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Nomenclature

α Heat transfer coefficient between gaseous and solid phase [ W
m2·K ]

ν Velocity of the gaseous mixture [m
s

]

ρF Mass density of the fuel [ kg
m3 ]

ρG Mass density of the gaseous mixture [ kg
m3 ]

A Pre-exponential factor [ kgi
mol

]

Cp
s Specific heat capacity of the solid phase for constant pressure [ J

kg·K ]

Dg Diffusion coefficient for the gaseous phase [1
s
]

Ds Diffusion coefficient for the solid phase [m
2

s
]

E Activation energy [ J
mol

]

f Measure of the residual energy fraction in the fuel [−]

LCV Lower calorific value of the fuel [ J
kg

]

p Pressure [P ]

R Universal gas constant [ J
mol·K ]

SV Specific surface area of a fuel particle [m
2

m3 ]

t Independent time variable [s]

TF Temperature of the fuel [K]

TG Temperature of the gaseous mixture [K]

x Independent spatial variable [m]

Yi Mass fraction of the chemical species i [kgi
kg

]

iv



CHAPTER 1

Introduction

Objective Target

The topic of the thesis at hand are semilinear parabolic partial differential equations of the

general format
∂u

∂t
+ ν

∂u

∂x
= δ

∂2u

∂x2
−R(u)

with initial conditions

u(x, 0) = u0(x)

and constant Dirichlet boundary conditions

u(0, t) = η, u(1, t) = β

that do not necessarily have to be homogeneous. One key aspect shall be the treatment of the

nonlinear reaction term R, and an attempt will be made to explain a particular way to obtain

an approximated numerical solution based on a semidiscrete Galerkin finite element method

for a system of such equations representing chemical combustion.

Procedural Method

Starting with some theoretical basics, Chapter 2 will provide the tools necessary to carry out

the numerical procedure, e.g. integration by parts, Sobolev spaces and the notion of weak

solutions and it will introduce the variational formulation of a model equation. On the basis of

the variational formulation, Chapter 3 describes the chosen method of numerical approximation

by first discretizing in space using a Galerkin ansatz and then solving the problem that is still

continuous in time. Additionally, two important examples of the model equation and their

numerical solution implemented in Matlab will be given. Chapter 4 contains the principal

result, first specifying a brief review of the underlying model and subsequently applying the

previously derived methods in order to solve the model numerically. And finally, the nonlinear

model equations for combustion will be solved with this procedure and the result will be

visualized and briefly discussed.



CHAPTER 2

Theoretical Fundamentals

This chapter is dedicated to providing the theoretical background for the thesis and is divided

into two sections. The first will obtain basic function spaces and explain the integration by

parts formula, whilst the second deals with partial differential equations and specifies definitions

like Lebesgue and Sobolev spaces and introduces the variational formulation as a fundamental

aspect of the numerical approximation to be conducted later.

2.1 Calculus

Firstly, a few selected function spaces will be introduced, namely, the sets of continuous and

continuous differentiable functions. These spaces are going to be needed on various occasions

throughout the whole thesis. Moreover, basic theorems will be given that aim to make a

connection between integration and differentiation.

Definition 2.1

Let k ∈ N ∪ {∞}.

(1) C (Ω) := {u : Ω ⊆ R→ R such that u is continuous on Ω}

(2) C k(Ω) := {u : Ω ⊆ R→ R such that u is k-times continuous differentiable on Ω}

If the function in question is vector-valued, the codomain will be added to the name of the

particular function space, e.g. a continuous function u : Ω ⊆ R→ Rd belongs to C (Ω;Rd). Fur-

thermore, the support of a function u : Ω ⊆ R→ R is defined as supp(u) := {x ∈ Ω : u(x) 6= 0}

and therefore C k
c (Ω) := {u ∈ C k(Ω) : supp(u) b Ω}, whilst b means it is a compact subset.

Functions of the type u ∈ C∞c (Ω) are called test functions.

The next step is to obtain a suitable method for the integration of a product of certain functions.

In order to accomplish this, the following theorem will provide the tool to prove the necessary

theorem.

Theorem 2.2 (Fundamental theorem of calculus)

Let [a, b] ⊆ R and f : [a, b] → R be continuous. If a differentiable function F : [a, b] → R

exists such that F ′ = f , then
∫ b
a
f(x) = F (b)− F (a) holds true.
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Proof : Cf., for example, [Rud76, p.134, Theorem 6.21].1 �

In the following section it will be necessary to integrate a product of functions with derivatives

that occur and the subsequent theorem enables us to tentatively replace such an expression

with a more pleasant one.

Theorem 2.3 (Integration by parts)

Let f, g : [a, b] ⊆ R → R be continuous differentiable functions on (a, b) with derivatives f ′

and g′, then: ∫ b

a

f ′(x)g(x) dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x) dx

: = f(b)g(b)− f(a)b(a)−
∫ b

a

f(x)g′(x) dx

(2.1)

Proof : Define the function h(x) := f(x)g(x) and apply the product rule (f · g)′ = f ′ · g + f · g′.

⇒
∫ b

a
f ′(x)g(x) dx =−

∫ b

a
f(x)g′(x) dx+

∫ b

a
h′(x) dx

Thm.(2.2)
= −

∫ b

a
f(x)g′(x) dx+ h(b)− h(a)

=−
∫ b

a
f(x)g′(x) dx+ [f(x)g(x)]ba

The use of the fundamental theorem is valid, since the product of two differentiable functions is

differentiable and, consequently, continuous as well. �

2.2 Partial Differential Equations

Partial differential equations (PDEs) are the main subject of the thesis at hand. Hence, firstly,

this section will specify a few definitions, in order to be able to move swiftly to more special,

and particularly, more relevant cases; namely, a model PDE will be given. For this type of

equation, the third part of Section 2.2 provides the theoretical “scaffolding” for the posterior

following numerical approximation procedure.

In addition to the already established spaces, we need the following function spaces in order

to work with PDEs.

1In this reference, the fundamental theorem illustrates the more general case of Riemann-integrable functions.
But according to [Rud76, pp.125-126, Theorem 6.8], every continuous function is Riemann-integrable and
hence the above stated theorem holds true as well.

- 3 -
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Definition 2.4 (Lebesgue spaces L p(Ω))

Let Ω be a Lebesgue measurable set and p ∈ [1,∞]:

L p(Ω) :=
{
u : Ω→ R measurable : ||u||L p(Ω) <∞

}
,

where the norm || · ||L p(Ω) is defined as

||u||
Lp(Ω)

:=


(∫

Ω
|u(x)|p dx

) 1
p , p ∈ [1,∞)

ess sup
x∈Ω

|u(x)|, p =∞.

The following theorem states a very imporatant fact about Lebesgue spaces.

Theorem 2.5 (Banach space property)

The spaces
(
L p(Ω), || · ||

Lp(Ω

)
are Banach spaces wherever p ∈ [1,∞].

Proof : Cf., for example, [Bre10, pp.93-94, Theorem 4.8]. �

Remark : For the special case of p = 2, even the space L 2(Ω) with the inner product

〈u, v〉
L 2(Ω)

:=

∫
Ω
u(x)v(x) dx (2.2)

is a Hilbert space. This inner product will be used frequently below.

2.2.1 Basic Information

As mentioned above, this section is dedicated to explaining the neccessary facts and notations

concerning PDEs. As a maximum generality is not required, the following simplifications will

be made.

• Spatial univariate: Only PDEs that are dependent of two variables need to be consid-

ered, i.e. the variable t shall denote the time dependence and x the spatial dependence.

• Second order in space: Let us assume that, with respect to space, there is always a

differential operator of the second order assured, i.e. ∂2

∂x2 , since there is just one spatial

variable and it is possible to have a first order operator ∂
∂x

as well. Moreover, there are

no derivatives with an order greater than two.

• First order in time: Concerning time, there is only the first derivative, i.e. ∂
∂t
.

Given the above restrictions, the first definition of a special PDE reads as follows.

- 4 -
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Definition 2.6 (Semilinear first order evolution equation)
Let Ω ⊆ R be an open interval. For k ≥ 1, T ∈ R>0 and an unknown and thus sought-after

function u : Ω× (0, T )→ R, the following equation is called first order evolution equation:

∂u

∂t
(x, t)− Lxu(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ), (2.3)

where Lx denotes an operator of the following format:

Lxu(x, t) := A [∂xxu, ∂xu, x, t] +B [u, x, t]

In the above equation, A and B are mappings that depend on the second and the first

derivative respectively, and on u itself and the domain Ω× (0, T ). Henceforth, we will only

consider the following setting: A is linear with respect to the second derivative and B can

be arbitrary. For this selection of coefficient functions, the PDE (2.3) is semilinear.

In reality, in most situations it is very difficult to come up with a solution for a PDE with the

classical concept of derivatives. Thus, let us consider extenuated derivatives with respect to

space in the following manner2.

Definition 2.7 (Weak derivatives)

Let Ω ⊆ R be an open interval. For k ∈ N0, a function w ∈ L 1
loc(Ω) := {w ∈ L 1(Ω′) : Ω′ b

Ω} is called the kth weak derivative of u ∈ L 1
loc(Ω), if∫

Ω

u(x)
dkv

dxk
(x) dx = (−1)k

∫
Ω

w(x)v(x) dx ∀ v ∈ C∞c (Ω)

holds true, and will thus be denoted dku
dxk

:= w.

Next, a model PDE that specifies exactly the type of equations to be dealt with will be given.

2.2.2 Model PDE

The aim of this thesis is to explain a way to simulate chemical reactions; thus, Definition

2.6 can be restricted. It will therefore be sufficient to consider PDEs of the following type

exclusively. Let (0, X) =: Ω ⊆ R be an open interval, X > 0, T > 0, ν > 0, η ∈ R, β ∈ R and

2For extenuated derivatives with respect to time, cf. section 2.2.3.

- 5 -
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δ > 0.

∂u

∂t
(x, t) + ν

∂u

∂x
(x, t) = δ

∂2u

∂x2
(x, t)−R(u, x, t) in Ω× (0, T )

u(0, t) = η, u(X, t) = β for t ∈ [0, T ]

u(x, 0) = u0(x) for x ∈ Ω

(2.4a)

(2.4b)

(2.4c)

In this equation, R : R × Ω × (0, T ) → R denotes either a loss or growth of the quantity u

and may be nonlinear as well. Furthermore, the values η, β and the function u0 ∈ L 2(Ω)

are given. Note that the so-called Dirichlet boundary values (2.4b) and initial values (2.4c)

appeared for the first time here and were not mentioned in the basic information in Section

2.2.1. Nevertheless, both will be needed in order to work with the initial boundary value

problem (IBVP) (2.4) as a special case of a so-called parabolic PDE. A reasonable demand on

a PDE like (2.4) is that initial and boundary values agree with each other at their common

points, i.e. u0(0) = η, u0(1) = β.

2.2.3 Variational Formulation

This section follows the notion of [GR07, pp.317-319] and [KA03, pp.288-290] and is extended

and adjusted to our univariate model PDE (2.4). In order to apply the numerical procedure,

the first aim is to obtain the variational formulation of a PDE, which mainly uses the idea of

weak derivatives in a more precise modality. The first step is to multiply the equation (2.4a)

itself by an arbitrary test function v ∈ C∞c (Ω) that is not time-dependent and integrate over

the whole interval Ω using integration by parts:

∫
Ω

∂u

∂t
(x, t)v(x) dx =− ν

∫
Ω

∂u

∂x
(x, t)v(x) dx+ δ

∫
Ω

∂2u

∂x2
(x, t)v(x) dx−

∫
Ω

R(u, x, t)v(x) dx

(2.1)
= − ν

∫
Ω

∂u

∂x
v dx+ δ

[[
v
∂u

∂x

]b
a

−
∫

Ω

∂u

∂x

∂v

∂x
dx

]
−
∫

Ω

R(u, x, t)v dx

=− ν
∫

Ω

∂u

∂x
v dx− δ

∫
Ω

∂u

∂x

∂v

∂x
dx−

∫
Ω

R(u, x, t)v dx ∀ v ∈ C∞c (Ω)

(2.5)

Note that the above equation holds true because functions in C∞c (Ω) vanish at the boundary

of the domain, i.e. for ∂Ω = {0, X}. Additionally, we need to specify a space for a solution u

of (2.5). Therefore, the space H1(Ω) will be introduced as a representative of the very widely

used concept of Sobolev spaces.

- 6 -
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Definition 2.8 (Sobolev space H1(Ω))

Let Ω = (0, X) for X > 0. One defines the space

H1(Ω) := {u ∈ L 2(Ω) : u exhibits a weak derivative u′ ∈ L 2(Ω)}.

A norm on this space is given by

||u||
H1(Ω)

:=
(
||u||2

L 2(Ω)
+ ||u′||2

L 2(Ω)

) 1
2
.

Moreover, the space H1
0 (Ω) is defined as the closure of C∞c (Ω) in H1(Ω) and it is possible

to prove that C∞c (Ω) is dense in H1
0 (Ω). Referring to [Sal08, pp.395-396, Theorem 7.4 and

Proposition 7.8], H1(Ω) is continuously embedded in L 2(Ω). In dependence on the L p spaces,

the next theorem states a nice property of this new space.

Theorem 2.9 (Hilbert space property)

The space H1(Ω) is equipped with the inner product

〈u, v〉
H1(Ω)

:= 〈u, v〉
L 2(Ω)

+ 〈u′, v′〉
L 2(Ω)

=

∫ X

0

[u(x)v(x) + u′(x)v′(x)] dx

a Hilbert space.

Proof : Cf., for example, [Bre10, pp.203-204, Proposition 8.1]. �

With this in mind we return to (2.5) and understand u(x, t) for every fixed t ∈ [0, T ] as the

composition x 7→ u(x, t) = [U(t)](x), where U : [0, T ] → H1(Ω). Note that the image of the

mapping t 7→ U(t) is a function in the Hilbert space H1(Ω). Based on the idea of weak spatial

derivatives in Definition 2.7, we also need a similar weakening for the occuring time-dependent

derivative on the left hand side of (2.5). The space in which such a generalized time derivative

is contained is defined as

L 2(0, T ;B) :=

{
U : (0, T )→ X such that ‖U‖

L2(0,T ;B)
:=

(∫ T

0

‖U(t)‖2
B dt

) 1
2

<∞

}
,

where B denotes a particular Banach space. Applying this idea of Banach space valued func-

tions, the following definition shall be given:

- 7 -
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Definition 2.10

A function U ∈ L 2(0, T ;H1(Ω)) is said to exhibit a weak (time) derivative

W ∈ L 2(0, T ; L 2(Ω)) if ∫ T

0

U(t)v′(t) dt = −
∫ T

0

W(t)v(t) dt

holds true for all v ∈ C∞c (0, T ) and is delineated W as d
dt
U .

So the precise3 variational formulation for the generalized solution of (2.4) reads as follows.

Find U ∈ L 2(0, T ;H1(Ω)) possessing
d

dt
U ∈ L 2(0, T ; L 2(Ω)) such that

〈 d
dt
U(t), v〉

L 2(Ω)
+ ν〈[U(t)]′, v〉

L 2(Ω)
= −δ〈[U(t)]′, v′〉

L 2(Ω)
− 〈R(U(t)), v〉

L 2(Ω)

holds true wherever v ∈ H1
0 (Ω) and for a.e. t ∈ [0, T ]

along with U(0) = u0 and both [U(t)](0) = η and [U(t)](X) = β


(2.6)

Based on [Eva98, pp.288-289, Theorem 4] it is possible to show that mappings U ∈ L 2(0, T ;H1)

with d
dt
U ∈ L 2(0, T ; L 2) are actually in C (0, T ; L 2) - with feasible exceptions on null sets

- and hence the demand u0 ∈ L 2(Ω) on the initial condition (2.4c) is indeed meaningful. A

closing fact about our model PDE (2.4) follows.

Theorem 2.11 (Existence)

Define ΩT := Ω× (0, T ). Let R fulfill the following conditions:

(1) R(s, x, t) is measurable in (x, t) and continuous in s

(2) ∀ (x, t) ∈ ΩT and s ∈ R ∃ f ∈ L 1(ΩT ), such that R(s, x, t)s ≥ −f(x, t)

(3) ∀ r ∈ R ∃ gr ∈ L 1(ΩT ), such that ∀ (x, t) ∈ ΩT it holds sup‖s‖≤r |R(s, x, t)| ≤ gr(x, t),

then the IBVP (2.4) possesses a weak solution in the sense of (2.6) for all u0 ∈ L 2(Ω).

Proof : Cf., for example, [LM87, pp.33-38, Theorem 1]. Actually, the stated proof only deals with

homogeneous Dirichlet data at ∂Ω. However, this is not a setback since every nonhomogeneous

problem can be transformed to a homogeneous one by using the mapping ψ(x, t) := xβ + (1 − x)η.

Thus the theorem holds true. �

This statement concludes the theoretical background constituting the jumping-off point from

which to continue with the numerical treatment in the next chapter.
3In fact, this is not the most general possibility to define such a variational formulation. It can be generalized
by using a so-called Gelfand triple, which utilizes the embedding H1(Ω) ⊂ L 2(Ω) ⊂ H−1(Ω), where H−1

denotes the topological dual space of H1.

- 8 -



CHAPTER 3

Numerical Treatment

This chapter lays the foundation of the desired numerical simulation. That means that, firstly,

a possibility for the approximation for the discretization in time and space of the model PDE

(2.4) in general will be given. After which two very important examples will be discussed

and visualized. These examples will introduce the numerical treatment of simulating certain

chemical reactions and will reoccur, though in a slightly altered shape, in Chapter 4.

3.1 Method of Lines

This section follows the notion of [Joh87, pp.149-150], [KA03, pp.295-296] and [GR07, pp.154-

155] and is again adjusted to our model PDE (2.4). Here, a approach called method of lines

(MOL) is chosen and will be deduced from the results obtained in Chapter 2. The idea of

this procedure is to separate the roles of time and space by means of first discretizing a PDE

in space using in this case a finite element formulation and afterwards conducting the time

discretization.

The goal is to sustain an approximated solution U∆ in a finite dimensional subspace V∆ ⊂

H1(Ω) of the solution U of the variational formulation (2.6). In addition to the ansatz space

V∆, a different finite dimensional subspace W∆ ⊆ H1
0 (Ω) that represents the test functions

and is called test space is necessary. Hence, the semidiscrete (i.e. discretized in space and

still continuous in time) analogon to the variational formulation (2.6) can be obtained with

u0,∆ ∈ V∆ as an approximation of the initial profile in the ansatz space as follows:

Find U∆ ∈ L 2(0, T ;V∆) possessing
d

dt
U∆ ∈ L 2(0, T ; L 2(Ω)) such that

〈 d
dt
U∆(t), v∆〉L 2 + ν〈[U∆(t)]′, v∆〉L 2 = −δ〈[U∆(t)]′, v′∆〉L 2 − 〈R(U∆(t)), v∆〉L 2

holds true for all v∆ ∈ W∆ and for a.e. t ∈ [0, T ]

along with U∆(0) = u0,∆ and both [U∆(t)](0) = η and [U∆(t)](X) = β


(3.1)

Now, the objective is to achieve a more satisfactory expression for this problem relating to a

numerical procedure that can be handled with existing methods. Therefore the ansatz and

test spaces will be specified by supposing that V∆ = span{ψi} and W∆ = span{φi} with some

bases A = {ψi} and T = {φi}. Both bases A and T shall consist of piecewise linear functions
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and are only different at the boundary of the considered spatial domain Ω = (0, 1). For the

discretization in space, divide Ω equidistantly into n+1 intervals of length ∆x := 1
n+1

, identify

the inner points by xi for i = 1, . . . , n and regard the boundary values as x0 := 0 and xn+1 := 1.

With the aid of this mesh, define

ψi(x) = φi(x) :=


1

∆x
(x− xi−1) , for x ∈ [xi−1, xi]

1
∆x

(xi+1 − x) , for x ∈ (xi, xi+1]

0 , else

for the inner points i = 1, . . . , n. Note that the distinction between A and T for the inner

points is just a formal measure. Because of the appearance of these functions (cf. Figure 3.1),

they are called hat functions. Additionally, it is necessary to expand A with the correspondent

functions ψ0(x) := 1
∆x

(x1−x)1[0,x1](x) and ψn+1(x) := 1
∆x

(x−xn)1[xn,1](x), where 1 represents

the indicator function, since the model PDE (2.4) allows nonhomogeneous Dirichlet conditions.

Figure 3.1: Ansatz and Test Functions for n = 7

Futhermore, note that in the sense of weak derivatives

ψ′i(x) = φ′i(x) =


1

∆x
, for x ∈ [xi−1, xi]

− 1
∆x

, for x ∈ (xi, xi+1]

0 , else

is the first derivative of the i-th hat function ψi = φi for i = 1, . . . , n and analogously

ψ′0(x) = − 1
∆x
1[0,x1](x) and ψ′n+1(x) = 1

∆x
1[xn,1](x). Hence, altogether, we can observe that

span{ψ0, . . . , ψn+1} = V∆ ⊆ H1(Ω) and span{φ1, . . . , φn} = W∆ ⊆ H1
0 (Ω), which makes it

viable to specify the approximation in (3.1) as a linear combination of functions in A as

- 10 -
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U∆(t) :=
∑n+1

j=0 yj(t)ψj. The aim is to find the unknown functions yj(t) which represent the

values of the approximated solution. Actually, we already know what values the solution has to

attain at the boundary of the spatial domain, as they were fixed within the formulation for the

model PDE (2.4) as y0(t) = η and yn+1(t) = β for any t ∈ [0, T ], hence we can circumstantiate

the approximation as follows:

U(t) ≈ U∆(t) := ηψ0 +
n∑
j=1

yj(t)ψj + βψn+1 (3.2)

With the selection of vh = φi for i = 1, . . . , n as test functions, the following calculation

shows that the formulation (3.1) is equivalent to a system of initial value problems for ordinary

differential equations (ODEs) which can be solved by well-known procedures like Runge-Kutta,

Euler or Crank-Nicolson. Thus, inserting (3.2) into the semidiscrete equation (3.1) results in

the following equation for i = 1, . . . , n.∫
Ω

∂

∂t

[
ηψ0 +

n∑
j=1

yj(t)ψj + βψn+1

]
φi(x) dx+ ν

∫
Ω

∂

∂x

[
ηψ0 +

n∑
j=1

yj(t)ψj + βψn+1

]
φi(x) dx

= −δ
∫

Ω

∂

∂x

[
ηψ0 +

n∑
j=1

yj(t)ψj + βψn+1

]
∂

∂x
φi(x) dx−

∫
Ω

R(U∆(x, t))φi dx

Taking into account that both integration and derivation are linear, and that integration only

depends on space where yi(t) only depends on time, one obtains:

n∑
j=1

[
dyj
dt

(t)

∫
Ω

ψj(x)φi(x) dx

]
+ ν

n∑
j=1

[
yj(t)

∫
Ω

ψ′j(x)φi(x) dx

]
+ ν

[
η

∫
Ω

ψ′0(x)φi(x) dx+ β

∫
Ω

ψ′n+1(x)φi(x) dx

]
= −δ

n∑
j=1

[
yj(t)

∫
Ω

ψ′j(x)φ′i(x) dx

]
−
∫

Ω

R(U∆(x, t))φi dx

+ δ

[
η

∫
Ω

ψ′0(x)φ′i(x) dx+ β

∫
Ω

ψ′n+1(x)φ′i(x) dx

]
, i = 1, . . . , n

Written with the inner product 〈·, ·〉
L 2(Ω)

:

n∑
j=1

〈ψj, φi〉L 2

d

dt
yj(t) =− ν

n∑
j=1

〈ψ′j, φi〉L 2yj(t)− δ
n∑
j=1

〈ψ′j(x), φ′i〉L 2yj(t)− δ〈ηψ′0 + βψ′n+1, φ
′
i〉L 2

− ν〈ηψ′0 + βψ′n+1, φi〉L 2 −
∫

Ω

R(U∆(x, t))φi dx, i = 1, . . . , n

To complete the ODE problem, the inital values for the vector y(t) are required. So the
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condition (2.4c) has to be approximated appropriately, which can be done by

u0(x) ≈ u0,∆(x) = ηψ0 +
n∑
j=1

αjψj + βψ0,

in which the coefficients αj have to be chosen such that ‖u0,∆ − u0‖L 2(Ω)
→ 0 for n → ∞4.

Actually, the above computation just considers the inner points x1, . . . , xn. In order to take

account of the boundary points, the two ODEs y′0(t) = 0 with y0(0) = η and y′n+1(t) = 0 with

yn+1(0) = β have to be added for x0 and xn+1, respectively, since the values of the solution are

not supposed to change during the contemplated time period [0, T ]. For the time being5, let

R ≡ 0. If so, the semidiscrete variational formulation can be written modestly in matrix-vector

form as

M
d

dt
y(t) = − [νC + δD] y(t)−

[
νbc + δbd

]
y(0) = (αi)0≤i≤n+1

(3.3a)

(3.3b)

with α0 = η, αn+1 = β and M,C,D ∈ R(n+2)×(n+2) matrices given by

M :=


1 0 · · · 0

0
(
〈ψj, φi〉L 2

)
1≤i,j≤n 0

0 · · · 0 1

 , C :=


0 0 · · · 0

0
(
〈ψ′j, φi〉L 2

)
1≤i,j≤n 0

0 · · · 0 0

 ,

D :=


0 0 · · · 0

0
(
〈ψ′j, φ′i〉L 2

)
1≤i,j≤n 0

0 · · · 0 0


and y(t), bc, bd ∈ Rn+2 vectors given by:

y(t) :=



y0(t)

y1(t)
...

yn(t)

yn+1(t)


, bc :=



0

〈ηψ′0 + βψ′n+1, φ1〉L 2

...

〈ηψ′0 + βψ′n+1, φn〉L 2

0


, bd :=



0

〈ηψ′0 + βψ′n+1, φ
′
1〉L 2

...

〈ηψ′0 + βψ′n+1, φ
′
n〉L 2

0


Note that 0 ∈ Rn denotes the n-dimensional zero vector. In order to improve the comprehen-

sibility of this procedure and, particularly, its name, consider Figure 3.2 which visualizes the

above introduced MOL.

4An example for such an approximation is simply to evaluate the initial profile pointwise.
5Handling nonlinear reaction terms will be the main subject later, in concrete situations.
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t

x

Figure 3.2: Method of Lines Visualization for n = 7

The MOL starts by discretizing a PDE with respect to space only. This can be seen in Figure 3.2

as dividing the originally continous spatial domain (0, 1) into several intervals. Mathematically,

this means that the underlying PDE has been transformed into a system of exactly that number

of ODEs of the quantity of spatial subdivisions. We know both the initial and the boundary

conditions illustrated as dashed green lines in Figure 3.2. We only have to solve for the inner

values illustrated as black lines in Figure 3.2. Note that if the original PDE has, for example,

nonlinear reaction terms, then the ODE system will also be nonlinear.

The next objective is to obtain a more specific form for the required matrices M , C and D

and the vectors bc and bd in (3.3). Hence, the following integrals of these hat functions have

to be computed and the values obtained will be used excessively later on.

mij := 〈ψj, φi〉L 2(Ω)
=

∫ 1

0

ψj(x)φi(x) dx⇒ M∗ := (mij)1≤i,j≤n = ∆x tridiag
(

1

6
,
2

3
,
1

6

)
cij := 〈ψ′j, φi〉L 2(Ω)

=

∫ 1

0

ψ′j(x)φi(x) dx⇒ C∗ := (cij)1≤i,j≤n = tridiag
(
−1

2
, 0,

1

2

)
dij := 〈ψ′j, φ′i〉L 2(Ω)

=

∫ 1

0

ψ′j(x)φ′i(x) dx⇒ D∗ := (dij)1≤i,j≤n =
1

∆x
tridiag (−1, 2,−1)

For a, b, c ∈ R the expression tridiag(a, b, c) shall describe the matrix comprising the num-

bers a, b, c as sub-, main- and superdiagonal respectively. Thus, note that the matrices

M,C,D ∈ R(n+2)×(n+2) are all sparse because the hat functions have a very small support,

namely supp (ψi · φj) = ∅ ⇔ |i− j| ≥ 2. This fact can also be used very effectively to recognize
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that the following vectors to have only two non-zero elements in case of η, β 6= 0.

bc :=



0

〈ηψ′0 + βψ′n+1, φ1〉L 2

〈ηψ′0 + βψ′n+1, φ2〉L 2

...

〈ηψ′0 + βψ′n+1, φn−1〉L 2

〈ηψ′0 + βψ′n+1, φn〉L 2

0


=



0

η〈ψ′0, φ1〉L 2

0
...

0

β〈ψ′n+1, φn〉L 2

0


=

1

2



0

−η

0
...

0

β

0



bd :=



0

〈ηψ′0 + βψ′n+1, φ
′
1〉L 2

〈ηφ′0 + βφ′n+1, φ
′
2〉L 2

...

〈ηψ′0 + βψ′n+1, φ
′
n−1〉L 2

〈ηψ′0 + βψ′n+1, φ
′
n〉L 2

0


=



0

η〈ψ′0, ψ′1〉L 2

0
...

0

β〈ψ′n+1, ψ
′
n〉L 2

0


=

1

∆x



0

−η

0
...

0

−β

0



3.2 Selected Examples

Let Ω = (0, 1) again. The method of lines shall be based upon A and T as bases for the

ansatz and test space respectively. The major reason for studying these examples is the notion

that their analysis might be able to provide a fundamental unterstanding of how to advance

with the construction of an MOL procedure for modeling in Chapter 4. The first one is a

simple diffusion equation without any reaction terms. Diffusion, incorporated with a second

spatial derivative, is one of the most important phenomena occuring in the later simulation

and this is, along with the need to become accustomed to the procedure described in Section

3.1, the reason for giving this example. The second one is mainly designed for a different

purpose. In order to assemble the ODE system (3.3), we assumed no reaction to be present,

i.e. R ≡ 0. Section 3.2.2 deals with a special case of R 6≡ 0 that will reoccur in Chapter 4 and

even in a slightly easier form. The intention is to explain how one can handle such nonlinear

reaction terms, and additionally, there will be a convective term, represented by a first spatial

derivative, that embodies convection as the second important phenomenom of the simulation.
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3.2.1 Homogeneous Heat Equation

Consider the following IBVP with δ > 0:

∂u

∂t
(x, t) = δ

∂2u

∂x2
(x, t) in Ω× (0, T )

u(0, t) = 1, u(1, t) = 2 for t ∈ [0, T ]

u(x, 0) = 5 sin(πx) + x+ 1 for x ∈ Ω

(3.4a)

(3.4b)

(3.4c)

Note that we have the situation of our model PDE (2.4) with R(u) ≡ 0, ν = 0, η = 1, β = 2

and u0(x) = 5 sin(πx)+x+1, at which the compatibility condition is indeed fulfilled. Thus, we

can assemble our ODE system M d
dt
y(t) = −δDy(t)− bd and y(0) = [5 sin(πxi) + xi + 1]

0≤i≤n+1

with the values provided by Section 3.1 as follows.

∆x


1 0 0

0 M∗ 0

0 0 1





d
dt
y0(t)

d
dt
y1(t)
...

d
dt
yn(t)

d
dt
yn+1(t)


= − δ

∆x


0 0 0

0 D∗ 0

0 0 0





y0(t)

y1(t)
...

yn(t)

yn+1(t)


− δ

∆x



0

−1

0

−2

0


A visualization of the homogeneous heat equation (3.4) follows. The ODE system is solved

with the Matlab ODE solver ode15s for so-called stiff 6 differential equations that directly

give the possibility to handle the so-called mass matrix M.
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6Actually, a general definition of the term stiff is very difficult. Nonetheless, the impact of such a differential
equation can be explained, as it is inevitable to use implicit methods for solving, since explicit ones will not
function satisfactorily.
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Figure 3.1: Homogeneous Heat Equation with T = 0.2, n = 50 and δ = 1

3.2.2 Semilinear Convection Diffusion Reaction Equation

Let ν > 0, δ > 0 and λ ∈ R.

∂u

∂t
+ ν

∂u

∂x
= δ

∂2u

∂x2
− λu exp

(
−1

u

)
in Ω× (0, T )

u(0, t) = 2, u(1, t) = 1 + exp(−5) for t ∈ [0, T ]

u(x, 0) = exp(−5x) + 1 for x ∈ Ω

(3.5a)

(3.5b)

(3.5c)

This is a situation similar to our model PDE (2.4) with R(u(x, t)) = λu(x, t) exp
(
− 1
u(x,t)

)
,

η = 2, β = 1 + e−5 and u0(x) = exp(−5x) + 1 at which the compatibility condition is also

fulfilled. According to Section 3.1, we now want to approximate the nonlinearity in the same

manner with the notion of U∆(x, t) = ηψ0(x)+
∑n

j=1 yj(t)ψj(x)+βψn+1(x). The only difference

is that a nonlinear reaction term leads to a likewise nonlinear ODE system. But solving such a

system is the assignment of the chosen ODE integrator, which will not be discussed here. For

better lucidity, the denomination of the indepent variables (x, t) is suppressed from here on.∫
Ω

R(U∆)φi dx =λ

∫
Ω

U∆ exp

(
− 1

U∆

)
φi dx

=λ

∫
Ω

[
ηψ0 +

n∑
j=1

yj(t)ψj + βψn+1

]
exp

−[ηψ0 +
n∑
j=1

yj(t)ψj + βψn+1

]−1
φi dx

=λ

∫
Ω

(
n∑
j=1

yj(t)ψj

)
exp

−[ηψ0 +
n∑
j=1

yj(t)ψj + βψn+1

]−1
φi dx

+λ

∫
Ω

(ηψ0 + βψn+1) exp

−[ηψ0 +
n∑
j=1

yj(t)ψj + βψn+1

]−1
φi dx

=:λ
[
Ici + Ibi

]
, i = 1, . . . , n
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Now we want to consecutively analyze the two last terms in order to obtain a reasonable

expression that can be appended to the ODE system (3.3). Moreover, the expressions will be

carried out again with the inner product 〈·, ·〉
L 2(Ω)

and directly written in vector form.

br :=



0

Ib1

Ib2
...

Ibn−1

Ibn

0


=



0

〈ηψ0 exp
(
− [ηψ0 + y1(t)ψ1]−1) , φ1〉L 2

0
...

0

〈βψn+1 exp
(
− [yn(t)ψn + βψn+1]−1) , φn〉L 2

0


This computation used again that for hat functions, supp (ψi · φj) = ∅ ⇔ |i − j| ≥ 2. The

last step is to treat the remaining integrals Ici with the same fact about the small support of

products of hat functions, i.e. the vector cr := (Ici )1≤i≤n
needs to be computed. For the lucidity,

yi(t) will be abbreviated as simply yi.

cr =



0

〈(y1ψ1 + y2ψ2) exp
(
− [ηψ0 + y1ψ1 + y2ψ2]−1) , φ1〉L 2

〈(y1ψ1 + y2ψ2 + y3ψ3) exp
(
− [y1ψ1 + y2ψ2 + y3ψ3]−1) , φ2〉L 2

...

〈(yn−2ψn−2 + yn−1ψn−1 + ynψn) exp
(
− [yn−1ψn−2 + yn−1ψn−1 + ynψn]−1) , φn−1〉L 2

〈(yn−1ψn−1 + ynψn) exp
(
− [yn−1ψn−1 + ynψn + βψn+1]−1) , φn〉L 2

0


Actually, it is not possible to give a cohesive expression for all of the above values of integrals.

Hence, an implementation would need some numerical integration procedures to get the re-

quired values. With the introduced vectors and the grid points of the spatial discretization xi

described above, the problem (3.5) in ODE form would be written like:

M
d

dt
y(t) = − [νC + δD] y(t)−

[
νbc + δbd

]
− λ [br + cr]

y(0) = [exp (−5xi) + 1]
0≤i≤n+1

The following visualization of the PDE (3.5) is obtained with the Matlab integration routine

trapz and the time integration is managed by the Matlab ODE solver ode15s :
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Figure 3.2: Semilinear Convection Diffusion Reaction Equation with T = 0.2, n = 50, ν = 5,

δ = 1 and λ = 1

This concludes the introductory examples. The next chapter will follow the procedures intro-

duced with these two PDEs, only with a slightly different reaction term R.
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CHAPTER 4

Simulating Combustion

Chapter 4 is the main body of this thesis. All of the previous results serve to explain an

accurate way to obtain a numerical approximation for the following mathematical model. This

approximation will be explained circumstantially and afterwards, its meaningfulness will come

to light with the help of some visualizations.

4.1 Survey of the Modeling

The following simulation is predicated upon the chemical reaction

C +O2 → CO2

that depicts the combustion of carbon as a solid matter with the help of pure oxygen, resulting

in carbon dioxide as the reaction product. We shall use PDEs for the purpose of describing

this occurrence with mathematical methods. Actually, there is the need not only to have one

single PDE, but a whole system of PDEs that is to be solved simultaneously. Every part of

this system specifies a certain quantity7 that is part of both the law of conservation of mass

and conservation of energy:

• YO2 : Mass fraction of the oxygen, i.e. the percentage of oxygen in the gaseous mixture that

is only supposed to consist of oxygen and carbon dioxide. By virtue of this assumption,

the mass fraction of the carbon dioxide can be computed easily as YCO2 = 1 − YO2 and

there is no need for a PDE for this factor.

• ρG: Mass density of the gaseous mixture.

• ρF : Mass density of the fuel.

• TF : Temperature of the fuel.

The considered situation of the combustion is as follows: Assume that there is a reactor in

which the fuel is located on a grid. The oxygen is able to enter the reactor near the ground,

permeates the fuel in the form of carbon particles and reacts to carbon dioxide that leaves the

7For the completeness of the model, one can extract the particular units from the above-stated nomenclature.
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reactor near the top. Furthermore, we will assume that the emerging ash is capable of falling

through the grid to the bottom of the reactor. Note that only the gaseous phase moves with a

certain velocity whereas the fuel is assumed to remain motionless during the whole process. A

drawing8 of the considered reactor in Figure 4.1 is shown. In addition, the modeling only takes

into account a certain area of the reactor, namely the oxidation zone, which is emphasized

by a grey rectangle. Above this combustion zone, there are other phenomena which occur

like reduction, pyrolysis and a possible drying of the fuel which are not important within the

framework of this simulation.

Oxygen

Carbon 

Ash

Fuel Particles

O
x
id

a
ti
o
n
 Z

o
n

e

Dioxide 

Figure 4.1: Combustion reactor

The change of a quantity in the model shall be caused by convection, diffusion or reaction,

whereby each can be allocated to a particular term in our model PDE (2.4) as follows:

• The convective term is given by the first spatial derivative and its intensity can be

controlled by the factor ν.

• The diffusion can be traced back to the second spatial derivative and controlled by δ.

• R describes certain types of reactive behaviour.

Additionally, the temporal change is to be considered as well, which is implemented in the

model by the first time derivative. The complete system of equations that is to be solved will

8Of course, the sketch is two-dimensional in space, contrary to the assumption in Section 2.2.1 that the
considered PDEs are spatial univariate. In fact, such a reactor is considerably higher to such an extent that
the notion to work only in one spatial dimension is a coherent simplification.
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be posed in the following way: The spatial domain shall again be the open interval Ω = (0, 1).

Then the PDE (4.1) describes the change of the mass fraction of the oxygen. Thereby, ν > 0

denotes the constant velocity of the oxygen flowing in, Dg > 0 is the diffusion coefficient for

the gaseous phase, and the pre-exponential factor A, together with the exponential term of

the activation energy E, the universal gas constant R and the temperature of the fuel TF

constitutes the so-called Arrhenius term that describes the reaction itself. The boundary

conditions amount that at the bottom of the oxidation zone, there is just pure oxygen present,

whereas at the top, the oxygen has completely vanished and just pure carbon dioxide is left

over. Over and above an initial profile for the beginning of the simulation is given by (4.1c).

∂YO2

∂t
+ ν

∂YO2

∂x
= Dg

∂2YO2

∂x2
−
[

32

12
+ YO2

]
YO2A exp

(
− E

RTF

)
in Ω× (0, T )

YO2(0, t) = 1 =: η1, YO2(1, t) = 0 for t ∈ [0, T ]

YO2(x, 0) = exp2(−1.5x)− x20 exp2(−1.5) for x ∈ Ω

(4.1a)

(4.1b)

(4.1c)

The next equation (4.2) in the system is actually not a PDE, but rather a simple algebraic

relation deduced from the ideal gas law, and describes the mass density of the gaseous mixture

ρG via the already described YO2 , the ambient pressure p, the universal gas constant R and the

temperature of the gas TG, which is assumed to stay constant.

ρG(x, t) =
352p

103RTg [3YO2(x, t) + 8]
, (x, t) ∈ Ω× (0, T ) (4.2)

Furthermore, (4.3a)-(4.3c) deal with the density of the fuel and is not a classical PDE either,

since there is only one partial derivative. The reason is that we have assumed that the fuel

does not move at all and thus has no convective term, and, in addition, that diffusion of mass

cannot happen within a solid phase. Hence the temporal and reactive changes are left. In

order to include the accruement of ash, ρF is not allowed to reach the limit 0, or even to

become negative, but the reaction is assumed to stop for locations with ρF < 10, i.e. the

pre-exponential factor A is going to be zero for such a situation for every PDE involved.

∂ρF
∂t

(x, t) = −ρG(x, t)YO2(x, t)A exp

(
− E

RTF (x, t)

)
in Ω× (0, T )

ρF (0, t) = 10, ρF (1, t) = 100 for t ∈ [0, T ]

ρF (x, 0) = 100
√
x+ 10(1− x) for x ∈ Ω

(4.3a)

(4.3b)

(4.3c)

Lastly, we want to consider the change of temperature of the fuel TF in the form of the PDE

(4.4) depending on time, diffusion, reaction and heat transfer between gas and fuel. Again,
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there is no convective term, due to the fact that the fuel is supposed to be static. Furthermore,

Cp
s denotes the specific heat capacity of the solid phase for constant pressure, Ds is the diffusion

coefficient for the solid phase, SV delineates the specific surface area of a fuel particle, α is the

heat transfer coefficient, LCV specifies the lower calorific value of the fuel and f is a measure

of the residual energy fraction in the fuel.

∂TF
∂t

(x, t) = Ds
∂2TF
∂x2

(x, t) +
SV α

ρFC
p
s

[TG − TF (x, t)]

+ f
ρGYO2

ρFC
p
s
A exp

(
− E

RTF (x, t)

)
LCV in Ω× (0, T )

TF (0, t) = 500 =: η3, TF (1, t) = 1500 =: β3 for t ∈ [0, T ]

TF (x, 0) = 500 for x ∈ Ω

(4.4a)

(4.4b)

(4.4c)

(4.4d)

Next, this system of equations shall be solved with the procedure introduced above.

4.2 Method of Lines for the Combustion Model

The whole discretization will use the hat functions introduced in Section 3.1 as a basis, to-

gether with Ω = (0, 1) as the spatial domain of interest. This section contains the numerical

approximation and consequently delivers the main results of the thesis.

4.2.1 Mass Fraction of Oxygen

The objective here is to apply the MOL to equation (4.1). Since this equation has the form of

the model PDE (2.4), only the treatment of the reaction termR(YO2) =
[

32
12

+ YO2

]
YO2A exp

(
− E
RTF

)
has to be carried out, similarly to Section 3.2.2. For better clarity, let λi := A exp

(
− E
RTF,i

)
.

∫
Ω

R(YO2∆
)φi dx =

32

12
λi

∫
Ω

YO2∆
φi dx+ λi

∫
Ω

Y 2
O2∆

φi dx

=
32

12
λi

∫
Ω

[
η1ψ0 +

n∑
j=1

yjψj

]
φi dx+ λi

∫
Ω

[
η1ψ0 +

n∑
j=1

yjψj

]2

φi dx

=
32

12
λi

∫
Ω

η1ψ0φi dx+ λi

∫
Ω

η2
1ψ

2
0φi dx+ 2λi

∫
Ω

η1ψ0

n∑
j=1

yjψjφi dx

+
32

12
λi

n∑
j=1

yj

∫
Ω

ψjφi dx+ λi

∫
Ω

(
n∑
j=1

yjψj

)2

φi dx

:= λi

[
32

12
Jai + J bi + 2J ci

]
+

32

12
λiJ

d
i + λiJ

e
i , i = 1, . . . , n
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The next step is to take a closer look at the vectors (Ja,b,ci )1≤i≤n and rearrange them such that

they can be added to the ODE system (3.3) as easily as possible. The main support during

this endeavor will be the fact already used supp (ψi · φj) = ∅ ⇔ |i − j| ≥ 2, which holds true

for hat functions.

ar :=



0

Ja1

Ja2
...

Jan

0


=



0

η1〈ψ0, φ1〉L 2

η1〈ψ0, φ2〉L 2

...

η1〈ψ0, φn〉L 2

0


=



0

η1
∆x
6

0
...

0

0


=

∆x

6



0

η1

0
...

0

0



br :=



0

J b1

J b2
...

J bn

0


=



0

η2
1〈ψ2

0, φ1〉L 2

η2
1〈ψ2

0, φ2〉L 2

...

η2
1〈ψ2

0, φn〉L 2

0


=



0

η2
1

∆x
12

0
...

0

0


=

∆x

12



0

η2
1

0
...

0

0



cr :=



0

J c1

J c2
...

J cn

0


=



0

η1〈ψ0

(∑n
j=1 yj(t)ψj

)
, φ1〉L 2

η1〈ψ0

(∑n
j=1 yj(t)ψj

)
, φ2〉L 2

...

η1〈ψ0

(∑n
j=1 yj(t)ψj

)
, φn〉L 2

0


=



0

η1y1(t)〈ψ0ψ1, φ1〉L 2

0
...

0

0


=

∆x

12



0

η1y1(t)

0
...

0

0


Note that the calculation of br and cr used the following values of the inner product:

rij := 〈ψ2
j , φi〉L 2(Ω)

=

∫ 1

0

ψ2
j (x)φi(x) dx⇒ R∗ := (rij)1≤i,j≤n = ∆x tridiag

(
1

12
,
1

2
,

1

12

)
The vector (Jdi )1≤i≤n can be expressed persuasively in terms of a matrix-vector notation with

the same matrix M∗ as in Section 3.1 as(
n∑
j=1

yj(t)

∫
Ω

ψjφi dx

)
1≤i≤n

= M∗y∗(t),

with the vector y∗(t) := (yi(t))1≤i≤n. In order to give a cohesive expression for the ODE system,
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define the following matrix:

M :=


0 0 0

0 M∗ 0

0 0 0


And, finally, examine the last vector with entries Jei . In this case, this is the most complicated

one and that is the reason for primarily looking at the shape of one particular entry.

∫
Ω

(
n∑
j=1

yjψj

)2

φi dx =

∫
Ω

(yi−1ψi−1 + yiψi + yi+1ψi+1)2 φi dx

= y2
i−1〈ψ2

i−1, φi〉L 2 + y2
i 〈ψ2

i , φi〉L 2 + y2
i+1〈ψ2

i+1, φi〉L 2

+ 2yi−1yi〈ψi−1ψi, φi〉L 2 + 2yi−1yi+1〈ψi−1ψi+1, φi〉L 2 + 2yiyi+1〈ψiψi+1, φi〉L 2

=
∆x

12

[
(yi−1 + yi)

2 + 4y2
i + (yi+1 + yi)

2
]

With this calculation, we can assemble the last necessary vector that embodies the nonlinear

character of the emerging system:

er :=



0

Je1

Je2
...

Jen−1

Jen

0


=

∆x

12



0

(η1 + y1)2 + 4y2
1 + (y2 + y1)2

(y1 + y2)2 + 4y2
2 + (y3 + y2)2

...

(yn−2 + yn−1)2 + 4y2
n−1 + (yn + yn−1)2

(yn−1 + yn)2 + 4y2
n + (0 + yn)2

0


Altogether, with λ := [λi]

0≤i≤n+1
, the ODE system that emerges from PDE (4.1) and describes

the mass fraction of the oxygen during the combustion is the following:

M
d

dt
y(t) = − [νC +DgD] y(t)−

[
νbc +Dgb

d
]

− λ ·
[

32

12
ar + br + 2cr

]
− 32

12
λ ·My(t)− λ · er

y(0) =
[
exp2(−1.5xi)− x20

i exp2(−1.5)
]

0≤i≤n+1

(4.5a)

(4.5b)

(4.5c)

Note that for vectors a, b ∈ Rn+2 in this case the operation a · b describes element-wise multi-

plication.
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4.2.2 Density of Gas and Fuel

Beginning with equation (4.2), there is not much to say, since this is just an algebraic relation

in dependence of YO2 . Hence, we do not have to discretize anything and are able to simply

obtain this quantity by inserting the mass fraction of oxygen. On the contrary, the MOL has

to be carried out for PDE (4.3), as previously explained. In this case, we want to understand

the complete right hand side of (4.3a) as the reaction term, i.e. R(ρF ) = ρGYO2A exp
(
− E
RTF

)
.

Note that, with this advance, the reaction term does not depend on ρF . In order to shorten

notation, define again λi := A exp
(
− E
RTF,i

)
. Now, the discretization is the following:∫

Ω

R(ρF∆
)φi dx =

∫
Ω

ρG,iYO2,iλiφi dx = ρG,iYO2,iλi

∫
Ω

φi dx, i = 1, . . . , n

We therefore get
∫

Ω
φi dx = ∆x for all i = 1, · · · , n, and hence the complete discretized right

hand side, supplemented with zero for the boundary points, can be constructed as

f r(t) :=



0

ρG,1(t)YO2,1(t)λ1(t)∆x
...

ρG,n(t)YO2,n(t)λn(t)∆x

0


and with that, the whole ODE system reads as follows:

M
d

dt
y(t) = −f r

y(0) = [100
√
xi + 10(1− xi)]

0≤i≤n+1

(4.6a)

(4.6b)

At this juncture, we have to pay attention to the fact that the modeling wants to stop the

reaction locally wherever ρF < 10. Assuming that, for an arbitrary instant of time t0 ∈ [0, T ]

and an inner spatial point xk with k ∈ {1, · · · , n}, ρF (xk, t0) < 10 holds true for the first time,

then the demand for the pre-exponential factor is A = 0 and hence for the change in the density

of the fuel, it shall hold d
dt
yk(t) = 0 wherever t > t0. In order to give a note on programming

this subtlety, the shape of the mass matrix M is inconvenient. Actually, a diagonal matrix

would be very helpful for this purpose since in this case, it would be reasonable to simply set

f rk (t) = 0 for t ∈ (t0, T ] and directly obtain the requested yield. Fortunately, with our made

choices of ansatz and test functions, the mass matrix M is regular, i.e. M−1 exists9 and hence

9Additionally to simply use the inverse mass matrix, there is the possibility to use so-called mass lumping
that transforms M into a diagonal matrix by defining the ith diagonal element as the sum of the ith row
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we can equivalently consider the problem

Idn+2
d

dt
y(t) = −M−1f r

y(0) = [100
√
xi + 10(1− xi)]

0≤i≤n+1
,

whereas Idn+2 delineates the (n+2)-dimensional identity matrix.

4.2.3 Temperature of Fuel

The aim in this section is to conduct the MOL for the PDE (4.4). Ultimately, we are facing a

situation similar to the model PDE (2.4) with ν = 0, δ = Ds and a slightly lenghty reaction

term −R(TF ) = SV α
ρFC

p
s

[TG − TF (x, t)] +
ρGYO2

ρFC
p
s
A exp

(
− E
RTF (x,t)

)
LCV · f by multiplying by −1.

Again, the next step is to use the now well-known approximation procedure and to handle this

reaction term. To contrive that, use the abbreviations ϑi := SV α
ρF,iC

p
s
and ξi :=

ρG,iYO2,i

ρF,iC
p
s
A ·LCV ·f .

−
∫

Ω

R(TF∆
)φi dx = ϑi

∫
Ω

TGφi dx− ϑi
∫

Ω

TF∆
φi dx+ ξi

∫
Ω

exp

(
− E

RTF∆

)
φi dx

= ϑiTG

∫
Ω

φi dx− ϑi
∫

Ω

[
η3ψ0 +

n∑
j=1

yjψj + β3ψn+1

]
φi dx

+ ξi

∫
Ω

exp

−E
R

[
η3ψ0 +

n∑
j=1

yj(t)ψj + β3ψn+1

]−1
φi dx

= ϑiTG

∫
Ω

φi dx− ϑi
∫

Ω

[η3ψ0 + β3ψn+1]φi dx− ϑi

(
n∑
j=1

yj

)∫
Ω

ψjφi dx

+ ξi

∫
Ω

exp

−E
R

[
η3ψ0 +

n∑
j=1

yj(t)ψj + β3ψn+1

]−1
φi dx

=: ϑiK
g
i − ϑiKh

i − ϑiK l
i + ξiK

m
i , i = 1, . . . , n

For better lucidity, let us analyze the above terms step by step.

gr(t) :=



0

Kg
1

...

Kg
n

0


= TG



0

∆x
...

∆x

0


, lr(t) :=



0

K l
1

...

K l
n

0


= My(t)

and set the remaining elements to zero. This procedure is, for example, described in [GR07, pp.327-330].
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hr(t) :=



0

Kh
1

...

Kh
n

0


=



0

〈η3ψ0 + β3ψn+1, φ1〉L 2

...

〈η3ψ0 + β3ψn+1, φn〉L 2

0


=



0

η3〈ψ0, φ1〉L 2

0

β3〈ψn+1, φn〉L 2

0


=

∆x

6



0

η3

0

β3

0


Note that the last computation again used supp (ψi · φj) = ∅ ⇔ |i− j| ≥ 2 to get the various

zero elements. For the last term, cf. Section 3.2.2 because the vector Cr is very similiar to the

following. Hence, we just have to adjust the previous case to the present one.

mr :=



0

Km
1

Km
2

...

Km
n−1

Km
n

0


=



0

〈exp
(
−E
R

[η3ψ0 + y1ψ1 + y2ψ2]−1) , φ1〉L 2

〈exp
(
−E
R

[y1ψ1 + y2ψ2 + y3ψ3]−1) , φ2〉L 2

...

〈exp
(
−E
R

[yn−1ψn−2 + yn−1ψn−1 + ynψn]−1) , φn−1〉L 2

〈exp
(
−E
R

[yn−1ψn−1 + ynψn + β3ψn+1]−1) , φn〉L 2

0


Actually, like in the case of the convection diffusion reaction equation, it is not convenient

to obtain a more compact expression for mr analytically, but rather, a numerical integration

for the occuring integrals is suggestive. Adding these vectors to the ODE-system with ϑ :=

[ϑi]
0≤i≤n+1

, ξ := [ξi]
0≤i≤n+1

and again element-wise multiplication, the problem (4.4) reads as

follows:

M
d

dt
y(t) = −DsDy(t)−Dsb

d + ϑ · [gr − hr − lr] + ξ ·mr

y(0) = [500]
0≤i≤n+1

(4.7a)

(4.7b)

4.2.4 Outcome and Visualization

All in all, the ODE systems (4.5), (4.6) and (4.7) have to be solved simultaneously. Actually,

it is slightly unpleasant to mark down the whole system and hence the abbreviations RHSYO2 ,

RHSρF and RHSTF shall be utilized for the vectors on the right hand side of the particular

initial value problems. So the complete system that represents the MOL for the model equations
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considered reads as follows:


M 0 0

0 M 0

0 0 M





d
dt
YO2,0(t)

...
d
dt
YO2,n+1(t)

d
dt
ρF,0(t)
...

d
dt
ρF,n+1(t)

d
dt
TF,0(t)
...

d
dt
TF,n+1(t)



=



RHSYO2,0(t)
...

RHSYO2,n+1(t)

RHSρF,0(t)
...

RHSρF,n+1(t)

RHSTF,0(t)
...

RHSTF,n+1(t)



(4.8)

Finally, a solution for this combustion model shall be presented with the following exemplary

parameters: ν = 1.5, Dg = 1, A = 10, E = 7 · 103, R = 8.315, p = 105, Cp
s = 1400, Ds = 0.005,

SV = 100,α = 10, f = 0.3 and LCV = 32 · 106. Exactly as in Section 3.2, the programming

took place in Matlab and used trapz for the numerical integration of the functions of hat

functions and ODE15s for solving the ODE system (4.8).
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Figure 4.1: Mass Fraction of Oxygen with T = 50 and n = 50.

Note that the angle of view is different in each figure due to the relative best manner of observing

the development. In the following, the results of the implementation will be discussed briefly.

The mass fraction of the oxygen depicted in Figure (4.1) shows the meaningful decreasing

behavior that is to be expected. One can see that the combustion requires oxygen in order to

incinerate the carbon and, after terminating this procedure, YO2 tends to a steady state that

averages between the stipulated conditions at the boudaries of Ω. Moreover, the density of the
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gaseous mixture described by equation (4.2) shows exactly the opposite way around in Figure

4.2. This demeanor is caused by the fact that ρG is computed with YO2 in the denominator.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
5

10
15

20
25

30
35

40
45

50

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

time t

space x

d
e

n
s
it
y
 g

a
s

Figure 4.2: Density of the Gaseous Mixture with T = 50 and n = 50.

Figure 4.3 reveals the characteristics of the density of the fuel during the reaction. The density

ρF abates slowly until the default value of (in this case) 10 kg
m3 is attained and the fuel is

entirely combusted. Regarding this, one can see where the so-called reaction front, i.e. the

precise location of the combustion, is located both in time and space.
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Figure 4.3: Density of the Fuel with T = 50 and n = 50.

The last quantity TF is visualized in Figure 4.4 and shows the expedient growth of tempera-

ture. Furthermore, the leverage of the second spatial derivative is quite apparent, since, in an

environment of the maximum temperature, the diffusion causes a dispersion of the tempera-

ture in all directions. Note that TF declines gradually after attaining the ellipsoidal center of
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combustion. In addition, the rise of temperature does not reach the upper boundary of Ω, as

the timeframe regarded is not large enough.
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Figure 4.4: Temperature of the Fuel with T = 50 and n = 50.

Finally, Figure 4.5 is a high-angle shot of all quantities that especially emphasizes the location

of the reaction front and admits a different view than previous illustrations.
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Figure 4.5: Plan View on all Quantities.
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CHAPTER 5

Summary and Future Prospects

This thesis characterized a potentiality to solve parabolic partial differential equations nu-

merically by means of a finite element approach that converts the underlying equation into

a semidiscrete one that can be solved by various methods for ordinary differential equations.

Emphasis was placed on the treatment of occuring nonlinear source and sink terms that lead

to nonlinear discretized equations and frequently required the employment of numerical inte-

gration procedures. The introduced model of combustion was solved, implemented in Matlab

and visualized using the previously obtained theoretical and numerical techniques.

A possibility to perpetuate this thesis would be to discuss the time discretization in more

detail, i.e. for example, to describe Euler methods, Runge-Kutte methods, Adams-Moulton

methods or backward differentiation formulas, which demand a great deal of attention because

the Galerkin procedure yields systems of initial value problems that are usually stiff, requiring

peculiar considerations in order to avoid disproportionate step sizes while preserving stability.

It is certainly not coercive to use single-step or linear multistep methods exclusively. The so-

called Discontinuous Galerkin method is a popular way to discretize the semidiscrete problem

in time and is based upon a classical Galerkin approach with the arbitrative difference that

the test function space used consists of piecewise discontinuous functions. Considering the

Galerkin procedure, it is also feasible to use other functions than piecewise linear ones for the

ansatz spaces in the spatial discretization. For example, piecewise quadratic functions, or in

order to obtain even continuous differentiable basis functions, Hermite polynomials would als

be reasonable. To give the last possible enhancement, so-called nonconforming finite element

methods can also be advantageous. This modification alters the space V∆, in which a solution

for the semidiscrete variational formulation is sought. Whereas the conforming methods ex-

plained in this thesis seek for a solution in a finite dimensional space that is contained in the

space V belonging to the original variational formulation, noncomforming methods result from

the situation V∆ * V .
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