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Abstract

Inverse problems are concerned with the reconstruction of quantities from remote
measurements. Inverse fluid flow problems are important for many applications, for
example for determining the state of the atmosphere from measurements on the
planets surface and further remote sensing techniques. Here, we investigate the
reconstruction of some fluid flow and shape reconstruction for inclusions within the
flow from boundary measurements. As a model problem we consider the Oseen
equation, which is obtained by linearizing the Navier-Stokes equations.

In a first step we develop a point source method for the reconstruction of flow
field from remote measurements. In contrast to field reconstructions in acoustics
or electromagnetics, here we need a proper setup of the scheme as the fundamental
solution of the Oseen equation is not symmetric or anti-symmetric in its arguments;
moreover the null-spaces of the integral operators under consideration are no longer
trivial, such that the corresponding convergence analysis of the point source method
is particularly difficult.

Further we extend our study to develop methods to test for analytic extensibility
in fluid dynamics for the inverse fluid flow problems. We study and analyze three
different approaches for the analytical continuation, the range test, the no-response
test and a convergence test. We prove the convergence of these methods when
applied to the Oseen equation. In particular, we exhibit a new approach to show
convergence of the no-response test. A strong relationship between the convergence
test and the no response test is shown.

A numerical demonstration of the point source method and the convergence test
is presented to exhibit the feasibility of these methods. To carry out the recon-
structions we employ either domain sampling or the LASSO scheme is used for the
reconstruction of flow field and the shape of unknown obstacles.
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Zusammenfassung

Inverse Probleme beschéftigen sich mit der Rekonstruktion von Grofien aus Fern-
erkundungsdaten. Inverse Stromungsmechanik ist wichtig flir viele Anwendungen,
zum Beispiel um den Zustand der Atmosphére aus Messungen an der Oberfliche
des Planeten und mit Hilfe weiterer Fernerkundungstechniken zu bestimmen. Hier
untersuchen wir die Rekonstruktion einer Stromung und die Gestaltsrekonstruktion
von Inklusionen in dieser Stromung aus Randwertmessungen. Als Modellproblem
betrachten wir die Oseen Gleichung, die durch eine Linearisierung der Navier-Stokes
Gleichungen entsteht.

In einem ersten Schritt entwickeln wir eine Punktquellenmethode fiir die Rekon-
struktion der Stromung aus Fernerkundungsdaten. Im Unterschied zu Feldrekon-
struktionen in der Akustik oder Elektromagnetik brauchen wir hier einen etwas
anderen Ansatz, da die Grundlosung der Oseen Gleichung nicht symmetrisch oder
Antisymmetrisch in ihren Argumenten ist; Ferner sind die Nullrdume der Operatoren
nicht-trivial, so dass die zugehorige Konvergenzanalysis der Punktquellenmethode
einige Schwierigkeiten bietet.

Weiter erweitern wir unsere Untersuchungen auf Tests zur analytischen Fortset-
zbarkeit in der Stromungsmechanik fiir inverse FlufSprobleme. Wir studieren und
analysieren drei verschiedene Methoden fiir die analytische Fortsetzung, den Range
Test, den No Response Test und einen Konvergenztest. Wir zeigen die Konvergenz
dieser Methoden in ihrer Anwendung auf die Oseen Gleichung. Insbesondere en-
twickeln wir eine neue Beweistechnik um die Konvergenz des No Response Tests zu
beweisen. Es wird ferner eine starke Verwandschaft zwischen dem Konvergenztest
und dem No Response Test nachgewisen.

Eine numerische Demonstration der Punktquellenmethode und des Konvergenz
Tests wird présentiert, um die Eigenschaften dieser Methoden zu zeigen. Um die
Rekonstruktionen durchzufiithren haben wir entweder “Domain Sampling” oder das
LASSO Schema genutzt zur Ermittlung der Strémungsfelder und der Gestalt un-
bekannter Einschliisse.
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Chapter 1

Introduction

Inverse problems are those problems where we want to find the cause for a desired or
an observed effect. They are mainly given by applications and have been studied for
nearly a century. Most of the inverse problems are “ill-posed” in nature. Ill-posed
means that they do not fulfill Hadamard’s classical requirements [18], i.e., solutions
of an inverse problem might not exist for all data, might not be unique, or might
be unstable with respect to data perturbations. Usually the direct problems are
simpler or more well studied than the inverse problems. These kind of problems
appear in a large variety of applied sciences, such as medical diagnostics, computer-
ized tomography, electrical impedance tomography, geophysics, and ocean acoustic
tomography.

Nevertheless, the inverse fluid problems which are of fundamental importance for
many applied areas ranging from industrial process monitoring to numerical weather
prediction are still a relatively new area of research. In this monograph we study the
inverse problem in fluid dynamics. More precisely we will search for the unknown
inclusions and the velocity field in viscous incompressible fluids.

Mathematically, the motion of the fluids are governed by the Navier-Stokes equa-
tions which are non-linear in nature [5,8]. In 1845 Stokes [43] suggested to linearize
these equation by assuming the ratio of inertial to viscous forces is vanishingly small
so that the convective term can be neglected. Few years later, in 1851, Stokes pre-
sented an explicit solution for such flows in exterior domains [44]. However, the
explicit solutions of Stokes equations did not provide any information about the
wake region behind the object and are therefore unacceptable from a physical view-
point. C. W. Oseen found another linear approximation of Navier-Stokes equation
in 1910 [32]. The result of such an approximation is more successful compared to
Stokes since Oseen described a paraboloidal wake region behind the obstacle.

In this monograph, as a model problem, for a bounded domain D C R2, we
investigate the following two dimensional inverse exterior Dirichlet problem for the
stationary Oseen equation
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pAu—0u—Vp=0, V-u=0,

subject to the boundary condition, for a vector field f,
u=f on 0D

and the condition at infinity

lim u(x) = uso
T—00

in the sense of uniform convergence with respect to all directions, whereas u is a
constant vector. Here the vector field u = (uy,u2)” and the scalar function p are the
velocity and pressure field respectively, also p > 0 represents the kinematic viscosity
of the fluid.

The goal here is to infer knowledge about a fluid or inclusions from measurements
in particular areas or on the surface of such a fluid. More precisely, our inverse prob-
lem is to reconstruct the velocity field and determine the boundary of the obstacle
D from the knowledge of the fluid velocity on an open arc A € R?\ D. This inverse
problem is ill-posed, due to the analyticity the construction of the solution w to the
Oseen problem in the exterior of D with the measured velocity field on A. This in-
verse problem is non-linear since the solution depends non-linearly on the boundary
curve 0D.

Kress and Meyer (2000) [23] studied the inverse fluid flow problems and suc-
cessively obtained the shape of an unknown obstacle with the help of a regularized
Newton iteration method. This opened a new area of research in the field of inverse
problems and gave a rise to an important question whether the other approaches
which are developed for solving inverse problems in the scattering theory are appli-
cable for inverse fluid flow problems.

Approaches which are used to solve the inverse problems in scattering theory
can be divided into the following three groups:

1. Iterative techniques

In these techniques we use the model of full forward problems to solve the
inverse problems. Since these techniques require the full knowledge of the
direct problem, they produce very nice reconstruction results. However these
techniques are computationally involved because of the use of many direct
problems. Newton method, Landweber scheme, conjugate gradient method and
the various versions of least square fits are examples of iterative schemes.

2. Decomposition techniques

The methods which belong to this group decompose the problem into two
parts, i.e., the ill-posed part to reconstruct the field and the well-posed part to
find the unknown obstacle. As compared to iterative methods these techniques
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do not need to solve the direct problem for reconstructions but they do need
the boundary condition of the unknown objects. The well known examples are
Kirsch-Kress method, Dual space method or point source method.

3. Probe and sampling techniques

In Probe and sampling techniques we construct an indicator function which is
responsible to provide information about the location, shape and properties of
the unknown obstacle. The main advantage of the Probe and sampling tech-
niques is that they work even if the physical properties of the unknown object
are unknown, or in other words these techniques do not need the boundary
condition. No-response test, factorization method, probe method are the few
examples of the probe and sampling techniques.

In this thesis we extend the point source method, the no-response test and the
range test to the inverse Oseen problem. We also develop the convergence test to
locate and reconstruct the shape of an unknown obstacle and to show the relations
between the methods mentioned above. In order to justify these methods theoret-
ically, we prove existence of the solution to the interior Dirichlet problem for the
Oseen equations and provide some further results on the exterior Oseen problem.
Moreover, denseness of the potential operators for the Oseen equation is shown. We
provide a suitable formulation of the point source method and prove convergence of
flow reconstructions. For the realization of the reconstruction when the inclusions
are not known we employ domain sampling. We demonstrate the feasibility of the
method for reconstructing one or several objects by numerical examples. The re-
construction of the shape of unknown obstacles for the inverse fluid flow problem
is found via Line Adaptation for Singular Sources Object identification (LASSO)
scheme [40].

In the next few paragraphs we present basic numerical algorithms which are
investigated in this thesis.

The point source method was introduced by Potthast in 1996 [34] for the inverse
obstacle scattering problem. Later on he and his collaborators [6,11,25,26,28,35,36,
38] successfully employed this technique to different problems in scattering theory.
The method decomposes the ill-posed non-linear problem into an ill-posed linear
problem and well-posed non-linear problem. In the first ill-posed step in inverse
fluid flow problems, the point source method reconstructs the flow field via a back
projection formula and with this knowledge the point source method solves the non-
linear but well posed problem to find zeros of the total field in a second step.

In 2003 Potthast, Sylvester and Kusiok [41] introduced the range test which
solves the inverse problem in scattering theory to locate and to reconstruct the
shape of an unknown obstacle while using only the knowledge of one incident wave
and the measurement of the scattered field on some fixed curve around the obser-
vation data. In fluid dynamics we can apply the range test since the velocity field
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is coming from one side (we take it as one incident wave). The basic idea of the
range test is to determine the maximal set onto which the velocity field may be
analytically extended. The compliment of this analytically extended set is a subset
of our unknown object since in the range test we do not use the boundary condition
and that’s why we have only an approximation of the unknown object.

The no response test that was introduced by Luke and Potthast in 2003 [27] and
examines whether the unknown scatterer lies inside some test domains or not with
the help of analytical continuation of the velocity field. The idea of the no response
test is to construct an indicator function which is the supremum of reconstructed
velocity field, called responses, on a test domain G, known as the maximal response
T. With the help of this indicator function we probe the area and detect the region
where we have small responses. The region which consists of small responses is the
approximation of our reconstructed unknown obstacle.

At the end we develop the convergence test to locate and reconstruct the shape
of an unknown obstacle, also it shows how these above methods are related to each
other. We can consider this method as one from the group of probe and sampling
techniques. We define an indicator function with the help of the Cauchy criterion on
the two reconstructed velocity fields with different regularization parameters. This
indicator function tells us where the reconstructed velocity field converges. This
indicator function indicates the area which is a subset of our unknown obstacle.
In this thesis we carry out the convergence test to observe the convergence of the
point source method. The convergence test can be related to the no response test
as well. Although the idea behind these two methods are entirely different however
we can consider the convergence test as a variant of the no response test. In the no
response test we calculate the response for one particularly chosen density such that
the velocity field can be analytically extended to the exterior of the test domain G.
For the convergence test this particular density is chosen to be the difference of two
densities for different regularization parameters. For the analytical continuation
of the reconstructed velocity fields corresponding to these densities, the Cauchy
criterion is employed.

The idea of Domain Sampling is that we first construct an approximation domain
G and then test the convergence of the reconstruction on the boundary dG or outside
(. We carry out this procedure for many test domains to probe the area where the
reconstruction is convergent. Naturally this leads us to a situation where we have
many reconstructions of the velocity field. We combine these reconstructions by
some masking operation and taking pointwise weighted averages.

In LASSO scheme we construct a circular curve which is sufficiently large to
contain the unknown obstacles. With the help of an indicator function, which is
found via the point source method, we implement the iteration procedure on the
approximation domain so that the boundary of our test domain stretches towards
those areas where our velocity field is small compared to the whole field. We repeat
this procedure for n € N iterations while for each iteration we create a new closed
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curve using the concept of parallel surfaces. For every iteration our newly obtained
closed curve looses smoothness. To overcome this difficulty we introduce a smooth-
ness criteria, our unknown obstacles belong to those areas where the velocity field
is small. Thus after a number of iterations we reconstruct the boundaries of the
unknown obstacles.

The thesis is divided into three parts. In the first part we focus on theoretical
results for both the direct and the inverse problem. While in the second part we
present a numerical study of the problem. We demonstrate the accuracy and effi-
ciency of the inverse algorithms with the help of examples. The third part of the
thesis is an appendix which consists of the basic theory of fluid dynamics.

Chapter 2 is dedicated to the basic tools which will be used later during the study
of direct and inverse problems. We start with the introduction of Sobolev spaces
and talk about the fundamental solution and its importance in the study of linear
partial differential equations. Since for the solution of direct and inverse problems
the boundary integral equation approach will be used we give a brief introduction of
integral operators and some of their properties. We also discuss the importance of
the Riesz theory for the solution of integral equations of the second kind. In Section
2.4 we discuss basic ideas of the ill-posed problems and their approximate solution
via Tikhonov regularization. In the final Section 2.5 of this chapter we recall the
Nystrom’s Method for the numerical solution of integral equations of the second
kind.

Since solving inverse problems requires a solid knowledge of the corresponding
direct problems, we include a detailed study on the direct problem of the Oseen
equations in Chapter 3. In Section 3.1, we first present the weak formulation of
the Oseen equations and then we construct the fundamental solution of the Oseen
equations. We follow the standard tools for the formulation of the fundamental
solution of the Oseen equations [16,33]. In Section 3.2 we use the boundary integral
equation approach to prove the existence of the solution to the exterior and interior
Dirichlet Oseen problem. In principle, for the existence of the solution of the exterior
Dirichlet problem we follow Kress and Meyer [23]. For the interior Dirichlet problem
for the Oseen equations, which had not been investigated in the literature so far, we
present a new existence proof. We also give the proof of the interior Dirichlet problem
using the classic Laz-Milgram theorem with restriction on viscosity parameter. To
prove the denseness of the potential operators of the Oseen equations we introduce
the adjoint Oseen equations and the corresponding potential theory which plays an
important role in the inverse problem as well.

In Section 4.1, we formulate the basic tools for the point source method. In
a first step we introduce the potential operators for the Oseen equations and the
adjoint Oseen equations in a special setting of the L?—spaces. With the help of these
potential operators we are able to get an approximation of the point source E(z — )
on the boundary of the approximation domain G,. In Section 4.3 we formulate the
back projection formula for the reconstruction of the velocity field uye.. At the end
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we present the convergence of the reconstructed velocity field to the true velocity
field.

In Section 5.1 we discuss the extension of the range test to the inverse fluid flow
problem. We present a proof for the analytical continuation of the velocity field to
the boundary of the test domain. In Section 5.2 we exhibit the applicability of the
no response test to inverse fluid dynamics. We introduce a maximal response for a
test domain G with the help of which we prove that the velocity field is analytically
extendable up to the exterior of the test domain for a small maximal response. We
also prove a result which connects the no response test with the range test . In the
last Section 5.3 we present the convergence test for the analytical continuation of
the velocity field up to the exterior of a test domain G. Moreover, we show that
the convergence test can be considered as a special case of the no response test. The
convergence test can be used to prove the convergence of the point source method.

In the second part of this thesis we present a numerical study for the reconstruc-
tion of the field and the shape of an unknown obstacle via Domain Sampling and
the LASSO schemes.

In Chapter 6 we present the domain sampling scheme. In Section 6.2, we demon-
strate the point source method with the help of domain sampling technique. In a
first step we describe in detail how to choose the approximation domain G and then
how to combine all the reconstructions for different test domains on a source point
x with the help of a masking procedure.

In the last Chapter 7 of this thesis we apply the LASSO scheme using the re-
constructed velocity field from the point source method. We explain the concept of
parallel surfaces and the smoothness criteria for the LASSO scheme in details. Also
at the end we present numerical examples for a better understanding of the LASSO
scheme.

The appendix gives a short introduction and a brief summary of the fluid dy-
namics. We derive the equation of continuity and the equation of motion for two
dimensional incompressible flow. We discuss the viscosity and wake region in detail.
We present the derivation of the Oseen equation from the Navier-Stokes equations.

To summarize, we analyzed the applicability of the point source method, the
no response test, the range test and the convergence test to the inverse fluid flow
problems by considering the Oseen equation. It will be highly interesting to observe
these methods in a more complicated fluid dynamic problems, for example, the time
dependent Oseen flow. The study of potential theory for the time dependent Oseen
equation is more challenging.
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Theory






Chapter 2

Basic Tools

In this chapter we introduce some basic concepts from functional analysis and fluid
dynamics which we apply in this monograph. We start this chapter by presenting
a brief introduction to Sobolev spaces. In the second section we establish the well
known Navier Stokes equation and discuss some useful properties of the fluid flow
phenomena. As we will use the integral equation approach through out our study,
the remaining part of the chapter introduces the necessary tools which are required
to study the integral equation approach, both theoretically and numerically. We also
discuss the basic concept of ill-posed and well-posed integral equations in detail.

2.1 Sobolev Space

It is observed that classical solutions of the problems which arise in the field of
applied mathematics are not always sufficient enough. Some times, we have to
introduce weak solutions to get good results. For this we need for example Sobolev
spaces to deal with the weak derivatives. These spaces were introduced by the
russian mathematician Sergei Sobolev. Here we will discuss the basic concept of
Sobolev spaces which are used in this work. For a more detailed study of Sobolev
spaces we refer the readers to [2], [7].

Before turning to Sobolev spaces we first introduce some function spaces, which
are necessary for defining weak derivatives, such as the Lebesgue spaces (L¥-spaces)
and the spaces of continuously differentiable functions. In this section, unless oth-
erwise stated, the Greek letter €2 shall always stand for an open bounded domain in
R™ neN.

Definition 2.1. For a non-negative integer k, the space of k—times continuously
differentiable functions C*(Q) contains all real continuous functions u defined in Q
together with all their derivatives D*u of order |a| < k, which are continuous in €.
For k = 0 we have the space of continuous functions C°(Q) = C(). Also the space
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C>(Q) is defined as
o)
C>(Q) = [ CH(Q).
k=0
Moreover, by CE(Q), 0 < k < oo we denote the space of k—times continuously
differentiable functions with compact support in €.

Definition 2.2. The space LP(£2),0 < p < oo is the set of all Lebesgue measurable
functions u(x) € Q such that the norm

(@)l = ( / |u(x)|p> s

is finite. It is observed that LP(2) is a Banach space. Moreover, for p =2, the space
L?(Q) becomes a Hilbert space under the scalar product

(u,v) p(0) = /Qu(x)v(x) dx.

Definition 2.3. A function @ : QQ — R is called a test function if it belongs to the
space of infinitely differentiable functions C5°() with compact support.

We are now in the position to define the weak derivatives. We first assume that
u(z) € CHQ) and @ € C™ is a test function. Then from integration by parts, we

obtain,
/ Uy, dr = —/ Uy, @ d,
Q Q

where the subscripts represents the derivative. The boundary terms vanishes because
of the compact support of the test function in w € €. If we generalize this idea and
assume that k is a non-negative integer and « is a m-tuple of non-negative integers

«y, such that
n
la| = Z Q.
k=1

Then the || order partial derivative of a function u : 2 C R® — R is given by

B D%u(z)
o0z, Oxp

0%u(x)
and finally from integration by parts, we obtain,

/ uD%w dx = (=) / D%uw dz.
Q Q
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Definition 2.4. Let u and v are functions in the Lebesgue space L'(Q)). We say
that v is the o weak derivative of u, if it satisfies the following equation

/Quaaw: (-1)@'/91;@7,

for all test function w € C§°(R).

If the function is sufficiently smooth then the classical derivative is also a weak
derivative, but the converse is not true. The main advantage to introduce the weak
derivative is that we do not need the existence of the derivatives of smaller order
like in the classical definition.

Lemma 2.5. A weak o'"—partial derivative of u, if it exists, is uniquely defined.

Proof. See [12].
Definition 2.6. The Soboloev space W™P(Q), 0 <0 < 1, of order m is defined by

WmP(Q) :={u e LP(Q) : D*u € LP(),0 < |a| < m}.

Here the derivatives D%u are taken in the weak sense.

In the space WP (Q) we introduce the following norm

1/p

lulp= | 3 1D, | i 0<0l <.
0<la|<m

For the special case p = 2 we denote the Sobolev space by W™ and it becomes a
Hilbert space under the scalar product defined in Definition 2.2.

Definition 2.7. Let 0 be the boundary of a simply connected domain Q C R? of
class C*, k € N. If 9Q is a reqular and 2n-periodic parametric representation such
that Q2 = {9(t) : t € [0,2m)}, then the sobolev space on the boundary, HP(OQ2) for
0 < p < k, is the space of all functions ¢ € L?(0Q) with the property po¥ € HP[0, 27].
Here ¢ o9 denotes the 2m-periodic function given by (¢ o ¥)(t) = ¢(I(t)), t € R.
The scalar product and norm on HP(0Q2) are defined through the scalar product on
HP[0,27] by
(6, ) mra0) = (¢ 0V, % 0 V) gr[o,27)-

Without loss of generality we have chosen a [0, 27) parametric domain. However
we must allow the different parametric representation for the boundary 0f2. There-
fore we need to know that whether the above definition is valid for more than one
parametric representation or not. The answer is yes and is explained in the following
theorem.
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Theorem 2.8. Let 052 satisfy the assumptions of Definition 2.7. Assume that 0
and 9 are two different reqular 2m-periodic parametric representations of 082 such
that 00 = {9(t) : ¢t € [0,27)} and 9Q = {0(t) : t € [0,2n)}. Then the Sobolev
spaces

HP(0Q) := {¢ € L*(00Q) : ¢ o9 € HP|0,27]

with the scalar product
(9,9)r(a0) = (¢ 07,9 0 V) grjo 2]

and
HP(8Q) := {¢ € L*(8Q) : ¢ o) € HP[0,2n]

with the scalar product
(d)v w)HP(aQ) = ((b © ’l§, w © é)HP[O,Zﬂ’]
are homeomorphic.

Proof. See Theorem 8.14 in [22]. O

We exhibit the connection between Sobolev spaces on a domain € and Sobolev
spaces on its boundary 0€) by the following trace theorem. Before this we need to
introduce the concept of trace. For functions defined on the closure Q with clearly
defined values on the boundary 92 and the reasonable restriction of the function to
the boundary 0 is called trace. Furthermore an operator

T :C®(Q) — C™(09)
is said to be a trace operator if it maps a function onto its trace such that
Tu := u|pq.

Theorem 2.9. Assume that Q2 is a C*~11 domain. For% < s < k the trace operator
T has a unique extension to a bounded linear operator

T:W5(Q) = W 2(9Q)
and this extension has a continuous right inverse. If u € C*(Q) then
< Cllullws(q)

el ooy <

Proof. See Theorem 3.37 in [29]. O
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2.2 Fundamental Solution

Fundamental solutions play an important role in the theory of partial differential
equation especially when we deal with existence and regularity of the solutions. If
we have an explicit fundamental solution for a linear partial differential equation
then with the help of convolution process we can assemble more complicated desired
solutions. To understand the concept of fundamental solutions we first introduce
these definitions.

Definition 2.10. A linear functional f is called a distribution on a bounded domain
Q if for every compact set A C Q) their exists a constant C and n € N such that for
all o € C§°(A) the following inequality holds

fp)l <C ) sup|dpl.
lo|<n
The set of all distributions on Q is denoted by D'(2).
Definition 2.11. The distribution derivative of a function u € D'(Q) is defind by

(Oiu)(p) = —u(dip), ¢ €5 (Q).

It is trivial that higher orders of the derivative can be obtained by induction.
From the above definition we can see that every distribution on a bounded domain
Q has a distribution derivative of any order. Thus we have the following definition
of fundamental solution.

Definition 2.12. A distribution E € D'(Q) is called the fundamental solution of
the linear partial differential operator £ if it satisfies

LE =6.

Here § is the Dirac’s 0 distribution and for any test function ¢ € C§°(Q) it is defined
as

Remark: Fundamental solutions are very important for obtaining the classical
solution of an inhomogeous partial differential equation £Lu = g. Consider u = E*g,
E is the fundamental solution of the operator £, then

Lu = L(Exg)
= L£(F)*xg

d*g

= g

Thus E * g is a solution in the classical sense.
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Theorem 2.13 (Malgrange-Ehrenpreis). For every differential operator £ their
exist a distribution E € D' such that LE = .

Proof. For the proof we refer the reader to [14]. O

The Malgrange-Ehrenpreis theorem assures the existence of an fundamental so-
lution for any differential operator. Since our main area of study is fluid dynamics
we present as an example the derivation of the fundamental solution of the Stokes
equation,

Au—Vp=0, V-u=0, in Q.

Assume that ®(z) is an arbitrary function on R, which is smooth for z # 0 and d;; is
the Kronecker delta. To obtain the fundamental solution, following [16], we consider
the second order symmetric tensor field F and vector field e defined by the relation

2
Eijw —y) = (052 — ay‘?ayj JB(Jz — ), (2.2.1)
0
er(w =) = —5,- 80—y, (2.22)

fori,j7 = 1,2 and x,y € R%. Applying Laplace operator on equation (2.2.1), we have

82

AFE;j(z —y) = (6;;A% —
J( y) ( J ayzay]

A)O(|z —y|). (2.2.3)
Similarly taking the derivative 9/9y; of equation (2.2.2)

Dy
oy; 7 V= 0y;0y;

AD(|z —yl). (2.2.4)
Subtracting equation (2.2.4) from (2.2.3), we obtain

0

AEij(x —y) — *ay,ej(ﬂﬁ —y) = 6;;A°®(|z — y), (2.2.5)
(2

also using the Einstein’s convention we get

0

—FE;i(zr—y)=0. 2.2.6
5, e = v) (2.26)

On the right hand side of equation (2.2.5) we have the biharmonic operator. The
fundamental solution of biharmonic equation A?®(|x — y|) = 0 is given by

Oz —yl) = |z — y[* In(|z — y|)/87. (2.2.7)
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Substituting back the value of equation (2.2.5), we have

1 1 (i — yi) (w5 — y5)
Ei(z—vy) = —— (61 , 2.2.
@ -9) 4w<3‘1x—m*’ 17 (2.28)
1 z; —y;
ejlx —y) = %’;_yé (2.2.9)

For © —y = 2z # 0 we can write the last two equations (2.2.8) and(2.2.9) as

1 2zt
E = —ql I+ — 2.2.1
@) = 3 {mlair+ 25 (2210)
1
e(z) = —grad (In|z|). (2.2.11)
27

The pair E and e is called the fundamental solution of the Stokes equation.

2.3 Integral Operators

An equation which contains an unknown function ¢ and its definite integral is known
as an integral equation. If the limits of the integral are constant then it is called
a Fredholm integral equation otherwise it is known as a Voltera integral equation.
Also if the unknown function ¢ is strictly inside the integral then the equation is
said to be of first kind, and if the unknown function ¢ appears inside as well as
outside the integral it is known as the equation of second kind, i.e., for a continuous
function K(z,y),

b
/Jﬁ%wwwdy—ﬂ@ z € [a, ] (2.3.1)

and
b
ﬂ@—/K@www@=ﬂ@ z € [a,] (23.2)

are the typical examples of Fredholm integral equations of first and second kind
respectively.

Integral equations occur in different areas of applied mathematics and physics.
These type of equations provide a powerful technique for solving a variety of prac-
tical problems. For several reasons integral equations are the preferred methods for
analyzing differential equations of initial or boundary value problems. The straight
forward benefit of using integral equations rather then differential equation is that
it combines all the conditions specified in initial or boundary value problem into a
single integral equation. Another advantage of integral equations are the reduction
of the dimension of the problem, for example, a boundary value problem for a par-
tial differential equation with two independent variables transforms into an integral
equation which have a unknown function of only one variable.
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In operator notation, we can write the integral equation of first and second kind
as

Ap=f (2.3.3)

and
o—Ap=1f. (2.3.4)

Definition 2.14. Let Q C R™ be a nonempty compact and Jordan measurable set
that coincides with the closure of its interior. Then the operator A : C(2) — C (),
defined by

(Ap)(z) == /Q K)o dy, ze9, (2.3.5)

is called an integral operator with continuous kernel provided that K : Q@ x Q0 — C is
a continuous function.

The integral operator defined in (2.3.5) is bounded (see Theorem 2.8 in [22])
under the norm

| Alloe = max / K (2, y)| dy. (2.3.6)
LL‘EQ Q

The question of uniqueness and existence of the solution obtained via integral equa-
tions is equally important as in differential equations. The uniqueness and existence
of the solution of the integral equation of second kind (2.3.4) can be established by
the Neumann series provided that [|A]| < 1 (see [22]). Neumann series has a major
draw back that it is only applicable for the integral equation of the second kind
with sufficiently small kernels. Therefore we need some other tools to establish the
uniqueness and existence of integral equation. This leads us to the introduction of
compact operators.

Definition 2.15. Let X and Y are two normed spaces. Then a linear operator
A X =Y is called compact if it maps each bounded set in X into a relatively
compact set in'Y.

Theorem 2.16. The integral operator with continuous kernel is a compact operator
on C(Q).

Proof. See [22]. O

With the Theorem 2.16 we are now in position to say that the integral equations
of first (2.3.3) and second kind (2.3.4) contains the compact operator A : X — X.
A compact operator A on an infinite dimensional space X cannot have a bounded
inverse since A~'A = I is not a compact operator on any infinite dimensional space.
This is a very important conclusion. It shows that the integral equation of first kind
with continuous kernel is not boundedly invertible, this leads us to the phenomena
of ill-posed problems. We discuss this phenomena in detail in next section.
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Now coming to the integral equation of second kind, we can write equation (2.3.4)
as
Lo=f
where L := I — A with [ is the identity. We have developed tools for analyzing
uniqueness and existence of the integral equation of second kind. Due to Frigyes
Riesz (1880 — 1956) we know that the null space of the operator L, i.e.,

N(L):={p€ X : Ly =0}

is a finite dimensional subspace and its range is a closed linear subspace. The
boundedness of the inverse operator L is confirmed by the following fundamental
result of the Riesz theory [22].

Theorem 2.17. Let X be the normed space and A : X — X is a compact linear
operator. Then the operator I — A is injective if and only if it is surjective. Also the
inverse operator (I — A)™1 : X — X is bounded provided that I — A is injective.

With this knowledge we are able to conclude the following result which ensures
the uniqueness and existence of the integral equation of second kind.

Corollary 2.18. Let A: X — X be a compact linear operator on a normed space
X. If the homogeneous equation

p—Ap=0

only has the trivial solution @ = 0, then for each f € X the corresponding inho-
mogeneous equation (2.5.4) has a unique solution ¢ € X and this solution depends
continuously on f.

Thus with the help of the Riesz theory we are able to solve integral equations
of the second kind, which arise in many practical problems in the theory of fluid
dynamics, electromagnetic or acoustics.

2.4 Tikhonov Regularization

In 1923, Hadamard [18] defined a well-posed problem by postulating the following
three properties:

e Existence of the solution.
e Uniqueness of the solution.

e Continuous dependence of the solution on the data.

If one of the above properties is violated then we can say that the problem is ill-
posed. We give the definition of a well-posed problem in the setting of an operator
equation.
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Definition 2.19. Consider a bounded linear operator A : X — 'Y from a normed
space X to a normed space Y. If the operator A is bijective and its inverse is con-
tinuous, then the equation

Ap=f
1s called well-posed, otherwise it is called ill-posed.

Theorem 2.20. Let X and Y be two normed spaces and let A : X — Y be a
compact linear operator . Then the integral equation of the first kind

Ap=f (2.4.1)
is ill-posed provided that the normed space X is infinite dimensional.

Proof. On contrary we assume that inverse operator A~! is bounded then the prod-
uct of A='A = I is compact on X (see Theorem 2.16 of [22]), which is not possible
because the identity operator I is compact only on finite dimensional spaces (com-
pare Theorem 2.20 in [22]). O

This theorem tells us that the linear integral equations of the first kind with
continuous or weakly singular kernels are examples of ill-posed problems. The third
postulate described by Hadamard for well-posed problems is difficult for integral
equation of the first kind. Due to the discontinuity of the inverse operator A1
small changes in the data leads to unstable solutions. In order to obtain a stable
solution we have to consider the third condition postulated by Hadamard.

The basic idea to deal with the instability of such ill-posed problems is to find
a bounded approximation R, to the unbounded operator A~ depending on some
parameter «. The strategy to find such a bounded approximation R, is known as
the regularization scheme.

Definition 2.21. A family of bounded linear operators defined on the normed spaces
X and 'Y, such that
R,:Y — X, a>0

1s called a regularization scheme for an injective operator A : X —'Y, if

lim R, Ap = @, pe X. (2.4.2)
a—0

The limit in equation (2.4.2) describes that R, tends pointwise to A=!. In
the following theorem we observe two fundamental properties of the regularization
scheme R, for compact operators.

Theorem 2.22. Let A : X — Y be the compact operator on the normed spaces X
and Y with dim X = oo and a reqularization scheme R, o > 0. Then the family
Ry, a >0 of bounded operators cannot be uniformaly bounded with respect to o and
the operators Ry can not be norm convergent as o — 0.
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Proof. Following [22], we assume on contrary basis that the regularization operator
R, is bounded such that ||R,|| < C for all & > 0 with some constant C. For all
f € A(X) and in the view of equation (2.4.2) we have R,f — A~!f when o — 0.
Due to our assumption we can deduce that |[A~f|| < C||f]|, i.e., A71: A(X) - X
is bounded. Theorem 2.20 leads us to a contradiction.

We prove the second statement with the assumption that we have the norm
convergence. Then there exists a > 0 such that ||[R,A —I|| < 1/2. Now for all
f € A(X) we have

[AT | = [JAT'f = Raf + Raf|| < |A7'f — RaAAT f|| + | Raf]
1
< AT = RaAll + [ Bafll < 5 [AT ]| + 1R (24:3)

This implies ||A™ || < 2||Rq| or in other words A~ : A(X) — X is bounded. This
leads us to the same contradiction as above. O

The regularization scheme converges pointwise such that Rof — A~! for a — 0
holds for all f € A(X). On the other hand if the data is perturbed by some noise such
that H 1o — fH < ¢, then for a regularization parameter «, we find an approximate
solution ¢? such that

cp‘; = Ro f°.

To estimate the error in the solution we write,

-9 = Raf’—¢
= RaféfRoszrRozf*@
= Rafd_Rozf"‘RaA@_@'

Using the triangle inequality we obtain

195 =@l < |Raf® = Rafll + ||RadAp — ¢
< §||Rall + [[Rade — ¢l.

Thus we decomposed the error into two parts, the first term reflects the data error
and the second term expresses the error between the regularization operator R,
and the inverse operator A~!. Theorem 2.22 tells us that the first term is not
uniformly bounded with respect to . It means this term increases as o — 0, due to
the unboundedness of the regularization operator R,. The second term decreases as
a — 0 because of the limit defined in equation (2.4.2). This leads us to a difficult task
how to choose the regularization parameter « such that we have an acceptable error
level for the regularized solution. The accuracy of the approximation requires small
error ||[RoAp — ¢, i.e., a small parameter a and at the same time for the stability
of the problem we need a large . Thus we have some kind of compromise between
the accuracy and the stability for the choice of a. The choice of the regularization
parameter depending on the error level § is called a strategy.
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Definition 2.23. A strategy is called regular if for all f € A(X) and all f* €Y
with || f° — f||< 6 we have

Ra@)f° = A7Mf, - 0.

In the area of inverse problems there are several strategies for the choice of
regularization parameter «, for a comprehensive view see for example [9]. We can
divide them into the class of a priori and a posteriori strategies. The a priori
strategies would be based on some additional information about the problem, for
example the information about the smoothness properties of the exact solution.
These strategies are not widely used because this kind of information is usually not
available. So we mainly focused on the a posteriori strategies of which one is the
following discrepancy or residual principle introduced by Morozov [31].

Definition 2.24 (Discrepancy Principle). The regularization parameter «, for
the error level §, should be chosen such that

1 o
[ARaf* = [l =6
with some fized parameter v > 1.

The basic idea of the Tikhonov regularization is to approximate the fundamental
solution by an element in the range of some integral operator A between two Hilbert
spaces X and Y. So in the Tikhonov regularization we are interested to minimize the
residual ||Ap — f]| for all f € X. For the stability of the minimization procedure a

penalty term «f|¢||, with a regularization parameter a > 0, is added. The existence
and uniqueness of the minimizer ¢,, in X is proved by the following theorem.

Theorem 2.25. For the Hilbert spaces X and Y, we assume that A : X — Y is
a compact linear operator. We also assume that the reqularization parameter o is
positive. For each f € X there exist a unique po € X such that,

| Apa = FII* + allpall? = nf {I14¢ = FI” +allel?} - (2.4.4)
The minimizer v, is given by the unique solution of the following equation
e + A" Ap,, = A* f
and depends continuously on f.

The right hand side of equation (2.4.4) is known as Tikhonov functional. The
Tikhonov reqularization scheme is explicitly stated by the following theorem

Theorem 2.26. Let A : X — Y be a compact injective linear operator for the
Hilbert spaces X and Y. Then for each a > 0 the operator al + A*A: X — Y isa
boundedly invertible and the operator

Ry = (al + A*A)71A*

. . . . 1
describes a regularization scheme with || Rq|| < N
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Proof. See [22] O

The Tikhonov regularization replaces the solution of (2.4.1) by the solution of
the approximated equation

Qo + A*Ap, = A*f,

which can be obtained from (2.4.1) by the multiplication with A* and then thr
addition of the penalty term « ¢,.

2.5 Nystrom’s Method

In 1930 Nystrom’s introduced a numerical method to work out the integral equations.
A detailed description of the Nystrom’s Method can be found in [4], [21], [22].

Definition 2.27. Let Q C R™ be a nonempty compact and Jordan measurable set.
Then the sequence of quadratures rules for the integral,

Q(g) :== /Qw(x) g(x) dx, (2.5.1)

1s defined as

7j=1
Here w(z) is some weight function and xgn), xgn), ey xT(Zn) are the quadratures points
i Q. The numbers agn), ozgn), e ,aﬁ[‘) are called quadrature weights.

Definition 2.28. A sequence (Qy) of quadrature rule is called convergent if

Qnlg) = Q(g),n — oo, for all g€ C(N).

With the help of convergent sequence (Q,) of quadrature rules, we can approxi-
mate the integral operator (2.3.5) with a continuous kernel K as defined in Definition
2.14 by a sequence of numerical integration operators

(Anp)(x) = Y ol K (z, 2{)p (), (2.5.2)
k=1

for fixed x € Q. Here we take ¢(Z) = K(z,%)¢(Z) in the integrand of equation
(2.5.1). With this the solution to an integral equation of second kind

o—Ap=f. (2.5.3)
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is approximated by the solution of
Pn — An‘Pn = f (2.5.4)

Using quadrature @, we discretized the continuous problem into a semi discrete
problem, since it is still continuous in the first argument of the Kernel K. Therefore
equation (2.5.4) is the semi discrete equation. Now with the help of following result
(see also [22]), the solution of this semi discrete problem is obtained by solving the
finite dimensional system of linear equations.

Theorem 2.29. Let o, be a solution of

on(z) = Y oK (2, 3p)n () = f(z), z€Q (2.5.5)
k=1
(n)

Then the values p;

linear system

= pnl(z;), j =1,...,n, at the quadratures points satisfy the

& =S K (zg, a0y = flzg), j=1,...n. (2.5.6)
k=1

Conversely, let cpg-n),j = 1,...,n, be a solution of the system (2.5.6). Then the
function @, defined by

on(z) = f2) + Y K (z,a)p)”, ©eQ, (2.5.7)
k=1

solves equation (2.5.5).

Proof. A proof is worked out in Theorem 12.7 in [22]. O

Thus with this result we are able to find out the solution of semi discrete equation
(2.5.4). Now the basic question arises that if ¢ is the solution of integral equation of
second kind (2.5.3) then is there any solution ¢,, of the corresponding approximate
integral equation. Also whether the solution ¢,, of the semi discrete equation (2.5.4)
converges to the true solution of (2.5.3) or not. For the existence of the solution ¢,
we will use the well known Riesz theory. To implement the Theorem 2.17 we must
have the injectivity of the operator I — A,,. For this we need some properties of the
discretized version of the operator A (for more details see [17]).

Definition 2.30 (Consistency). Let X be a normed space. Then the discretization
of the operator A : X — X, i.e., A, n € N is called consistent in X if

lim [|[Ap — Appl| =0 forall ¢ € X. (2.5.8)
n—oo
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Definition 2.31 (Stability). The discretization Ay, n € N of the operator A : X —
X s called stable if there exist a constant C' and an integer ng € N such that the
inverse operator (I — A,)~" exists and uniformly bounded

(I =AY <C forall n>ng. (2.5.9)

With these two definition we are in a position to prove the injectivity of the
operator I — A,.

Lemma 2.32. Assume that the discretization A, of the operator A : X — X is
stable and consistent then the operator I — A is injective.

Proof. If the inequality

Bllell < I = Aell 5 >0, (2.5.10)

for all ¢ € X holds then the operator I — A is injective. On contrary basis we assume
that the inequality (2.5.10) is not true, i.e., there exist two sequences ¢, € X
with ||¢n]] = 1 and ¢, := (I — A)p, with ||¢,]| < 1/n. Due to consistency we
have A,,n — Ap,, m — oo for each fixed n. Consequently there exist an index
m = m(n) such that

[Amen — App|| < 1/n.

Now define another sequence

b = (I = An)en (2.5.11)
= ©np— App + Apn — Ann
= ¢n— (Am - A)Son

This implies that

Hwn” = Hd’n - (Am - A)‘an

Now rewriting the equation (2.5.11) in terms of ¢, i.e.,
on = (I = Am) ™ n.
As the operator A,, is stable and with the help of equation (2.5.9) we have
1= [lgnll = I = Ap) "' nll < Cllgnll < 2C/n.
This is a contradiction and the proof is complete. ]

Since the operator I — A is injective from Theorem 2.17 and Corollary 2.18 we
have the unique solvability of the continuous problem (2.5.3). Now coming to the
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next question that the solution ¢, of the semi discrete equation converges to the
true solution ¢. Using equations (2.5.3) and (2.5.4) we have tp rewrite the equation
(2.5.3) as

(I—-Ap=f

Adding the term A, ,, in both sides of the above equation and then subtract it from
the equation (2.5.4) we obtain

on—@ =T —A)" (A4, — A)p. (2.5.12)
For n > N and with the help of equation (2.5.9) we derive

lon — @l < Cll(An — A)ell

which tends to zero due to the equation (2.5.8). We summarize the results in the
following theorem.

Theorem 2.33. Assume that we have consistent and stable discretization of equa-
tion (2.5.4). Then equation (2.5.3) is solvable in C(Q) and the discretization is
convergent towards (2.5.3), i.e., there exist an integer N such that equation (2.5.4)
is uniquely solvable for every f € C(Q) and for all n > N,e > 0 the following
estimate

lon —oll <€

holds.

To the end of this section we exhibit the convergence of the discretization (2.5.4)
of Nystrom’s Method by the following theorem.

Theorem 2.34. The sequence (Ay,) is collectively compact and pointwise convergent,
1.€.,

App = Ap, n— oo forall peC(R)
provided that the quadrature formulas Q) are convergent.

Proof. See Theorem 12.8 in [22]. O



Chapter 3

Direct Problem of Oseen Flow

In this chapter we analyze direct problems for the Oseen equation. We present a weak
formulation of the Oseen equation, fundamental solution to the Oseen equation and
its derivation. We use the boundary integral equation approach to prove existence
of the solution to the exterior and interior Dirichlet boundary value problems for
the Oseen equation.

3.1 Oseen Equation

As a model problem in two dimensions, the steady Oseen equation is derived from
the Navier-Stokes equation by linearizing its convective term around a constant
velocity ug = (1,0). The details are in the appendix. The Oseen equation is

uA u— 0w — Vp =0, V-u=0. (3.1.1)

Let D C R? be a sufficiently smooth bounded domain with connected exterior. Here,
D might possibly have several separate components. Without loss of generality we
assume that the origin is contained in D. We consider the exterior Dirichlet problem
for the Oseen equation (3.1.1) subject to the boundary condition

u=f, on oD, (3.1.2)

with a given vector field f and the condition at infinity,

xli)rglo u(Z) = Uso, T = %, (3.1.3)
in the sense of uniform convergence with respect to all directions & € S, where u is
a constant vector. For homogeneous boundary values f = 0 and us = ug = (1,0)7,
this boundary value problem models a two-dimensional flow around a cylindrical
obstacle with cross section D immersed in a fluid with constant velocity us. In Fig.
3.1 we exhibit the flow field visualization of this boundary value problem.

25
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Figure 3.1: We show a visualization of the flow field u of the Oseen equation around
two obstacles.

Often, a variational form of the Oseen equation is employed in computational
fluid dynamics (CFD) literature [16]. Multiplying the Oseen equation with a test
vector field v € C}(R?\D,R?) and the equation of continuity with a scaler field
q € CHR?\D,R) and then using the Gauss divergence theorem [22] and partial
integration we derive the following weak formulation of Oseen equation

a(u,v) +d(p,v) = 0, (3.1.4)
d(q,u) = 0, (3.1.5)

.1 B
Rh_r}(l>o = /x|—R |lu — uso| ds(z) = 0. (3.1.6)

Here a and d are defined as the bilinear forms

a(u,v) = / {p Vv :Vu—u-0v} dr, (3.1.7)
R2\ D
d(p,v) = / pV-vdz. (3.1.8)
R2\ D

Then for a given field f € W%((?D, R?) we say that the pair

(u,p) € WL (R}\D,R?) x L2 (R*\D,R) (3.1.9)

loc

is the weak solution to the Dirichlet problem (3.1.1)-(3.1.3) if u|sp = f in the sense
of the trace operator and (3.1.4)-(3.1.6) are satisfied.
We will also need the adjoint Oseen equation

pA G+ 0 — V=0, divi=0. (3.1.10)
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It coincides with the Oseen equation (3.1.1) when ug = (—1,0)”. Thus solutions to
the adjoint Oseen equation are also solutions to an Oseen equation and all statements
about such solutions carry over to the adjoint equation.

Since we use the method of boundary integral equation to solve the equation
(3.1.4)-(3.1.6) with a layer potential approach. For this we need to understand the
fundamental solution of Oseen equation that we derive as follows.

3.1.1 Derivation of the Fundamental Solution

In the following, we basically follow Finn [13], Galdi [16] or Oseen [33] to obtain the
fundamental solution of the Oseen equation. Since the choice of the constants and
the signs of the terms varies from paper to paper and it is slightly delicate, here we

carefully worked out the arguments. We denote as the tensor field £ and the vector
field e, defined by

82
Eij(y) = Eij(y1,92) = (5)%8% — 5@']‘A> D(y1,y2), (3.1.11)
e(y) = et v2) = - (1 — L) oy, ) (3.1.12)
Yy)=¢€;\Y1,Y2) = 8yj 1% A Y1, Y2), -1

for i, j = 1,2. Here ® is a smooth real function for 0 # y € R%. Multiplying equation
(3.1.11) with the operator pA — % and taking derivative of equation(3.1.12) w.r.t.

—a?ﬁ, and then subtracting we have
9 de;(y1, y2) ( o )
A—— ) Eii(y1,yp) — ——F2222 = 5 A [ pA — — | ®(y1,42). (3.1.13
<H 3y1> J(yl y2) By, j o o (y1,92). ( )

Using Finstein’s convention we also have

0
@Elj(ylaQQ) = 0. (3.1.14)

E and e are the solutions of equations (3.1.13) and (3.1.14) if and only if the function
® is the fundamental solution of the linear partial differential operator given in the
right hand side of equation (3.1.13). Following Definition 2.12, we set Dirac’s delta
function is equal to AE(|y|), here E(|y|) is the fundamental solution of the Laplace
equation. Thus we have,

A <MA - 8‘3) By, y2) = AE(ly)). (3.1.15)

Now, we try to obtain the solution of above equation (3.1.15) into the form

O(y1,y2) = /yl [@1(1,y2) — P2(n, y2)] dn, (3.1.16)
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with ®; and ®5 to be selected appropriately. After taking derivative of above equa-
tion w.r.t. y1, the above equation reduces to

0P (y1,y2)

oy [®1(y1,52) = P2(y1, y2)] (3.1.17)

Furthermore, taking the derivative of equation (3.1.15) with respect to y; and then
substituting the value of (3.1.17) in it, we obtain

0 0
A A — =) [®1(y1,y2) — Poy1,y2)) = A [ —& . 3.1.18
(18 = o) at) = Balin) = A (oeW)) . (319
The following choice of the function ®,

Po(y1,y2) = E(Jyl), (3.1.19)

leads equation (3.1.18) into the form

A |-l + (= o) @anae)| 0.

For ®1(y1,y2) to be the solution of equation (3.1.18), it is sufficient to have

10
A— =) P (y1,12) = AE(Jy]). 3.1.20
(8- %50 ) @) = AE () (3.1.20
Settin
g e>‘y1
D1 (y1,y2) = 7|y|(n_2)/2f(A|y!) (3.1.21)

with A = 14, By a direct calculation and taking \|z — y| = £, we obtain,
2

1 90 e 2 o1 / 2
(A— uayl) By1,2) = ey (€96 + 6810~ €70}

with

F(e) =2

= ge/ (9

The equation
E11(€) +Ef(6) - (6 =0,

is the modified Bessel equation and it has two independent solutions

X 1¢\2m
I(§) = Z (3¢) 5

Ko(€) = —Io(log-£+ > O(m+1), (3.1.22)
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which are known as modified Bessel functions of first and second kind, respectively.
Here ©(n) is a digamma function given by

n—1

1

O(n)=—c+ g %
k=1

where ¢ is Fuler-Mascheroni constant. As Iy(£) is smooth for all values of £ while
Ky(€) is singular at £ = 0, we can write K((&) explicitly as

Ko(€) = 1og§ ) (3.1.23)
Here
X(€) = — il g;)(j:) {m %g —O(m + 1)} , (3.1.24)
with very useful properties (see [16])
x© =olt), T — o) as e 0

Equation (3.1.20) tells us that if ®(y1,y2) is its solution, then it must take the form
of fundamental solution of Laplace equation in the neighborhood of |y| = 0. Thus
from the fundamental solution of Laplace equation and in the view of (3.1.20) and
(3.1.22) we are bound to take the following function

1

C1(y1,92) = —5 Ko <|2‘7ﬂ> e/, (3.1.25)

Also for two dimensional space the equation (3.1.19) takes the following form

1
®2(y1,y2) = 5-Infyl). (3.1.26)

Thus we have the function ®(y1,y2), where ®1(y1,y2) and P2(y1,y2) are described
above,

D(y1,y2) = /Oy1 [@2(n, y2) — P1(n, y2)] dn + Po(y2). (3.1.27)

Here ®¢(y2) is the function of y2 only and it is to be fixed appropriately. Now our
next task is to find ®¢(y2), from equation(3.1.19) and (3.1.20), we have

0? 0 0 1
— (P — D)= ——— [ — (P — D ~—d 3.1.28
Byg( 2 — ®1) o <8y1( 2 1)+M 1> ( )
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Now taking double derivative of (3.1.27) with respect to the second argument and
then using the value of equation (3.1.28) we have

D*®(y1,y2) 0 1
"2(y1,42) % @y (y1, 1) — By (g1, )] — — 1 (y1,
By2 i [P2(y1,92) 1(y1,y2)] . 1(y1,92)

2

1 0
- ;<I>1(0,y2) + aT/%(I)O(yz)- (3.1.29)

Since ®1(0,y2) = —1/27 K (‘%) and this diverges logarithmically fast when y, —

0, while the other terms remain bounded. Due to this factor we face singularity in
the fundamental solution Ess. The best possible way to avoid this singularity is to

choose o2 al
1 Y2
—® =—Ky|=— ). 3.1.30
Szl = o (42 (3.1.30)
Under the condition ®{(0) = ®¢(0) = 0, above equation reduces to
L[> il
Bo(ys) = —— Ko [ 21 a.
o() = 5o [ = o (31 ) an

By substituting the value of ®¢(y2) in (3.1.27) we have the final expression for the
function ®(y1,y2), i.e.,

1w 1
D(y1,y2) = o L {log\/n2+y§+Ko (%\/n2+y§>]dn

1 [y
=5 | (2= mEo(Aln|)dn. (3.1.31)
T Jo

Finally substituting the values of ®(y1,y2) in the equation (3.1.11), we have

U(y1,y2) — ¥i(y1,v2) —WUs(y1,y2) >

E(y1,y2) = 3.1.32

(v1:32) < —Wa(y1,92) U(y1,y2) + ¥1(y1,y2) ( )

with
U( — 1 v1/20 M
yhy?) — 47_‘_”6 0 2/,L )
\Pz(yl y2) = Yi i _ ieyl/QﬂKl M for 71=1.2.
’ 2yl Lyl 2w 2n) |’ ’

Here K and K are the modified Bessel functions [45].
Also we can evaluate the pressure term e by substituting the value of equation
(3.1.15) in equation (3.1.12), we have

0
ej(y1,y2) = @SOZJD’

J
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or

. 1
e(y1,y2) = grad ®(y1,y2), with O(y1,y2) = o In [yl. (3.1.33)

With the help of power series expansion of the Bessel functions Ky and Kj, a
straight forward calculation divides the fundamental solution of the Oseen equation
in the following way

E(y1,y2) = Eo(y1,y2) + In|y|A(y1,y2) + B(y1,y2) (3.1.34)

where

1 T
Eo(y1,y2) = o < In |y|1 + " ’2> (3.1.35)

with I is the identity matrix and A = A;;, B = B;; are analytic matrices with

1 4] yk (ly” /16u
Api= ———— 1+ eW/2ug, 1)t 2k y2/2u
= (e (3 o e £ QR

k:—lforz—j,k:—2for27éj

By =L— M, — N, By =L+ M;+ N +1, Bia = Bor = Mo.
Also

L= 4; {(—w+ln\4u\)fo (’;ﬁ) + [4!35)2 - (1 * ;> (4(|2y/§2)2 i ] } ’

Uk 1 R
My, = In |4 — 1 2 _ y1/2p
k 167wmzo{ nfdul+ 3 {0(m+ 1)+ O(m + )}} mitm + D)l 272"

and

m {y1 +2u}.

From (3.1.34) we observe that Ey(y1,y2) is the fundamental solution of Stokes equa-
tion (2.2.10).

For several applications we need to observe the asymptotic behavior of the fun-
damental solution of Oseen equation.

Theorem 3.1. The fundamental solution (3.1.32) of the Oseen equation admits the
asymptotics

1 Y1 —Y2
E =
() 27 |y|? ( Y2 N

elv1—lyl)/2u 1
< yl+u v > [1 +40 <>] (3.1.36)
4\/W Y2 lyl —w [yl

for |y| — oo.
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Proof. For the proof, we use the asymptotics of the modified Bessel functions. As
the asymptotes of the modified Bessel functions, described in [1], with | arg&| < 3|n|

are
K, _ ¢ _ i L
(&) ¢ {1 8¢ 2!(85)2'“}’

N 3 2.6

|€] — oo. With the help of above values, we calculate the

i WY1 iml)/2 { < 1 >}
U(y) - Ui(y) = — + ewi=lwznly p o )L
) 1) 2rlyl?  a/ruly3 Y|
_ _ Y y2 e |)/2u{ <1>}
Ty(y) = + e —lh/2n 1 4 0 ,
2(4) 2rly2 4 mulyl3 Y|
Y1 Yl =¥ (/2 1
] |\ — Yyi—\y 14 1 _ X
(y) + ¥1(y) anly 1 —5° +0 2

Thus from equation (3.1.32) we proved the asymptotics (3.1.36), which are uniform
in all direction when |y| — oo. O

3.2 Direct Problem

In this section we presents the direct problem of the Oseen equation. We use the
integral equation approach for the interior and exterior Oseen problem. We start this
section by introducing the single layer potentials operators for the Oseen equation
and using standard tools of integral equations we presents the weak solutions of
the interior and exterior Dirichlet problem (3.1.1)-(3.1.3) of Oseene equation. For
certain reasons we also introduce the adjoint Oseen equation.

Definition 3.2. Let D be of class C? and ¢ be a vector field on 0D, then the
single layer potential is defined by the pair

(L) (@)= | E(x—y)edsly), (P (z):= / ez —y)-py)ds(y),
o - (3.2.1)
for x € R2\OD. E and e are given by equations (3.1.32) and (3.1.33).

From the above definition and the fundamental solution of Oseen equation, it is
observed that for an integrable density ¢ the pair of single layer potential operator
(S, P) solves the Oseen equation both in D and R?\ D.

To investigate the properties of the pair of single layer potential operator on the
boundary 0D, we need the jump relations. From equation (3.1.34), it is observed
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that the fundamental solution of Oseen equation and the fundamental solution of
Stokes equation has the same singular behavior at x = 0 because of A(0) = 0. Thus
the jump relations for the Oseen equation are similar to the jump relations of the
Stokes equation. In the following theorem we have a brief sketch of jump relations
for the Oseen equation.

Theorem 3.3. Let 0D be of class C?. Let v be the outward unit normal on the
obstacle D. Then for the single layer potential operators L and Py, we have

Jm (L) (z £ he(z)) = E(z —y)e(y) ds(y) (3.2.2)
- oD
Jm (2¢) (¢ + hv(z) = /8D e(z—y) - ¢(y) ds(y) j%V(:E) ~p(x)(3.2.3)
9(Sp) _ OE (z — y)
Jim S @) = [ S o)
¥ 5 [pla) — pla) (@) (o) (3.2.4)
forx € 0D.
Proof. Compare [30], Theorem 4.2. O

Theorem 3.4. The single layer potential operator is a bounded operator

2x1 2x1

S+ (W(0D,R?*))™"" — (W™t1(0D,R?)) (3.2.5)

for allr € R.

Proof. For the proof we follow Kress and Meyer [23] who used the idea of isomor-
phism. We know that the Sobolev spaces W (9D, R?) and the spaces W7 ([0, 27], R?)
are isomorphic to each other (see Theorem 8.14 of [22]). Thus if we show the bound-
edness of the parametrized form of the operator (#¢)(x), then the proof is com-
pleted. To construct the isomorphic Sobolev space first we parametrize our boundary
0D with 27 period such that 0D = {z(t) : t € [0,27]}. Then from equation (3.1.34)
the parametrized form of the single layer potential operator is given by

(S¥)(t) = /0% {m (4 sin2® 3 T) My (t, ) + Myt T>} W(r)dr, t € [0,27], (3.2.6)

(&

for ¢ = p(2(t))|7'(t)|. Here, My and My are twice differentiable matrices with

M, (t,t) = — 0<t<2r.

— 1,
21

With the help of Theorem 12.15 of [22] we are in the position to say that the operator
(Sy) : W ([0,27],R?) — W"L([0,2n],R?) is bounded for all » > 0. Now by the



34 Chapter 3. Direct Problem of Oseen Flow

duality principle we can extend this argument for all » € R. Finally, from the
isomorphism of the Sobolev spaces, statement of the theorem is proven. O

The last Theorem 3.4 confirms that the single layer potential operator . is
bounded on the boundary. However if we extend this operator to interior or exterior
of the domain D then a simple question arises that whether is it still bounded or
not. Following Kress and Meyer [23], we have the following result which provide the
boundedness of the single layer potential operator .# in interior or exterior of the
domain D.

Theorem 3.5. The single layer potential operator .7 is a bounded operator
7 W Y2(0D,R?) — WH(D,R?), .7:WY30D,R?) — W'(Dg,R?),
and & is a bounded operator from
2 W™ Y2(0D,R?) — L*(D,R?), P W Y2(0D,R?) — L*(Dg,R?),
where Dg := {z € R:\D : |z| < R}.

Proof. Assume an arbitrary bounded domain B with its boundary 0B. Now we
assume that the Oseen equation (3.1.1) defined on a bounded domain B with suf-
ficiently smooth boundary and having the exterior normal vector v. Also consider
that the pair (u,p) be the sufficiently smooth solution of the Oseen equation. Now
working on equation (3.1.1), we have

pu - Au—u - u— V- (pu) = 0. (3.2.7)

Integrating over the domain B, we have

,u/u-Audx—/u-@lud:U—/V-(pu)daU:O. (3.2.8)
B B B

Using the Gauss divergence theorem, we obtain

u
u/u~Audx = ,u,/ u-ads—/\VuFdx
B o Ov B
/u-@ludx = —/u~81ud:c+/ u-vds
B B G)z;
.
= = u - u ds
2 JoB

/V-(pu)da: = / pu ds
B OB

Substituting the obtained values in equation (3.2.8), we have

ou vy

2

. - ) 2.
M/B]Vu\ dx /83u <,u,ay pv 2u) ds (3.2.9)
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From the jump relations (3.2.2)-(3.2.4), the above equation holds for the pair of single
layer potential operators (., Z) provided that ¢ € C%*(9D). Now choosing the
domain B = D in equation (3.2.9) we obtain

,u/|V5”gD\2dx = / S uw—ﬂwu—ﬂy@ ds
D oD 81/ 2

1 1

+ L - < [(o—p-vv]+ zp- I/V) ds. (3.2.10)
oD 2 2

This implies

1
+ = Lo pds. (3.2.11)

Similarly now taking B = Dp in equation (3.2.9), where Dg := {z € R?\D : |z| <
R}, leading to two boundaries |x| = R and dD.

,u/ VL p|2de = S <um — Pov — Vl&”(p) ds
Dpgr ‘£E|:R al/ 2
_ y¢.<ﬂm_y¢y_my¢>ds
oD ov 2
1 1
— L <—[g0—<p v — —p 1/1/) ds.
oD 2 2
u/ VL p|Pde = — Lo < @—,@ —Vl,ﬁﬁg0> ds
Dg oD 81/ 2
1
+ 2/ Lo pds—1r(p) (3.2.12)
with
Ir(p) := S <9<pv + ﬂycp - MMD) ds (3.2.13)
|:1:\:R 2 aV
Adding equation (3.2.11) and equation(3.2.12), we have
,u/ !V&”gp|2d:n+u/ V% p|?dx :/ L pds —Ir(p). (3.2.14)
D Dr oD

Since
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Figure 3.2: Shows that how the jump relations works with two boundaries

1% 0.7
Ir(p)] = S - (@@y + iycp — ,USO> ds
|z|=R 2 ov
< / y@-(@(pl/—i-ylycp—um)' ds
|z|=R 2 ov
0.7
< / Lol - <|9’<p\ + 2.7y +u“p > ds. (3.2.15)
|z|=R 2 ov

To analyze the above inequality (3.2.15) in more detail we need the asymptotes of
the fundamental solution of the Oseen equation.

(z1—lz))/2p - 1
|E(z)| < emax<|x\+x1+x2?|x\ x1+x2>+0<>
4\/7p|x| |z| ||

1L @r—lal) /2 (1 Lot x?) L0 <1>
Vil || |z|
L ei-la/2n (1 L0 <1)>
Vx| |z|

1 1
(z1-1y))/2m
c——e +O0|——], (3.2.16)

where ¢y = 1/4,/mu. We calculate each term of the inequality (3.2.15) separately.

IN

Ze@l = |[ Bt ds<y>]
< / oD |E(z — )| |o(y)| ds(y)
< el /a 1Bl =)l ds(o)
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With the help of inequality (3.2.16), we can write the last inequality as follows

(Fo@) < el <c1j|?|e<wl>/2ﬂ+o< ﬁ)) /aDds(y)

éllelloo 1 e(xlla:)/2u+o< 1 ) (3.2.17)

Vil Vlal

Here ¢ = ¢ |, ap ds(y). Similarly we calculate the other terms of inequality (3.2.15),
we obtain,

IN

@] = W@
< G2y o < L ) (3.2.18)
|z Vil
Further we calculate
|Py(z)| < ¢ max (yl , y2> : (3.2.19)
vl [yl
with ¢z = % Thus in the view of values which are obtained in inequalities (3.2.17),

2
(3.2.18) and (3.2.19), we have

1

Tl < el [ ( e o ( m))
x [(&3 max (ES‘ r;')) + % <62 1|x|e(zlx|)/2“ +0 (\/%'))
4 (52\/1|?|6($1|m|)/2“ +0 (\/1@))] ds(z)
< elel [ (,;'emwu 40 ( ﬁ)) ds(a)

1 1
< ¢y ZO/ —e@=l2D/e gs(z) + O (> ds(z). 3.2.20
el wier 1] () Vi () ( )

Now using the parametric representation for the boundary |x| = R, i.e.,
x(t) = (Rcost, Rsint) t e [—m, ],

and with the aid of
cost —1 = —2sin*t/2 < —2t*/m,
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we further estimate the integral in above equation such that

2m ™
/ ‘;e(xlad)/u ds(a;) _ / e%(costfl) dt — / e%(costfl) dt
|z|=R 0 -7

T 2R 2t 4R 2
:/eusm2dt§/ewtdt
—Tr —Tr

T [T e T [ _ 2
< = < —= d
< IR/ e Ly . e T
py/m
< —. 3.2.21
-~ 4R ( )

Thus with this straight forward calculation, inequality (3.2.20) reduces to

~ 1 1
La@) < Ol 3+ 0 <m> |

Therefore Ir — 0 as R — 0 and equation (3.2.14) takes the following form

u/ V.7 |? da + ,u/ VL0 dz = (p,. 7). (3.2.22)
D R2\D

Here ¢ € C%%(dD) and the duality bracket is defined as
(o, ) = / @S ds (3.2.23)
oD

on W'/2(9D). Now in the next step we check whether the density ¢ which belongs
to W~1/2(9D) satisfied the equation (3.2.22) or not. Since for each ¢ € W~1/2(9D)
there exists a sequence ¢, € C%%(dD) such that ¢, — ¢ when n — oo with respect
to the norm W~2(dD). Thus from definition 3.2 we can conclude that

VSp = VS0, n— oo, (3.2.24)

with uniform convergence on compact subsets of D and R?\D. From theorem 3.4
the operator . : W=/2(dD) — W'/2(dD) is bounded and equation (3.2.22) tells
us that V., is a Cauchy sequence in L*(D) and L?(R?\D) and it is convergent
in both L?(D) and L?(R?\D). From the locally uniform convergence, given in
equation(3.2.24), we conclude that

VS = VS0, n— oo, (3.2.25)

both in L?(D) and L?(R?\D). Writing equation (3.2.22) in the form

" / VS ol + / VS 2 = (9, S0),
D R2\D
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and passing the limit n — oo we have

,u/ V.7 |? dz + u/ \VZ¢1* dz = (p, L) (3.2.26)
D R2\D

for ¢ € W~1/2(9D). Since from Corollary 8.18 in [22] we know that the norm on
WY(B), where B is a bounded domain, is Hu||2L2(aD) + HVUH%Q(D). Therefore from
equation (3.2.26) and Theorem 3.4, we have the boundedness of the operator .7 in
the domain B.

Now we estimate the boundedness of the pressure term . By definition 3.2 the
gradient of ®, which is the solution of Laplace equation, involves in the operator &2.
We could enforce Theorem 8.24 from [22] to obtain the boundedness on the operator

2. O

Theorem 3.6. For ¢ € W~Y2(dD) the pair (u,p) = (L@, Pp) is a weak solution
of the Dirichlet problem (3.1.4)-(3.1.6) with boundary condition w = ¢ on 0D and
Uso = 0.

Proof. The proof of the above theorem is straightforward. Since the pair (L@, Zp)
is the classical solution of the exterior Oseen equation. Using partial integration
with the help of Gauss divergence theorem, the equations (3.1.4) and (3.1.6) are
satisfied. O

Theorem 3.7. The Null space of the operator . : W—/2(dD,R?) — W1/2(0D,R?)
is given by N() = span{v}.

Proof. The proof is given in [23]. However a similar proof is given in Theorem 3.18.
O

Since the null space of the operator .# is non-trivial so with this operator it is not
possible that we could have a unique solution of the Oseen equation. To deal with
this issue we need to modify our operator .. By straightforward differentiation we
readily see that the pair (grad ®,0;®) is a solution of the Oseen equation. Also from
Theorem 3.6, we know that the pair (% p, P¢) is the solution of Oseen equation
provided u = ¢ on 0D and us = 0. Linear combination of these solutions are
solution again.

Lemma 3.8. The operator U : W=/2(0D,R?) — W'/2(dD,R?) defined by
Up =9+ (p,v)grad ®, (3.2.27)

with (p,v) = [45 ¢V ds is bijective operator and has a bounded inverse.
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Proof. Following [30], we first prove the injectivity of the operator U. Assume that
(1,Up) = 0 for all ¢ € W—Y2(9D,R?). Taking the inner product of the operator
(3.2.27) with the normal vector v, we obtain

0= (r,Uyp) = (v, 7p) + (p,v){v,grad D). (3.2.28)

Following Theorem 3.5 and because of the divergence theorem we can conclude that
(v, L) = 0, since div ¢ = 0 in D. Moreover, since the origin contained in D,
from Example 6.16 in [22], we have (v, grad ®) = —1. Together these results with
our assumption Uy = 0 the equation (3.2.28) reduces to (¢,v) = 0. Also from
Theorem 3.7 we know that . = 0 implies that ¢ € span{r}. The latter together
with (¢, v) = 0 gives us our final result that ¢ = 0. This proves the injectivity of
operator U.

To prove the rest of the theorem we use this technique. The diffrence A := U —.%
is bounded and has finite dimensional range. Therefore the operator A is a compact
operator. The principle part of the equation (3.2.6) is

2w 4 t—
() = / In (e sin? 5 T) Y(r)dr, tel0,2n]. (3.2.29)
0
In the view of Theorem 8.22 of [22], the bounded operator
Fo : WH(OD,R?) — W"T1(0D,R?) (3.2.30)

has a bounded inverse. Also from Theorem 13.20 in [22], we can conclude that
S — % is bounded from W" (0D, R?) into W"+2(9D,R?) of all » € R. Thus S — .%
is compact from W7 (0D,R?) — W"+(9D,R?) due to the embedding theory of
Sobolev spaces. The operator U is the sum of an invertible operator and a compact
operator. We have shown that it is injective and thus, by Riesz theory, the proof is
finished. ]

Theorem 3.9. Given a vector field f € W%(ﬁD,R2), and a constant vector Use,
the integral equation

Up=f—usx (3.2.31)
has a unique solution p € Wfé(aD,RQ). Then, the pair
(L + (p,v)grad @ + uco, P — (¢, )01 P) (3.2.32)

is a weak solution to the Dirichlet problem (3.1.4)-(3.1.6).
Proof. A proof is worked out in Theorem 2.5 [23]. O

Usually Oseen problem are solved in exterior domains due to the physical interest
in flows. To study the convergence of the point source method for flow reconstruction
we need also the wellposedness the interior Oseen problem. It can be shown with
similar tools as the exterior problems. Since the proof is not worked out in literature,
here we present a concise version for the convenience of the reader.
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Lemma 3.10. For a bounded domain D C R?, we introduce a space X (D) defined

by
X(D):={peCi(D):V-¢p=0 in D},

with the scalar product

b, o] = /D Vi) : Vo d.

The space X (D) is a pre-Hilbert space.

Definition 3.11. The space X which is defined as the completion of X with respect
to ||.||x, where

1/2
lolle = [0, ]2 = [ /D V@:Vgodx] |

Theorem 3.12. Let D C R?,n > 2, be bounded and locally Lipschitzian and assume
that p is sufficiently large. For any f € WY%2(dD) with

/ v-fds=0, (3.2.33)
oD

there exists one and only one weak solution u to the Oseen problem (3.1.1) in the
domain D and satisfy the condition (3.1.2) on boundary. The solution depends
continuously on the boundary data in the sense that there is a constant ¢ such that

HUHWM(D)S CHvavl/Q,Q(aD)- (3.2.34)

Proof. First we remark that under the condition (3.2.33) by Theorem II 3.3 in [16]
there exists a solenoidal extension V € WH2(D) of f, such that we have the estimate

HVH1,2 <c Hf”l/z,z(aD) (3.2.35)

with some constant c. We search the generalized solution u of the Oseen problem
in the form
u=w+V, (3.2.36)

with w € Wol’Z(D). For 1) € X (D) we remark that we have div ¢ = 0 and 4|gp = 0,
which leads to

(1, grad p) = (div ¢, p) = 0. (3.2.37)

We study a solution « to (3.1.1), multiply (3.1.1) by ¢ and employ partial integration
to derive

plu, ] = (u, 01¢) = 0. (3.2.38)
Plugging (3.2.36) into (3.2.38), we obtain,

pllw + V), 9] = (w+V,01¢) = 0.
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This leads us to

plw, ¥] = (w, 1) = —p[V, ¢] + (V, 019, (3.2.39)

for all ¢» € X(D). Using the definition of the bilinear form (3.1.7) for the interior
domain 2 = D, the above equation takes the form

a(w, V) = —p[V, 9] + (V,019). (3.2.40)

The right hand side of (3.2.40) is a bounded linear functional in ¢ € X'. Using the
Cauchy Schwarz inequality on both terms of a(-,-) and the Poincaré inequality in
the second step we estimate

la(w, )| < plw, w1, Y12 + (w, w2, ]2,
< (At Dlwlyep)l¥lxm)
< Clp+ Dljwllxm 1¥]lxp) (3.2.41)

with some constant C, such that a is a bounded sesquilinear form on X' (D). To
show coercivity of the sesquilinear form we note

aw,w) = el - w, )

Using the Cauchy Schwarz inequality and the Poincaré inequality on the second
term of above equation we estimate

a(w,w) > pllwllp) — (w,w) P lw,w].

> pllwlpy = lwll i p) lwllxo)
> (p=O)llwl%p) (3.2.42)

with the Poincaré constant C. For p > C the sesquilinear form is coercive and by
the Lax-Milgram Theorem [12], we can conclude that w is the unique solution of the
week formulation of Oseen equation.

Now we have to prove that the solution w is continuously depending on the
boundary data. From Laz-Milgram theorem we can conclude that the solutions
depends continuously on the boundary data. However we can also get this result
with explicit estimates as follows. Replacing ¢ with w in equation(3.2.39) we have

plw, w] = (w, dw) + (V, 0w) — p[V, w].
Via Cauchy Schwarz we estimate

NHwH?V(D)S |l 2oy llwll 2y +IV I 2oy lwl 2oy + pllwllx oy IVVI 22y
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By the Poincaré inequality we have

MHUJch(D)S C||w||gc(D)+||V||L2(D)Hw||X(D)+M||wHX(D)HVV||L2(D)

with some constant C'. Dividing by |w||x(py with standard estimates we derive

(1= ONwllxy< (1 +DIIVV w2
With the estimate (3.2.35) we obtain

(1= O)lw|lxpy< (0 + D[ fllwrr225p)-

Finally, using the Poincaré inequality once again, we can write the above equation

as
u—=C
W ol oy < 1+ Dl 2oy

So for p > C' the inequality (3.2.34) is satisfied and the proof is complete. O

We first need some preparations before we continue with developing some further
integral equation tools for the Oseen problem. We will study the adjoint single layer
potential operators. Two operators A : X — Y and A* : Y — X are said to be
adjoint provided that the following equation holds,

(Ap, ) = (p, A™),

for all ¢ € X and ¢ € Y. Moreover from Theorem 4.6 of [22] we know that for the
calculation of the adjoint we need to exchange the role of kernel variables inside the
operator, i.e., for an integral operator

(Ap)(z) = /Q K(x,y) oy) dy €9,
its adjoint is
(A" () = /Q K(z,y) o(z) dr ye Q.

With this brief review of adjoint operators we are going to characterize the adjoint
of the single layer potential operators for the Oseen equation. In the formulation of
the adjoint Oseen equation we should keep in mind that the fundamental solution
F is a tensor and it is symmetric in nature.

Theorem 3.13. Let OD be of class C*. Assume that 1 be the vector field and p be
the scalar field on 0D then in the view of above discussion the adjoint operators of
the single layer potential operators . and & are

(" P)y) = E(z —y) ¢(x) ds(x) (3.2.43)

oD
(P o)) = - /8 ela =) pla) ds(o) (3.2.44)
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for y € R?2\ 0D, and theses operators must satisfy the following equations

(FLe, ) = (o, T7Y),
(Zo,p) = (¢, P"p).

From above Theorem 3.13 it is clear that the operator .* is for the velocity
field and &2* is for the corresponding pressure field. The adjoint of the velocity
operator . maps from vector field to a vector field but the adjoint of the pressure
operator & maps from a scalar field to a vector field which is not acceptable from

physical point of view. To address this issue we need to define another operator for
the pressure field.

Definition 3.14. Let ¢ = (11,12) be a vector field on 0D of classp1 then we can
define the vectorial version of equation (3.2.44) with the operator Z7* such that

(P = - /8 ela =) vla) ds(o) (3.2.45)

We can see that the operator 2* is related to the adjoint of the single layer
potential operator & of Oseen equation, i.e., &*, such that

(PO = — /a el =) U(@) ds(x)
= —/ (e1(z —y) Yi(x) + ea(x —y) ¢a(x)) ds(x)
oD

= | ce-nmw ds<m>]1 [ ela =) valo) dste)
= [ (1) + [ 27 (¢2)]2.

2

Lemma 3.15. For an integrable density ¢ € 0D, the pair of adjoint single layer
potential operators (S *, P*) is the solution of adjoint Oseen equation (3.1.10).

Proof. By straightforward differentiation we readily see that for i =1, 2,
Ui(y) = Ei(x —y), pily) = —ei(z —y)

is the solution of adjoint Oseen equation (3.1.10) for fixed x € dD. Linear combi-
nations of these solutions are solutions again. Thus for y € R? we define

i) = [ (i =)o)+ Bata = p)ia@)) ds(a)

[ Byt dsta)
oD
= (SY)(y), (3.2.46)
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i) =~ [ (a0 + e - i) dsto)

- [/BD elz —y) U1 (z) ds(:c)} - [/w e(z —y) ¥2(x) ds(z)

—(:@*101)1(3/) — (P"2)2(y)
= (Z"Y)(y). (3.2.47)

2

Then, (a,p) or (*, P*)), respectively, is a solution of adjoint Oseen equation
(3.1.10) in D and R?\D. O

Lemma 3.16. Let 0D be of class C*. Let v be the outward unit normal on the
obstacle D. Then for the adjoint single layer potential operators #* and PP*Y, we
have

D () ) = [ Ba-ygued), (3249
- oD
Jin (770) ) = [ ety via) dsto)

£ Luly) o) (3.2.49)
) By
Jim ST ) = [ T ia) dsa)

= ;M () — () - vyv()],  (3.2.50)

fory e dD.

Proof. Since the jump relations for the single layer potential operators . and &
are obtained (see Theorem 3.3) using the fact that fundamental solutions of Oseen
and Stokes equations have the same singular behavior at origin. As the fundamental
solution of Stokes equation has the following property

Ey(z) = Eyp(—=2) e(z) = —e(—2)

for = € R%. Using this useful property and the jump relations defined in Theorem
3.3 we can develop the jump relations for the adjoint operators .* and &7*. The
continuity of .* is obvious, i.e.

Jm (FP)y £ he(y)) = | Bl —y)p(e) ds(@). (3.2.51)
- oD

Further, for j = 1,2 with the help of (3.2.3) for ¢ = (p,0)T or » = (0,p)T we
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calculate

— [ este -y oty
oD

U

;P‘
O
Q’)\Qﬁ\@\

&
=
&
H_

|
QT
=
s
e
=
s

D
We obtain
lim (27%p)(y + hv(y)) = —/ e(z —y)p(x) ds(z) + 1V(y)p(y)- (3.2.52)
h—+0 oD 2

The calculation of the jump relation for the adjoint operator defined P applied
to a vector field ¢ defined in (3.2.47) is:

hl_i)rflro(@*w)(y + ho(y)) = [hli% Py £ hv(y))} 1
+ [hlirﬁo P iha(y £ hV(y))} ) (3.2.53)

= |= [ e(@—yi(z)ds(z) + 1v(ym(y)
-, 3 o)
|- [ elw—yun@) ds@) £ Svm)vay)
-, 3 o)

_ / fex(z —y)r(x) + ea(w —y)ia(x)] ds(z)
oD

+ % ) (y) + va(y)n(y)]

1
= [ o) vla) dsta) £ Su) v
oD 2
A similar calculation for .#* shows

lim y*w( +hr(y)) = /BD M@ZJ(ZE) ds(zx)

h—+0 Ov

1

2

for y € OD.

Lemma 3.17. Let D be some domain with boundary 0D of class C*. Given a vector
field 1 € L*(0D), then

u/ ]Vy*w|2dy+u/ |V dy:/ V- LY ds. (3.2.55)
D R\D oD
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Proof. From Lemma 3.15 we note that (@,p) = (£*1, P*1p) satisfies the adjoint
Oseen equation in D and in R?\ D. Since adjoint Oseen equation is an Oseen equa-
tion with different signs. To prove equation (3.2.55) we follow the same arguments
which we used before for the Oseen equation in Theorem 3.5. However we repeat
some of the arguments due to the change in sign for the convenience of the reader.
Working on equation (3.1.10) and with the help of Gauss divergence theorem we

derive .
u/ Vil 2dy = / i (u“ + 85— ﬁy) ds. (3.2.56)
D oD o 2

Now we employ the jump relations (3.2.48), (3.2.49) to calculate

* 112 _ * ay*¢ 141 * o %
M/Dmsﬂwydy - /aDyz/;(u S <9w>u)ds
+ 1 V- S ds. (3.2.57)

2 Jop

In a second step we apply (3.2.56) to Dr := R?\ D. In this case we have two
boundaries i.e., 0D and 0Dg. Thus with the help of the jump relations, equation
(3.2.56) takes the form

*, 12 _ * 85”%/} Vi opw, Ty*
M/DR\vyw dy — |x:Ry¢-<u L Ay (9 zp>y>ds.
* &7*?/) 4! * %
+} V- S ds (3.2.58)
2 Joap

Finally adding equation (3.2.57) and equation (3.2.58) we have
,u/ V.S *p2dy + ,u/ \V.2*Y|?dy =T + / V- LY ds, (3.2.59)
D Dr oD

where
0.y
ov

Ir = 5’*¢'<M

. + %yw _ (@*w) I/T> ds.

As in the proof of Theorem 3.5 it is proved that Iz — 0 as R — oo. Thus, taking
limit R — oo in equation (3.2.59), we obtain equation (3.2.55). O

Theorem 3.18. Let D C R? be a domain with at least C' boundary. Then the null
space of the operator /* : L*(0D) — L*(dD) is given by

N(*) = span{v}. (3.2.60)
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Proof. Assume .*1) = 0 on 9D for ¢ € L?>(0D). By equation (3.2.55) we have
p [ VF P don [ VSR e = 0 S ey (3260
D R2\D

From above equation we have .#*¢ is constant on dD. Then by the adjoint Oseen
equation (3.1.10), we also have that &?*1 is constant in D and in R? \ D and with
the help of jump relations (3.2.48), (3.2.49) and (3.2.50), we can conclude that

c=v-p, 0=p—(v-Qv=p-—-c,

which implies ¢ € span{v}.
Conversely, we consider ¢ = v. Since, by the adjoint Oseen equation, divS*v = 0
in R?\ D Gauss’ theorem yields

/ v- *vds=0.
oD

From equation (3.2.61) we conclude .*v is a constant in R? \ G. Since (.7*v)(x)
tends to zero for |z| — oo we conclude .*v = 0 in R?\ D. This yields .#*v = 0 on
A and completes the proof. O

We will now work out an alternative existence proof for the interior problem via
integral equations, which also provides continuity statements for later use.

Theorem 3.19. The operator . is boundedly invertible from
span{v}*t = N(L)* c W=Y2(8D)

mnto
span{v}*+ = N(*)* c W'/2(oD).

Proof. We remark that . = A + (¥ — ) with a compact operator ./ — .7 :
W12 — W2 and the principal part which in parametrized form is given in
(3.2.29). The operator .% is boundedly invertible from W~=/2(dD) into W'/2(dD),
compare Theorem 8.22 of [22]. For . we remark that according to Lemma 3.18 we
have

R(S) = N(#*)t =span{v}* = {o e WY2(OD): (v,¢) =0}.
We define the auxiliary operator
(Up)(z) := (L) (x) + (p,v)v(x), =€ dD. (3.2.62)

Clearly, the second term in U has finite dimensional image and is thus compact, and
thus U is sum~0f a boundedly invertible and a compact operator. If we can show
injectivity of U from W~2(dD) into W'/2(dD), by the Riesz-Fredholm theory
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we obtain invertibility and the boundedness of the inverse. To show injectivity we
assume that ¢ with Uy = 0. Then

0= Up)= (v,7p) +p,v){v,v) (3.2.63)
—— ——
=(S*v,)=0 #0

which yields (p, ) = 0. Now 0 = Up = .7 ¢ leads to ¢ = Sv with some § € R, since
N() = span{r}. Finally, from (3.2.63) we now obtain 0 = (v, v), which yields
B = 0 and thus ¢ = 0. Thus, we have shown that Uis boundedly invertible.

Let ¢ be a solution of Up = f where (f,) = 0. Then we know that

0= <V>f> = <V7U90> = <y,ygp>—|—<gp,y><y7y> = <907V><V7V>'

We conclude that (¢, ) = 0 and thus ¢ € N(.#)* and . ¢ = f. This proves that .7
is boundedly invertible as operator N(.%)* — N(.#*)*, and the proof is complete.
U

We can use the above integral equation of the first kind to solve the interior
Oseen problem.

Corollary 3.20. (Interior Problem) Let o € W=Y2(9D) be a solution to
Fo=f (3.2.64)

for f € WY2(dD) with (f,v) = 0. Then the pair (Fp, Pp) is a weak solution
to the interior Oseen equation in D. The solution (¢, 2¢) in W1(D) x L*(D)
depends continuously on f.

Proof. Clearly (¢, P¢) solves the Oseen equation and the boundary values of
S are given by f according to Theorem 3.19. Continuity is a consequence of the
boundedness of the inverse in combination with the boundedness of the potential
operators as established in Theorem 3.5. O

Corollary 3.21. (Exterior Problem) Let ¢ € W~/2(dD) be a solution to
So=1f (3.2.65)

for f € WY2(OD) with (f,v) = 0. Then the pair (S, P¢) is a weak solution to
the exterior Oseen equation in R?\ D. The solution (Lo, Pp) in WL (R?\ D) x
L% (R?\ D) depends continuously on f.

Proof. With the condition (f,r) = 0 this Corollary is an extension of Theorem 3.6.
0
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As a consequence of the above Corollary 3.20 there are constants ¢, ¢ such that
if we have two solutions (u,p) and (@, p) of the interior Oseen problem with
|l — Z7HW1/2(aD) <6

then
Hu - ﬂle(D) S Ce, Hp — ﬁHL2(D) S CIG. (3266)

Since the adjoint Oseen equation is an Oseen equation with different direction of
the flow ug, the same estimates apply to solutions of the adjoint Oseen equation.



Chapter 4

Field Reconstructions by the
Point Source Method

The point source method is a well established scheme for field reconstruction in
acoustics and electromagnetics, see [6, 11,25, 26, 28, 34-36, 38]. It belongs to the
class of decomposition methods in inverse scattering since it solves the non-linear
and ill-posed inverse shape reconstruction problem by a decomposition into a linear
ill-posed problem and non-linear well-posed problem. Here, our goal is to establish
the point source method (PSM) for the reconstruction of fluid flow phenomena.

In this chapter we investigate the point source method for the Oseen flow. The
Oseen equation is basically derived from the Navier-Stokes equation which is vec-
torial in nature. Before this the point source method is applied on the Helmholtz’s
or Maxwell’s equations successfully [28,35,36]. However, here we can see the new
aspects of point source method. In contrast to acoustics or electromagnetics, the
use of the point source method in fluid dynamics leads to a number of challenges
in terms of the analysis and the proper setup of the scheme, in particular since the
null-spaces of the integral operators under consideration are no longer trivial.

We will base the point source method on an integral equation approach to repre-
sent the flow field in the exterior of some object D. This approach contains integrals
over the unknown inclusion. These terms are removed by using an approximation
of the point source by a single layer potential over the measurement surface and a
reduction step where the remaining term is expressed in terms of measured data.

Our primary task is to reconstruct the flow field and to locate and reconstruct
the shape of unknown obstacles from the given velocity field at infinity. Assume
that the obstacle D C R? and a domain €2 such that D C 2. We want to find an
approximating function Y (z), defined as

/E —2)gly) ds(y), e,

for the point source E(z — -) with source point z located in the region Q\D, here

51
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A is an open subset of the boundary 92 of the domain 2. Since the fundamental
solution of Oseen equation E(x — -) is a matrix of dimension 2 x 2. Therefore the
density g € (LZ(A))2X2 is tensor of dimension 2 x 2.

In a first step we establish the layer potential theory to approximate the point
source E(x—-) to approximating function Y (). For the inverse problem our obstacle
D is unknown so we replace the unknown domain D with a known domain, called
approximation domain, G, such that G C ). The point source method usually
works with approximation domains G, where D C G is a sufficient condition for
convergence of the reconstruction of the flow field u(z) in a point = ¢ G.

Furthermore, the approximation of the point source by a single-layer poten-
tial contains the ill-posed part of the reconstruction, it is carried out by means of
Tikhonov reqularization. This then leads to a reconstruction formula

tree() = /A 07 (€) (tmeas — toc) (€) dS(€) + s, 2 € B2\ D,

with some density tensor g € (Lz(A))2X2 and the measured values Upeqs ON some
surface A.

The plan for this chapter is as follows. In section 4.1 we introduce the method-
ology for the choice of approximation domain GG and presented the approximation
of the source point E(x,-) with the single layer potential operator. Then in section
4.3 we construct the back projection formula for the Oseen flow with the help of
point source method. In this monograph we did not provide any new results to prove
the uniqueness of the inverse problem. However following Kress and Meyer [23],
uniqueness for the inverse problem is demonstrated in section 4.2.

4.1 Approximation with a Single-Layer Potential

The basic goal of this work is to reconstruct the flow field and the shape of unknown
obstacle D due to the Oseen’s flow. This means that in the first step we replace the
unknown domain D with the known domain G. The position of the new domain
named as approximation domain G is subject to the source point x. Thus for all
x € Q\D we choose the approximation domain G, such that D C G, and = ¢ G,
for approximating the point source F(z — -).

As the setting for the single layer potential operator is different for the Oseen
equation as compared to Laplace equation or Helmholtz equation. The integral
operators under consideration have non-trivial null-spaces and to prove the approx-
imation properties of the operators we need a careful consideration of these spaces.
As another point, the fundamental solution of the Oseen equation is not symmetric
or antisymmetric in its arguments, as it is for acoustic problems. The other dif-
ference is that Oseen equation has two dependent variables i.e. velocity field and
pressure. Therefore the single layer potential operator for Oseen equation is a pair
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of two operators (see definition 3.2), one is for the velocity field and the other one is
for the corresponding pressure field. This makes things much more involved, when
we carry out the setup and proofs for the approximation properties, in particular we
need to investigate the adjoint operators, which solve some adjoint Oseen problem.
We will address and resolve the problems and provide a full convergence analysis.
Since the problem is tensorial by nature and we need to work with a tensorial fun-
damental solution. We introduce the following version of the single layer potential
operators for the Oseen equation or the adjoint Oseen equation.

Definition 4.1. Let A and OG are the boundaries of the domains G C R? and
Q C R2, respectively. Let g = (g1,92) be a matriz of dimension 2 x 2 with g; €
(L2(0G))**! for i = 1,2. Then the pair of single layer potential operators

S (L20G)V? = (L2A)P?, P (L206)? = (L2(A)7?, (4.1.1)

1s defined by

(S9)(y) = aGE(yfé*) 9(§) ds(§), y €A, (4.1.2)

(Pg)(y) = AG(V®(y—£))Tg(§)dS(§)7 yeA  (413)

Here E(x —y) and V®(y — &) represents fundamental solution of the Oseen equation
defined in equation (3.1.32) and (3.1.33).

Furthermore the operators S and P have the adjoint operators S* and P* such
that
(59,9)=1(9,5"9)  (Pg,9) = {9, P"9),
for all g € L?(0G) and § € L%*(A). We can write the operators (4.1.2) and (4.1.3)

in the shape of pairs, when applied on a matrix g, such that Sg = (.#¢1,.%¢2) and
Pg=(Zg1,Pg2). The operator
2x1

7 (L20G)7 = (L(M)7 (4.1.4)

is defined as
(F)(y) = /6 Bly-9 9 ds©)  ped (4.1.5)

for any integrable density 1 € (L?0G)?*!. Similarly the operator P can be written
in the form of a pair (Zg1, Pg2). Here the operator
1x1

2(y) : (LP0G)" — (L2(n) 7, (4.1.6)

is defined as

(PY) = /8 (VR €) (e ds(©) e (4.1.7)

The idea of writing operators in the form of a pair can be extended up to their
adjoint operators such that S*g = (.*g1,-7*g2) and P*g = (£*G1, P*§2) .
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Remark: As a remake we should mention that the pair (1, ) satisfy the
Oseen equation on the boundary A.

Definition 4.2. Let OG and A are defined as in Definition 4.1. Let g = (g1, g2) is a
matriz of dimension 2 X 2 with g; € (LQ(A))2X1 fori=1,2. Then the pair of single
layer potential operators for the adjoint Oseen equation is defined by

(S@dg)(E) = /A E(y— €) g(y) ds(y), EERI\A,  (418)
(Ped)g)(e) = — /A (V(y— )7 g(y) ds(y), €€RE\A  (4.19)

Since the operators S(@%) and P4) are applied to the matrix g we can rewrite
them as following
Sldlg .= (g, 7*H)g,),

plad) g .— (pladi) g, gp(adi) g,
For any arbitrary density ¢ € (L?(A))?*!, the operator

2x1

@) (L2(0)7 5 (L3R \ M) (4.1.10)

loc

is defined as
(Fatlg)(E) = /A Bly—€) o(y) dsy),  E€R\A  (4.111)

and the pressure field operator

2x1

@) (L2(0) = (L3R \ M) (4.1.12)

loc
is defined as
(PeD)6) = [ (T - o) dsy)  CERNA (4113)
A 1x2 ?;T

These operators coincide with the classical adjoint of the single layer potentials for
the Oseen equation (3.1.1) (see Theorem 3.13) .

Lemma 4.3. For an integrable density ¢ € (Lz(A))2X1, the pair of single layer
potential operators (W), 24 p) defined in equations (4.1.11) and (4.1.13)
satisfies the adjoint Oseen equation (3.1.10) in R?\ A.

Proof. We know that the pairs (E;(y — &), ei(y — £)),7 = 1,2 are two linearly inde-
pendent solutions of the Oseen equation (3.1.1) for fixed y € A. From a straight
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forward calculation we see that (E;(y — &), —e;i(y — &)),i = 1,2 are two linearly in-
dependent solutions of adjoint Oseen equation (3.1.10) for fixed y € A. Since linear
combinations of these solutions is again a solution, for & € R? \ A we can define

i€) = [ (Blw=01)+ Baly - Oals)) dsto)

/Eyg ds(y)

= (F“De)(e),
76 = = [ (e1lo =01+ ealy — (o) sty

= —/e(y—f)-w(y) ds(y)
A

= (2Vo) (),
where ¢ € (LQ(A))QXI. Thus, (4, p) or (.# @), 2(ed)p) respectively, is a solution
of adjoint Oseen equation (3.1.10) in R? \ A. O

Remark: If we choose the appropriate domains G and €2 such that G C €2 then
OG must belong to the region R? \ A. Then the adjoint of the single layer potential
operator (4.1.2) for the Oseen equation is equal to the potential operators S (adj)
ie.,

Sladi) — g,
In future, unless otherwise stated, the operator S®¥) goes from (L?(A))**? to
(L?(0@G))?*2. Similarly the operator P(¢%) goes from L?(A)?*? to (L*(0G)) *?

Due to the wellposedness of the Oseen equation and the adjoint Oseen equation
in the interior domain (see Remark after the Corollary 3.20) it is sufficient to work
out on one operator. If we get the approximation for the one operator then the
approximation for the other one is understood in the sense (3.2.66).

Now let us consider the Oseen equation in the domain Q\ G. We will show
that we can find an approximating function T in the form of a single-layer potential
operator

/E — 2)g(y)ds(y) z €} (4.1.14)

of the corresponding adjoint Oseen equation which approximates the point source
E(xz —-) on G such that

Ex—-)~=T7() r¢G. (4.1.15)

The point source method is based on the principle that the single layer potential
operator has a dense range in a L? space . Under this principle it has been success-
fully applied for different problems (See for example [34-36,38]). However in our
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problem this criterion is not fulfilled. The operator S%) do not have a dense range
in (L%(0G))?*? since the adjoint operator for the Oseen equation is not injective. To
deal with this problem we adopted another technique to implement the point source
method for the reconstruction of flow field.

Theorem 4.4. Assume that A is an open subset of the boundary 0B of a domain
B with analytical boundary containing OG in its interior. Then, the null space of

the operator .7 : (L2(8G))2X1 — (LQ(A))2X1 is given by
N(&) = span{v}. (4.1.16)

Proof. Assume .#*1) =0 on A for ¢ € (Lz((?G))QXl. By using (3.2.22) applied to
the approximation domain G, we have

u/ VY| de + u/ VI dr = (W, L) (1206727 (4.1.17)
G R2\G

From .#1) = 0 on A , by analyticity of .1 on 0B, we obtain .1 = 0 on 0B. Clearly,
the pair (.#1, 2) is a weak solution of the Oseen equation in R? \ B. Uniqueness
(Theorem VII.1.2 in [16]) of the exterior Oseen problem implies .71 = 0 in R? \ B.
Since domain B contains G in its interior, by analytic continuation into R?\ G
and the continuity of .#1¢ on OG we obtain .#1) = 0 on OG. Now equation (4.1.17)
implies that %7 is constant in G and in R?\ G. Then by the Oseen equation (3.1.1),
we also have that £ is constant in G and in R? \ G then with the help of jump
relations (3.2.3) and (3.2.4) we finally have ¢ € span{v}.

Conversely, we consider ¢ = v. Since, by the Oseen equation, div.v = 0 in
R?\ G Gauss’ theorem yields

/ v-YLrds=0.
oG

From equation (4.1.17) we conclude .#v is a constant in R? \ G. Since (./v)(x)
tends to zero for |z| — oo we conclude .#v = 0 in R? \ G. This yields .#v = 0 on A
and completes the proof. O

Corollary 4.5. Assume that A and OG satisfied the assumptions of Theorem 4.4.
Then the operator . @%) . (L2(A))2X1 — (LQ(BG))2X1 has a non-trivial null space
such that

N(7@4)) = span{v}. (4.1.18)

Proof. A similar proof is done in Theorem 3.18. 0
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Theorem 4.6. The nullspace of the operator S and the nullspace of the operator
S@d) gre given by

N(S) = span{(v,0),(0,v)}, (4.1.19)
N(S©@DY = span{(v,0), (0,v)}, (4.1.20)

respectively.

Proof. Since the proof of equations (4.1.19) and (4.1.20) are similar, here we present
the proof for the operator S. Consider a matrix g = (g1, g2) of size 2 x 2 such that

g € N(S)

3

Sg=0

(Zg1,792) =0

g1 =0, FLg=0

g1 €EN(S), g2€ N(S)

g = (v, o) = a1(v,0) + a2(0,v)
g € span{(v,0), (0,v)}.

SR R

g

From the basic literature of functional analysis we have very famous result which
insures the criteria of denseness of the operators .%, S, .#@%) and S(@%) in the
particular space span{v}.

Theorem 4.7. For a bounded linear operator A : X — Y between Hilbert spaces
X,Y we have

AX)t =N, N4 =AX). (4.1.21)
Proof. For the first statement, assume that f € A(X)"*, this means

feAX)t < (46, f)=0 forall ¢eX

& (9,A7f) =0
& A f=0
& feN(AY).

For the second part we denote A = A(X) and obviously we have the closed subspace
A C (AH). We take an orthogonal projection P in Y onto the A. Using Theorem
1.25 in [21] we have the orthogonality P¢ — ¢ L(AL)L for any arbitrary ¢ € (AL)*.
But at the same time, because of A C (A1)*, we also have Pp — ¢ € A+. This
yield Pp — ¢ = 0, i.e., Pp = ¢ and it follows that ¢ € A = A(X). This gives us the
following straightforward result A = (AL)+ which together with the first equality
gives us the second result. O
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Theorem 4.8. Let .7 and .9 be two potential operators defined in equations
(4.1.5) and (4.1.11). Then we have the following results.

R(#(ad)) = R(.*) = span{v}* and  R(Y) =span{r}t. (4.1.22)
Also the range spaces of operators S and S@%) are given by
R(S) = span{(v,0), (0,v)}*, (4.1.23)
R(S(ad)) = span{(v,0), (0,v)}*. (4.1.24)
Proof. From Theorem 4.7 we have the following result
R(#@d)) = N ()" (4.1.25)

Making use of equation (4.1.16) in above equation we proved the first statement of
the Lemma, i.e., R(.7(a4)) = span{v}'. Now replacing .#(*¥) by .7 in equation
(4.1.25) we obtain

") = N (y(awlj))L

With the help of equation (4.1.18) in above equation we have the second statement of
the lemma. Similarly, from equations (4.1.19) and (4.1.20) we can prove the results
stated in equations (4.1.23) and (4.1.24). O

This is useful result for our analysis, since it shows that for any density ¢ €
(LQ(A))2X1 or (LQ(BG))2><1 whose scalar product is zero with the normal vector v
on the boundary A or OG, must belongs to the R(.) or R(.*) respectively. It is
discussed before in section 3.1 that (Ej,e;), i = 1,2, are two linearly independent
solution of Oseen equation and (E;, —e;), @ = 1,2 are the two solution of corre-
sponding adjoint Oseen equation. Thus we can see that both solutions are identical
for the velocity field however we have difference of minus sign for the pressure term.
The continuity equation tells us that

divyEi(x —y) =0, ye€G and z ¢ G for i=1,2.

With the help of divergence theorem we have
W Bi(x =) p2ayz =0, z€R)\G,  i=12 (4.1.26)

Thus, we can find density g; € (L2 (A))2X1 , 1 = 1,2 such that the approximation

(e —y) ~ /A E(¢ — y)gi(6) ds(€), ye o, i=12, (4.1.27)

2x1

is satisfied in the sense that for a given z ¢ G, € > 0 there is g; € (L*(A))”"" such

that
||El(CC - ) - y(adj)gi||(L2(ag))2><l < €, 1= 1, 2. (4128)
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Lemma 4.9. The tensor E = (E1, E3) must belongs to R(S) and R(S(adﬂ))

Proof. The fundamental tensors E;, i = 1,2, given by the equation (4.1.27), belongs
to the spaces R(.) and R(.(ad)) which means (E;,v) = 0,i = 1,2. For any
B1, P2 € R, the tensor (B1v, f2v) = P1(v,0) 4+ [2(0,v) belongs to the null space of S
and S(®4) given in equations (4.1.19), (4.1.20) respectively. Now

(B, (B1v, Bav)) = ((E1, Ba), (Biv, Bav))
B1{Er,v) + B2(E2,v)
= 0. (4.1.29)

With the help of Theorem 4.8 and above result (4.1.29) we can conclude that the
tensor E belong to R(S) and R(S(@d)). O

With all this theory we are now in position to approximate the point source
E(x —-) on the boundary of the approximation domain G with a particular integral
on A.

Theorem 4.10. Let (E,e) be the fundamental solution of the Oseen equation. Then
we can approzimate

~ /A E(¢— y)g(€) ds(€),  y < dG, (4.1.30)

in the sense that for given x ¢ G,e > 0 there is g € (LZ(A))2X2 such that

HE(:U— ) - adﬂgH (4.1.31)

<e.
(L2(0G))>*?

Proof. With the help of equation (4.1.27) and Lemma 4.9 we have the statement of
the theorem. O

Remark: As a remark we would like to mention that due to the wellposedness of
the adjoint Oseen equation in the interior domain (see the remark after Corollary
3.20) and the estimates (3.2.66), we have the following approximation

(Vo — )T ~ /A (Vo — y)T g(€) ds(€) yeG (4.1.32)

in the sense of

H Pldi)y — (Vd(x — .))TH (4.1.33)

<
(L2(0G))*** — ‘
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4.2 Uniqueness of Inverse problem

As it is discussed before that our inverse problem is to reconstruct the flow field and
to determine the unknown boundary from the knowledge of © on A. For this we
consider the weak solution of the Oseen equation

Ay — ohyu —grad p = 0, divu=0 (4.2.1)

in the exterior of the unknown obstacle by taking the following homogeneous bound-
ary condition

u=0 on oD (4.2.2)
and the condition at infinity is

lim v = us = (1,0). (4.2.3)

T—r00

Before establishing the point source method we are interested in the uniqueness
result of the above inverse problem. Kress and Meyer [23] developed these uniqueness
results in 2000, we adopt these results in our analysis. For convenience of the reader
we present these results here, explicitly.

Lemma 4.11. Let Q be a bounded domain in R%. Assume that u = 0 on 9Q with
u € WHQ)NCHQ)NC(Q). Then there exists a sequence u, € CA(Q) such that

|un — ullwq) — 0, n — 0o,
or in other words u € W ()

Proof. See Lemma 3.1 in [23] O

Theorem 4.12. Let us consider D1 and Ds are two domains contained in the
interior of a measurement boundary A. Assume that we have two weak solutions
of the boundary value problem (4.2.1)-(4.2.3) for D1 and Dy respectively. If these
solutions have the same value at A then D1 = D>.

Proof. Following Kress and Meyer [23], we assume to the contrary that Dy # Do
and the solutions uq; = ug to the corresponding boundary value problem coincides
on A. From this by the uniqueness of the solution of Dirichlet problem, applied
to the exterior of A, we have u; = us in the exterior of A. As our solutions are
represented in terms of single layer potential so it can easily deduced that u; and
ug are analytic in the exterior of the respective domains i.e., R?\D; and R?\Ds.
By the analyticity and the uniqueness result we can say that u; = us in the whole
region except D1 U Dsy. Let us cal this unbounded region by G.

Now define another region G* := (R?\G)\ D2 and assume that it is non-empty.
Now the solution u := wug is defined in the region G* as usg is the solution of equation
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(4.2.1)-(4.2.3) for the exterior of Dy. Also u = 0 on OG* in the classical sense
because u = 0 on 9Dy which is apart of 0G*.

By the measure theory, the intersection of measurable sets is measurable. This
implies G* is a measurable set. According to equation (3.1.9) we have, uy €
WL (R*\D3,R?) and p € L? _(R?\Dy,R) this implies that u € W!(G*,R?) and
p € L*(G*,R?) and hence finally we can conclude that grad v € W!(G*,R?). This
means that , from Lemma 4.2, there exist a sequence u, € C¢(G* ,R?) such that
|un, — ul| = 0,n — oo.

Now applying the divergence theorem on the Oseen equation for u, we obtain

{uVu - Vuy, + - uy — pdiv uy, pdx = 0. (4.2.4)
G*

The last terms vanishes when n — oo since div 4 = 0. The second term vanishes

because
81u-un:—/ U+ O1Uy,.
G* *

So after passing the limit n — oo in equation (4.2.4) we are left with

/ |Vul|*dz = 0.

This implies that u must be a constant and from the boundary condition (4.2.2)
we have u = ug = 0 in D*. By analyticity it follows that us = 0 in R?\ Dy which
is a contradiction to the condition (4.2.3), since us # 0 and with this our proof is
complete. U

4.3 The Point Source Method for Oseen Flow

In this section we develop the point source method for the reconstruction of flow field
and to locate and reconstruct the unknown obstacle D. Later on we investigate the
convergence of the method. In particular we carry out the explicit construction of
a kernel or function g, € (LQ(A))2X2 for z ¢ G\ D, such that the velocity field u(x)
in x is approximated by the back projection formula

’I,LT’GC("B) ~ /Agg(g)(umeas(f) - Uoo) dS(f) + Uoo, RS R? \ D, (4.3.1)

where ¢;(&) = (92,1(§), 9z,2(§)) is a tensor with unknown densities

_{ 9z11(E) _{ 9z21(8)
gx,l(g) = ( gm,l,;(§> > s g:r,2(£) = < gm,z,;(ﬁ) > . (432)

Since in the inverse problem we have to construct the size and the location of
the obstacle D as well as the flow field. In the point source method we replace our
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unknown domain D by a known domain GG. We call this domain as an approximation
domain. Our whole analysis depends on the choice of approximation domain. There
are several methods in literature (see [6,10,19,20]) for example the needle approach,
domain sampling or newly develop LASSO scheme. We will discuss in detail about
the choice of approximation domain in numerical part of this monograph.

From Theorem 4.10 we know that the fundamental solution E(x — ), = ¢ G
can be approximated by the single layer potential operator corresponding to each
element z in the grid such that

Sldlg ~E(x—-) on  8G. (4.3.3)

Since the above equation is ill-posed in nature so we used Tikhonov regularization
(see details in section 2.4) to replace the above approximation with the following
regularized equation,

(o + 88h)yg, = SE(x — ), (4.3.4)

to get the approximate solution g, which satisfies

|stg, — B )

<e. (4.3.5)
12(0Q)

Here the important question is how to choose the regularization parameter a.
For this we assume that g, is the unique solution of the equation (4.3.4) and we
define a function F(«) such that

Fla):= 8D, — B(x — )| — ¢ (4.3.6)

for any 0 < € <||E(x — -)||. It can be shown by standard arguments that for & — 0
in equation (4.3.4) we have ||S@¥)g, — E(x — )| — 0, and for @ — co we have
Sladi) g — 0. Thus equation (4.3.6) reduces to

|E(x—)||-€2>0 for a — 00
-2 <0 for a—0

Fe ={
Thus F(«) has zeros a = a(e€) or in other words
Fla) = 50 g, — Bz — )| — & =0 (43.7)

Substituting the value of g from equation (4.3.4) in the above one, we have the value
of a from the following equation

. A\ —1
|5 ed) (al + Ss<adﬂ>) SE(x—) — E(z —-)|| —e = 0. (4.3.8)

However in this monograph, instead of using this procedure we choose « by trial
and error. It is observed that we have a good approximation from o = 10% to
a =107
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To construct the back projection formula for the reconstruction of the velocity
field and the shape of unknown obstacle for the Oseen equation we use the following
potential representation

u(z) = (L) (x) + YV (x) + too, (4.3.9)

where v = (¢, v). Here we use the single layer potential operator,

(Fp)(x) = - E(z —y)p(y) ds(y), ye€aD, (4.3.10)

for D C GG. We choose this special type of potential representation since it solves the
Oseen equation (compare Theorem 3.9). Now from Theorem 4.10, the fundamental
solution F(z — ) can be approximated by the single layer potential at the source
point = under the norms described in equation (4.1.31). Taking the transpose of the
equation (4.1.30) we have

T

ey~ ([ Be-pa@a©)  yeop. (43.11)
Due to the symmetry of fundamental solution E(z — -) we are left with
Bz —y) ~ /A gL (€) B¢ —y) ds(6),  yeaD. (43.12)
Substituting the value of equation (4.3.12) into equation (4.3.10), we obtain
o~ [ ( | F©ru-9 ds@)) o(y) ds(y). (4.3.13)

The inequality (4.3.11) is understood in the sense that given = € G,e > 0 there is
9z € (L2(A))2X2 such that

<e. (4.3.14)
12(9G)

(o - [ ([ a©su-9©) e asw

Interchanging the integrals in equation (4.3.13) we derive

(Fo)x) ~ /A gL () /BDE@—y)so(y) ds(y) ds(€).
(Ze)(€)
/A L (€)(F)(€) ds(©), (4.3.15)

() ()

Q

in the sense of the following norm

H(Yso)(fv) - [ @ iste

. (4.3.16)
L2(8G)
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On the boundary A we have the measured velocity field uyeqs, Wwe employ equation
(4.3.9) to transform (4.3.15) into

(Fo)x) ~ /A 07 (€) [tmeas(€) — YVB(E) — une] ds(€)
— / 0T (€) (ttmeas — uoo) (€) d(€)

A

oy /A oL (€)VR(eNs (€). (4.3.17)

Substituting the value of equation (4.3.17) into equation (4.3.9)

weelo) % [ G(E) (s = ) () d(6)
- ([ Ve ase - Vo) ) + .
Taking transpose of equation (4.1.32), we obtain
Vo) ~ [ g6)" V() ds(©
in the sense of equation (4.1.33). Finally we have the reconstruction formula
tae@) = [ 71 (nea©) — ) 5(6) +
in the sense that given e > 0 there is g1 € (Lz(A))2 such that

<e. (4.3.18)
L2(0G)

Urec — /1\95(5) (umeas(g) - uoo) ds(ﬁ) + Uoso

We summarize the results in the following theorem.

Theorem 4.13. For the test domain G with D C G and x € R*\G, the reconstructed
velocity field defined by

Urec(T) = /Agf(ﬁ) (Umeas (&) — Uoo) ds(€) + s (4.3.19)
with a density g satisfying
15792 = E(z = )l 12(00) < € (4.3.20)
approzimates the true velocity field uniformly on R?\ G such that

lim max |u(x) — upec(x)| = 0. (4.3.21)
e—0 zeR2\G



Chapter 5

Tests for Analytical
Continuation

The goal of this chapter is to analyze methods which test for analytic extensions
in fluid dynamics. We will discuss and analyze three different schemes. First, we
describe and analyze the no-response test (Luke and Potthast 2003) [27] and the
range test (Kusiak, Potthast and Sylvester 2003), [41] which have been suggested
for acoustic and electromagnetic problems. We will prove the convergence of the
methods when applied to the Oseen equation. In particular, we will provide a new
approach to show convergence of the no-response test.

Then, we describe an alternative way to determine analytic extensibility via a
convergence test. We describe such a test based on the point source method (Potthast
1996). Finally, we provide a convergence proof of the convergence test.

In section 4.1 of Chapter 4, we discuss in detail about the single layer potential
operators, . and .04 of the Oseen equation (3.1.1) and the adjoint Oseen equa-
tion (3.1.10). We also analyze the basic properties of these potential operators. Here
we recall the potential operators for the convenience of the reader. The single-layer
potential operator for the Oseen equation (3.1.1) over a Cl-surface G is given by

(Foap)(z) = - E(x —y)p(y)ds(y), =€ A. (5.0.1)

And the single-layer potential operator for the adjoint Oseen equation (3.1.10) is

(F9Dapy (y) = /A E(z — y)(z)ds(z), z € dG. (5.0.2)

Furthermore it is observed that for the appropriate choice of domains G and
the operator .7 (%%) behaves like the adjoint operator of .. As a remark we would
like to mention the range spaces of the operators . and .7 (24%)

R(Z) = span{v}t, R(S(ad)) = R(.7*) = span{r}, (5.0.3)

65
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here v is a unit outward normal vector.

5.1 Range Test

In the theory of Inverse problems, the study of the reconstruction of the shape of
unknown obstacles is of great mark. In last two decades there are several meth-
ods developed for the reconstruction of the unknown obstacle. In 2003 Potthast,
Sylvester and Kusiok [41] introduced range test to locate and reconstruct the un-
known object in scattering problems. A more comprehensive study about the range
test on inverse scattering theory is done by Schulz in his PhD thesis [42].

Here, we present new aspects of the range test in inverse fluid flow problems.
Consider a test domain G and the single layer potential operator . defined in
equation (5.0.1). We have the measured velocity field denoted by meqs — Uoo 0N A.
The basic idea of the range test is to check the analytical extensibility of a potential
operator %5 into R?\ G by investigating the solvability of an ill-posed equation of
the type

yBG(P:umeas_Uooa (511)

where Umeqs € L2(A). If the equation (5.1.1) is solvable with ¢ € L?(0G), then we
have the analytically extended field into the region R? \ G' with boundary values in
W1 (OG). We collect all these extensions in a set which is obtained by the analytical
extension of the measured velocity field Upmeqs. The complement of this set is a
subset of the unknown obstacle D.

The methodology to check the solvability for an ill-posed equation for the scat-
tering theory is given in Theorem 3.5 of [41]. However for special setting for the
potential operators of the Oseen equation, since they are not injective in general, we
present the following theorem to test the solvability of an ill-posed equation (5.1.11).

Theorem 5.1. Assume that G be a bounded domain. We consider the single
layer potential operator defined in equation (5.0.1) from the Hilbert space X :=
span{v}+ C L2(0G) to Y := span{v}+ C L2(A). Then for the Tikhonov solution

Yo i= (al + 7*F) Ls*f (5.1.2)
with regularization parameter of the equation
Lo =T, (5.1.3)
such that (f,v) =0 and f € W(Q), we obtain the behavior

. , ' S (X),
lim [al :{ FZ*” < o0, ,Z ;i :();) (5.1.4)
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Proof. First, assume that f ¢ .#(X). Furthermore we assume that there is a con-
stant C' such that the density ¢, is bounded for sufficiently small & > 0. Then there
is a sequence ¢, — 0 for £ — oo such that the weak convergence ¢, — ¢, kK — 00
holds. Thus the linear single layer potential operator maps the weakly convergence
sequence into a strongly convergence sequence, i.e., we obtain

S ooy — ISP = f (5.1.5)

with some f € .#(X) C Y with (f,v) = 0. The regularized version of equation
(5.1.3) for the densities ¢, is

(ol + %) pa,, = S f. (5.1.6)
Now applying the limit & — oo on equation (5.1.6), we obtain,
S S p=Sf. (5.1.7)

From (5.1.6) we have .7*f = *f, and both f and f are in span{r}*. However,
the operator .#* restricted to span{v}* is injective, which yields f = f. This
observation leads us to the contradiction that f € .7 (A) since f € (X). This
proves the first line of equation (5.1.4).

To prove the second line of equation (5.1.4), assume that f € . (X), then there
must be some density ¢* € X such that

St = f. (5.1.8)

Now applying the limit & — 0 on both side of equation (5.1.2) and using equation
(5.1.8), we obtain

lim @, = lim (al +.*.5)" 1 S *. (5.1.9)
a—0 a—0

Since f € #(X) = span{v}* so we can say that the operator .7 is injective in a
proper subspace of X, i.e., span{l/}L, and therefore we can apply Theorem 2.26 on
equation (5.1.9) such that

lim ¢, = lim R, ¢". (5.1.10)
a—0 a—0

With the help of Definition 2.19, we have

lim ¢, = ¢*. (5.1.11)
a—0
This proves the second statement of the equation (5.1.4). O

In above theorem, equation (5.1.4) suggests that if the equation (5.1.1) is solvable
then the norm ||¢4|| is finite with o — 0, while on the other hand we say that the
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equation is unsolvable if ||¢n| — co. We can use this behavior of norm density for
analyzing the extensibility of the velocity field from A to 2\ G. First we calculate
the norm ||, || for solutions with a test domain G. If ||¢, | is less than or equal to a
suitable cut off parameter x for a small regularization parameter o then we say that
the equation (5.1.4) is solvable and hence the velocity field is analytical extensible
in 2\ G.

Before presenting the key result for the range test we need to check the solvability
of the equation (5.1.1) in L?(0G). We would like to mention that the operator .7
maps from L?(0G) to L?(A). We are interested in the case when the values at the
boundary A can be extended to the JG.

Lemma 5.2. Consider the boundary values in W(0G) and perpendicular to the
span{v} then the equation

S P = Umeas — Uocos (5.1.12)
has a solution in L*(0G).

Proof. We know that the operator . maps from W~1/2(dG) to W'/2(0G) and
we know that the space W'(dG) is a subset of W'/2(dG). Then with the help of
Corollary 3.21 we have the solution of the equation (5.1.12) in W~/2(8Q).

Now we decompose the operator . such that

S =N+ (S =),

where ¥ is the principle part of the parametrized version of operator . on the
interval [0, 27] and it is defined in equation (3.2.29). Thus equation (5.1.12) can be
written as

yOSD'i_(y_yO)(p:umeas_uoo;

or
Y= yo_l(umeas — Uso) — 5”0_1(5” - )p. (5.1.13)

The second term of the right hand side of equation (5.1.13) is in W!(9G), because
S — Sy maps W0, 27] to W"+2[0,27] ,r € R (compare the proof of Lemma 3.8),
and the first term is in L?(0G) because of the mapping properties of operator .
given in equation (3.2.30). Thus we have the solvability of equation (5.1.12) with
€ L*(0G). O

Now we are ready to present the essential result for the range test.

Theorem 5.3. The equation (5.1.1) is solvable for some domain G C  if and only
if Umeas € L?(A) can be analytically extended into Q\ G with boundary values in
WHoG).



5.2 No Response Test 69

u ]
meas

Figure 5.1: This figure exhibits the setting of our approximation domain D C G inside 2.
We have measured values of velocity field at A, boundary curve of 2, and in both the range
test and the no-response test our primary interest is to observe that this measured velocity
field is analytically extensible in Q \ G.

Proof. Assume first that u can be analytically extended into the exterior of the
domain G and the neighborhood of 9G, i.e., 2\ G. We can solve the equation
(5.1.1) on the boundary of domain G' which has a solution since . maps L?(9G)
to W1(0G), (compare Lemma 5.2) and by the solution of exterior Dirichlet problem
for Oseen flow for the domain G it coincides on R? \ G.

Conversely, we assume that the equation (5.1.1) has a solution in L?(dG), then
clearly .y defines the desired analytical extension with the boundary values in
W(OG). This completes the proof. O

In his thesis [42], Schulz observed in scattering theory that it is almost impossible
to reconstruct the full shape of the obstacle with the help of one incident wave
coming from one side. However he suggests that we obtain good reconstruction of
the unknown obstacles with the help of a multiwave range test. Since the direction
of flow field is fixed in this monograph i.e., from left to right. Thus in the view of
Schulz analysis and due to the wake region behind the obstacle we only obtain a
subset of the unknown obstacle. This is a major drawback of the range test, however
to some extent it gives us the location of the object.

5.2 No Response Test

In this section we study the no-response test, which is proposed by the Luke and
Potthast in 2003 [27], and it belongs to the class of probe and sampling techniques
for the inverse problems. Initially, this methodology was introduced in the area of
inverse scattering to reconstruct the shape of unknown scatter in a test domain.
The basic idea of the method is to examine that the unknown scatterer lies inside
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some test domains or not. We examine this by constructing the set of incident fields
that are small on test domains and large outside. With the help of far field data
we can calculate the far field pattern (responses) corresponding to these incident
fields. If these responses are small then the unknown scatterer lies inside the union
of all test domains. Also with the help of these responses we also observe the
analytical extension of the field. Since small responses indicate the location of the
unknown scatterer therefore we call this method no response test. Later on in his
Phd thesis Kiithn [24] implements the no response test on magnetic tomography,
where domains of distinct conductivity within some conductor are reconstructed
with the help of boundary measurements of the magnetic and electric fields. In
2007 Potthast [39] presents a convergence proof for the no response test. In the
same article [39], Potthast suggests a multiwave version of the no response test and
proves its convergence.

With this brief review, we observed that the mo response test is basically a
very significant method in inverse scattering and inverse electromagnetic theory to
reconstruct the unknown obstacles and to observe the analytical continuation of the
field. Here in this monograph we analyze the applicability of the no response test in
the theory of inverse fluid flow problem.

For the no response test we assume that a measurement Ueqs € (L?(A))?*! of
a flow field u is given on the measurement surface A as described in section 5.1.
Consider a test domain G C ). The goal of the test is to evaluate whether the flow
u can be analytically extended into Q \ G.

The no response test investigates integrals of the type

()= | [ 870 (s 0) ~ ) @it g 2P 620)
under the condition that
Ely —- <1. 2.2
H /A (Y —)9(v) dS(y)H(m(aG))M < (5.2.2)
We call t(g) the response of the system for an excitation
v(z) = /AE(y —x)g(y) ds(y), x € Q. (5.2.3)
We define
T(G) :=sup {r(g): g€ (L*(A))? g satisfies (5.2.2)} (5.2.4)

and call it the mazimal response for G of the system. It describes the maximal
response for excitations bounded on G by 1.
The expression (5.2.3) can be written in the potential form as

2x2

(L*9)(x) =v(z), z€Q and g € (L*(A)) (5.2.5)
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This equation (5.2.5) together with equation (5.1.1) are ill-posed in nature and to
solve these equations we need to introduce some regularization technique. From
Theorem 4.8 we know that the potential operators . and .#* have a dense range in
the span{v}+. This means that if we have (u — us) € span{v}+ and v € span{v}+
then our single layer potential operators . and .’* are injective in their respective
spaces.

Theorem 5.4. Consider the following single layer potential operators,
7+ span{v}t C L*(0G) — L*(A),
7* ¢ span{v}t c L*(A) — L*(0G),
which are injective and adjoint to each other. Furthermore, assume that ¢ €

span{v}+ C L2(0G) and 1 € span{v}*+ C L?*(A) and with the help of Tikhonov
regularization scheme, we have

Ry = (ol +7*7) 7% (5.2.6)
R: = (al+.7 )17,

then the following convergence properties,
RaTL0 — ¢ for a—0, (5.2.8)
RS — Y for a—0. (5.2.9)

holds.

Lemma 5.5. Let & and &/* are two adjoint compact linear operators and o > 0 be
a reqularization parameter. Then we have

A (ol + A = (al + o ) oA (5.2.10)
Proof. 1If we multiply the last equation (5.2.10) from the left with (ol + o7 &/*) and
from the right with (al + o/*</) then the proof is straightforward. O

Remark: As a remark we would like to mention that with the following small
calculation, R, and R}, are adjoint to each others, i.e.,

(Rap, ) = <<a1+5ﬂ*5ﬂ>”5ﬂ*w )
(. (el +7°7)7) v)
= (S, (al + .5 5”)‘ )
(¢, (al + 7" y)* )
(o, (onLyy*) 5”1#}
(p, READ). (5.2.11)

The second last line of equation (5.2.11) is justified because of Lemma 5.5.
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Definition 5.6. We define a range test functional <, ¢+ such that
Tart = llpall; (5.2.12)
where o = Ra(Umeas — Uoo). Furthermore we define

‘Irt = lim Koz,rt- (5213)
a—0

Remark: We remark that for Hilbert spaces the following expression

||800£H = Sup <v7§0a>7
llvll<1
is valid in general.
We can also write the no response test functional, T, ,,;¢, in terms of Tikhonov
regularization scheme such that

Lot = sup <9Q:;§”*g,u - U<>0>7
0<||.*glI<1
Tt for a—0, (5.2.14)

which will be shown later.

With the help of last Definition 5.6 we are able to presents one of the key results
of this chapter which proves that the range test converges to no response test and
vice versa.

Lemma 5.7. The functional of no-response test To nrt is equal to the functional of
range test T ri. If the limits for o — 0 exist, then the limit functionals are equal as
well, i.e. Tprt = Tt

Proof. We start the proof with the definition of T, ,; such that

Tart(G) = sup (v, Ra (U — Uso))
0< o] <1
v € R(.S™)
= sup (KL, U — Uso)
0< o] <1
v € R(.S™)
= sup (RS9, u — Uso)
0<|.7*gll<1
= Tonn(G). (5.2.15)

After applying the limit o — 0 and with the help of equation (5.2.14), we are left
with

T,0(G) = Tt (G). (5.2.16)
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This completes the proof. [l

The no response test is based on the following result. For acoustics, the result
has been shown in [39]. Here, we will provide a new and different proof, based on
transposition.

Theorem 5.8. The flow field u defined in a neighborhood of 02 is analytically
extensible into Q\ G with boundary values in W' (0G) if and only if

Tt (G) < o0. (5.2.17)

Proof. First, we assume that the flow field is analytically extensible into 2\ G. Then,
we can solve the integral equation (5.1.1) in the exterior of G with ¢ € L%(0G) (see
Lemma 5.2), such that the measurement values tyeqs on L?(A) are given. We now
obtain

Tort(G) = sup <g7 Umeas(T) — Uoo)
0<||y*g”L2(6G)§1

-1
= sup <c§ﬂ* U, Umeas ($) - u00>
0<|lvll L2 (pg) <1

= sup <U,<5ﬂ_1(umeas(ﬂf) — Uso))-
0<lvll 2 (e <1

v

= sup (v, )
0<||v||L2(8G) <1

< oo (5.2.18)

Now to prove the other direction of the theorem we assume that T,,+(G) < oo.
Writing

Tanrt (G) = sup  (RLI7g,u — uso) (5.2.19)
0<[l.7*gll<1

where g € span{v}* C L?(A) and .#* is an injective operator. From Theorem 5.4
we have
RS g — g, a— 0.

Thus applying e — 0 on equation (5.2.19), we obtain

lim Ty ppt (G) = sup (g, u — Uso)
a=0 <[l gl <1
= Tpn (5.2.20)

Also, according to equation (5.1.4) we know that the lim,_,o||Ra(u — uso)|| < 00 if
and only if (u — us) € R(.¥). Since we assume that T,,,+(G) is bounded thus from
equation (5.2.19) T, ns is bounded for all sufficiently small . Now with the help
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of Lemma 5.7 we have T, 4 < oo for all sufficiently small . Thus with the help of
Theorem 5.3 we have the analytically extensible velocity field (u — us) € R(Y) in
the exterior of G. O

With the help of above theorem we can apply the no-response test. We choose
several convex test domains G k = 1,...,n, n € N and calculate the maximal
response T(G) for each test domain G with the help of equation (5.2.4). Now we
set a threshold parameter C' and check whether the calculated responses for each
test domain is bounded by C'. If we have the domain who’s response is bounded
by C then with the help of Theorem 5.8 we can say that the field is analytically
extensible in the exterior of this particular test domain. The intersection of all those
test domains, which have a bounded response by the threshold parameter C, such
that,

J = ﬂ Gk?
k=1

is a convex set, which is basically a convex approximation of the unknown obstacle

D.

5.3 Convergence Test

In previous chapter we have a detailed discussion on point source method for the
reconstruction of the flow field. We calculate the reconstructed velocity field with the
help of back projection formula (4.3.19) under the condition (4.3.20). In equation
(4.3.19) we calculate the density g, with the help of Tikhonov regularization scheme.
For an approximation domain G containing the unknown obstacle D we calculate
Uree for each source point = ¢ G C Q. Obviously for inverse problem we do not
know about the location of unknown obstacle D and therefore we calculate .. for
every x in the grid by translating and rotating the approximation domain G.

Here an important question arises that where we have a good reconstruction of
the flow field and where we have bad reconstruction in the region 2. For this we
need to define an indicator functional J which is responsible for identifying the area
of interest that is the area which has good approximation. We shall call this area
the admissibility region ®. The idea of an indicator function for the admissibility
region is given by Erhard in his thesis [10]. He suggested that we can construct a
function which tells us in which area we have good field reconstructions. For this
we choose two different regularization parameters c; and as and then with the help
of back projection formula (4.3.19), we calculate the reconstructed velocity fields
Urec,a; AN Upee g, Tespectively. Now, the indicator function, defined by Erhard,

(S

(@) = |Urec,a1 () = Upec,an (2)], z € R?, (5.3.1)
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is the difference of these reconstructed velocity fields. It is observed that this kind
of indicator function is a variant of the no response test.

Obviously, for two different regularization parameters aq, as, the reconstructed
velocity fields Urec,a;; Urec,aq, TeSPectively, converges to the true velocity field u(x)
as described in equation (4.3.21).

To analyze the convergence in more detail we adopt the Cauchy criterion. As-
sume that (ug)ren be a sequence of real numbers. According to the Cauchy criterion
we know that

up — ug, k— 00 (5.3.2)

with some ug € R? if and only if

Vk > 03 N € N such that |uy —u;| < kVEk,j > N. (5.3.3)

Given a family (u,(f)) of such sequences, a numerical test for the Cauchy criterion

can be obtained by testing the size of |u,(f) — ugm)| for some large fixed k,j € N.
Now we define another indicator function T(x) = %y jx(x) on the family index
z by

1 \u(x) - u(z)\ <k
Thd = ’ k J = 5.3.4
(2) { 0, otherwise . ( )

The true indicator function is given by

1, iful® 5 ul® ko oo
True(x) = ’ k U 5.3.5
true () { 0, otherwise . ( )

Of course, the convergence test (5.3.4) can only yield an approximation to the true
indicator function, since convergence is a statement which is given by the behavior
of an infinite number of elements, whereas we only test a finite part of the sequence
under consideration.

An alternative test for convergence is obtained by choosing indices k1, ..., ky, and
calculating an approximation to the derivative of u; with respect to k& by linear
regression of a curve to ug,, ..., ug,,. Fitting a curve of the type

ft)=at+b, teR (5.3.6)

yields an estimate a(*) = ¢ for the slope or derivative of the function. Then, we may
define the estimator

1, a(®) <k

zn,kh...,km(‘r) = { 0 (537)

otherwise .

Thus if our indicator function ¥, = 0 for certain points then we say that these
points belongs to the non convergent region 2.
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In other words we say that if the inequality Hul(f) — ug-x) | < & is true then we have
the convergence and if not then we deduced that the convergence is not reached.

When we deduced the non-convergent regions with the help of indicator function
then the intersection of all these non-convergent region is an approximation of our
unknown domain D, i.e.,

D=(19; jeN (5.3.8)
J

We observe that the convergence test is a variant of no-response test. In con-
vergence test we calculate two different densities g,, and g, for two different re-
constructed velocity fields wyec, ; Urec, for two different regularization parameters oy
and ag and then apply the Cauchy criterion on them. Now with these two densities
we can define a new density which is the difference of these two densities. Taking
the difference of these reconstructed velocity fields, we have

j(x) = ‘qu ($) — Uaqy (513)‘ < /A (951 (y) - gg:z (y))(umeas(y) - uoo)ds(y)

=g7 (y) L2(8G)

Thus we have

J(z) < ‘

[ 0 = )| = (o)

with

[ " wEw - ->ds<y>H <1

Now if we compare the last equation with (5.2.1), we readily see that this is a
response t(g) on OG. With this response we can observe the analytical extension of
the velocity field as describe in section 5.2. This provides the relation of convergence
test with the no response test.

Theorem 5.9. Consider an arbitrary admissible domain B C §) which contains our
approximation domain G. Assume that the point source method converges uniformly
with respect to the mazximum norm on OB then Umeqs analytically extensible upto

R2\ B.

Proof. Assume that the point source method converges uniformly on 0B. This
means that with g, given by

9z,a = RoE(x —-)

the reconstructed density

Uo () = /ng,gia(umeg”s — Uso)ds (5.3.9)
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converges towards some velocity field u,. Using the definition
Pa = Ra(umeas - Uoo)
we now employ the duality (5.3.9) to obtain
Ua ($) <goc7 Umeas — uoo)

= <9{3E($ - ')7Umeas - uoo>

= <E(-T - ')a 9C{oz(umeas - Uoo))

= Sou(r) > ui(x) forall x€9B and a—0. (5.3.10)

This means that the single-layer potential Sy, converges to u, on B and by con-
struction it converges towards Umeqs — Uoo 00 A. Thus, the limit is a solution to the
Oseen equation in \§ with values Umeqs — Uoo ON A, i.e. Uy + U IS an analytic
continuation of the given measured values Umneqs on A, and the proof is complete. [
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Chapter 6

Domain Sampling

There are several numerical algorithms available in the literature [38] to solve the
inverse scattering problems, for example the Needle approach, Domain Sampling
or the LASSO scheme. We extend these techniques to the inverse fluid dynamics.
Although the Needle approach is a nice theoretical tool, however for the convergence
of the method this approach is highly unstable because of the strong non-convexity of
the corresponding approximation domain G. Due to this disadvantage we use domain
sampling and LASSO scheme in this monograph, which are quite reasonable in the
sense of stability although these algorithms are time consuming. The goal of this
chapter is the numerical realization of the point source method and the convergence
test with the help of domain sampling technique.

6.1 Direct Problem

In this monograph, we parametrized all our domains over the interval [0,27] and
employ the algorithms based on a uniform mesh defined by

j=0,...,N—1, NéeN.

In two dimensions, generally, the parametrized form of the boundary 0G of any
domain G can be written as

2(t) = (p1(t), p2(t)), t € [0,27],

with appropriate trigonometric polynomials p; and ps. For numerical calculations
we use the boundary points
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Y
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Figure 6.1: Figure 6.1(a) explains the behavior of flow field near the boundary and
the figure 6.1(b) shows that the velocity field is constant at infinity i.e., uso = (1,0)

As described in Definition 2.27 that the integral of a function F on 0G can be
approximated by some quadrature rule, i.e.,

N-1
F(y)ds(y) ~ Z w;jF(z;), j=0,...,N—1,

oB iz

where w; are the quadrature weights. There are several methods available in liter-
ature to deal with the integral equations, here we use the Nystrom type method.
In Nystrom’s method we discretized the integral equation of second kind by using a
quadrature rule as described above. A short theoretical description of the Nystrom’s
method is given in section 2.5.

For the direct problem we use simulated measurements u,,eqs on the surface
A C 0B. To calculate Upeqs we employ a Nystrom’s type method applied to the
integral equation (3.2.31). The discretized version of equation (3.2.31) is given by

> Elwk —y)e(y;)s; + grad ®(zx) > o(y;) - v(ys)s; = (k) — tioo, k = 1,2, .1,
j=1 =1

where s; are the quadrature weights. We parametrized the boundary 0D on the
interval [0, 27| such that 0D = {z(¢t) : 0 < ¢t < 27} denote a differentiable and 27
periodic parametrization with a regular grid on [0, 27) and xp = 2(t) for k =1,...,n
for n € N. Writing ¢; = ¢(y;) and using ¢ = (p;);=1,..n this leads to a matrix
equation of the form

Ap=1f—u, (6.1.1)
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Figure 6.2: Flow field for the Oseen equation with more than one obstacle

in R?"”, where

A ={A;} = | E(zi —y;) s; + grad ®(z;) v (y;) s;
- —

2nx2n 2nx1 1x2n

n
.n

1=1,2,
Jj=12,
Since in the modeling of Oseen equation, we assumed that the flow is coming from
the left side so we take the constant velocity field us, = (1,0). Thus with the help of
standard tools we calculate the unknown density ¢ from equation (6.1.1). Once we
have the vector ¢, then, the discretized version of (3.2.32) provides an approximation
to the solution of the Oseen equation in the exterior of D i.e., on B and on A. We
use a discretization of 21, ..., 2y, of A and calculate the velocity field, tmeas(25), at A
for j = 1,...,m, leading to a vector umeqs € R>™.

Algorithm 6.1. The algorithm of the direct problem for the Oseen equation is as
follow:

1: Choose a domain D such that 0 € D

Parametrize the boundary 0D on the interval [0, 27]

Discretize the integral equation (3.2.31) with the help of Nystrém method
Calculate the unknown density ¢ from equation (6.1.1)

Calculate the velocity field u by substituting back the density @ in the discretized
version of the pair (3.2.52)

Examples: With the help of following examples we demonstrate the simulation
of the direct problem. We analyzed the behavior of the fluid near the boundary of
the obstacle and away from the obstacle.
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In our first example, we choose the well known kite shaped domain D, whose
parametric representation is given by

x(t) = (cost+0.65cos2t—0.65,1.5sint), 0<t<2m. (6.1.2)

For this and next experiment, for the direct computation, we used 150 sampling
points for dD. We did our computation on two different grids for the better under-
standing of the flow around the obstacle and its behavior far from the obstacle (see
Figure 6.1). Figure 6.1(a) exhibits the paraboloid wake region behind the obstacle,
as suggested by Oseen [33], as well as the flow behavior at the stagnation points.
While figure 6.1(b) tells us that the flow field is constant at infinity.

In the second experiment (see Figure 6.2(a)) we used two kite shaped obstacle
keeping origin inside one of them. Here the discretization points for the boundary of
each obstacle are equally divided i.e., 75 each. In the last we did our simulation with
three obstacles, an elliptic, a circular and a kite shaped obstacle. The parametric
representation of circular and elliptic obstacles are given by

z(t) = (3cost,sint+7),

z(t) = (cost,sint),

respectively, here ¢ € [0,27). This experiment clearly demonstrate the attitude of
flow field around the obstacles. Figure 6.2(b) tells us that the algorithm for the
direct problem works for more than two obstacles as well. Now with this basic
knowledge of direct problem we proceeds ourselves for the inverse problem.

6.2 Point Source Method

In this section we will illustrate the point source method for the flow field recon-
struction with some numerical examples. As in the Chapter 4 we observed that
the point source method is applicable only under the condition that our unknown
domain D must lie inside the approximation domain and the source point z lies in
the exterior of G, i.e., R?\G. For this reason the choice of the sampling technique
is an important issue.

In inverse scattering theory, several techniques are available for the reconstruc-
tion of unknown domains and the approximation of a scattered field, for example
the point sampling, the needle approach proposed by Ikehata [19,20], or the do-
main sampling proposed by [37,41]. Here we give a brief review of these sampling
techniques.

Among all of them, the most simplest sampling scheme is point sampling which
is widely used for the different versions of factorization method. In this technique we
choose a point z € R™ and with an appropriate scheme we check whether this point
belongs to the interior of the unknown domain D or not. However this technique is
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not possible in our work since the approximation of the solution of Oseen equation
is only possible on set G where the solution is regular.

Theoretically, the most strong technique is needle approach which ensures the
unknown domain D is inside the approximation domain G. A continuous curve r is
called a needle if it maps from 7 : [0,1] — Z with 7(0),7(1) € 2 for 0 < ¢t < 1. Also
we assume another domain B to large enough to contain the unknown domain D.
In a most simple case we take a straight line whose one end is outside the domain B
and the other end belongs to B. Then the approximation domain G is chosen as a
subset of B and the complement of this curve (needle). Thus, we can use these curves
(needles) to probe the area under consideration for the unknown domain D. However
numerically the needle approach is unstable because the approximation domain G
is highly non convex. For a more detail study we refer the reader to [19,20, 38].

The domain sampling technique is quite stable technique numerically as well as
theoretically. The idea of the domain sampling technique is to choose an approxi-
mation domain G and test whether the desired quantity is inside this test domain
G or not. If the desired quantity is inside then we call it a positive test domain.
We carry out this procedure for several test domains and then obtained the desired
quantity by taking the intersection of all positive test domains. Or in other way
around we can say that the domain sampling is a technique in which we carry out
the reconstruction of velocity field uye. for many different test domains G and test
the convergence on the boundary G and the exterior of these domains. With the
help of masking operation we can combine all good reconstructions of velocity field
Uree. The exterior of this reconstruction field inside the flow region is basically our
unknown obstacle D. The convergence of the domain sampling is shown in [41].

Among these techniques we focus on domain sampling scheme which is quite
reasonable for the reconstruction of the flow field as well as to find out the location
of the unknown obstacle.

Choice of Approximation Domain

The choice of approximation domain is a big milestone in domain sampling technique
when we apply the point source method for the inverse fluid flow problems. In his
first article about point source method [34], Potthast describes how to choose the
approximation domain. With the passage of time there are some other techniques
developed for the choice of the approximation domain as well. In our analysis we
adopt the classical way for the choice of approximation domain as described in, for
example, [10,34,38].

In the point source method it is the primary requirement that the source point
x must be in the exterior of the approximation domain G. For the choice of the
approximation domain we first choose a fixed reference domain Gq such that 0 ¢
Go. Then with the following setting we construct the approximation domain G via
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translation and rotation given by
Gy, =G(x)={Mz+z, z € Gy} (6.2.1)

for M € OS(m,R) and = € Q. Here OS(m,R) is the set of real and orthogonal
m X m matrices with
det(M) = 1.

This particular setting first rotate the fixed approximation domain and then trans-
late it for every point x in the domain. Figure 6.3 exhibits the setting of our reference
domain Gy. Since 0 ¢ Gy we observed that all approximation domains fulfill the
condition = ¢ G(z) for each source point z € Q\ G.

1.5 3
1 2
05 1
o] + 0
0.5 1
1 2
1 % 5 0 05 1 158 é 25 33 2 1 0 1 2 3

Figure 6.3: Left figure shows how we choose our source point around the approxima-
tion domain, while the right figure represents the rotation of approximation domain
around the source point.

Masking Factor

As it is discussed before that in our algorithm we translate and rotate the approx-
imation domain around a source point x. In numerical calculation the rotation
argument plays an important role in the reconstruction of the flow field. Assume
that we rotate our approximation domain in L different directions around the source
point, as shown in Figure 6.3(a), then for each direction we have reconstructed ve-
locity field uye. for that particular source point. To get best reconstruction among
them we use the following masking technique.

In the first step we employ the Tikhonov regularization scheme to calculate the
densities

Jz,a0 = (gac,l,aagz,Q,a)
with regularization parameter o > 0 which satisfy (4.3.20) by

(al +55*) gujo = SEj(z —.), j=1,2 (6.2.2)
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Discretization is carried out via Nystrom’s method as described above. Then, we
use the discretized version of the back projection formula (4.3.19) with two different
Tikhonov regularization parameters a; and as to calculate the reconstructed velocity
fields Urec,a, and Ureca,- In the next step we calculate the discretized version of
indicator function defined in equation (5.3.1). Now we define a threshold parameter
k > 0 and with the help of indicator function we try to locate those points where
the difference of these reconstructed velocity fields are small such that

L 17 |urec,oz1 - urec,oz2| <K

mask := { 0, otherwise . (6.2.3)
Obviously the functional mask approaches zero for those source points x where we
have do not have good reconstruction of the velocity field ;... Now in the last
step of the masking operation we obtain the final reconstruction of the flow field
by multiplying the mask obtained in equation (6.2.3) with the component of the
calculated velocity field such that,

L
1
uT@Ci = maSk(k7 :)ureci Z == 1, 2. (624)
<; ) max (1, L mask(k, ))

Thus, in this way we have a good reconstruction of flow field uyee = (Upecy s Urecs ) -
With this final tool we are able to summarize the following algorithm for the
point source method.

Algorithm 6.2. For the inverse fluid flow problems, the point source method cal-
culates an approzimation ure. of the true velocity field u on a grid G by the following
steps:

1: Choose a fized reference domain (0,Gg) such that 0 ¢ Gy.

2: For some rotation M = My and each z in the grid G calculate a rotated and
translated approzimation domain G(z) by (6.2.1).
Calculate g, o via (6.2.2) with a regularization parameter o = ;.
Calculate treco by the PSM reconstruction formula (4.53.19).
Repeat step 3 — 4 for another Tikhonov regularization parameter o = «q.
Calculate mask with the help of (6.2.3).
Repeat step 2 — 5 for L different rotations My, £ =1, ..., L of the approximation
domain.
8: Finally, calculate wye. via (6.2.4).

N o e

Remark: The point source method is designed for the reconstruction of the flow
field as well as for the shape of the unknown obstacles by assuming that our recon-
structed velocity field is small near the boundary. Using this property we can locate
the unknown obstacle in the flow field. We would like to mention that there is no
restriction on the number of unknown obstacles for reconstruction process. However,
it is observed that the error level increases with increasing the number of obstacles.
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Remark: (Effect of Viscosity) Viscosity is a terminology for measuring the thick-
ness of the fluid. As in this monograph our major focus is on Oseen equation which
was derived on the assumption that the viscous forces are much stronger then the
inertia forces. In principle due to this fact we are bound to take those fluids which
are highly viscous (See details in Section A) but off course we can not neglect the
inertia forces as well since our governing equation represents the Oseen Flow.

0.2 02

0.05

185 o o0s 1 15 2 25

Figure 6.4: Fundamental Solution E(0 — -) (left) and its approximation (right) for the
circular approximation domain Gy

More precisely, the fundamental solution of the Oseen flow (3.1.32) tells us that
we must have a bound on the viscosity parameter, i.e., we can not take viscosity
parameter too large since our fundamental solution approaches to zero and because
of this we have very bad results. On the other hand we are not allowed to take small
viscosity parameter p due to the nature of fluid. We did a number of experiments
to see the lower and upper bound of viscosity parameter for an inverse problem.
We observe that for a good field reconstruction we can take the viscosity parameter
pw=1to p=20.

In this monograph we only presents the reconstruction algorithm when a max-
imum of two unknown obstacles are involved. First we present our results for the
field and shape reconstruction with one unknown obstacle.

Field reconstruction with one obstacle

Before presenting some examples we want to check our key result, numerically, that
whether the approximation of the point source E(z—-) with the single layer potential
operator S(%)g given in equation (4.3.20) is good enough inside the approximation
domain or not. Since for the appropriate choice of the domains the operator S@4) ig
equal to the adjoint operator S* of single layer potential operator S which is defined
in equation (4.1.2). We use Nystrom’s method to calculate an approximation of the
fundamental solution E(0 — -) on Gy by solving the following regularized integral
equation

(al +5 5%)go= S5 E(0—") (6.2.5)
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on (L2(8GO))2X2 for go. We used Tikhonov regularization scheme to solve the ill-
posed behavior of the problem.

We solve the equation (6.2.5) by separating the fundamental solution E(0 — -)
in to two parts, i.e.,

(al + 8 5%)gop =S E1(0—-) (6.2.6)

(al +5 S*)go2 =S E2(0— ) (6.2.7)
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Figure 6.5: Fundamental Solution E(0 — -) (left) and its approximation (right) for the
circular approximation domain Gg

In Figure 6.4 we did our computation on [—0.5,2.5] x [—-1.5, 1, 5], while the value
of the regularization parameter o is 10710, We set the circular approximation domain
with a radius » = 1. To obey the restriction 0 ¢ Gy, we took the center of the circle
at (r + €-,0) such that it is in distance ¢, = 0.2 of the source point z = 0. We
discretized the boundary of the approximation domain with 120 sampling points,
while we choose the viscosity parameter p is 1.

In Figure 6.5 we took a different setting of the boundary of approximation domain
G relative to the source point x = 0 for the better understanding of the quality of
approximation inside the approximation domain. Here one can see that we have a
very nice approximation of the fundamental solution F(z — -) with the single layer
potential inside the approximation domain Gqy. Figure 6.6 shows us the difference
between the point source E(0—-) and its approximation v with different settings for
the color bar. It is observed that the quality of approximation is best in the center
of the approximation domain Gy.

Examples: As a first example we choose the famous kite shaped obstacle as an
unknown obstacle D whose parametric representation is given in equation (6.1.2).
In the first step of the algorithm 6.2 we have to choose an approximation domain
Gy such that the origin must belongs to the exterior of Gy. As our assumption
of the inverse problem is that we do not have any knowledge of the shape or the
location of the obstacle D, it is better to choose a large and smooth shaped circular
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approximation domain Gg such that 0 ¢ G with radius for example r = 3. We dis-
cretized the boundary of the approximation domain and the measurement boundary
with 140 and 200 points respectively. We did our experiment on [—4,4] x [—4, 4]
with 20 x 20 grid points. In this particular experiment, we choose the value of the
viscosity parameter p as 5.

>é10'3
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o = N W B 0o o -

Figure 6.6: Difference between the approximation v and the point source E(0 — -) for
different settings of the color bar

Now as a second step of the algorithm 6.2 we want to establish an approximation
domain G for each source point z ¢ G, in the grid. As described in equation
(6.2.1), we first translate the fixed approximation domain Gg for each source point
x and then we implement the rotation around each source point x. For rotating the
approximation domain we used the following rotation matrix

cosf) —sind
M= < sinf  cosf > ' (6.2.8)

with § = 27/L where L € N is a rotating parameter and it determines how many
time we rotate our approximation domain around the source point. In this example
we take L = 6 for rotation as shown in Figure 6.7

After setting of the approximation domain for each source point x we calculate
the density g, in the same way as we calculated the density gg with the help of
equations (6.2.5)-(6.2.7). For this we again use the Nystrém’s method to calculate
an approximation of the fundamental solution E(z—-) on G, by solving the following
regularized integral equation

(o + 5%S)gy = S"E(x — ) (6.2.9)

on L%(0G,) for g,. Here the value of the Tikhonov regularization parameter is 1077,
Once we have the density g, for each source point x, then with the help of the
back projection formula (4.3.19), we calculate the reconstructed velocity field e
for each source point x. Since it is discussed in the before that due to the rotation
matrix we have several reconstructed velocity fields for a particular source point.
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Figure 6.7: We show the effect of domain sampling according to equation 6.2.4, which leads
to reconstructions on different parts of the space. We choose L = 1,...,4 in the four rows,
respectively, leading to valid reconstructions in more and more points. Dark blue represents
zero which is given when no valid reconstruction has been achieved.
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Now using the masking technique as explained in equations (6.2.3) and (6.2.4), we
calculate the final reconstruction of the velocity field. We take the value of cut off
parameter k£ = 0.015 to construct the mask functional.

In Figure 6.7 we exhibit the role of rotation parameter L. The first row represents
the reconstruction when we choose the rotating parameter L equal to one, or in
other words we can say that we only translate the approximation domain by setting
the source point on its left. In the second row we take L = 2, this means that
our approximation domain rotates around the angel § = 0,7w. Similarly in the
fourth row of the Figure 6.7 we rotate the approximation domain around the angle
0 = 0,pi/2,m, 27, on the right side of the figure we can see that on every corner we
do not have good reconstruction. From this analysis we observe that with the large
number of rotation parameter L we have good reconstruction of the whole flow field.

02
ettt

T ¥

Bl ala e S
B Caararede P
A e
B
R

pmnn sy e e
————— e e
[ msmaas

e R .
O
SRR e S
A
\\\\\\\\\w_—_-,
\\\\\\\\W’»

-2 0 2 4 -4 -2 0 2 4

A b H Lo 2 v

N - S EE TS

&

0.2
B s e
B e e SRRy
P e B Ny
AP e
WP E P I
B g

N R R
R R L

\\\\\\\\\““
ST e
B e ot
R R Rttt
e g

-2 0 2 4

0.05

RN - N T S
i
)
V
\

IS

Figure 6.8: First row shows the original flow field around a kite shaped obstacle, while
in the second row the reconstruction is presented. Note that for the reconstruction the
unknown inclusion (white curve) is not known.

In Figure 6.8 we analyzed that taking L = 6 gives us the full reconstruction
of the flow field in this particular example. We can see that we have very good
results behind the obstacle i.e., in the wake region, as well as in front of the obstacle
i.e., on stagnation points. To observe the reconstruction in the wake region behind
the obstacle in more detail we used our algorithm in the grid of 20 x 15 points
on the frame of [—6,15] x [—6,6]. We use an elliptic obstacle whose parametric
representation is

x(t) = (cost,2sint), 0<t<2m.
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We applied the point source method with same data as we used in the first example.
In the end we obtained a parboiled reconstructed wake region behind the obstacle
and after some particular distance the flow behaves normally (See Figure 6.9).

Field reconstruction with two obstacles

Now we implement the point source method to reconstruct the flow field with two
obstacles. We divide our inverse problem into two problems, i.e., first we reconstruct
the which we have the knowledge of the obstacle and we have to reconstruct the flow
field around those obstacle. From physical point of view these problems exists for
example when we want to reconstruct the flow around two submarines or we have
a good knowledge of the bridge and we want to observe the behavior of the flow
around its two pilers.
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Figure 6.9: This figure exhibit the flow visualization behind the obstacle when the flow
is far behind the obstacle. The left column represents the original flow field while the
reconstruction is shown in right column. Here, the inclusion is shown as gray curve, which
is unknown to the reconstruction algorithm.

We have two options for the choice of approximation domain either we can take
the approximation domain as a single unit or we can split it into two sub domains
according to the known obstacles. We did our analysis with both options of the
approximation domain.

First we split the approximation domain into two circular shaped sub domains
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Figure 6.10: First column exhibits the original flow field with the two obstacles. Second
column represents the reconstructed flow field. While in the third column we present the
absolute reconstruction error. The first three lines shows that our error level increases with
the increase of the size of approximation domain G. From last two lines we analyzed that if
we take an ellipse shape approximation domain G which contains both the unknown obstacles
then we do not have good reconstruction in the area between the unknown obstacles. This
kind of comparison tells us that if we take the fixed circular approximation domain which
is approximately equal to original size of the obstacles then we can reduce the error level.
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Figure 6.11: In the above figure we take two circles as an approximation domain. In the
first and second column we showed the fundamental solution and its approximation between
the two parts of the approximation domain G for different grid points, respectively. While
in the last column we present the approximation error. It is observed that by moving our
grid point between these two circles then our error level increases. In the first two columns
the color bar is set to be the maximum value of the fundamental solution while in the third
column it depends on the maximum value of the absolute error.
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G1 and G2. We did our computation on [—6,6] x [—6, 8] with 625 sampling points
in the grid. Since we know the size of the unknown obstacle, so as a first step
we take the split parts of the approximation domain exactly equal to the known
obstacles D and Do, respectively. Here we choose viscosity parameter p = 3. The
regularization parameters o = 10~'2 which is quite acceptable. Since we know the
position of obstacle so our problem is reduced to a much simpler problem that is
the reconstruction of the velocity field only. In this case we fixed our approximation
domain so we do not need to use the translation or rotation arguments.

The first line in the Figure 6.10 shows us that we have very good reconstruction of
flow field outside the obstacles. Now we enlarge the size of the approximation domain
as compared to the known obstacles and again implement the point source method
for the whole grid, we have very interesting results. The absolute reconstruction
error level increases as one can see in the second line of the Figure 6.10. Third line
exhibits the same analysis, i.e., by increasing the size of the approximation domain
our error level increases. But interestingly a high error exists only between the
divided parts of the approximation domain G.

Now we adopt the other way to choose the approximation domain G. We take an
elliptic approximation domain. In the first step we choose the size of approximation
domain large enough so that the two obstacle should lie inside it. On the same
grid and same values of the all the parameters which was used before for the divided
approximation domain we have almost the same result for the elliptic approximation
domain. Fourth and fifth row of Fig. 6.10 shows us that the absolute reconstruction
error is high in the center of the two obstacles Dy and Ds.
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Figure 6.12: To observe the error analysis in the point source method with not a simply
connected approximation domain G, we took different position of the grid points (left).
Thus we have high error level when the source point z lies in between the parts of the
approximation domain (right).

The question arises why we have high error in the middle of the two obstacles. Is
there any problem with the approximation of the fundamental solution to its single
layer potential operator S g, in that area. To analyze this phenomena we again want
to have a look of the approximation of the fundamental solution E(x — -) with its
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single layer potential operator S g, given in equation (4.3.19) in the approximation
domain (. Since we are working with two known obstacles, it is better to split
the approximation domain in two parts. For the consistency check we used almost
the same procedure which was used before for the one domain analysis. Figure
6.11 tells us very interesting story when our source point is away from the danger
area (the area in the middle of obstacles) then the maximum approximation error
is much smaller and acceptable. In Figure 6.11 we showed systematically that how
the maximum approximation error behaves by putting the source point on different
places. It is observed that when the source point x is away from the approximation
domain G then the error level is reasonable, while when the source point is between
the divided parts of the approximation domain then the error level increased up to
19.5382%. This means that we do not have good approximation in between the split
parts of domain G. In Figure 6.12 we check out this fact by taking three consecutive
lines, in between the two parts of the approximation domain, while each line consists
of 25 points. We observed that the error level is high when the source point lies
between the divided parts of approximation domain G.

Finally, we show how shape reconstructions can be obtained from the flow re-
constructions in the second step. The unknown boundary 0D is the set of points
where the total flow is small. Thus, we obtain shape reconstructions by testing

[trec(2)] < K (6.2.10)

with some appropriately chosen constant x depending on the discretization level.
Results are demonstrated in our last Figure 6.13.
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Figure 6.13: We show shape reconstructions for the examples above using the threshold
(6.2.10) applied to the flow reconstructions u,.. obtained by the PSM and domain sampling.
We observe that we also detect areas of low flow to be potential objects or part of the object,
reflecting the practical non-uniqueness of shape reconstructions based on the flow fields.

6.3 Convergence Test

We start this section by applying the convergence test to reconstruct the shape of
an unknown obstacle in the inverse fluid flow problems. The convergence test is
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basically a variant of the no-response test. The idea of the convergence test is to
locate those regions in the grid G where the velocity field is convergent under the
Cauchy criterion as described in section 5.3. We calculate two reconstructed velocity
fields Urec,o; and Upec.q, for two different regularization parameter oy and ap. For
this we used the back projection formula (4.3.19) of point source method. In the next
step we calculate the mask as defined in equation (6.2.3) for some cut off parameter
k. With the help of this mask we define an indicator function

L 1, |urec,a1 (SL‘) — Urec,as ($)| <k
Tnlz) = { 0, otherwise . (6.3.1)
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Figure 6.14: This figure shows the six different setting of approximation domain G around
a source point x. The blue color point out the convergence of the velocity field for source
point . Here we take the threshold parameter x = 0.006.
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This indicator function ¥, is used to detect the areas where we do not have
the convergence for a particular setting of the approximation domain G. We shall
denote this non-convergence region as ®. Similarly we calculate the non-convergence
region for a different setting of the approximation domain by changing the angle in
the rotation matrix. Thus we have L different non-convergent regions for L different
directions of the approximation domain for the source point x. Obviously, our
unknown obstacle is in the non-admissible region of the grid G. Therefore, we take
the intersection of all non-convergent regions to obtain the subset of our unknown
obstacle D, i.e.,

C

L
Dree= |19 ] - (6.3.2)
j=1
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We summarize the convergence test in the following algorithm.

Algorithm 6.3. For the inverse fluid flow problems, we reconstruct the shape of
unknown obstacle with the help of convergence test using the reconstructed velocity
field uree of the true velocity u obtained by point source method field on a grid G by
the following steps:

1: Calculate the reconstructed velocity field Urec,o, and Upeca, for two different
Tikhonov regularization parameters using point source method as described in
first five steps of Algorithm 6.2.

2: Choose a threshold parameter k and calculate the indicator function, defined in
equation (6.3.1), for L different desired directions to identify the regions which
are convergent under the mask (6.2.3).

3: Finally, the complement of the union of these convergent regions is the subset of
the shape of unknown obstacles.

Examples: In the first example we choose a kite shaped obstacle whose parametric
representation is given in equation (6.1.2). Following Algorithm 6.3, we first calcu-
lates the reconstructed velocity field u,.. for two different regularization parameters
a1 =107 and ap = 107!, For this we choose a grid G of size [—4, 4] x [—4, 4] with
400 grid points. We did our reconstruction procedure with a circular approximation
domain with radius » = 4 with 150 sampling points. We rotate the approximation
domain in six different directions around the source point z (for detail we refer to
Section 6.2). Here for the convergence test we choose the viscosity parameter u = 5.
According to second step of the Algorithm 6.3, we calculate the indicator function

[, here we take the threshold parameter x = 0.006.
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Figure 6.15: Here we presents the comparison of the reconstruction of obstacle with different
choices of rotation parameter L. In the last figure we take intersection of the non-convergent
areas which are shown in figure 6.14. With the help of first two figures we conclude that for
a good reconstruction we need at least six direction of the approximation domain G around
the source point x.

In Figure 6.14 the red parts exhibits the regions ® where we have no valid
reconstruction, while the area shown by blue points represents the convergent region.
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Once we obtained the non-convergent regions for each different directions then we
take the intersection of all these regions and obtained the unknown obstacle D,
which is shown in the Figure 6.15(c). We did the same experiment by taking the
rotation parameter L = 3,4 and results are shown in Figure 6.15(a) and in Figure
6.15(b) respectively. Thus with the less number of rotation parameter L we are not
able to get the good approximation of unknown obstacle D. However with this kind
of sampling data, six directions are enough.
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Figure 6.16: We show the shape reconstruction of an elliptic obstacle using the convergence
test with the threshold parameter x = 0.0085. We exhibit the role of rotation parameter
L. We can see that for a good approximation we need to rotate the approximation domain
for at least six directions. For more rotation we approaches to a fine approximation of the
obstacle.

To emphasize the importance of rotation parameter L in the convergence test
we simulate another experiment to reconstruct an elliptic shape unknown obstacle.
With the same sampling data which was taking by the previous example but with
the different threshold parameter x = 0.0085. This is because of an elliptic shaped
obstacle. In Figure 6.16 we presents the reconstruction of unknown obstacle D with
three different choices of rotation parameter L. we observed that with L = 6 and
L = 9 we have good approximation however with L = 4 we have non convergent
region with the unknown obstacle.



Chapter 7

LASSO Scheme

The goal of this chapter is to reconstruct the shape of unknown obstacles in the
inverse fluid flow problem with the help of LASSO scheme. We use the point source
method to reconstruct the velocity field to implement the LASSO algorithm.

7.1 LASSO Algorithm

LASSO scheme is a newly developed methodology to reconstruct the shape of the
unknown obstacles. As compared to domain sampling method this technique insures
that our unknown obstacle must lies inside the approximation domain. The main
idea of the LASSO scheme is that our approximation domain stretches inside towards
the unknown obstacles. Fig. 7.1 demonstrates that for unknown obstacles how our
approximation domain stretches inside. For the reconstruction of the shape of more
than one obstacle, our approximation domain splits into several sub-domains for
searching those unknown obstacles. For example in Fig. 7.3 we can see that our
approximation domain G splits into two sub domains GGy and G4 for searching the
unknown domain. Now we explain this procedure in detail.

In point source method, it is always difficult to choose the approximation domain.
However this difficulty is resolved by the LASSO scheme. In LASSO scheme we set
an approximation domain G large enough so that our unknown obstacle D must
contain in it. Although there is no restriction on the choice of approximation domain
but here we prefer to choose a circular shaped domain. We discretized the boundary
O0G of the domain G in the n € N number of points, i.e., {p1,p2,ps,...,Pn}. The
parametric representation of G is given by

p(t) = (p1(t), p2(t)) = (rcos(t), rsin(t)), t €0, 2n] (7.1.1)

where r is the radius of 0G.
The point source method works under the assumption that our source point =
must lies outside the approximation domain G, i.e, ¢ G. Since we do not know the
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location of the unknown obstacle so we prefer to take the domain G with a larger
radius 7. As x ¢ G and the idea of LASSO algorithm is that the approximation
domain G stretches inside towards the unknown obstacles, we introduced the concept
of parallel surfaces.
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Figure 7.1: In both rows the left hand side represents the unknown Obstacles with the initial
guess of approximation domain while the right hand side represents the LASSO scheme which
describes that how our approximation domain stretches towards the unknown obstacles

Definition 7.1. Two surfaces are known as the parallel surfaces if the distance h
between the corresponding points is constant. Suppose A1 and Ao are two parallel
surfaces and let x € A1 and z € Ao then we can connect these parallel surfaces by
the following equation

Ao :={z=x+hv(z):xze A}, (7.1.2)

where v s the normal vector.

We first construct a new domain Gy such that G C G,. We assume that x
belongs to the boundary of domain Gy, i.e., 9G,4. We shall call dG, a grid curve and
it is dependent on the boundary of the approximation domain G in the following
way

0Gy :=={x=p+hyv(p) : p € 0G} (7.1.3)

with some real parameter hy > 0 which shows the distance between grid curve and
the boundary of the approximation domain as shown in the Fig 7.2. Here v(p)
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be the normal vector on 0G. After construction of these two curves, as shown in
Fig 7.2, we go back to the reconstruction formula (4.3.19) which is obtained by the
point source method to reconstruct the velocity field u,... We implemented the point
source method for each source point = which lies on the grid curve 0G,.

Figure 7.2: Construction of the curves for the LASSO scheme

LASSO scheme is only developed for the reconstruction of the shape of unknown
obstacles so we are not interested in the velocity field, but it is obvious that the
velocity field must be zero in that area which consists the unknown obstacles. We
shall call this area as a significant area where our unknown obstacle D lies. To locate
this significant area we define a cut off parameter h, and calculate the absolute

velocity

HurecH = \/(urec,1)2 + (urec,2)2- (714)

If the absolute value |[urec|| > hq then we stretches the approximation curve 0G
inside towards the unknown obstacles. Now we have a new approximation domain

which is defined as

0G; ={p' =p" ' —hw( "X : p' € 0G;}, (7.1.5)
with
[ 1 it ||upee]] > ha
A= { 0 if ||U1“ecH < hq (716)

here h, is the distance between the boundary of new and old approximation domain,
the superscript represents the points of the old and new approximation domain on
each step. In equation (7.1.5) the index ¢ € N shows the number of steps during the

LASSO scheme.

7.1.1 Smoothness Criteria

It is clear from the equation (7.1.5) that it is not necessary for the points of ap-
proximation domain to reach in significant area simultaneously, since we stretches
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Figure 7.3: Figure on the left hand side shows that how we locate the points with the help
of a circle whose radius is ¢ and right hand side of the figure shows only those points whose
mutual distance is more than o.

our approximation domain uniformly inside and it is obvious that from one side we
may reach in significant area much quicker then the other side. Because of this our
approximation domain is no more circular and we have difficulty in each step that
our new approximation domain is less smoother than the previous one. Therefore,
in some cases, we are not able to construct the curves (7.1.3) and (7.1.5) due to the
non-smoothness behavior.

To avoid this difficulty we introduce the concept of smoothness, i.e., for every two
neighboring points in the boundary of a curve we choose its middle point and since
we have close boundaries so the number of points remains same but we get much
smoother curve. We do this process for n € N steps until we reached in significant
area where the value of absolute velocity ||urec| is less than the cut off parameter
hq, then by equation (7.1.5) our new approximation domain is equal to the old one.

As a last step we introduce the following condition,

Ip" = p" M| < s, (7.1.7)

to stop the algorithm for a real parameter hg, here the superscript represents the
points of corresponding domains.
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Step=1 Step=11

Step = 30 Step = 57

Figure 7.4: Different steps during the reconstruction of a kite shaped obstacle with the
help of LASSO scheme. Last figure in the second row gives us the final reconstruction and
here we obtained a parabolic wake region behind the obstacle which ensures that our inverse
algorithm works properly.

7.1.2 Domain Splitting

However, reconstruction of the shape of more than one obstacle, we introduce
some modification in LASSO scheme. It is obvious that our approximation do-
main stretches inside only in that area where |[tuyec|| > hq. Second row of the Fig.7.1
describes that how our LASSO scheme works for two obstacles. The main idea of
LASSO scheme for the reconstruction of more than one unknown obstacles is to split
our approximation domain 0G towards those unknown obstacles. More precisely, if
we have two unknown obstacles then our approximation domain split into two new
approximation sub-domains.

LASSO scheme works under the assumption that our unknown obstacles are
not too small. Our approximation domain splits on those points which are close
enough to ensures that at least in this area we don’t have any unknown obstacle.
In Fig. 7.3(b) the red circles show the area where we don’t expect any unknown
obstacles. In this stage of analysis we split our approximation domain and to split
the approximation domain we use the distance check criterion.

For distance check criterion, consider an arbitrary point p; on 0G, we made a
subset of dGy,; which consist all those points of dG which lies within the radius of
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Step=1 Step=11

Step =30 Step =65

Figure 7.5: Last figure in the second row illustrate that how our parabolic region reduces
as compared to Fig. 7.4 behind the obstacle, also in the front side we don’t have good
reconstruction because of the stagnation points where the velocity goes to zero.

o. We may define our subset 9G),

0Gp, ={p € 9G : Ip; —p| < o}. (7.1.8)

In the next step we leave all those points on G which satisfy the following
condition

lpi —pjl <o forall i=1,2,...,n and j ={1,2,..,n}\0G),}. (7.1.9)

For this we make a circle making its center on p; with radius o. We translate
this circle for all points on approximation domain and check the above condition
(7.1.9). In Fig. 7.3(a) we showed symbolically that how we searched the points
which satisfied the distance check condition (7.1.9), and once we have all those
points which does not belong to the arbitrary circle then obviously we have two
open curves which are the subset of our approximation domain as shown in Fig.
7.3(c).

In the next step we connect the respective ends of the open curves by the addition
of some points and then applying the smoothing process as explained above. Thus
we have two sub domains G; and G5 with there boundaries G and 0G» consisting
of {p1,p2,...,p1} and {p1,p2, ..., pg} number of points with [ < m and ¢ < m respec-
tively. Now we have two approximation domains instead of one and each domain
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Step=1 Step=30 Step =65

O
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Figure 7.6: In this figure we showed that if we want to reconstruct the obstacle, which is
of parabolic form from both sides, then we have very good results

contains one unknown obstacle. Now we apply point source method again on these
curves simultaneously and follow the same procedure for dG7 and G2 as we did for
the reconstruction of the shape of one unknown obstacle. Fig. 7.8(f) gives us the
final reconstruction. We now summarize all the above methodology in the following
algorithm.

Algorithm 7.2. We implement the LASSO scheme for the reconstruction of the
shape of unknown obstacles in inverse fluid flow problems using point source method
by the following steps:

1:

Choose a circular reference domain G large enough so that our unknown obstacle

lies inside of G

. Making use of equation (7.1.3), construct 0G4, on a distance hy from the ap-

proximation domain

. Calculate absolute velocity ||urec|| at each point of the approzimation domain

while the source point lies on 0G|,

: If the value X = 1 for all or some points on OG then using equation (7.1.5)

construct a new approximation domain which stretches inside for a step size
hy >0
ol

: Apply smoothness criterion to make the new approrimation domain smooth

enough

: For the reconstruction of one unknown obstacle, repeat steps 2-5 until we have

|trecl| < hq for all points and by equation (7.1.3). Once this criterion is satisfied
the new and old approximation domains coincide and the algorithm stops

For the reconstruction of two obstacles, set a distance check criterion which is
defined in equation (7.1.9)

. Neglect all those points which satisfy the distance check criterion and we are left

with two open curves

. Close these open curves by addition of points
10:
11:

Now again apply the smoothness criterion on these closed curves
Apply point source method on the curves obtained by steps 7-10 Following the
stopping criterion given in equation (7.1.7) we reach the final reconstruction
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Figure 7.7: In this example we observed the parabolic wake region behind the obstacle

It is discussed before that the viscosity parameter has an effective role in Oseen
flow. With the number of experiments it is observed that for the good reconstruction
of flow field and the shape of unknown obstacle, the value of viscosity parameter
must be larger than or equal to one.

7.2 Numerical Examples

As a first example we choose a famous kite shaped obstacle as an unknown domain
D. In this example we take the value of the viscosity parameter y = 12. The
parametric representation of its boundary is given in equation (6.1.2). Following the
algorithm 7.2, we choose a circular approximation domain G. We discretized the
boundary of approximation domain 0G and the measurement boundary A into 120
and 200 number of points respectively. In this example and all other examples in
which we implement LASSO scheme for the reconstruction of unknown obstacles,
we choose the regularization parameters o = 107". We took the value of cut off
parameter h, = 0.06 which is quite reasonable. We take the value of hy = 0.01 to
implement the condition (7.1.7) to stop the algorithm. For making the grid domain
0G, with the help of (7.1.3) we choose the distance parameter h, = 0.7 which
ensures that our source point must lie outside the approximation domain. In the
whole process we took the smoothness parameter is too strong. Fig. 7.4 illustrate
the different steps of LASSO scheme for the reconstruction. In figure 7.4 the blue
points are those points on which the absolute velocity is less than h,. We can see
that how our approximation domain stretches towards the unknown obstacle step by
step. Thus after 57 steps we reconstruct the shape of the unknown obstacles. Due
to the wake region we can not expect any velocity behind the obstacle, and since our
algorithm works with the velocity of the fluid so by the definition (7.1.5) and the
condition (7.1.7) our algorithm stops. And because of this we do not have the good
reconstruction behind the obstacle. However, we have very good reconstruction of
the obstacle from the front side which we can see in the second row (right) in Fig.
7.4.

To observe this analysis in more detail we implement the LASSO scheme to re-
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Step=1 Step =61
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Connecting the Open Curves Final Reconstruction, Step =3
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Figure 7.8: In the first two rows we presents the different steps that how our approximation
domain JG stretches inside for the reconstruction of two unknown obstacles and in the
third row we implement the splitting argument when the points in OG satisfy the splitting
condition (7.1.7)
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construct the different shaped obstacles. For example if we rotate the kite shaped
obstacle to 180 degrees, while the flow is coming from the right side, then we can
see that in Fig. 7.5 that due to the parabolic behavior opposite to the flow direction
we have very small wake region, but at the same time we do not have good recon-
struction in the front side because of the large number of stagnation points, where
the velocity goes to zero as well.

For this we take an elliptic obstacle an as unknown (see Fig. 7.6) and we can
see that we have very good reconstruction of the obstacle. Since on the front side
the number of stagnation points are very less and from the back side we have small
wake region, this gives us very good reconstruction of the unknown obstacle. We
observed the same results when we choose a very different shaped obstacle (see in
Fig. 7.7) whose parametric representation is given by

x(t) = (2cost + 0.5 cos 3t, 2sint + 0.5 cos 3t) t €10,2n].

In this obstacle, due to the parabolic behavior on both sides, we have very good re-
construction. In fact in this analysis we observed that for the inverse flow problems
wake region and the stagnation points play very important roles for the reconstruc-
tion of the shape of unknown obstacles.

Now we demonstrate the beauty of LASSO scheme to reconstruct the two un-
known circular obstacles. The idea for reconstructing the two unknown obstacles is
almost same as for the one obstacle. As the first step we choose a circular approx-
imation domain OG with radius 6. This time we discretized G in 150 number of
points. We discretized the data domain in 200 number of points. In Fig 7.8, the first
picture in the first row show us the initial setting for the LASSO scheme, where the
green circles are our unknown obstacles. In Fig.7.8, the red points are those points
where our absolute velocity is greater then the cut off parameter h, = 0.05 while the
blue points are those which does not fulfill this condition. We took strong smooth-
ness criterion to start the algorithm. Because of the condition (7.1.7) algorithms
stops in a very initial stage (step = 61) shown in the Fig. 7.8(b). As the red points
in the Fig. 7.8(b) are in the straight line and it is not possible to implement the
condition (7.1.9) for getting a new approximation domain. To avoid this difficulty
we now weaken our smoothness criterion and again implement the LASSO scheme.
By using this technique we can move inside towards the unknown obstacle. After
reducing the value of smoothing parameter we reached to Fig 7.8(d) in step = 205.

Now the most important step in the LASSO scheme for the reconstruction of
more than on unknown obstacles comes in which we split our approximation domain
by using the distance check criterion (7.1.9). We took the value of o = 0.04, the
cutoff parameter for the distance check criterion. With the help of distance check
criterion we ignore all those points which lies within the radius ¢ = 0.04. With
this our approximation domain is divided into two open curves. In the next step we
connect these two open curves by introducing some points with the help of first and
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Figure 7.9: In the first two rows we presents the different steps that how our approximation
domain JG stretches inside for the reconstruction of two unknown obstacles and in the
third row we implement the splitting argument when the points in OG satisfy the splitting
condition (7.1.7). The difference from the Fig. 7.8 is only that we use the smoothing
parameter S = 1 from the start of the program.
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Figure 7.10: Here we implemented LASSO scheme on a different set up of unknown obsta-
cles. In the first two rows we showed how the scheme works and in the third row we connect
the open curves, which we obtained after splitting, and then apply the point source method on
each component of the approximation domain separately to obtain the final reconstruction.
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last points of the respective open curves. In Fig. 7.8(e) the blue points represents
the open curves while the points in pink color are introduced for connecting these
open curves. Now we again implement the PSM Thus in principle we have the
location where the unknown obstacle lives as showed in Fig. 7.8(e), but to get the
final reconstruction of the shape of the unknown obstacles we need to implement the
point source method on these newly developed parts of the approximation domain.
We use the same parameters as we used before but this time just after 3 steps
we have the final reconstructed shapes of the obstacles. Finally we have the final
reconstruction of the unknown obstacles as shown in Fig. 7.8(f).

Step=1 Step= 15 Step = 45

LR S SN

Figure 7.11: In this figure we investigate the applicability of LASSO algorithm when two
unknown obstacles are setting in a same horizontal line and in the direction of flow field.
For the same cutoff parameter we we can not go inside even we reduced the smoothing
parameter because of the wake region.

Here off course the wake region and the stagnation points play again an important
role which can be seen in the 7.8(f). We should mention that there should be
another factor, the smoothing parameter, which has an important role here and
will be discuss in details. To observe the role of this factor we implement the
LASSO scheme on the same setup but the only difference is we take the value of
smoothing parameter S = 1, the smallest value, then we reached in 363 steps rather
than 205 steps, until we applied the distance check criterion. Thus with this value
of smoothing parameter 5 we have to do 158 number of steps more, however if
we compare the reconstruction quality then it shows not a big difference (see Fig.
7.8(f))and even we lose the wake region as well. So we can conclude that we must
take a strong smoothing criterion in the start.

Now we change the position of the unknown obstacles and putting them in a row
in the direction of the flow as shown in Fig. 7.11(a). In this example we start the
algorithm with strong smoothing parameter 8 = 40. After 45 steps the algorithm
stops and we are in the position shown in the figure 7.11(c). As compared to the
previous examples we have different results. We have only blue points which is
not a good sign this means that we cannot go inside even if we reduced the value
of the smoothing parameter. As our cutoff parameter h, depends on the value of
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velocity of the fluid. And from physical point of view we do not expect a good flow
between these two obstacles and so there is no velocity and hence h, should be zeros
and with this our new approximation domain is equal to the old one and algorithm
stops. Thus in this case we can not have a good reconstruction. In Fig. 7.10 we
again changed the position of the obstacles and implement the LASSO scheme and
we have very good results.

Thus in principle we can say that the LASSO scheme can be applied for the
reconstruction of the shaped of one or two unknown obstacles. We can generalized
this idea for the reconstruction of more than two unknown obstacles.
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Appendix A

Background from Fluid
Dynamics

Fluid mechanics is one of the oldest and richest branch of mechanics and applied
mathematics. It deals with the behavior of fluids both at rest and in the motion.
Fluid mechanics has been studied, formally or informally, since the beginning of the
recorded history. We distinguish fluids from the solids by adopting the criterion
that fluids deform continuously when a shear stress is applied while in the solids
we could not see the continuous deformation. This criterion is independent from
the size of shear stress. We focus our study to one of the most important branch
of fluid mechanics, i.e., fluid dynamics in which we deal with the fluid flow and its
applications.

It is well known that the forces exerted on the fluid element may be classified
into body forces and surface forces. The forces which are distributed over the entire
volume of the fluid are known as body forces for example the gravitational and
electromagnetic forces. Surface forces are forces which act on the boundaries of the
medium through direct contact.

Assume that a fluid is moving with velocity u within the region 2 of the two
dimensional space R%2. We consider a portion §A of the surface A of the flowing
fluid passing through the point P. Let n be the unit normal vector on the surface
§A. The force §F exerted on the surface §A can be resolved into two components,
normal 6Fn and tangential 5Ft. Now we can define the stress which is basically a
measure of the average force per unit area of a surface. We can resolve stress into
two components, the normal stress o, and the shear stress 7,. These stress are
defined as

. O0F,
o, = lim ——,
§A—0 0 A,
. OF
T = lim ——.
§4A—0 0 A,
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Here the subscript n tells us that the stresses are associated with the surface, 5/1',
through the point P, on which we have the normal vector v. This means that for
any other surface through P, the value of stresses may differ.

While studying fluid dynamics, viscosity parameter plays a significant role. In-
formally, viscosity is the quantity that describes the fluid’s resistance to flow, or
we can say that it measures the thickness of the fluid. For example, water has low
viscosity as compared to honey as water is much thicker than honey. In other words
we can say that the viscosity is the internal friction of the fluid. Formally, viscosity
is the ratio of the shearing stress to the velocity gradient in a fluid, which is being
deformed by either shear stress or normal stress.

A.1 Equation of Continuity

Let the fluid be moving with the velocity u(z,t) at time ¢ in a fixed sub-domain Qg
of Q. Let v denotes the unit normal vector on the boundary 9y of 29. The mass of
the Qg is given by fQo pdx, where p(x,t) is the mass density of the fluid dependent
of x and t and dx denotes the elementary volume. The decrease of mass per time
unit is given by

d

A
dt Qop x?

while the total mass leaving {2y through its boundary 02y per time unit is given by

/ pu - vdx.
Qo

Thus we have the following mass balance equation

d
—— pdr = / pu - vds.
dt Jo, 990

Making use of the divergence theorem on the right hand side we obtain

d
- pdx = V - (pu)dx
dt Qo Qo ( )

or

/QO <8t+v-(pu)> dz = 0. (A.1.1)

Since Qg is an arbitrary sub-domain of the region 2, we can rewrite equation (A.1.1)

as
op B
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Equation (A.1.2) is known as the continuity equation. In this document we are
interested in incompressible fluids in which the volume of any fluid element is time
invariant when moving with flow i.e.,

d

— [ dz=0. (A.1.3)

dt Ja,
On the other hand with the help of Lagrangian technique, which will be discussed
in detail while deriving the equation of motion, we have the following equation for
any kind of fluid, whether it is compressible or incompressible,

d/ dr = V - udz. (A.1.4)
dt Qo Qo

For an arbitrary €, equations (A.1.3) and (A.1.4) implies the following incompress-
ibility condition
V-u=0. (A.1.5)

If we assume that the mass density p is a constant function of x and t over the
whole flow region then the continuity equation (A.1.2) reduces to the incompress-
ibility condition (A.1.5). However the reciprocal is not true. For interested readers
we refer to [3].

A.2 Equation of Motion

Considering a fluid element occupying domain €2 at time ¢. The fluid element moves
with the flow velocity u(z,t) and reaches the domain €' at time ¢’, while obviously
t’ > t. Newton’s second law of motion applied on the fluid element gives us

d/pdx:/pfdx+ Sds. (A.2.1)
dt Jo Q o9

Where f denotes a density of volume forces per mass unit and S denotes a density
of surface forces per surface unit. The surface forces S are expressed with a 2 x 2
symmetric tensor o, known as stress tensor in the following way

S =ov. (A.2.2)

Here v is an outward unit normal vector and the stress tensor o is the combination of
normal stresses o, and shear stresses 7, corresponding to the normal and tangential
forces applied on the some surface element, respectively. In short we can say that
the surface forces are the result of the forces of o applied in the outward unit normal
vector n. Following [5] and [15] we can write the stress tensor for the viscous fluid
as

c=—-pl+ A (A.2.3)
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Here pI is the in determinant part of the stress tensor, where p is the pressure and
I is the identity matrix. For Newtonian fluids the matrix A is given as

A

1
20 (D— 3V-u[> + 'V -ul. (A.2.4)

As a remark we would like to mention that the viscosity parameters ji (dynamic
viscosity) and fi; (second viscosity) play an important role in the modeling of equa-
tion (A.2.4). The first term of the right hand side represents the viscous effects
associated to volume invariant deformation while the second term is responsible for
the volume dilations due to viscous effects. In general viscosity coefficients are the
functions of temperature, but we are interested only in isothermal flows in which the
temperature is uniformly constant in the flow region 2. With the help of equation
of continuity (A.1.5), the equation (A.2.4) is reduced to

A=2iD. (A.2.5)
Here D is the deformation rate tensor defined as
2D = Vu + (Vu)T

Now making use of equation (A.2.2) and with the help of the divergence theorem,
the second term on the right hand side of equation (A.2.1) can be written as

Sds = / V- odz. (A.2.6)
o0 Q

From equations (A.2.3) and (A.2.4), keeping in mind that V - al = Va, we obtain
V.o =-Vp+ pAu (A.2.7)

Here A is a Laplace operator. Insert (A.2.7) in equation (A.2.6) we finally obtain
Sds = / (=VD + fAu) de. (A.2.8)
89 Q

Now we evaluate the left hand side of equation (A.2.1). We denote the time difference
by At =t —t, then by the classical definitions of derivatives, we have

d o . i 1oy r
pn Q(pu)(z,t)dx = pAlir—I}o Az [/Q, u(z', t')dx /Qu(x,t)d:c] . (A.2.9)

For a small At, we may have the infinitesimal one-parameter coordinate transfor-
mation in the following way

' =z + Atu(z,t) + O(AL?).
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Neglecting terms of order O(At?), we have
v =1z + At u(x,t). (A.2.10)

Using equation (A.2.10), we change the variables of the first integrand on the right
hand side of equation (A.2.9), such as

d oz’

) 1
& Lot =p im0 { [ o tuto, 0,04 a0 det (5 ) do

_ /Q u(:r,t)d:r} . (A.2.11)

In the above equation %—’i denotes the Jacobian matrix of the transformation defined
in (A.2.10). With straight forward calculation starting from equation (A.2.10) yields

oz’
— =1+ A A212
B + AtVu ( )

Now taking the determinant of equation (A.2.12), we obtain

ox' Ou; Ou;  Ou; Ouj
| = 14AIV-u+ A L ) i =1,2(A.2.13
ox + ut Z <8:UZ- Oxj Oxj; Ox; b ¢ )
1<J
Here we use the notation V-u = g:z Under the assumption that At is small, we

again neglect the terms with (At?) in equation (A.2.13) and with incompressibility
we have

/
g—x —1 (A.2.14)
X

Now using the first order Taylor series expansion on (pu)(z + Atu,t + At) gives

u(z + Atu,t + At) = u+ At(u- V)u+ At?;. (A.2.15)

Thus in the view of equations (A.2.14) and (A.2.15), equation (A.2.11) takes the
following form

d 1 ou
— =p lim — At(u - At— — A21
i Jo pudx p lim —= {/ﬂ (u + At(u- V)u+ At 8t) dx /Qu da:}( 6)

Applying the limit on equation (A.2.16) we are left with

d ou
pn quda:—p/Q <(u-V)u+at+u(V~u)>dac.
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Making use of equation of continuity (A.1.5), the last equation can also be written
as

jt/pudx— /+ u - V)udz. (A.2.17)

Now, finally substituting back (A.2.8) and (A.2.17) in equation (A.2.1) and taking
advantage of an arbitrary domain €2 we have the following equation of motion for
incompressible fluids

'0875 +p(u-V)u=—-Vp+ iAu+ pf. (A.2.18)

We modify the above equation (A.2.18) such that,

?;: +(u-V)u=—-Vp+ pAu+ f, (A.2.19)

here p = p/p and p := i/p is the kinematic viscosity.

Definition A.1. The Navier-Stokes equation for isothermal incompressible Newto-
nian fluids are defined by the system of equations consisting of

o The equation of continuity (A.1.5) and the
o The equation of motion (A.2.19)

In order to analyze the behavior of the fluids in detail we need some conditions
that strongly depend on the type of the region 2 of the flow . In this monograph
we are considering two types of regions. First type of region is bounded while the
other type of the region is the compliment of a bounded region. For the first case
we only need boundary condition at the bounding walls 92 of the region 2, i.e.,

u(z) = ui(y), y e on. (A.2.20)

While for the second case, in addition to condition (A.2.20), we impose the condition
that our velocity field u(x) at large spatial distances tends to some vector uq, such
that

lim u(x) = us(y)- (A.2.21)

|x|—0

The second term on the left hand side of equation (A.2.19) is responsible for the
non-linearity of the Navier-Stokes equation. In the last two centuries it is a challeng-
ing task for mathematicians to get explicit solutions of these equations. However,
there are several numerical methods developed in computational fluid dynamics
(CFD) to deal with the Navier-Stokes equation [8].
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In this monograph we shall investigate the inverse problems of viscous incom-
pressible steady fluids with slow motion. The hypotheses of slow motion means that
the viscous forces are much stronger than the inertial forces, i.e.,

(u-V)u

A — 0.

Thus we can neglect the non-linear term from equation (A.2.19) to make it linear.
For mathematical justification we linearize the Navier-Stokes equation by standard
tools. Assume that (ug,po) is the generic solution of the Navier-Stokes equations.
This means that (up + Au(z), po + Ap(x)) is again the solution of the Navier-Stokes
equation. Plugging back in equations (A.1.5) and (A.2.19) we obtain

(wo-V)u+A(u-V)u = —Vp+pAu+ f
V-u = 0.

Now applying the limit A — 0 we have the linearized form of the Navier-Stokes
equation, i.e.,

(up-V)u = —Vp+ pAu+ f, (A.2.22)
Vou = 0 (A.2.23)

These linearized equations are known as the Oseen equation named after Carl Wil-
helm Oseen. It is observed the above pair of equations (A.2.22) and (A.2.23) reduces
to a well known Stokes equation for ug = 0. Together with conditions (A.2.20) and
(A.2.21), Stokes derived a remarkable and explicit solution (u,p) in 1851 [44]. How-
ever this solution fails to demonstrate the wake region behind the obstacle. In 1910
Oseen found a paraboloidal wake region behind the obstacle, which is an important
breakthrough in the field of fluid dynamics.
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