DES and aspects of the near-
wall modelling will be introduced. Section 3 summarizes some tools to param-
eter identification problems for turbulent flows. The benchmark test case of
decaying homogeneous turbulence is considered in Section 4. Turbulent chan-
nel flow is considered for Reynolds number Reτ = 395, see Section 5.1, and for
higher Reynolds number Reτ = 4800 using wall-functions as near-wall model,
see Section 5.2. In Section 6 the turbulent flow over a backward facing step at
Reh = 37500 is addressed and the sensor to measure the turbulence resolution
is presented in Section 7. Summary and outlook are given in Section 8.

2 Basic discretisation and turbulence modelling

Consider the non-stationary, incompressible Navier-Stokes model

∂t~u− ~∇ · (2νS(~u)) + ~∇ · (~u⊗ ~u) + ~∇p = ~f in Ω × (0, T ] (1)

~∇ · ~u = 0 in Ω × (0, T ] (2)

for velocity ~u and pressure p in a bounded, polyhedral domain Ω ⊂ R
3 with

given source term ~f and viscosity ν > 0. S(~u) = 1
2
(~∇~u + ~∇~uT ) is the rate of

strain tensor. To simplify the presentation we set density to one. Appropriate
boundary and initial conditions have to be added.
The spatial discretisation of (1)-(2) is based on a finite volume scheme on un-
structured collocated grids. The primal and dual grids are sketched in Figure
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1 (left). As the values of velocity and pressure are computed on the same set of
nodes, the interpolation scheme by Rhie and Chow [30] is applied in order to
avoid spurious pressure oscillations. Different upwind schemes (linear upwind
scheme (LUDS), quadratic upwind scheme (QUDS)) and the central differenc-
ing scheme (CDS) are implemented for the approximation of the convective
fluxes. Diffusive fluxes are discretized with CDS. The time discretisation is

�
�
�

�
�
�

���������������������
���������������������
���������������������
���������������������

jPPi

Γ W ΓW

The shifted
wall nodes

Fig. 1. Collocated grid arrangement: primal and dual grids (left), prismatic mesh in
wall region (right)

performed using the A-stable BDF(2) scheme. The incremental variant of the
projection method is used to split the calculation of velocity and pressure.
Within each time step, the method is written as follows:

3~u∗ − 4~un + ~un−1

2δtn
+ ~∇ · (~u∗ ⊗ ~u∗) − ~∇ · (2νS(~u∗)) = ~fn − ~∇pn, (3)

~∇ · ~∇δpn+1 =
3

2δtn
~∇ · ~u∗, (4)

pn+1 = pn + δpn+1, (5)

~un+1 = ~u∗ − 2δtn
3

~∇δpn+1 (6)

where n + 1 is the current time step, n and n− 1 represent the previous and
preprevious time step, respectively. ~u∗ is an intermediate velocity which may
not satisfy the continuity condition (2) and δt denotes the time step size.
Of special interest here is the wall treatment. In the code, the wall node
is shifted to a wall distance y(1) ≡ yδ being now the new first node above
the wall. Denote y(2), y(3) the wall distance of the second and third off-wall
node after shifting, and V (1), V (2), V (3) the corresponding control volumes
with faces at y12 = (y(1) + y(2))/2 and y23 = (y(2) + y(3))/2. We choose
yδ ≡ y(1) = 0.27y(2) as a compromise to balance the two requirements that
y(1), y(2) should be close to the center of their respective control volumes
V (1), V (2), see Figure 1 (right).
Denote Γw the wall and Γδ an artificial inner boundary containing the shifted
nodes at wall distance yδ. The use of Γδ in (8) will be motivated further in
Subsection 2.3 below. Then, as a boundary condition on Γw, the wall-shear
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stress τw is prescribed instead of no-slip:

~u · ~n = 0, (I − ~n⊗ ~n)2νS(~u)~n = −τw~ut,δ on Γw . (7)

with I − ~n⊗ ~n being the projection operator onto the tangential space of Γw,
unit velocity vector in wall-parallel direction ~ut,δ = ~vt,δ/|~vt,δ| and

τw = ν ~∇uδ · ~n , where uδ = |~vt,δ| , ~vt,δ = (I − ~n⊗ ~n) ~u|Γδ
. (8)

For LES of turbulent flows, the basic Navier-Stokes model (1)-(2) has to be
modified. In LES, a scale separation operator subdivides the scales into filtered
scales and unresolved scales. Only the filtered scales are solved. In this work
the effects of the unresolved scales are modeled by a sub-grid stress (SGS)
term of so-called eddy-viscosity type.

2.1 Smagorinsky model

In this classical LES model, viscosity ν is replaced by ν+νt. The eddy-viscosity
νt is given by

νt = (CS∆)2|S| , |S| = (2S : S)1/2 (9)

with A : B =
∑d

i,j=1AijBij . Therein the filter width ∆ is given by ∆ = nhc,

with hc = Vol1/3
c , where Volc is the volume of the control volume surrounding

~x and n = 1, 2, . . .. The model constant to be calibrated is CS.
Near solid walls, the turbulent viscosity νt is multiplied with the van Driest
damping function D(y+). For ~x ∈ Ω, denote ~xw = ~xw(~x) ∈ Γw the correspond-
ing nearest wall point with distance d from ~x. Then

D(y+) = (1 − exp(−y+/A+))2 , y+ = yuτ/ν , uτ = uτ |~xw
=

√
τw (10)

with friction velocity uτ , y = dist(~x, ~xw(~x)) ≡ d and A+ = 26. Due to its
non-local character van Driest damping is not very suitable for unstructured
methods or if parallelisation is used.

2.2 Detached-eddy simulation model

Detached-eddy simulation (DES) is a single non-zonal hybrid RANS-LES
method [34]. The SA-DES is based on the one-equation RANS model by
Spalart & Allmaras which computes the eddy viscosity νt = fv1ν̃ from the
auxiliary viscosity ν̃ using a near-wall damping function fv1 = χ3/(χ3 + c3v1)
with χ = ν̃/ν which involves only local variables. Here ν̃ solves the transport
equation

∂tν̃ + ~u · ~∇ν̃ − ~∇ ·
(

ν + ν̃

σ
~∇ν̃
)

− cb2
σ

(~∇ν̃)2 = cb1S̃ν̃ − cw1fw(
ν̃

d
)2

with S̃ = |Ω| + ν̃/(κ2d2)fv2, |Ω| = (2Ω(~u) : Ω(~u))1/2, and Ω(~u) = (~∇~u −
(~∇~u)T )/2. The functions fw, fv2 and the constants σ, cb2, cb1, Cw1 are given in
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[34].
In the SA-DES model, the wall distance d is replaced by

d̃ = min( d , CDES∆) with ∆ = max(∆x,∆y,∆z). (11)

The model constant to be calibrated is CDES.

2.3 Near-wall treatment for LES at high Reynolds numbers

Wall-functions are used to bridge the near-wall region at high Reynolds num-
bers. The wall shear stress τw can be computed from (8) only if y+

δ < 2. For
larger y+

δ , τw = u2
τ is computed from friction velocity uτ : The universal velocity

profile of RANS-type by Reichardt F (y+) is matched with the instantaneous
LES solution uδ at the shifted node yδ

uδ

uτ
= F

(

yδuτ

ν

)

, F (y+) ≡ ln(1 + 0.4y+)

κ
+ 7.8

(

1 − e−
y+

11.0 − y+

11.0
e−

y+

3.0

)

.

(12)
Equation (12) is solved for uτ using Newton’s method. In the implementation
a single formula for an auxiliary eddy viscosity νrd at the shifted node yδ is
used to compute τw

τw = νrd
uδ

yδ
, νrd = νmax

(

1,
y+

F (y+)

)

(13)

For y+
δ < 2, νrd = ν and (13) reduces to (8). In the general case, (13) can be

rewritten as τw = ν(y+
δ /u

+
δ )(uδ/yδ) = u2

τ .
We remark that (12) is an approximative solution of the boundary layer equa-
tion for (magnitude of) wall-parallel velocity in wall-normal direction using the
stress equilibrium assumption, i.e., neglecting convective and pressure gradient
term. Then, for each ~xw ∈ Γw and given uδ seek the wall-parallel component
of velocity uRANS(y) such that

d

dy

(

(ν + νRANS
t )

d

dy
uRANS

)

=0 in { ~xw − y~n | y ∈ (0, yδ)} (14)

uRANS(0) = 0 , uRANS(yδ) = uδ . (15)

3 Evaluation tools for model calibration

It is desirable to treat the calibration problem of basic turbulence models
within the framework of optimisation problems. Consider the abstract equa-
tion

A(q, u) = f in Ω. (16)
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(here: quasi-stationary turbulent Navier-Stokes model) for the state variable
u (here: velocity/pressure) in a Hilbert space V (here: V ⊆ [H1(Ω)]3 ×L2(Ω))
with the parameter vector q (here: model and grid parameter) in the control
space Q := R

np. Let C : V → Z be a linear observation operator mapping u
into the space of measurements Z := R

nm with nm ≥ np. Then q is calculated
from the constrained optimisation problem

Minimize J(q, u) :=
1

2
‖C(u) − Ĉ‖2

Z (17)

with the cost functional J : Q × V → R under constraint (16) and using
measurements Ĉ ∈ Z. Assume the existence of a unique solution to (16)-
(17) and of an open set Q0 ⊂ Q containing the optimal solution. Using the
solution operator S : Q0 → V , one defines via u = S(q) the reduced cost
functional j : Q0 → R by j(q) = J(q, S(q)). The reduced observation operator
c(q) := C(S(q)) leads to an unconstrained problem

Minimize j(q) =
1

2
‖c(q) − Ĉ‖2

Z , q ∈ Q0. (18)

An efficient framework to the solution of the necessary optimality condition
j′(q) = 0 of (18) provides the adjoint approach, see [16] for a review. The
approach can be generalized to time-dependent problems. This makes the op-
timisation problem and solution techniques even much more expensive.
Techniques of (sub)optimal control have been applied to LES of turbulent
channel flow in [35], see also the references given there. Different simplifi-
cations are made in order to reduce the computational costs of the adjoint
approach. In particular, the turbulent viscosity νt is assumed to be solution–
independent in the adjoint equation.
The simulation of turbulent flows with a statistically steady solution using
a turbulence resolving model requires long time intervals. Although sophisti-
cated tools such as a-posteriori based optimisation can reduce the costs, e.g.
[6], recent optimisation tools for time-dependent problems are still extremely
expensive regarding both CPU time and memory consumptions. Moreover, it
is not yet clear how to treat the (nonlinear) turbulence model for the adjoint
equation for time-dependent flows correctly.
As a conclusion of this discussion, a rather simple approach to the least-squares
minimisation of the cost functional (18) is applied. As a basic step, a series
of numerical simulations for a given flow problem will provide look-up tables
for the cost functional depending on relevant model and grid parameters as a
basis for further systematic considering. In some cases, a Newton type method
is feasible to determine optimized parameters.
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4 Calibration for decaying isotropic turbulence

The benchmark problem of decaying isotropic turbulence (DIT) mimics the
experiment by [10] at a Taylor microscale Reynolds number Reλ ∼ 150. Here,
it is used to select proper spatial discretisations of the convective term and to
calibrate basic parameters of the LES and the SA-DES turbulence models.
For the DIT problem, we choose a cubic box domain Ω = (0, 2π)3 and an
equidistant mesh with N3 nodes. As initial condition, we use a divergence-
free velocity field with energy spectrum E(κ)|t=0 (κ = |~κ|, 1 ≤ κ ≤ M ,
M = N/2 − 1) given by data in [10] which can be computed as

~u(~x)|t=0 =
M
∑

κ1=0

M
∑

κ2,κ3=−M

|~κ|≤κmax

(

E(κ)|t=0

Sκ

)1/2

2
(

I − ~κ⊗ ~κ

|~κ|2
)

~γ(~κ) cos(~κ · ~x+ Θ(~κ)).

The components of ~γ(~κ) are real random numbers with Gaussian distribution
in [0, 1], Sκ is the number of wave-vectors ~κ with κ− 1/2 ≤ |~κ| ≤ κ+ 1/2 and
Θ(~κ) is a random phase with uniform distribution in 0 ≤ Θ ≤ 2π.
Denote 〈·〉 the averaging operator over the three homogeneous directions. The

expectation values of the velocity ~U = 〈~u〉 (mean velocity) as relevant first or-
der flow statistics are constant for fixed time and therefore not of interest. The
turbulent kinetic energy k = 1

2
〈(~u − 〈~u〉)2〉 represents second order statistics.

It can be characterized in Fourier space via the energy spectral density

k(t) =
M
∑

κ=0

E(κ, t) , E(κ, t) =
∑

κ− 1

2
<|~q|≤κ+ 1

2

1

2
~̂u(~q, t) · ~̂u∗(~q, t) , (19)

with κ = 1, 2, . . . ,M , where ~̂u∗ denotes the complex conjugate of ~̂u

~̂u(~κ, t) =
1

N3

( N−1
∑

x1,x2,x3=0

~u(~x, t) cos(−~κ · ~x) + i
N−1
∑

x1,x2,x3=0

~u(~x, t) sin(−~κ · ~x)
)

.

(20)
We consider experimental data for t = 0.87[s] and t = 2.0[s] by [10]. Therefore,
the cost functional (depending on some parameter C) is based on a discrete
least-squares functional for the energy spectral density:

J(C) =
( M
∑

i=1

[

(E(κi, C) −Eexp(κi))
2
t=0.87[s] + (E(κi, C) − Eexp(κi))

2
t=2.0[s]

]

)1/2

.

The model parameter CS resp. CDES and the filter width ∆ (more precisely,
the ratio ∆/h with mesh size h) play an important role in the modelling. In
a preliminary study (with N ≤ 64) not given here, best results were obtained
for∆/h = 2.
The time step size used was δt = 0.0087[s]. Additional simulations with a

time step size which was 5 times and 10 times smaller showed that temporal
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Fig. 2. Testcase DIT on 643 mesh. Energy spectrum at t = 0.87[s] (left) and t = 2.0[s]
(right) for CS = 0.1.

discretization errors are insignificant. Then different discretisations and for-
mulations of the convective term are studied. We consider the divergence form
~∇ · (~u⊗ ~u) and the skew-symmetric form 1

2
~∇ · (~u⊗ ~u) + 1

2
[(~u · ~∇)~u+ (~∇ · ~u)~u],

which are analytically but not computationally equivalent, see e.g. [20]. Figure
2 shows the computed energy spectra at t = 0.87[s] (left) and t = 2.0[s] (right)
for CS = 0.1 and N = 64. Only the central discretisation (CDS) with diver-
gence form is suitable to resolve the large wave-number part of the spectrum
appropriately, whereas the upwind schemes LUDS and also the higher order
QUDS produce excessive damping at high wave-numbers. Combining QUDS
with a skew-symmetric formulation (QUDS sk) for the convective fluxes gives
some improvement for the DIT test case, but poor results for the turbulent
channel flow at Reτ = 395, see next section. For CDS with skew-symmetric
form, too much energy is contained in the high wave numbers. For more details
we refer to [38].
Figure 3 (left) shows the dependence of the cost functional on the Smagorin-
sky constant C = CS for N = 64. A Newton-type method (based on nu-
merical differentiation) delivers a global minimum with CS = 0.094 for CDS
and CS = 0.123 for QUDS sk. The value for CDS is in close agreement with
CS = 0.085 from literature (using ∆/h = 2), see [28]. For the SA-DES model
a similar Newton-type approach yields a global minimum of the functional
for C = CDES = 0.67. This result might seem to be just confirmatory. But it
is important to note that low-order methods typically used by industry can
suffer from too large numerical dissipation at the large wave numbers if the
underlying numerical methods are not appropriate. Then altered, i.e. lower,
values for the above model constants are used in order to obtain a better
agreement with the energy spectra, see e.g. [15]. Therefore the fact that the
standard values are obtained confirms that the underlying numerical method
is appropriate. In Figure 3 (right), the energy spectrum for Smagorinsky model
and SA-DES model using CDS with optimized values for CS and CDES re-
spectively are shown for N = 64 and the agreement with the experimental
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data is very satisfying.
Results on a 1283 mesh are shown in Figure 4. Simulations on the fine
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Fig. 3. Testcase DIT on 643 mesh. Left: Calibration of Smagorinsky constant CS.
Right: Energy spectrum for optimized CS resp. CDES for CDS scheme.

mesh give a minimum for J at CS = 0.09, but values for J in the range
CS ∈ {0.08, 0.1} are close. Spectra for CS = 0.094 for N = 64 and CS = 0.1
for N = 128 (see Figure 4 (right)) show that the k−5/3 range is relatively
small for the present low Reynolds number. As a consequence of these results,
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Fig. 4. Testcase DIT on 1283 mesh. Left: Calibration of Smagorinsky constant CS.
Right: Energy spectrum using CS = 0.094 for N = 64 and CS = 0.1 for N = 128.

only the CDS scheme for the convective term in divergence form and the ratio
∆/h = 2 are considered in further simulations.
Finally, the mesh convergence of the results is addressed. For this purpose, we
consider ǫ(0,κ) which describes the dissipation in wavenumbers less than κ, see
[28] p.189. From this quantity, the corresponding Kolmogorov scale η = η(0,κ)

is computed, see [28] p.128, which is given by

η(0,κ) = (ν3/ǫ(0,κ))
1/4 , ǫ(0,κ) =

∫ κ

0
2νκ′2E(κ′)dκ′ .

This allows to assess convergence of the results in a spectral sense, see Figure 5.
For each κ = 15, 31, 63, it can be seen that the numerical value of η(0,κ) comes
closer to the experimental value if N is increased. This indicates convergence
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Fig. 5. DIT: Mesh convergence of Kolmogorov scale η = η(0,κ) = (ν3/ǫ(0,κ))
1/4

derived from ǫ(0,κ) for t = 0.87[s] (left) and t = 2.0[s] (right). Symbols denote +:
η(0,15), ×: η(0,31), ∗: η(0,63). For each pair (N, η(0,κ)) two values are shown, viz., for
CS = 0.09 and CS = 0.10. Horizontal lines are the experimental value.

in a spectral sense. Moreover, for larger N the sensitivity (i.e., the spreading)
of the predicted value of η(0,κ) with respect to different values for the model
parameter CS (here: CS = 0.09 and CS = 0.1) becomes smaller. Finally, it
can be clearly seen that the results for η(0,15) and η(0,31) on the 643-mesh are
already very close to the results for the 1283-mesh. This supports to perform
the parameter calibration study on the 643-mesh.

5 Calibration for channel flow

In this section, we consider LES and DNS for the benchmark problem of fully
developed turbulent channel flow in the domain Ω = (0, 2π) × (0, 2) × (0, π).
Periodic boundary conditions in streamwise x-direction, a no-slip condition
for the walls in y-direction and symmetry planes in the spanwise z-direction
are imposed.

5.1 Channel flow at Reτ = 395

First, we consider a moderate Reynolds number Reτ = uτH/ν = 395 with
channel half width H = 1, for which DNS data are available [25]. In order to
achieve a constant mass flux, the streamwise forcing term is adjusted dynam-
ically by taking into account the time step size δtn and the bulk velocity from
the DNS data and the actual bulk velocity at the present time tn

~f = τw~ex +
1

δtn
(Ubulk,DNS − Ubulk(t)) , Ubulk =

1

H

∫ H

0
u(y)dy (21)

where ~ex denotes the unit-vector in x-direction. As initial condition we use a
randomly perturbed approximative RANS solution ~u|t=0 = uτF (duτ/ν)~ex +

0.1Ubulk
~ψ where d is the wall distance, F is given by (12) and each component

of ~ψ is a random number in (−1, 1). The Smagorinsky constant CS as model
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parameter and y+(1) as grid parameter are the quantities that we want to
identify via sampling of the cost functionals.
The spatial discretisation usesNx×Ny×Nz = N3 nodes withN = 24, 32, 48, 64, 96.
For N = 64, the equidistant spacing in x- and z-direction corresponds to
∆x+ = ∆xuτ/ν = 38.8 and ∆z+ = ∆zuτ/ν = 19.4 respectively. The grid in
wall-normal direction is stretched using a hyperbolic tangent function

y(j)

H
=

tanh[γ(2j/Ny − 1)]

tanh(γ)
+ 1.0 , j = 0, 1, . . . , Ny (22)

where y(j) is the coordinate of the jth grid point in y-direction providing
thus an anisotropic, layer-adapted mesh, see [24]. The stretching parame-
ter γ is taken to be γ ∈ {1.2, 1.5, 1.72, 2.2} which corresponds to y+(1) ∈
{0.39, 0.79, 1.06, 1.45} for the shifted wall node (for N = 64). The computa-
tional time step is chosen as δt+ ≡ δtu2

τ/ν = 0.4. After reaching a statistically
steady solution, first-order and second-order statistics are computed. Denote
〈·〉 the averaging operator over the two homogeneous directions and in time.
8000 time steps are performed to let the flow develop and reach the statistically
steady state, statistics are collected over another 6000 steps. The quantities of
interest are the mean velocity in streamwise direction U = 〈~u〉 ·~ex, the turbu-
lent kinetic energy k = 1

2
〈(~u − 〈~u〉)2〉 and their normalized variants U+ = U

uτ

and k+ = k
u2

τ
.

In a preliminary study not given here, it was observed that the results with
QUDS resp. QUDS sk and also the results with first-order accurate time dis-
cretisation scheme with CDS are not satisfying. However the statement regard-
ing the skew-symmetric form may also depend on the treatment of pressure
[20].
As a first step the role of the spatial and temporal discretisation error was
studied. Turbulence statistics from simulations with δt+ = 0.4 are sufficiently
close to those from computations with δt+ = 0.2, see Figure 6, confirming
results by [8].
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Fig. 6. Influence of time step size on mean velocity (left) and fluctuations (right)
for channel flow at Reτ = 395 using SMG model on 643-mesh with y+(1) = 0.39.

In order to assess grid convergence, simulations on meshes with N3 nodes
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with N = 24, 32, 48, 64, 96 for the Smagorinsky model with standard value
for channel flow CS = 0.05 are considered. Figure 7 shows that on the finest
mesh N = 96 results are much closer to the DNS data than for N = 64, in
agreement with the notion in [24].
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Fig. 7. Convergence study for channel flow at Reτ = 395 using SMG model on
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Right: Fluctuations.

For the parameter optimization the l2-error functional of the LES results com-
pared to the DNS data for U and k are defined by

Ju(y
+(1), C) =

( N
∑

j=0

(Uj(y
+(1), C) − Uj,DNS)

2∆yj

)1/2

(23)

Jk(y
+(1), C) =

( N
∑

j=0

(kj(y
+(1), C) − kj,DNS)

2∆yj

)1/2

(24)

with φj = φ(y(j)) and spacing ∆yj in y-direction of cell j. The parameter
space {CS, y

+(1)} is now two-dimensional and too large to compute the entire
look-up table on the 963 meshes. Therefore the following two-step optimiza-
tion strategy is used. First we perform a (precursor) optimization using the
relatively coarse 643 mesh. This first step is to reduce the parameter range. Ju

and Jk are almost constant for CS ∈ [0, 0.10] and y+(1) ∈ [0.5, 1.5] and become
smallest for CS ∈ [0, 0.06], see Figure 8. In the second step we perform fine grid
LES on the 963 mesh in order to find the optimal parameter CS not effected
significantly by the numerical error. Here we only investigate the reduced pa-
rameter range {CS, y

+(1)} with CS ∈ [0, 0.10] and fixed y+(1) = 0.39. For the
cost functionals, no distinct minimum can be concluded, but there is a plateau
of minimum values for Ju in the range 0 ≤ CS ≤ 0.06. This is supported by
the observation that the profiles for mean flow and statistics almost coincide
for CS ∈ {0.01, 0.03, 0.05}, and also the relative error in uτ w.r.t. the imposed
value is also almost constant.
It is well known that the standard optimal value for the Smagorinsky model
CS = 0.05 for ∆/h = 2 differs from the optimal value for DIT, see [28]. The
present results do not disagree with this standard choice, although Ju and Jk
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Fig. 8. Cost functionals for channel flow Reτ = 395 on 643-mesh, Left: mean velocity.
Right: kinetic energy.
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Fig. 9. Variation of CS for channel flow at Reτ = 395 using SMG model on 963-mesh.
Left: Mean velocity. Right: Fluctuations.

do not show a distinct minimum for CS = 0.05.

5.2 Application to channel flow at higher Reτ

Now, the goal is to simulate turbulent channel flow at Reτ = 4800 using
the calibrated model parameters. Numerical results are compared also with
experimental data by Comte-Bellot from [2], but these should be seen with
caution, since for the three cases considered (Reτ = 2340, 4800, 8160) the
values obtained for slope 1/κ and constant C of the log law u+ = log(y+)/κ+C
show a relatively large spreading and also differ from the standard values. As
a wall-resolved LES (as for Reτ = 395) is very expensive due to the much finer
mesh not only in wall-normal direction, but also in streamwise and spanwise
direction in conjunction with a much smaller time step, wall functions (see
Subsec. 2.3) are used together with the Smagorinsky model (WSMAG).
First the role of the time discretisation error is studied on a mesh with 96 ×
24 × 96 nodes and y+

δ = 50 for the (shifted) first node above the wall, see
Figure 10. For Reτ = 4800, ∆t = 0.02, 0.01, 0.005, 0.0025 correspond to
δt+ = 7.0, 3.5, 1.75, 0.875. The statistics are sampled over 10,000 time steps
after 10,000 steps flow developing (for δt+ = 7). Recall that δt+ = 0.4 was
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Fig. 10. Time-discretisation error for Smagorinsky model with near-wall modelling
(WSMG) for channel flow at Reτ = 4800, Left: Mean velocity. Right: Fluctuations.

required for sufficiently small time discretisation error for wall-resolved LES
at Reτ = 395. For Reτ = 4800 using wall-functions, δt+ = 1.75 is required to
ensure that time discretisation error is sufficiently small. This is only a factor
of four larger compared to wall resolved LES. The second observation is that
the log-layer mismatch is most pronounced for the too large δt and can be
reduced largely by decreasing δt.
Secondly the role of the spatial discretisation error is studied, see Figure 11.
Three meshes are considered with Nx × Ny × Nz nodes where Nx = Nz ∈
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Fig. 11. Study of spatial discretisation error for Smagorinsky model with near-wall
modelling (WSMG) for channel flow at Reτ = 4800 using δt+ = 1.75, Left: Mean
velocity. Right: Fluctuations.

{64, 96, 128} corresponding to ∆x+ = 2∆z+ = 470, 317, 235. For Nx = 64
streamwise fluctuations are largely overpredicted showing an underresolved
LES, see [18]. Results on the two meshes Nx = 96 and Nx = 128 are close.
However, they differ in the channel center, since spacing in the channel center
is relatively coarse. The spacing in x- and z-direction is relatively coarse even
for Nx = 128, cf. [31], but mesh convergence of the results is judged to be
already satisfactory.
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6 Flow over backward facing step at Reh = 37500

In this section we consider the turbulent flow over a backward-facing step at
a higher Reynolds number Reh = U0h/ν = 37500 using wall functions. Ex-
perimental data by Driver and Seegmiller [11] are available. The length of the
inflow part is 4h, the channel height upstream is 8h, where h = 0.0127[m]
is the step height and the channel length after the step is 25h. The inflow
centerline velocity is U0 = 44.2[m/s].
Wall-functions are used at the upper and bottom walls and periodic boundary
conditions in spanwise direction. The wall opposite the step was parallel to
the wall in the experiment considered here. If we remove the upper half of the
channel and treat the centerline as a symmetry plane, a RANS calculation
using the Spalart-Allmaras model showed that the velocity at the outlet will
slow down around 12% compared with the case using the full geometry. There-
fore the full configuration has to be considered. A blending of DNS data [32]
in the near-wall region and experimental data [11] otherwise is used for the
mean velocity profile at the inflow boundary. The method by [19] is applied
to generate turbulence structures at the inflow boundary.
Since wall functions are used, relatively coarse grids in the near-wall region
can be used. A hyperbolic tangent function is adopted to generate anisotropic
grid spacing in wall normal y−direction. The mesh is equidistant in x− and
z−direction and only a small stretching is applied in x−direction near the
outlet.
First the role of the time step size is studied on a grid consisting of 169×Ny×32
nodes, where in wall-normal direction Ny = 54 for x ≤ 0 and Ny = 71
for x > 0 (∆x+, ∆z+ are given in Table 1). For the time step size we use
δt = 5 × 10−5[s], 2 × 10−5[s], 1× 10−5[s], 5 × 10−6[s] corresponding to a factor
of 100, 40, 20 and 10 compared to the DNS at Reh = 5100 by [21] and we
note that δt = 1× 10−5[s] ≃ 0.035h/U0. In Figures 12-14 the profiles of mean
velocity and fluctuations for different time step sizes are shown at 8 cross sec-
tions where experimental data are available. The average is performed over a
simulation time 348h/U0 and spanwise direction after a flow developing time
348h/U0, which is around 12 ”flow through” times. The results for mean flow
and statistics from simulations with δt = 1× 10−5[s] and δt = 5× 10−6[s] are
very close, which can be seen also from Cf in Figure 15. The time discreti-
sation error is therefore judged to be sufficiently small. Agreement with the
experimental data is also satisfying.
Since wall functions are used, skin friction coefficient Cf is computed using
(12). Figure 15 presents Cf in comparison with the experimental data. The
uncertainties in Cf were assessed by [11] to be ±8% for a 95% confidence level
(with an uncertainty of ±15% in the region of separated flow).
In order to study grid convergence, four meshes are considered, see Table 1.
Mesh spacing in plus units at x/h = −0.5 and x/h = 10 is also given. We
used δt = 2 × 10−5[s]. Results in Figures 16-18 show that the solutions on
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Fig. 12. Backward facing step at Reh = 37500: Mean streamwise velocity for differ-
ent time step sizes: ◦, exp. data of [11].
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time step sizes: ◦, exp. data of [11]. Same line legend as in Figure 12.
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Fig. 14. Backward facing step at Reh = 37500: Fluctuations < v′v′ > for different
time step sizes: ◦, exp. data of [11]. Same line legend as in Figure 12.

the two coarser meshes deviate discernibly from the solution on the two fine
meshes. This is at least in part due to the underresolved LES before the step
which cannot maintain the turbulent structures in the boundary layer, which
trigger the destabilisation of the shear layer downstream of the step and play
an important role for the recirculation length, see e.g. [3,7]. On the positive
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Table 1
Mesh spacing in plus unit for backward facing step at Reh = 37500.

Mesh 78x31x16 110x47x32 169x71x32 219x89x32

x/h -0.5 10 -0.5 10 -0.5 10 -0.5 10

∆x+ 660 420 300 220 180 180 110 160

∆z+ 300 260 150 130 150 130 150 130

side, for the two fine meshes, the agreement with the experimental data is al-
ready satisfactory. It is worthwhile highlighting that the total simulation time
is about 6 days on a single processor machine for the 169x71x32 mesh using
δt = 1 × 10−5[s].
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Fig. 16. Backward facing step at Reh = 37500: Mean streamwise velocity on different
meshes: ◦, exp. data of [11].
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Fig. 17. Backward facing step at Reh = 37500: Fluctuations < u′u′ > on different
meshes: ◦, exp. data of [11].
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Fig. 18. Backward facing step at Reh = 37500: Fluctuations < v′v′ > on different
meshes: ◦, exp. data of [11].

7 Indicator for assessing the resolution quality of LES for free shear

layers

The large influence of the spatial discretisation error on the quality of the LES
results became obvious in the previous sections. This demands best practice
guidelines for mesh design. Present results for LES with near-wall resolution
(see Section 5.1) and wall-modelling using wall functions (see Sections 5.2, 6)
confirm mesh requirements for attached boundary layer flow in streamwise,
spanwise and wall-normal direction found in earlier studies, see [31] and ref-
erences therein.
For free-shear layers and regions of separated flow, these guidelines cannot be
applied. As a remedy, we now present a sensor S based on the resolved turbu-
lent kinetic energy which measures the resolution quality of the LES in such
flow regions. Based on the sensor value, the mesh can then be refined locally.
The sensor S is designed such that it takes values in [0, 1]. S > s1 indicates
that mesh resolution is sufficiently fine and S < s0 if the mesh is too coarse.
The threshold values s0, s1 will be determined empirically below.
The concept of such a sensor was proposed by [29] with view on an adaptive
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LES, where ∆ = ∆(x) is interpreted as a model parameter, and, if the ra-
tio h/∆ is fixed, ∆ is adapted by varying the mesh spacing until a desired
turbulence resolution is obtained. As an abstract measure of turbulence reso-
lution the fraction of the resolved to total turbulent kinetic energy is proposed.
However, the turbulent kinetic energy in the residual or subgrid scale motion
cannot be computed from resolved quantities and hence requires modelling,
but no operational definition is given in [29]. For statistically steady flow, we
propose

S(~x) =
k

k + ksgs
, k =

1

2
〈(~u− 〈~u〉)2〉 , ksgs =

1

2
〈(~u− ~u)2〉 (25)

where 〈·〉 denotes the filtering operator in homogeneous directions and in time
and ~u is defined by the convolution integral

~u(x, t) =
∫

Rd
g∆(~x− ~y)~u(~y, t)d~y (26)

with g∆ being the top hat filter function. The underlying idea is to use a
scale similarity assumption for the subgrid scale velocity ~usgs(~x, t) ≈ ~u(~x, t)−
~u(~x, t). Since we are interested in S only remote from walls, there is no special
adjustment of the filter definition for near-wall cells. The question whether an
adaption of the filter definition at inflow and outflow boundaries is needed,
requires additional investigation, but this is only fine tuning of the method.
Figures 19(a)-19(d) show sensor S for the turbulent flow over a backward
facing step at Reh = 37500 on the four meshes in Table 1. From Figures 16-18
we concluded that grid convergence on the two fine meshes is satisfactory but
that the solution on the coarse mesh suffers from large error. For the coarse
mesh S < 0.8 in large part of the free-shear layer and the recirculation region
(see Figure 19(a)), but for the finest mesh S > 0.85 in the recirculation region
and S around 0.9 in the free-shear layer (see Figure 19(d)). From this we
suggest the threshold values s0 = 0.8 and s1 = 0.9. The separation between s0

and s1 should be large enough to make an automatic grid refinement method
successful. Otherwise an additional scaling of the indicator could be used to
make this distance larger.
Small sensor values in the channel center demonstrate that the sensor needs

improvement for practical applications. In the channel center, k is small due to
small turbulence production, since velocity gradients are small. As a remedy,
an additional sensor hased on the mean flow (averaged over homogeneous
directions and in time) is needed. The present mean flow is almost irrotational
in the channel center, and the sensor (25)-(26) should be deactivated there.

8 Summary. Conclusions

In this paper we showed a validation strategy for enhancement of an unstruc-
tured industrial finite-volume solver designed for steady RANS problems for

21



indicator_ke: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) WSMAG on 78 × 31 × 16-mesh

indicator_ke: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) WSMAG on 110 × 47 × 32-mesh

indicator_ke: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(c) WSMAG on 169 × 71 × 32-mesh

indicator_ke: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(d) WSMAG on 219 × 89 × 32-mesh

Fig. 19. Measure of turbulence resolution using sensor (25)-(26) for four differ-
ent meshes for turbulent flow over a backward facing step at Reh = 37500 using
Smagorinsky model with wall-functions.

large eddy-type simulation with near-wall modelling of incompressible high-
Reynolds number flow. Summary of the results and conclusions will be given
by referring to the four questions raised in the introduction. Regarding the
first question posed in the introduction we showed that it is possible to adopt
second-order schemes to achieve LES capability. Key elements are using cen-
tral difference scheme (CDS) for the convective term in divergence form and
a second order accurate time discretisation using the BDF(2) scheme. For the
benchmark cases of DIT and for turbulent channel flow at Reτ = 395 very sat-
isfying results were obtained compared to similar results in the literature using
the standard Smagorinsky model (with van Driest damping) and the SA-DES
model [34], which can be implemented easily into an unstructured flow solver.
A calibration of the model parameters, performed here using least-squares
cost functionals for first and second order flow statistics, was done after dis-
cretisation error in space and time was ensured to be sufficiently small. The
optimized values for the model constant are in close agreement with the values
found in literature.
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Concerning the second question posed in the introduction, turbulent channel
flow at Reτ = 4800 was considered. Wall-functions allow to use larger time
step size by factor four and increased spacing in streamwise and spanwise di-
rection by factor five. The savings in wall-normal direction are at least by a
factor of four. Based on these numbers, the total savings are thus by a factor
of 400. Then turbulent flow over a backward facing step at higher Reynolds
number Reh = 37500 by [11] was simulated successfully using wall-functions.
It is worth highlighting that the total simulation time using sufficiently fine
mesh and time step size is about six days on a single processor machine. This
demonstrates the industrial feasibility for engineering design studies for con-
figurations of moderate complexity and relatively large Reynolds numbers.
The third and fourth question posed in the introduction concern reliability of
LES results in terms of numerical error and best-practice guidelines. Conver-
gence studies for turbulent channel flow and backward-facing step showed that
the numerical discretisation error in space and time has a dominant influence
on the solution and that underresolution can cause poor results. From an in-
dustrial view point, the danger of an underresolved LES is judged to be the
major hurdle for LES in complex geometries, since it is well-known practice
in industry to prefer increasing the complexity of the CAD model rather than
to refine the mesh and keep geometrical details constant. The large influence
of the spatial discretisation error on the quality of the LES results strongly
demands best practice guidelines for mesh design. For LES with near-wall
resolution and wall-modelling using wall functions, mesh requirements inside
attached boundary layers in streamwise, spanwise and wall-normal direction
found in this work confirmed existing best practice guidelines for mesh design.
For free-shear layers and regions of separated flow these guidelines cannot be
applied. As a remedy, we presented a sensor based on the resolved turbulent
kinetic energy which measures the resolution quality of the LES in such flow
regions. The sensor values can then be used to refine the mesh locally, e.g. us-
ing the techniques in [4]. This will be subject to future research since it would
raise a new important question concerning LES on unstructured meshes. Since
the present refinement strategy does not support hanging nodes, the refine-
ment of hexaedral elements leads to prismatic and tetraedral elements. The
numerical properties of the present method for LES has not yet been studied
on such elements. This needs to be done before applying a local mesh refine-
ment.
For LES of flows in complex geometries, grid convergence can generally not
be ensured by a global mesh refinement study due to extremely large compu-
tational costs. The question whether or not the number of degrees of freedom,
which is necessary to achieve mesh converged results for LES, can be reduced
by using higher order methods, is beyond the scope of this paper. In any case,
the proposed approach of a local grid refinement using a measure for LES
resolution quality offers a promising tool to automatically design a mesh such
that the LES solution is sufficiently converged for engineering design problems
using a low-order code at affordable computational costs.
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