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1 Introduction

We apply a projection-based variational multiscale (VMS) method, originally pub-
lished in [5], to the simulation of low-turbulent, wall-bounded, incompressible flow.
Our approach relies on inf-sup stable finite element pairs for velocity/ pressure. The
(semidiscrete) a-priori analysis of this method, given in [7], allows rather general
nonlinear, piecewise constant coefficients of the subgrid models for the unresolved
scales. The analysis takes advantage of divergence preserving interpolation which
had been considered in [3] for the case of simplicial isotropic meshes. An extension
to anisotropic quadrilateral meshes has been recently considered in [2].

Here we consider two approaches: (i) layer-adapted anisotropic quadrilateral
grids (see, e.g., [4]), and (ii) weakly-enforced Dirichlet boundary conditions on
isotropic meshes (see, e.g., [1]). For the coefficients of the projection-based VMS
method we apply an approach motivated by arguments of the popular Smagorin-
sky model. Based on the results in [7, 2], we show the applicability of the recent
a-priori analysis for VMS methods to both approaches. Numerical results for both
variants are presented for the well-known benchmark of low-turbulent flow in a
three-dimensional channel at Reτ = 180.

2 Variational multiscale model of Navier-Stokes problem

Let Ω ⊂ R3 be a bounded polyhedral domain. The incompressible Navier-Stokes
equations consists of finding velocity u and pressure p such that
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∂tu−∇ · (2νDu)+(u ·∇)u+∇p = f in (0,T ]×Ω

∇ ·u = 0 in (0,T ]×Ω

u|t=0 = u0 in Ω

with deformation tensor Du = 1
2 (∇u+(∇u)T ) and viscosity ν . For simplicity, we

consider homogeneous Dirichlet boundary conditions and the solution spaces

V = [H1
0 (Ω)]3, Q = L2

∗(Ω) := {q ∈ L2(Ω) :
∫

Ω

q dx = 0}.

The variational formulation reads: find (u, p) : (0,T ]→V ×Q s.t. ∀(v,q) ∈V ×Q

(∂tu,v)+(2νDu,Dv)+bS(u,u,v)− (p,∇ ·v)+(q,∇ ·u) = (f,v)

with
bS(u,v,w) := 1/2[((u ·∇)v,w)− ((u ·∇)w,v)].

Let Th be an admissible triangulation of Ω such that Ω = ∪K∈ThK. Here, we con-
sider inf-sup stable velocity-pressure finite element (FE) spaces Vh×Qh ⊂ V ×Q
with the discrete inf-sup condition

∃β 6= β (h) s.t. inf
qh∈Qh

sup
vh∈Vh

(qh,∇ ·vh)

‖qh‖0‖∇vh‖0
≥ β > 0. (1)

The Galerkin method reads: find (uh, ph) : (0,T ]→Vh×Qh s.t. ∀(vh,qh) ∈Vh×Qh

(∂tuh,vh)+(2νDuh,Dvh)+bS(uh,uh,vh)− (ph,∇ ·vh)+(qh,∇ ·uh) = (f,vh).

The idea of VMS was developed in 1995 by Hughes et al. Its application to scale
separation in turbulence modeling started around 2000. The basic aim is to model
the influence of smallest (unresolved) scales onto the small scales. Following an idea
of Layton [5], we define a coarser FE space LH for the deformation tensor where

{0} ⊆ LH ⊆ L := {L = (li j) : li j ∈ L2(Ω)∀i, j ∈ {1,2,3}}.

Define the L2-orthogonal projection operator PH : L→ LH and the small scales via
κ(Duh) : = Duh−PH(Duh) with fluctuation operator κ : = Id−PH . Then the VMS
method reads: find (uh, ph) : (0,T ]→Vh×Qh s.t. ∀(vh,qh) ∈Vh×Qh:

(∂tuh,vh)+2ν (Duh,Dvh)+(νT (uh)κDuh,κDvh)

+bS(uh,uh,vh)− (ph,∇ ·vh)+(∇ ·uh,qh) = (f,vh)

with cellwise constant νK
T (uh) := νT (uh)|K ≥ 0 for all K ∈Th. The space

V div
h : = {vh ∈Vh : (∇ ·vh,qh) = 0 ∀qh ∈ Qh}

of discretely divergence free functions is not empty thanks to condition (1). Then
the discrete problem reduces to: find uh : (0,T ]→V div

h s.t. ∀vh ∈V div
h :
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(∂tuh,vh)+2ν (Duh,Dvh)+(νT (uh)κDuh,κDvh)+bS(uh,uh,vh) = (f,vh) (2)

with initial condition uh(0) = Ihu0 and an interpolation operator Ih : V → V div
h . Let

us start with the following stability result given in [7], Lemma 3.1.

Lemma 1. Let f ∈ [L1(0,T ;L2(Ω))]3, u0 ∈ [L2(Ω)]3; then we obtain for t ∈ (0,T ]
control of kinetic energy and control of dissipation and subgrid terms, respectively:

‖uh‖L∞(0,t;L2(Ω)) ≤ K(f,u0) ≡ ‖u0‖0 +‖f‖L1(0,t;L2(Ω))

ν‖Duh‖2
L2(0,t;L2(Ω))+

1
2

∫ t

0
∑
K

ν
K
T (uh)‖κuDuh‖2

0,Kdt ≤ 3K2(f,u0).

One technical trick in the error analysis is to rewrite the turbulence term as

∑
K

ν
K
T (uh)‖κuDvh‖2

0,K = ∑
K

ν
K
T (uh)

(
1−
‖PHDvh‖2

0,K

‖Dvh‖2
0,K

)
‖Dvh‖2

0,K

and to set

νmod(uh,vh) : = 2ν +ν
K
T (uh)

(
1−
‖PHDvh‖2

0,K

‖Dvh‖2
0,K

)
≥ 2ν .

The following semidiscrete a-priori estimate w.r.t. the mesh-dependent expression

|||vh|||2t : =
1
2
‖vh(t)‖2

0 +ν ‖Dvh‖2
L2(0,t;L2(Ω))+

∫ t

0
∑

K∈Th

ν
K
T (uh)‖κDvh‖2

0,K dt

is a variant of Theorem 3.5 in [7].

Theorem 1. Under the assumptions of Lemma 1 and for a sufficiently smooth solu-
tion u of the Navier-Stokes model (see Ref. [7]) it holds for the solution uh of (2)

|||uh− Ihu|||2t ≤Ceh(t)
∫ t

0
g(s) ds, t ∈ (0,T ) (3)

with h(t) :=C‖Du(t)‖4
0/[minK νK

mod(uh(t),eu
h(t))]

3 and

g(t) := max
K

ν
K
T (uh(t))

(
‖κDu(t)‖2

0 +‖D(u− Ihu(t))‖2
0

)
(4)

+
1

minK νK
mod(uh(t),eu

h(t))

[
‖∂t(u− Ihu)(t)‖2

−1,Ω + inf
p̃h∈Qh

‖(p− p̃)(t)‖2
0

+
(
‖Du(t)‖2

0 +‖uh(t)‖0‖Duh(t)‖0

)
‖D(u− Ihu)(t)‖2

0

]
.

Let us consider Taylor-Hood elements with Vh ×Qh = [Qk]
3 ×Qk−1 with k ≥ 2

on isotropic meshes Th. Then we can apply the V div
h -interpolation operator Ih of

Girault/Scott [3] and the interpolation properties of the fluctuation operator κ . Under
the requirement maxK νK

T (uh(t))≤Ch2
K , we obtain from (3)-(4) the estimate
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|||uh− Ihuh|||2t ≤C(ν ,νT ,T,u)h2k, t ∈ (0,T ]. (5)

A possible choice is νT |K =C∗∆ 2‖κDuh‖0,K/
√

vol(K) for all K ∈Th, user chosen
constant C∗, and filter width ∆ ∼ hK , see Ref. [7].

3 Applications with layer-adapted meshes

Theorem 1 can be applied to layer-adapted meshes as well. Here we consider tensor-
product meshes Th in d ∈ {2,3} dimensions where the transformation from refer-
ence cell K̂ =(−1,1)d to another cell K ∈Th can be described by the transformation
x = diag(h1,K , . . . ,hd,K) x̂+ aK with the local mesh sizes hi,K into direction i and a
shift aK ∈ Rd . Assume that the mesh size in direction d is locally the smallest one

Fig. 1 Channel flow: domain (left) and mesh (right)

s.t. 0 < hd,K ≤ hi,K ∀i ∈ {1, . . . ,d−1},∀K ∈Th whereas the mesh sizes in the other
directions are isotropic. Moreover, we suppose no abrupt change in the element
sizes of neighboring cells, i.e. hi,K′ ≤Chi,K ≤Chi,K′∀K,K′ ∈Th, K′∩K 6= /0 . Such
a construction is considered in Fig. 1 (right).

In [2] we obtained for a divergence-preserving interpolator Ih : V → V div
h the

following (presumably suboptimal) interpolation estimate:

‖v− Ihv‖2
Hm(K) ≤Cγ

2
i (h1,K/hd,K)

2
∑

|α|=l−m
h2α

K |Dα v|2Hm(ω(K)) ∀v ∈ H l(ω(K))d

for m ∈ {0,1}. Here γi is the maximal aspect ratio of a patch ω(K) containing K,
and h1,K/hd,K is the local aspect ratio of K. The latter estimate can be applied to
bound (3)-(4) on layer-adapted meshes.

We now consider a channel flow in Ω = (0,H)× (0,L)× (0,B) with H = 1,
L = 4π , B = 4π

3 , see Fig. 1 (left). The viscosity ν = 1.5× 10−5 corresponds to
Reτ = 180. The initial value for the velocity u is taken as the known mean profile
with random noise. We apply a BDF(2)-scheme with time step ∂ t = 0.86 and the
Taylor-Hood element Q2/Q1 on an anisotropic Cartesian mesh with 16× 24× 16
cells and y( j)=H(tanh(2(2 j/N−1))/(tanh(2)+1), j∈{0, . . . ,N = 24}, see Fig. 1
(right).
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Fig. 2 Channel flow with VMS and Q2/Q1 vs Qdisc
0

As reference data from direct numerical simulation we refer to [6]. We are
mainly interested in reference values of means, the main channel profile 〈U〉 =
limδ→∞

1
δ

∫ t0+δ

t0 U dt with U(t,x) = u(t,x) · e1 and the scaled Reynolds stress u′ =
U−〈U〉, y+ = yuτ/ν , see Fig. 2. The numerical results are reasonable on the given
coarse mesh Th. We did not observe a significant influence of the maximal aspect
ratio which here is 1

16 L/y(1)≈ 55.

4 Applications with weak Dirichlet boundary conditions

An anisotropic mesh refinement becomes more and more expensive with increasing
Reynolds number Reτ . An alternative is to consider weakly enforced Dirichlet con-
ditions on isotropic meshes. Here we follow the framework of Bazilevs et al. [1].
Fig. 3 shows the difference of strongly and weakly enforced Dirichlet data.

Fig. 3 Strongly (left) and weakly (right) imposed Dirichlet boundary conditions

We assume for simplicity the case of homogeneous Dirichlet data u = 0. More-
over, we divide the boundary ∂Ω =Γin

.
∪Γout

.
∪Γ0 with Γin : uh ·n < 0, Γout : uh ·n >

0, and Γ0 : uh ·n = 0. Following Ref. [1] we consider the modified problem: find
uh : (0,T ]→Vh ⊂ [H1(Ω)]d , ph : (0,T ]→ Qh s.t. ∀(vh,qh) ∈Vh×Qh:
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(∂tuh,vh)+2ν (Duh,Dvh)+(νT κDuh,κDvh)+bS (uh,uh,vh)

+Bwall(uh, ph;vh,qh)− (ph,∇ ·vh)+(∇ ·uh,qh) = (f,vh)

with

Bwall(uh, ph;vh,qh) =−(2νDuh ·n,vh)∂Ω
+(ph,vh ·n)∂Ω

− (qh,uh ·n)∂Ω

−1
2
((uh ·n)uh,vh)∂Ω − (uh,2νDvh ·n)∂Ω

+
1
2
(uh,(uh ·n)vh)Γout

+(uh,τBvh)∂Ω
+(uh ·n,(CBν/h− τB)vh ·n)∂Ω

.

Here, CB, τB are user-chosen constants and we consider a choice at the end of this
section. Let us modify the error analysis from Section 2, starting with a stability
estimate. Please note that we obtain additional control of certain boundary terms.

Lemma 2. Assume f ∈ L1(0,T ;L2(Ω)), u0 ∈ [L2(Ω)]d , CB ≥ τBh/ν > 0 and 0 <
µ ≤ τB−4C2

I νh−1. Then we obtain

‖uh‖L∞(0,t;L2(Ω)) ≤ K(f,u0) : = ‖u0‖0 +‖f‖L1(0,t;L2(Ω))

|||uh|||2t +
∫ t

0
µ ‖uh‖2

0,∂Ω
+

1
2

∥∥∥√|uh ·n|uh

∥∥∥2

0,Γin
dt ≤ K2(f,u0).

Proof. The new part in the proof is the treatment of the boundary terms. Therefore,
we plug in vh = uh and qh = ph and obtain

Bwall(uh, ph;uh, ph) =−(2νDuh ·n,uh)∂Ω
+(ph,uh ·n)∂Ω

− 1
2
((uh ·n)uh,uh)∂Ω − (uh,2νDuh ·n)∂Ω

− (ph,uh ·n)∂Ω

+
1
2
(uh,(uh ·n)uh)Γout +(uh,τBuh)∂Ω

+(uh ·n,(CBν/h− τB)uh ·n)∂Ω

≥CBν/h‖uh ·n‖2
0,∂Ω

+ τB

(
‖uh · τ1‖2

0,∂Ω
+‖uh · τ2‖2

0,∂Ω

)
−ν ‖Duh‖2

0−4C2
I ν/h‖uh‖2

0,∂Ω
+

1
2

∥∥∥√|uh ·n|uh

∥∥∥2

0,Γin

≥
(
τB−4νC2

I /h
)
‖uh‖2

0,∂Ω
+

1
2

∥∥∥√|uh ·n|uh

∥∥∥2

0,Γin
−ν ‖Duh‖2

0 ,

where τ1, τ2 are the directions orthogonal to n and CI is from a trace theorem. With
the usual way to handle the other terms, e.g. in Ref. [7], the claim is proven.

Now we are in the position to state the following semidiscrete a-priori error estimate.

Theorem 2. Assume Vh = [Qk]
3, Qh = Qk−1, k≥ 2 and νK

T (uh) ∈O(h2). Under the
assumptions of Lemma 2 and sufficient smoothness assumptions on the data, see
Ref. [7], it holds

|||uh− Ihu|||2t +
∫ t

0
µ ‖uh− Ihu‖2

0,∂Ω
+

1
2

∥∥∥√|uh ·n|(uh− Ihu)
∥∥∥2

0,Γin
dt ≤Ch2k
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for every t ∈ (0,T ] with C =C(ν ,νT ,T,u).

Proof. Let us show the key steps. Please note that Bwall(u, p;vh,qh) = 0. The bound-
ary terms can be treated like linear terms since u ·n|∂Ω = 0. Consider eu := uh− Ihu
and εu : = u− Ihu with an interpolation operator Ih : H1(Ω)→ Ṽ div

h with

Ṽ div
h : = {vh ∈Vh : (∇ ·vh,qh) = 0, (vh ·n,qh)∂Ω = 0 ∀qh ∈ Qh}.

Such an operator can be constructed by minor modifications of the operator from
Ref. [3]. With the exception of the boundary terms, everything can be estimated
exactly as in the case of strong boundary conditions, see Ref. [7] formula (15).
Hence, we focus on the boundary terms

Bwall(uh−u, ph− p;eu,ep) = Bwall(eu,ep;eu,ep)−Bwall(εu,εp;eu,ep),

where the first term on the right hand side can be treated like in Lemma 2 to get

Bwall(eu,ep;eu,ep)≥
(
τB−4νC2

I /h
)
‖eu‖2

0,∂Ω
+(CBν/h− τB)‖eu ·n‖2

0,∂Ω

+
1
2

∥∥∥√|uh ·n|eu

∥∥∥2

0,Γin
−ν ‖Deu‖2

0 .

The structure of Bwall(εu,εp;eu,ep) is a combination of interpolation errors and
terms for the left hand side. We estimate

Bwall(εu,εp;eu,ep)≤
ν

16
‖Deu‖2

0 +
µ

2
‖eu‖2

0,∂Ω
+(CBν/h− τB)‖eu ·n‖2

0,∂Ω

+
1
4

∥∥∥√|uh ·n|eu

∥∥∥2

0,Γin
+

4ν2C2
I

µh
‖Dεu‖2

0

+
(
16νC2

I /h+ τ
2
B/µ

)
‖εu‖2

0,∂Ω
+

1
2
(CBν/h− τB)‖εu ·n‖2

0,∂Ω

+
1
4

∥∥∥√|uh ·n|εu

∥∥∥2

0,Γin
+

1
2
(CBν/h− τB)

−1∥∥εp
∥∥2

0,∂Ω
.

To obtain this result we use (ep,(u− Ihu) · n)∂Ω = 0, since we chose Ihu ∈ Ṽ div
h .

Together with the techniques in Ref. [7] and the stability result in Lemma 2, the
claim is proven.

Let us discuss a choice of the parameters CB and τB. The variant of weakly imposed
boundary conditions from Ref. [1] is based on a wall function formulation, where
τB = u2

τ/
∥∥uh,tan

∥∥ is determined to fulfill Spalding’s law of the wall for a turbulent
boundary layer with the wall-friction velocity u2

τ = ν
∂<u1>

∂y |y=0 and the velocity
vector uh,tan tangential to the wall. For the channel flow at Reτ = 180, one obtains
uτ ≈ 0.0028 and

∥∥uh,tan
∥∥ ≈ 0.043, see Ref. [6]. For a better understanding of this

parameter we refer to the theory on boundary layers. In the viscous sublayer it holds
1 = y+/u+ = yτB/ν , where the ’+’ stands for the wall coordinates and y is the
coordinate normal to the wall. This means that τB ∼ ν/h in the viscous sublayer
and τB ≥Cν/h away from layer, since u+ < y+ in these regions. From the analysis
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above we need the existence of 0 < µ ≤ τB−4C2
I ν/h. A possible choice of τB is

τB = max
(
u2

τ/
∥∥uh,tan

∥∥ ,8C2
I ν/h

)
.

For the remaining parameter, the analysis leads to CB > τBh/ν .

5 Summary and Outlook

We applied a projection-based variational multiscale method to the numerical simu-
lation of wall-bounded flows at moderate Reynolds numbers. A semidiscrete a-priori
error estimate from [7] is extended to layer-adapted meshes of tensor-product type
and to weak Dirichlet boundary conditions on isotropic meshes. Based on the error
analysis, model parameters for the weak boundary treatment are derived.

For the channel flow at Reτ = 180 with layer-adapted meshes of tensor-product
type no instability was obtained for meshes with moderately high aspect ratio. The
numerical results of [1] for a channel flow on isotropic meshes validate the applica-
tion of a weak treatment of Dirichlet boundary condition at even higher Reτ .

For higher Reynolds numbers, a weak treatment of Dirichlet boundary conditions
on isotropic meshes seems to be more advantageous as it mimics the wall of the law.
Despite the potential influence of large aspect ratios, layer-adapted meshes will be
more and more expensive with increasing Reynolds numbers.
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