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1 Introduction

Throughout the past decades, delay resistant timetabling has evolved as

an interesting application of mathematical models in Operations Research.

Especially scheduling departures and arrivals in public transportation with

suitable time bu�ers has gained attention due to annoying delays in the ev-

eryday operation of railway companies. Meanwhile, in Operations Research

in general, many di�erent robust optimization techniques have been pro-

posed for problems containing uncertainties, some of which are applicable to

timetabling problems as well. This work focuses on the evaluation of a few

selected robust optimization approaches to aperiodic timetabling and their

performance in the event of di�erent random delay scenarios on a real-world

instance.

The essential question from the timetabling point of view is how to place

bu�ers between departures and arrivals in order to maximize the delay ab-

sorption capabilities of the timetable while keeping nominal travel times as

small as possible in some sense. These contradicting objectives demand a

trade-o� between a timetable's delay-resistance and tightness. Generally

speaking, increasing the total amount of bu�ering increases delay resistance

and travel times simultaneously. However, di�erent bu�er placing techniques

yield di�erent behaviours of these increases and are to be compared.

Some of the results may be applicable to general scheduling problems

as well, while others may not due to assumptions motivated by the public

transportation application. Generalizability is not a target of this work.

Some results may even owe their charecteristics to structural properties of

the real-world example used for the numerical studies. Therefore, general

conclusions shall only be drawn cautiously.

The remainder of this work is structured as simple as this: One section

introduces the aperiodic timetabling problem, another section introduces ro-

bustness concepts and already applies them to aperiodic timetabling, and a

third section studies numerical results on a real-world instance.

Similar work has been done for example in [Hö11] and [GS10].
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2 The aperiodic timetabling problem

This section introduces the nominal aperiodic timetabling problem in public

transportation, which is then confronted with uncertainty throughout the

next sections. The aperiodic timetabling problem aims at �nding departure

and arrival times for vehicles like trains or buses that are to be published

and thus binding once they are laid down.

All formulations in this section follow the general concept of [Sch06],

although not always literally.

2.1 Stops, lines, events and activities

The properties of the infrastructure on which a timetable is to be calculated

can be represented mathematically in Graphs.

De�nition 2.1. A Public Transportation Network or PTN is a directed or

undirected graph G = (S,C) with the nodes (vertices) in S representing loca-

tions like bus stops or train stations, and the edges in C ⊂ S×S representing

direct connections between them like roads or tracks. IfG is undirected, these

connections are meant to be usable in both directions.

Given this basic infrastructure, one can speak of lines:

De�nition 2.2. A path in a graph G = (S,C) is a �nite sequence of con-

secutive edges c1 = (s1, s2), c2 = (s2, s3), ..., cn−1 = (sn−1, sn) ∈ C. n ∈ N
is called the length of the path. Simplifying notations, a node s ∈ S is said

to be in a path P , i. e., s ∈ P , if there is some s′ ∈ S such that (s, s′) ∈ P
or (s′, s) ∈ P , and whenever all the edges of a path are uniquely determined

by the nodes they connect, the path may be written as a sequence of nodes

(s1, s2, ..., sn) as well. A path in the PTN is also called a line.

From the notion of a line on a PTN there is only one more step necessary

to get an aperiodic timetabling instance: All lines that shall be run on the

PTN shall be rolled out into the so-called Event-Activity-Network, a com-

monly used modelling structure for scheduling problems. Which lines are to
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be run on the network is the result of the lineplanning problem, which is

considered to be solved before the timetabling step.1

De�nition 2.3. Let L1, ..., Lm,m ∈ N be lines on a PTN G = (S,C). An

Event-Activity-Network or EAN is a directed graph N = (E,A), where the

nodes in E = Edep tEarr are departure and arrival events, respectively, each

belonging to a stop from the PTN and a line:

Edep = {(s, L, dep) ∈ S × {L1, ..., Lm} × {dep} : ∃s′ ∈ S : (s, s′) ∈ L}

Earr = {(s, L, arr) ∈ S × {L1, ..., Lm} × {arr} : ∃s′ ∈ S : (s′, s) ∈ L}

The set of arcs (directed edges) A = Adrive t Await t Achange t Ahead consists

of so-called activities : The driving, waiting, changing and headway activities,

respectively.

Adrive =
{

((s1, L, dep), (s2, L, arr)) ∈ Edep × Earr : (s1, s2) ∈ L
}

Await =
{

((s, L, arr), (s, L, dep)) ∈ Earr × Edep
}

Achange ⊆
{

((s, L, arr), (s, L′, dep)) ∈ Earr × Edep : L 6= L′
}

Ahead ⊆
{

((s, L, dep), (s, L′, dep)) ∈ Edep × Edep : L 6= L′
}

Driving and waiting activities refer to the operation of a line, while changing

activities represent customers who must change from one vehicle to another

in one station, and headway activities model security distances between the

departures of di�erent vehicles from the same station.

Let furthermore l : A → N0 assign lower bounds to all activities and let

w : A→ Q+
0 be a weight function. As A is �nite, l and w can also be written

as vectors with indices in A.

Whenever an EAN is referred to as a tuple (E,A, l, w), E and A are implicitly

meant to be partitioned as above.

Note that the lower bounds can be interpreted as minimum durations,

1Although integrating lineplanning and timetabling into one optimization problem
seems reasonable, this is generally not done due to the high computational complexity
it would result in.
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and weights could for example be expected passenger loads on the respective

activities. Driving and waiting activities are derived directly from the trips on

the PTN. Minimum durations of driving activities may depend on the vehicle

and have thus not already been modelled in the PTN. Passenger amounts

can be estimated and necessary changing activities determined by �nding

shortest paths in the PTN whenever so-called origin-destination information

is available, i. e., how many customers want to travel between all pairs of

locations on average. All the modelling decisions in this chapter were inferred

from the framework used for the numerical studies.

2.2 A fundamental di�erence: periodic and aperiodic

timetabling

After considering public transportation lines and paths of passengers, the

next focus is on scheduling times for departure and arrival events corre-

sponding to the EAN: the timetabling problem. A major distinction is to be

made here between so-called periodic and aperiodic timetables. The former

implements the idea of public transportation lines being operated on a regu-

lar basis with some periodicity T , which means that every event is repeated

after a certain amount of time speci�ed by T , e. g. T = 60min. This periodic

approach is motivated by the ease, especially for customers, to remember the

schedule, and by the smaller problem size, as only one instance of every train

has to be scheduled. The Periodic Event Scheduling Problem (PESP) was in-

troduced by Sera�ni and Ukovich in [SU89] and is subject to research to date.

Unfortunately it turned out to be NP-hard and is therefore computationally

intractable. Much e�ort has been put into �nding good approximations.

The alternative is to drop periodicity. Since each line should neverthe-

less be operated several times a day, the problem size formally increases as

all operations of each line have to be scheduled. However, the aperiodic

timetabling problem is still easier to solve for it can be formulated as a stan-

dard linear program. Note that this is only the case whenever precedence

decisions are made beforehands and �xed. If the timetabling instance had

to decide on the order of, for example, two trains' departures from the same
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station, it becomes a mixed integer problem that might be essentially harder

to solve.

De�nition 2.4. An aperiodic EAN is an EAN that contains no directed

cycles.

In the periodic case, directed cycles are not a contradiction since times are

considered mod T . A (periodic) EAN can be rolled out into an aperiodic

EAN by periodically replicating all the lines over a certain span of time by

dropping some incoming arcs in the �rst instances of the lines and outgoing

arcs from the last instances and changing some arcs' targets to the next

periodical instance of the respective line.

To this end, a periodic timetable has been employed and rolled out over

one day of operation for the numerical studies on aperiodic timetables in sec-

tion 4. This provides the additional advantage that the resulting timetables

are still close-to-periodic regarding the order of line operations: Having all

or most instances of one line run right at the beginning of the day would not

yield a realistic solution.

2.3 Feasible and optimal aperiodic timetables

De�nition 2.5. An aperiodic timetable for a given EAN (E,A, l, w) is a

mapping π : E → R that assigns a time to each event. Due to the �niteness,

π can also be written as a vector in R|E| with indices in E.

A timetable π for an EAN is feasible if for every activity a = (i, j) ∈ A it

satis�es πj − πi ≥ la.

There are no upper bounds to the durations of activities throughout this

entire work. This can be justi�ed by the observation that upper bounds do

not arise as directly and necessarily from the application as lower bounds

do. Upper bounds would, in the case of delays, which will be the main focus

here, most probably lead to infeasibility very soon, too. It is not unusual

anyway to neglect upper bounds when treating delays or disruptions.
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Lemma 2.6. A feasible aperiodic timetable exists for a given EAN (E,A, l, w)

if and only if it does not contain any directed cycle with a positive sum of

minimum durations.

Proof. Let C = a1, ..., an = (e1, e2), (e2, e3), ..., (en−1, en), (en, e1), n ∈ N be

a directed cycle in (E,A) with
∑n

i=1 l(ai) > 0. Then there is some inte-

ger j, 1 ≤ j ≤ n, with l(aj) > 0. A feasible timetable π would satisfy

πi ≤ πi+1 mod n for all integers i with 1 ≤ i ≤ n (since l(ai) ≥ 0), and πj <

πj+1 mod n. By transitivity follows π1 ≤ π2 ≤ ... ≤ πj < πj+1 ≤ ... ≤ πn ≤ π1,

yielding the contradiction π1 < π1.

Let now (E,A, l, w) be free of any directed cycle with a positive sum of

weights. Then a feasible aperiodic timetable can be constructed by the fol-

lowing steps:

1. Perform a search for cycles. All cycles only constist of arcs with length

0. Since every arc represents a ≤-condition, all nodes among the cycle

must be assigned the same time. Therefore, identify them by substitut-

ing it by a single node that gets all the incomig and outgoing arcs of all

nodes in the cycle. No new cycles will appear because every imaginable

new cycle would have been a cycle before.

2. The graph is now cycle-free. Nodes can thus be traversed in a topolog-

ical ordering. Initially, set all times to 0.

3. For each node e (in topological order):

• Fixate the time πe of e. Due to the order of traversal, any incoming

arc of e has been looked at.

• For all outgoing arcs a = (e, o), set the (not yet �xated) time of o

to πe + la if this is later than the time of o as has been set up to

now.

4. Re-substitute the cycle representation nodes, copying their times to all

of the nodes in the respective cycle.

By construction within step 3, all feasibility constraints are met.
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The algorithm sketched in this proof is also known as the Critical Path

Method, see for example [KJ61]. It will be used as a delay-management

technique in the numerical experiments in section 4 as well.

If upper bounds were imposed on the activities, �nding a feasible aperi-

odic timetable would turn into the feasible di�erential problem as described

for example in [Roc84].

So, feasibility is easy. Now what about optimality?

De�nition 2.7. A feasible aperiodic timetable π∗ for an EAN (E,A, l, w) is

optimal if for every feasible aperiodic timetable π for this EAN the following

optimality condition is ful�lled:∑
a=(i,j)∈A

wa(π
∗
j − π∗i ) ≤

∑
a=(i,j)∈A

wa(πj − πi)

This objective gives meaning to the activity weights in the sense that

the larger the weight, the more important it is to keep the duration of the

respective activity small. With the weights being amounts of passengers

using the activity on their way, optimality means minimal overall travelling

time (in total and average).

Since the objective function as well as the constraints are linear, the

aperiodic timetabling problem given an EAN with lower bounds and weights

for activities (E,A, l, w) can be posed as a linear program:

(TT) min
π

w̃Tπ

s. t. Ãπ ≥ l

π ≥ 0

Ã denotes the incidence matrix, i. e.,

Ã = (ãa,e)a∈A,e∈E with ãa,e =


−1, a = (e, e′), e′ ∈ E

1, a = (e′, e), e′ ∈ E

0, otherwise

and the coe�cient vector w̃ is obtained by expanding and resorting the objec-
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tive de�ned above, resulting in a weight vector for events containing the net

amount of passengers reaching their destination minus passengers starting

their trip with the respective event (because those who are neither beginning

nor ending their trip add to 0 as they all have each one incoming and one

outgoing activity on this event):

w̃e =

 ∑
a=(i,e)∈A

wa −
∑

a=(e,j)∈A

wa

 ∀e ∈ E
Lemma 2.8. The aperiodic timetabling problem (TT) yields indeed an opti-

mal aperiodic timetable for an EAN (E,A, l, w) if it is feasible, i. e. there is

at least one feasible aperiodic timetable.

Proof. By de�nition of the incidence matrix Ã, the constraints in (TT) are

obviously exactly the coniditions for an aperiodic timetable to be feasible. So

it remains to show that the objective in (TT) equals the optimality criterion.

w̃Tπ =
∑
e∈E

w̃eπe

=
∑
e∈E

 ∑
a=(i,e)∈A

wa −
∑

a=(e,j)∈A

wa

 πe

=
∑
e∈E

∑
a=(i,e)∈A

waπe −
∑
e∈E

∑
a=(e,j)∈A

waπe

=
∑

a=(i,e)∈A

waπe −
∑

a=(e,j)∈A

waπe

=
∑

a=(i,j)∈A

waπj −
∑

a=(i,j)∈A

waπi

=
∑

a=(i,j)∈A

wa(πj − πi)
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3 Robust Optimization

There is a gap between theory and praxis in most, if not all sciences, and

operations research is not constituting an exception. Every optimization

problem depends on parameters, like coe�cients in a linear program or any

other input data in any type of optimization one can think of. If such an OR

method is to be applied to a real-world context, uncertainty is very likely to

appear, for example when input data cannot be measured exactly or has to

be estimated, or unforeseen disturbances may occur, possibly rendering the

computed solution suboptimal or even infeasible.2

One famous attempt to bridge this gap is treating uncertainty by means

of so-called stochastic programming.3 These approaches rely on probability

distributions and usually penalize possible a-posteriori constraint violation

by the notion of recourse. Problem formulations tend to grow exponentially

when continuous distributions are approximated by discrete sampling. These

are major disadvantages in many cases and lead to the development of de-

terministic approaches known as robust optimization.

The following framework used throughout this entire section is based

on [Sch09b].

De�nition 3.1. Given a general optimization problem

(P) min
x

f(x)

s. t. F (x) ≥ 0

with any objective function f and an arbitrary condition function F , the

corresponding uncertain problem is

(P(ξ)) min
x

f(x, ξ)

s. t. F (x, ξ) ≥ 0

2Optima oftentimes lie on the boundary of a set of feasible solutions, like in the simplex
algorithm in linear programming, where even the slightest deviation in an active constraint
can easily cause infeasibility. For more such considerations, see for example the motivation
section in [BTN98].

3For an introduction on SP, [KW94] and [Pre95] are renowned textbook references.
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with f and F being generalizations of the objective and constraint functions,

taking into account the uncertain input data ξ, called the scenario, which is

generally said to be out of an uncertainty set U . Usually there is some ξ̂ ∈ U
such that f(·) = f(·, ξ̂) and F (·) = F (·, ξ̂), called the nominal scenario.

P(ξ̂) = P is called the nominal problem.

This generic formulation adopts for instance to general linear problems

(LP) min
x

cTx

s. t. Ax ≤ b

with uncertainty possibly lying in the coe�cient matrix A, the right-hand

side vector b, and the objective coe�cients' vector c by choosing

f(x, ξ) = cTx and F (x, ξ) = b− Ax for ξ = (A, b, c).

Plugging in the timetabling problem introduced in the previous section gives

f(π, ξ) = w̃Tπ and F (π, ξ) = Ãπ − l for ξ = l,

with w̃ and Ã de�ned as above and not subject to uncertainty, as described

next.

3.1 Scenarios and uncertainty sets in timetabling

In the timetabling application, uncertainty lies within the possibility of un-

foreseen delays occuring during operation.4 To be more precise, the lower

bounds that describe minimal durations of activities can increase, thus ren-

dering the original timetable infeasible. Techniques of robust optimization

that take the possible delay scenarios into account need the uncertainty set

speci�ed.

The de�nition of possible delay scenarios is essential for the resulting ro-

bustness. Whenever at operation time scenarios emerge that have not been

4Other uncertainties are possible, for example the weights in terms of travelling pas-
sengers may be uncertain. This is not considered here.
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taken into account in the optimization stage, high repair cost or infeasibility

may be incurred which the optimization method cannot be blamed for. How-

ever, identifying an uncertainty set covering most delay scenarios while not

being too loose is highly non-trivial, even though robust optimization does

not consider probabilities, which also have not been found yet for delays in

public transportation to a satisfying degree.

Nevertheless, in order to conduct at least some investigation on robust

techniques for aperiodic timetabling, two types of uncertainty sets are con-

sidered here. U1 depends on a non-negative parameter s determining the

possible increase of minimal durations for all driving activities. U2 is a sub-

set of U1, depending on a second parameter k indicating how many of the

driving activities can at most be delayed at all. The following de�nition puts

this more formal:

De�nition 3.2. Let (E,A, l, w) be a given EAN with lower bounds and

weights on activities. For arbitrary s ≥ 0 and k ∈ N0, the following sets

of possible lower bounds with delays are the uncertainty sets considered

throughout the remaining part of this work:

U1(s) =
{
l̃ ∈ R|A| : l̃a ∈ [la, (1 + s)la] ∀a ∈ Adrive, l̃a = la∀a ∈ A \ Adrive

}
U2(s, k) =

{
l̃ ∈ U1(s) : |{a ∈ A : l̃a > la}| ≤ k

}
Note that U1 is convex, while U2 is generally not. U2(s, k) ⊆ U1(s), and

U2(s, k) = U1(s) if k ≥ |Adrive|. However, k is assumed to be rather small.

3.2 Strict robustness

The most basic idea of robust optimization is strict robustness: Solutions are

required to be feasible for all possible scenarios in the given uncertainty set.

De�nition 3.3. Given an uncertain optimization problem

(P(ξ)) min
x

f(x, ξ)

s. t. F (x, ξ) ≥ 0
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with any objective function f and an arbitrary constraint function F , its

strict robust counterpart with regard to an uncertainty set U is the problem

(SR) min
x

sup
ξ∈U

f(x, ξ)

s. t. F (x, ξ) ≥ 0 ∀ξ ∈ U .

This notion goes back to the pioneering work of A. Ben-Tal and A. Ne-

mirovski, who took the idea of strict robust feasibility from the �eld of (ro-

bust) control theory to mathematical programming in [BTN00]. They credit

the �rst results of robust optimization, as widely accepted today, to [Soy73],

but laid the foundation for modern robust optimization themselves by the

generelization from column-wise uncertainty to arbitrary uncertainty sets,

focusing on �nite intersections of ellipsoids in order to ensure computational

tractability by avoiding semi-in�niteness of the constraints. However, in the

aperiodic timetabling application considered here, all of the constraints in

the strict robust counterpart are dominated by �nitely many scenarios in

which the delays take on their individual worst values, so their main result is

not needed here. For both U1(s) and U2(s, k) the robust counterpart to the

aperiodic timetabling problem reads

(TT-SR) min
π

w̃Tπ

s. t. Ãπ ≥ (1 + s)l

π ≥ 0

because for every activity a ∈ A in the underlying EAN (E,A, l, w) there

is one scenario l̃ ∈ U2(s, 1) ⊂ U2(s, k) ⊂ U1(s) having just the lower bound

l̃a = (1 + s)la delayed as badly as possible and thus dominating all other

scenarios with regard to a particular activitiy a. As there are only �nitely

many a ∈ A, the strict robust counterpart can be written as this linear pro-

gram. Obviously, this is nothing but the nominal problem again simply with

all lower bounds increased to the worst. This retains the good tractability

of the aperiodic timetabling without even increasing the problem size but

simultaneously leads to very conservative solutions of bad nominal quality,
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i. e. strongly elongated travelling times for all customers. Especially in the

case of U2(s, k) with small values for k, the increase is not reasonable at all.

However, many transportation companies employ such overall bu�ering as a

rule of thumb, for instance by adding 7% to all minimal driving durations as

recommended by the International Union of Railways according to [LS06].

Since aperiodic timetabling is not the only problem yielding inacceptably

bad solutions under strict robustness, several other robustness terms have

been coined in the literature that try to achieve a better trade-o� between

nominal quality and robustness by relaxing the strict robustness constraints.

3.3 Light robustness

In [FM09], M. Fischetti and M. Monaci modify a robustness model intro-

duced by D. Bertsimas and M. Sim towards a trade-o� between robustness

and nominal quality, enabling the user to control the nominal quality by a

constraint and then seeking for the solution which, while obeying this nomi-

nal quality condition, violates the constraints of strict robustness as little as

possible in some sense. To this end, they introduce a kind of slack variables

measuring the relaxation of the robustness constraints, which they then aim

to minimize. As this is somehow comparable to the recourse in two-stage

stochastic programming, they consider their approach, that they call Light

Robustness, as an intermediate method between robust optimization and

stochastic programming. However, as no probabilities are involved, this is

still rather to be considered a robust optimization technique.

The basic idea can be put into the robustness terms developed above as

follows, although this deviates a little from their original formulation:

De�nition 3.4. Given a robust optimization problem with objective func-

tion f and constraint function F , both depending on the scenario out of some

speci�ed uncertainty set U , the light robust counterpart is
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(LR(δ)) min
γ

w̄Tγ

s. t. F (x, ξ̂) ≥0

f(x, ξ̂) ≤(1 + δ)z̄

F (x, ξ)+ γ ≥0 ∀ξ ∈ U

γ ≥0

ξ̂ denotes the nominal scenario and z̄ its optimal value, δ ≥ 0 is a scalar

parameter and w̄ a weight vector.

A light robust solution must thus still satisfy strict feasibility for the

nominal scenario and ensure that its quality is not more than a factor of δ

apart from the optimum.

It is important to mention that the formulation of the original constraints

is a�ecting the outcome of this model, and di�erent but equivalent formu-

lations can yield very di�erent light robust solutions. This is due to the

dependence on the behaviour of the constraint function F beyond feasibility,

i. e. how its values behave in the infeasible case F (x) 6≥ 0. Values close to

0 should represent proximity to feasibility, independently in each component

of F . But F could be modi�ed by applying an arbitrary function u only

respecting u(x) ≥ 0 ⇔ x ≥ 0 without changing the nominal problem. A

meaningful requirement on F would be, for instance, a�ne linearity, as ful-

�lled in the case of linear programming, in which the light robust counterpart

is again a linear program and reads as follows:

(LP-LR(δ)) min
γ

w̄T γ

s. t. b̂− Âx ≥ 0

cTx ≤ (1 + δ)z̄

b− Ax+ γ ≥ 0 ∀(A, b) = ξ ∈ U

γ ≥ 0

Still there are di�erent equivalent formulations of an LP possible, so it must

be somehow normalized. A further possibility to modify the meaning of
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robustness is the vector w̄ weighting the constraints. However, the aperiodic

timetabling problem is already normalized with the coe�cients only being

−1, 0 and 1. Since it is hard to tell how much impact the non-bu�ering of a

possible delay on which activity would have, setting w̄ = 1 is not a bad idea.

Nevertheless, setting the weights corresponding to the passenger loads on

each respective activity as a �rst heuristic will be tried out in the numerical

studies, too.

Due to the same linear constraint domination argument as in the previ-

ous section on strict robustness, the light robust counterpart of the aperiodic

timetabling problem is computationally tractable with �nitely many con-

straints, and again the assertion of U2 that only a limited number of delays

occur is not relaxing anything. By plugging in the incidence matrix Ã and the

worst delays as de�ned by parameter s, it reads for both U1(s) and U2(s, k):

(TT-LR(δ)) min
γ

w̄Tγ

s. t. Ãπ ≥l

w̃Tπ ≤(1 + δ)z̄

Ãπ ≥(1 + s)l − γ

γ,π ≥0

3.4 Adjustable robustness

Another attempt to address the conservatism of strict robustness has been

proposed by Ben-Tal and Nemirovski themselves together with A. Goryashko

and E. Guslitzer. In [BTGGN04] they introduce the idea of separating the

optimization variables into two disjoint sets, which may be possible in many

applications: non-adjustable variables, whose values have to be �xed in the

planning stage (also referred to as here and now), like all of the variables

in strict robustness, and adjustable variables, whose values can be adjusted

after the concrete scenario has become certain (also referred to as wait and

see). They call this approach Adjustable Robustness and apply it to uncertain

linear programs.
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De�nition 3.5. Given an uncertain linear program

(LP(ξ)) min
p

cTp

s. t. Pp+Qq ≤ b

with p and q being the optimization variables, the former considered non-

adjustable and the latter considered adjustable, and (P,Q, b) = ξ ∈ U uncer-

tain, the adjustable robust counterpart is

(LP-AR) min
p

cTp

s. t. ∀ξ =(P,Q, b) ∈ U∃q : Pp+Qq ≤ b

Considering aperiodic timetabling with the uncertainty sets U1(s) and

U2(s, k) as de�ned above, only the right-hand side is uncertain.5 A closer

look on U1(s) reveals that, no matter how the adjustable ones among the

timetabling variables are chosen, the adjustable robust counterpart will be

the same as the strict robust counterpart.6 This is the basic motivation for

the choice of U2(s, k) with k small. If some departure and arrival times do not

have to be �xed in advance and are thus regarded somehow less important,

consecutive activities between them can share the worst case such that not

every single one has to get its worst-case bu�er.7

Now, how shall the adjustable variables be chosen among all the events

that are to be scheduled? The choice has to be made carefully, because

adjustable robust optimization is even for linear programming generally NP-

hard, as proven in [Gus02]. In order not to have to make complicated con-

siderations about possible propagations of delays in the EAN, the adjustable

events are chosen here to be only those that are no crossing-point in the

5The decomposition of the optimization variables into two vectors reminds of two-stage
stochastic programming with recourse, and in these terms, the problem has �xed recourse

since Q is not uncertain.
6This is also proven by Ben-Tal et al. in their introducing article [BTGGN04] as

Theorem 2.1. U1(s) ful�lls the condition of constraint-wise uncertainty, being the cartesian
product of closed intervals, that are compact and convex.

7This breaks the condition of the aforementioned theorem by abolishing constraint-wise
uncertainty.
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network. This is now put into notions from graph theory:

De�nition 3.6. On a directed graph (E,A), let

δ+(e) = {(e′, e) ∈ A : e′ ∈ E} and

δ−(e) = {(e, e′) ∈ A : e′ ∈ E}

be the incoming and outgoing arcs, respectively, of node e ∈ E, with

d+(e) =
∣∣δ+(e)

∣∣ and
d−(e) =

∣∣δ−(e)
∣∣

denoting the number of such arcs.

Using these common shorthands, the basic idea of a not-too-complicated

choice of adjustable events is the following.

De�nition 3.7. Given a directed graph (E,A), a node e ∈ E is called a

trivial node if d+(e) = d−(e) = 1. A path with all but the �rst and the last

node being trivial is called a trivial path.

Not hard to guess, the trivial nodes on an EAN (E,A, l, w) shall now be

adjustable, such that all activities among a trivial path can share a bu�er fac-

ing the worst case of delays. This actually coincides with the understanding

of non-adjustable events being more important, as stops where passengers

can change are more important to obey a schedule for customers not to miss

their connection, and are anyway oftentimes larger cities with importance for

more passengers than simple stop-by stations without possibility to change

over.

Note that it may be necessary to drop headway constraints because oth-

erwise they would make almost all departure events non-trivial. This is

investigated on the real-world instance in the numerical studies.

A more general formulation of the concept of adjustable robustness with

respect to the framework used before is according to [Sch09b]:
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De�nition 3.8. Given a general uncertain optimization problem (P(ξ)) like

before with the scenario ξ out of some uncertainty set with objective function

f and constraint function F , the adjustable robust counterpart is

(AR) min
p

sup
ξ∈U

min
q
{f((p, q), ξ) : F ((p, q), ξ) ≥ 0}

s. t. ∀ξ ∈ U ∃q : F ((p, q), ξ) ≥ 0

Note that this formulation is more general, and plugging in the aperiodic

timetabling problem may at �rst glance look di�erent from the (LP-AR)

notation above, because now again a worst case is aimed to be minimized in

the objective function, that can depend on the optimal values taken on by the

wait-and-see variables after the scenario becomes known. Nevertheless, the

following reduction will reveal that this worst-case (second-stage) optimum

is entirely independent from the non-adjustable (�rst-stage) variables when

chosen as suggested, thus having the worst optimal wait-and-see decisions'

impact on the objective value being constant with regard to the here-and-now

decisions.

De�nition 3.9. The adjustably reduced counterpart (E ′, A′, l′, w′) of an EAN

(E,A, l, w) with regard to an uncertainty set U consists of the non-trivial

nodes

E ′ =
{
e ∈ E : d−(e)d+(e) 6= 1

}
and the trivial paths in the original EAN

A′ =

{
((e0, e1), (e1, e2), ..., (en−1, en)) ∈ A∗ : n ∈ N, e0, en ∈ E ′,

e1, ..., en−1 ∈ E \ E ′

}

with every path meant as an arc from the source node of the �rst original

arc to the target node of the last original arc. There may be multiple arcs

connecting the same pair of nodes that shall remain distinguishable. The

lower bounds respect the sum of the corresponding lower bounds in the worst

case corresponding to U :

l′a′ = sup
ξ∈U

∑
a∈a′

ξa
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The weight of a path is the minimum weight along it:

w′a′ = min
a∈a′

wa

This reduction and the following proof of equivalence are based on an idea

in [Hö11], where the independence of the optimal solutions from the worst

optimal adjustable variables is however shown for uniform activity weights

only while derived for arbitrary non-negative weights on activities here.

Lemma 3.10. A timetable π′ for the non-trivial events E ′ of an adjustably

reduced counterpart (E ′, A′, l′, w′) to an EAN (E,A, l, w) with regard to an

uncertainty set U can be extended to a feasible timetable π for (E,A, l, w) for

all l ∈ U if and only if it is feasible for (E ′, A′, l′, w′).

Proof. Let π′ be feasible for (E ′, A′, l′, w′). Then for any trivial path (a1, ..., an) =

a′ ∈ A′ with ai = (ei−1, ei) ∈ A and all scenarios l ∈ U holds

π′en − π
′
e0
≥ l′a′ = sup

ξ∈U

∑
a∈a′

ξa ≥
∑
a∈a′

la

Hence, there are πe1 , ..., πen−1 respecting πj − πi ≥ la for all a = (i, j) ∈ a′,
for example

πej = πej−1
+ l(j−1,j)

inductively for j = 1, ..., n − 1, with πe0 = π′e0 , ful�lling all lower bounds of

scenario l with equality for all but the last arc, and for the last arc

π′en − πen−1 = π′en − (πen−2 + l(en−2,en−1))

= ... = π′en − (π′e0 +
n−2∑
j=0

l(ej ,ej+1))

= π′en − π
′
e0
−

n−2∑
j=0

l(ej ,ej+1)

≥
n−1∑
j=0

l(ej ,ej+1) −
n−2∑
j=0

l(ej ,ej+1)

= l(en−1,en)
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No further constraints must hold for the times of any trivial node e since

d+(e) = 1.

Contrarily, if π′ is not feasible for (E ′, A′, l′, w′), then there is some con-

straint violated, i. e. there is a′ = (a1, ..., an) ∈ A′ with ai = (ei−1, ei) ∈ A
such that

π′en − π
′
e0
< l′a′ = sup

ξ∈U

∑
a∈a′

ξa

which implies that there must be some scenario ξ ∈ U with

∑
a∈a′

ξa > π′en − π
′
e0
⇐⇒ π′en < π′e0 +

n∑
j=1

ξaj

If π was a feasible timetable for (E,A, l, w) for scenario l = ξ, it would ful�ll

πen ≥ πen−1 + lan

≥ πen−2 + lan−1 + lan

≥ ... ≥ πe0 +
n∑
j=1

laj

such that π cannot be an extension of π′.

This permits for the adjustable robust counterpart of the aperiodic timetabling

problem to have the constraints formulated as in the nominal linear program

regarding the adjustably reduced counterpart.

Theorem 3.11. A solution π′ to the adjustable robust aperiodic timetabling

problem on an aperiodic EAN (E,A, l, w) with uncertainty set U and all

non-trivial nodes being non-adjustable,

(TT-AR) min
π′

sup
ξ∈U

min
π⊃π′

{
w̃Tπ : Ãπ ≥ ξ

}
s. t.∀ξ ∈ U∃π ⊃ π′ : Ãπ ≥ ξ

is optimal for this problem if and only if it is optimal for the nominal timetabling
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problem on the adjustably reduced counterpart (E ′, A′, l′, w′),

min w̃′Tπ′

s. t. Ã′π′ ≥ l′

where π ⊃ π′ means that π is an extension of π′, and Ã, Ã′ are the incidence

matrices of (E,A) and (E ′, A′), respectively, and w̃, w̃′ are the corresponding

event weight vectors to w and w′.

Proof. The equivalence of feasibility has been shown in the lemma. Let now

π′ be any feasible solution to both problems, i. e. Ã′π′ ≥ l′. Then for any
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scenario ξ ∈ U

min
π⊃π′

{
w̃Tπ : Ãπ ≥ ξ

}
(1)
= min

π⊃π′

 ∑
a=(i,j)∈A

(πj − πi)wa : Ãπ ≥ ξ


(2)
= min

π⊃π′

∑
a′∈A′

∑
a=(i,j)∈a′

(πj − πi)wa : Ãπ ≥ ξ


(3)
=
∑
a′∈A′

min
π⊃π′

 ∑
a=(i,j)∈a′

(πj − πi)wa : Ãπ ≥ ξ


(4)
=
∑
a′∈A′

min
π⊃π′

 ∑
a=(i,j)∈a′

(ξa + πj − πi − ξa)wa : πj − πi ≥ ξa∀a = (i, j) ∈ a′


(5)
= c̃ξ +

∑
a′∈A′

min
π⊃π′

 ∑
a=(i,j)∈a′

(πj − πi − ξa)wa : πj − πi ≥ ξa∀a = (i, j) ∈ a′


(6)
= c̃ξ +

∑
a′=(e0,...,en)∈A′

min
d

{∑
a∈a′

dawa : da ≥ 0 ∀a ∈ a′,
∑
a∈a′

da = π′en − π
′
e0

}
(7)
= c̃ξ +

∑
a′=(e0,...,en)∈A′

(π′en − π
′
e0

) min
a∈a′

wa

(8)
= c̃ξ +

∑
a′=(e0,...,en)∈A′

(π′en − π
′
e0

)w′a′

(9)
= c̃ξ + w̃′Tπ′

Equation (1) follows from Lemma 2.8, (2) is essentially due to the arc-

disjointness of the trivial paths and (3) due to the inner-node-disjointness of

trivial paths and the �xation of any non-trivial node by the given timetable

π′, such that all trivial paths can be optimized independently in the second

stage. (4) focuses every independent path optimization on its own constraints

and adds a zero, (5) pulls out the costs of minimal durations imposed by the

scenario ξ:

c̃ξ =
∑
a′∈A

∑
a∈a′

ξawa =
∑
a∈A

ξawa
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Finally, (6) rewrites the remaining minimization problem with slack variables

da = πj − πi − ξa ∀a = (i, j) ∈ a′ ∈ A′

(7) employs its obvious solution, and (8) rewrites it according to the de�nition

of the adjustably reduced EAN and (9) again by Lemma 2.8.

Since w̃′Tπ′ is not depending on the scenario ξ, the objective function of

(TT-AR) reduces to

sup
ξ∈U

min
π⊃π′

{
w̃Tπ : Ãπ ≥ ξ

}
= sup

ξ∈U

{
c̃+ w̃′Tπ′

}
= w̃′Tπ′ + sup

ξ∈U
c̃ξ

As the two objective functions now only di�er in the additive constant

supξ∈U c̃ξ, that is not depending on the solution π′, the optimal solutions

of both problems are the same.

It is essential to note that this reducibility to a nominal instance is due

to the choice of at least all non-trivial nodes being non-adjustable. The

objective function with minimal arc weight per path employs the idea that

any additional slack and bu�er on a path will go entirely on its cheapest

arc(s), which is possible due to the absence of upper bounds.

Although an arbitrary choice of non-adjustable variables for the here-and-

now decisions might still retain the adjustable robust counterpart a linear

program because the reduction of the constraints is not depending on the

disjointness of the paths, the linearisation of the objective function with the

supremum over all scenarios would make the problem grow vastly even for

uncertainty set U2(s, k). The worst case cannot be controlled as simply as

before, and therefore, for every choice of k activities to be delayed as much

as possible, the entire second-stage optimization has to be moved to the con-

straints in order to implement the supremum for the worst-case optimization.

A further annotation has to be made here. The concept of not �xing

some variables before the scenario becomes known has two drawbacks in the

application to timetabling. First, customers almost always get a schedule
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for all stops of the transportation means, and the operation should never

deviate from it towards earlier departures. Therefore, a timetable would

rather have to put the entire shared bu�er of a path on the very last activity.

A second reason for this is that delays often only reveal immideately during

the activities they a�ect, and hence even a trivial path could not be optimized

in the second stage before the vehicle would enter it. Given these practical

restrictions, the adjustable robust counterpart as laid out here is not really

minimizing the worst case, but it may still be a good heuristic.
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4 Numerical studies

In order to evaluate timetables with regard to their robustness against delays,

the very �rst and most important question is how to measure delay robustness

at all. The possibly most generic approach is to try and calculate the impact

that certain delay scenarios have on the customers under the timetable that is

to be evaluated. Due to the complexity and size of the timetabling problem,

this is done here by heuristically applying so-called delay-management to a

�nite set of scenarios chosen randomly from the respective uncertainty set

that the robustness concepts aimed to optimize the timetable against. This

delay-management step is sketched in the following subsection.

For the numerical studies, a framework called LinTim has been employed.

It provides algorithms for several planning stages in public transportation,

such as lineplanning and timetabling as well as delay-management. The ro-

bust timetabling methods described above have been plugged into this frame-

work and then carried out and evaluated on a public transportation network

instance built upon real-world data provided by Deutsche Bahn AG. This

network approximates the German high-speed intercity train infrastructure

and concists of 249 stations and 325 connections between them.

For the numerical studies, a total of six sets of scenarios has been created

randomly by a uniform distribution over the driving activities and over the

respective interval the delayed minimal duration may lie in. Five sets have

been chosen from U1(0.1), U1(0.2), U1(0.3), U1(0.4), U1(0.5) with exactly ten

percent of the driving activities being delayed in each scenario. One set has

been chosen from U2(0.5, 1). Each of those six sets consists of 100 scenarios.

4.1 Delay-management techniques

The scenarios that are chosen randomly from the uncertainty sets are im-

posing some increased lower bounds on driving durations of trains between

stations. These source delays do not only have their direct impact on the

passengers in this train reaching the next station late, but rather propagate

to many subsequent events like further departures and arrivals of this train,

and even onto other trains when there are passengers who have to change
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over in the following or a subsequent station. To measure the impact of a

scenario, those secondary delays have to be considered as well.

To this end, so-called disposition timetables have to be calculated for

each scenario, which indicate new departure and arrival times for all trains

in all stations respecting the occured delays. In a disposition timetable, no

event may be scheduled to an earlier time than it had been scheduled in

the timetable before, because customers are usually given and relying on

the guarantee that means of public transportation never leave earlier than

announced.

The simplest method to compute this disposition timetable is calling

an algorithm known as the critical path method from project planning, as

sketched and referenced in the proof of Lemma 2.6. It traverses all events in

topological ordering and assures the new lower bounds to be met by setting

back the timetable as needed.

There are two further prominent considerations to be made. The �rst one

is the common question for trains: to wait or not to wait if a feeder train is

delayed. To wait would result in additional delay for other customers, while

not to wait could increase the inconvenience of the already delayed passengers

who would miss their connection. Usually rules of thumb are applied like a

maximum waiting time or a classi�cation of trains into local and high-speed

trains, the latter never wating for the former.

The second consideration is concerned with the headways, the security

distances between trains that had been �xed and are used to model capacity

constraints on tracks. These would essentially delay other trains even if there

are no changing customers between the primarily delayed train and a train

which is scheduled to depart from a certain station after it and could therefore

be turned around.

Both of these questions make the delay-management problem hard as

they result in decision variables turning the linear program into a mixed-

integer program. This can be solved exactly or heuristically, as described for

example in [SS10] and [Sch09a].

However, the main investigation on delays in the aperiodic case here shall

be made using the following propagation algorithm, which is given the EAN
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(E,A, l, w) and original timetable π together with the occured scenario ξ

as input as well as a maximum waiting time t, and computes a disposition

timetable π̃ complying to the new minimal durations ξ.

1. Work on a copy (E ′, A′) of the EAN. Create an empty to-do list Q.

2. Iterate over all e ∈ E ′, set π̃e := πe and add e to Q if d+(e) = 0.

3. As long as there is e ∈ Q:

(a) Remove e from Q.

(b) For all outgoing activities a = (e, o) ∈ A′, calculate no = π̃e + ξa.

(c) If no > π̃o and a ∈ Adrive t Await, set π̃o := no.

(d) Else if no > π̃o and a ∈ Achange and no ≤ πo + t, set π̃o := no.

(e) Else if no > π̃o and (e, o) ∈ Ahead and π̃o + ξa > π̃e, set π̃o := no.

(f) Else if (e, o) ∈ Ahead and π̃o + ξa ≤ π̃e, remove (e, o) from A′ and

add (o, e) to A′.

(g) Else if (o, e) ∈ Ahead and no > π̃o, remove (e, o) from A′ and add

(o, e) to A′, and add e to the head of the to-do list Q.

(h) Remove a from A′.

(i) If now δ+(o) ∩ A′ = ∅, add o to the end of Q.

Lines 2, 3(h) and 3(i) manage the traversal in a topological ordering. Line

3(f) turns a headway around if the originally later train can leave before the

delayed train without imposing an additional delay on it. Line 3(g) swaps a

headway back whenever a swapped headway would cause additional delay to

the train that should originally go �rst.

A closer look is now taken on the maximum waiting time parameter t. For

di�erent values of t, the algorithm above has been executed on the nominally

optimal aperiodic timetabling with the �ve random delay sets out of U1. A

second run of this has been done without having the algorithm swap around

any headways in order to examine the impact of this method. The resulting

delays have been averaged over each scenario set according to the objective
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(a) with swapping of headways (b) without swapping of headways

Figure 1: Delay-management objective value for di�erent delay intensities

function of the delay-management optimization problem, which is described

next.

Figure 1 shows the result. With increasing maximal waiting time pa-

rameter, the objective value �rst decreases to a minimum around t = 200

seconds, almost uniformly for all s from 0.1 to 0.5. Up to here, the incurring

delays for passengers of subsequent trains is less than the bene�t of changing

passengers not missing their connection. Then the objective increases again

until it eventually becomes constant when the maximum waiting time is large

enough for all trains to wait for each other, which is of course later the case

when the occuring delays can become larger. The qualitative behaviour is

apparently not changed much by the admission of headway swaps.

The delay-management objective function aims at measuring the delay

for passengers. To this end, it calculates the increase of travel time, weighted

by the number of customers on the respective activities. Furthermore, for

missed connections, the period length T of the underlying periodic EAN is
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added per customer. In the case of the so-called all-wait policy where no

connection is missed, this represents the real increase of travel time. When

connections are missed, this is only an approximation to the real delay the

customers have to face, for two reasons. First, although the customers miss

their connection, a possible delay of the missed train still accounts for them,

as they are contained in the original weight, although the periodically next

train may arrive on time. Second, customers may not need to wait an en-

tire period, since there could be alternative lines for them to reach their

destination. This problem is faced by delay-management with re-routing of

passengers, see for example [DHSS12]. However, the shortcomings of the ob-

jective function are accepted here, and most investigation is done with the

all-wait policy, in which no connections are missed at all.

4.2 Light robustness results

For the examination of the light robustness concept, light robust timetables

have been computed for di�erent values of parameters δ = 0.1s, 0.2s, ..., 1.0s,

each for uncertainty sets U1(s) for s = 0.1, ..., 0.5. The strict robust solution

is contained as the special case δ = s. The weight function is set to w = 1.

Plots are showing the objective value of delay-management against the

nominal quality in terms of total weighted slack contained in the timetable.

From left to right, the tightness of the schedule decreases, while from bottom

to top its delay-resistance decreases. Thus, an ideal timetable would reside

in the bottom left corner of the plot.

Figure 2 compares the objective value achieved by di�erent delay-management

techniques: the propagation algorithm with an all-wait and no-wait policy as

well as with maximum waiting time of 200 seconds. Furthermore, the best

of several heuristics to the exact ip-based method due to [Sch09a] shows that

there is still some room to the best possible treatment of delays, but the

propagation method is performing not too bad and runs in polynomial time.

Figure 3 shows the behaviour of the light robustness concept in detail.

Each colour represents another scenario set with di�erent values for s, from 10

percent increase up to 50 percent increase of the minimal durations. Figure 4
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Figure 2: Objective value for di�erent delay-management techniques

tries to visualize the impact of several factors that the investigation relies on.

The lineplanning stage may have a large in�uence, as di�erent objectives such

as the direct traveller's approach may yield entirely di�erent lines. Usually

the cost model for lineplanning has been employed. For further details on

lineplanning, see for example [Sch06]. The complete neglection of headways

seems not to make a great qualitative di�erence, nor does the weighted light

approach with a light robustness modell with weights on the constraints ac-

cording to the respective passenger loads. However, the next subsection with

the overall comparison reveals that there is a great quantitative di�erence

between the unweighted and the weighted light robust optimization.

The common character of the light robust curve shows that, within the

setting of light robustness, the �rst relaxation of the nominal optimality

yields a rather strong improvement in terms of delay robustness, while the

curve �attens towards the strict robust solution at the bottom right end

of the curve. The trade-o� between nominal quality and robustness seems

worthwile.
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Figure 3: Objective value for light robustness on cost model lines
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(a) on a larger network (b) direct travellers lines

(c) without headways (d) weighted light robustness

Figure 4: Delay-management objective value for di�erent variations
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4.3 Adjustable robustness results and comparison

Finally enter the adjustable robustness. In order to make it comparable by

means of delay-management, the timetables had to be extended with wait-

and-see decisions made before the scenarios became known. This has been

done in two ways: First by putting all the bu�er on the cheapest arc per

path, and then with putting the necessary part of the bu�er on the last arc

per path. Since there are no trivial paths in the EAN in the case of headways,

these two versions are compared in the cases of no headways, on the sets out

of U1(s) as well as on a set out of U2(0.5, 1).

The results can be seen in �gures 5, 6 and 7. The weighted light robust

solution outperforms the unweighted leight robust solution in the area of

much and little relaxation; however, with medium relaxation, the unweighted

light robust solution is a tri�e better with regard to delay resistance. On

U1(0.5) without headways, the adjustable robust solution with the necessary

bu�er on the last arc per path can compete with them, and in the case of

U2(0.5, 1), which is somehow tailored to adjustable robustness, it is actually

better.
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Figure 5: U1(0.5) with headways

Figure 6: U1(0.5) without headways
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Figure 7: U2(0.5, 1) without headways
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5 Conclusion

The conduced work shows that robust optimization models are not generally

inapplicable to the aperiodic timetabling problem. The conservatism of strict

robustness can well be addressed by common relaxations. Still the choice of

the right relaxation depends on the assumptions about the uncertainty set,

and as long as the behaviour of disturbances in public transport remains

unpredictable, the approach is of rather theoretical interest.

Especially the case of U2 shows that the simulation on random scenarios

cannot be regarded as proof, as the curve gets rather unsmooth, and such

unsmoothness represents to some extent the inpredictability of delays and

their impact.

Nevertheless, the concepts of light robustness, especially with weights

on the constraints, and the adjustable robustness appear to be suitable for

further investigations beyond the scope of this work.
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6 Implementation details

The software packet LinTim has been used in its v2 branch as of svn revision

1586. All the �les that have been additionally put in or altered are supplied

on the accompanying CD as well as the data produced. Note that the bash

scripts have been used somehow interactively, renaming folders here and there

and making slight changes to the scripts as needed. The implementation

details are provided in an "as-is" fashion, and convenience and ease of use

are no objectives in providing them.
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