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Introduction

Motivation
Let us consider the unsteady incompressible Navier-Stokes equations [BF13; Joh16; Lay08]

∂tu− ν∆u + u · ∇u +∇p = f
∇ · u = 0

(0.1)

in some bounded domain Ω, with Dirichlet boundary conditions u = uD on ∂Ω and an ap-
propriate initial condition u(0) = u0, to model an incompressible Newtonian fluid. Here,
u represents the velocity field, p the pressure, f an external body force and ν = const the
kinematic viscosity of the fluid under consideration.
We aim to solve (0.1) numerically. From a mathematical aspect, this is an important problem

since it is usually "not possible to find an analytical solution to the Navier-Stokes equations"
[Joh16]. From a more practical point of view, solving (0.1) numerically is relevant since "wind
tunnel tests are very expensive and the conclusions are often uncertain" [Lay08]. One approach
to solve the Navier-Stokes equations numerically is the finite element method (FEM), e.g. see
[BBF13; DE11; GR86; Joh16]. We will focus focus on inf-sup stable FEM. However, classical
inf-sup stable FE for instance the class of Taylor-Hood elements present problems such as poor
conservation of mass [SL17b] and a lack of pressure robustness [JLM+17].
Pressure robust methods fulfil the fundamental invariance principle that changes in the body

force by a gradient field, i.e. f 7→ f + ∇ψ, only affect the pressure and not the velocity, i.e.
(u, p) 7→ (u, p+ ψ) [JLM+17; SLL+18]. Finite element methods which lack this property lead
to error estimates which depend on the pressure estimate multiplied with negative powers of ν
[JLM+17; BBF13]. As a result the velocity can be corrupted by poor pressure approximations.

A class of finite elements which are naturally pressure robust are pointwise divergence-
free FEM [JLM+17; SLL+18]. These methods give numerical solutions which are pointwise
divergence free while using standard, non-divergence free ansatz functions. In the context of
H1-conforming methods, the Scott-Vogelius finite element pair PPPk/Pk−1

disc , with some restrictions
on the mesh and k [Qua93; Zha04], is an example of such a method. However, in order to
have a notion of the divergence, it is not necessary to consider H1-conforming spaces where
we have a notion of the full gradient. In the discontinuous Galerkin (dG) setting, [CKS05]
introduced a method where a pointwise divergence free solution is reconstructed in H(div; Ω).
Furthermore, a number of H(div)-conforming FEM are also pointwise divergence-free, such as
Brezzi-Douglas-Marini and Raviart-Thomas elements with the correct choice of discontinuous
pressure space [CKS06; SLL+18]. In order to take advantages of such spatial discretisation,
we will use such methods in this thesis for the spatial semi-discretisation of the Navier-Stokes
equations.
Spatial discretisation of (0.1) using finite elements leads to differential-algebraic (DAE)

system which is non linear in time with a saddle point structure resulting from the velocity-
pressure coupling term. To get a discrete solution of the Navier-Stokes equations, we therefore

1
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require some time-stepping scheme to solve this DAE. Fully explicit schemes have two major
drawbacks. On the one hand, the viscous term is very stiff and therefore stability is only
achieved if the chosen time step is very small [HW96; Joh16]. This term should therefore
be treated with an implicit scheme. On the other hand, the velocity-pressure coupling term
enforces the divergence constraint on the velocity and must therefore also be included in the
implicit scheme. However, fully implicit schemes also present some problems. The resulting
non-linear system would have to be linearised, e.g. using Newton’s method. Here we would have
to solve a different, non-symmetric, indefinite system in each step which is computationally
expensive [Leh10].
In order to retain the divergence-free nature of our spatial discretisation and avoiding the

time step restriction from the viscous term while circumventing the need to solve a non-linear
system in each time step, we consider semi-implicit methods. These allow us to treat the Stokes
part (viscous and pressure terms) implicitly and the non-linear convective part explicitly.
Semi-implicit schemes which treat the viscous term implicitly and the convective term ex-

plicitly have been used for a long time [KM85; KIO91]. Later implicit-explicit (IMEX) mul-
tistep schemes were considered in a general ordinary differential equation (ODE) framework
by [ARW95] and IMEX Runge-Kutta methods were presented in [ARS97]. Using such IMEX
schemes then leads to schemes where the same symmetric system has to be solved in each step
with a different right-hand side, which can be implemented efficiently. The price we have to
pay for these advantages is a time step restriction, resulting from the explicit treatment of
the convective term. However, this restriction is typically less severe than that imposed by an
explicitly treated viscous term [Leh10].
IMEX methods have successfully been used in combination with exactly divergence-free

FEM, e.g. in [LS16; SJL+18; SLL+18]. In [LS16], a second order IMEX Runge-Kutta method
was used while in [SJL+18; SLL+18] an IMEX multistep scheme was used which applies the
BDF2 formula to discretise the time-derivative, treats the Stokes part implicitly and splits the
convective term to the right-hand side using a second order extrapolation.
Due to our choice of spatial discretisation it is particularly important to us that the IMEX

scheme does not destroy the favourable features of the chosen finite element space. However,
the methods presented in this thesis are not restricted to our choice of finite element method.
They are just as applicable to other discretisation, for example the weakly divergence-free
methods such as the Taylor-Hood finite element pair.

The main contribution of this thesis is to derive, collect and analyse IMEX multistep and
IMEX Runge-Kutta methods available in the literature which we consider to be suitable to the
application of the incompressible Navier-Stokes equations. In particular we asses the schemes
with respect to their relative performance in practice.

Outline
This thesis begins in Chapter 1 with the strong formulation of the Navier-Stokes equations
in the continuous setting and states relevant functional analytic notation and results. Having
introduced the necessary tools we then establish the weak formulation of the Navier-Stokes
equations and discuss the solvability thereof.
In Chapter 2 we consider the spatial discretisation of the weak formulation of the Navier-

Stokes equations in a H(div)-conforming discontinuous Galerkin setting. To achieve this we
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introduce some notation from discontinuous Galerkin FEM and derive appropriate weak multi-
linear forms following [DE11], such as the Symmetric Interior Penalty method for the Laplace
problem, in order to discretise the Navier-Stokes equations. The existence and uniqueness of
solutions to the semi-discrete problem is then proved and we finish the chapter by introducing
H(div)-conforming finite element spaces which lead to pointwise divergence free methods.
With Chapter 3 we begin the temporal discretisation of the DAE resulting from the spatial

semi-discretisation discussed before. Following [ARW95], we derive implicit-explicit multistep
methods up to order formal 3, i.e. multistep methods which treat the Stokes part implicitly and
the non-linear convection part explicitly. The derived schemes are then analysed via a scalar
test problem as in [FHV97], and we extend the analysis to the third order method considered
here.
As another class of IMEX schemes, we consider IMEX Runge-Kutta schemes in Chapter

4 which were first introduced in [ARS97]. Here the Stokes part is treated with a diagonally
implicit Runge-Kutta method while the convection term is treated using a compatible explicit
Runge-Kutta method. We give an overview of IMEX Runge-Kutta methods available in the
literature which are suitable for the discretisation of the Navier-Stokes equations.
Chapter 5 addresses the practical issues connected with IMEX methods. We discuss the

time step restriction resulting from the explicit treatment of the convective term and prove
a CFL condition for a scalar transport problem as a test problem for the convective part of
the Navier-Stokes equations. We then implement the methods discussed and derived in the
earlier chapters with the open source finite element package NGSolve using high-order H(div)-
conforming finite elements. We consider a variety of problems in both two and three spatial
dimensions in order to evaluate how the different IMEX schemes perform in practice with
respect to accuracy and computational efficiency. The aim is to identify schemes which are
best suited to a given situation.
The results of this thesis are the summarised in Chapter 6, and remaining open problems

are discussed. The appendix then covers some implementational details.





1. Preliminaries

In this chapter we will cover the preliminaries for this thesis. We begin by introducing the
incompressible Navier-Stokes equations as the model of the movement of an incompressible
fluid. We will then cover some basic functional analytic notation and results so that we can
bring the Navier-Stokes equations into a weak formulation and finally discuss the solvability
thereof.

1.1. The Navier-Stokes Equations
The movement of an incompressible fluid is governed by the time-dependent incompressible
Navier-Stokes equations [BF13; Joh16; BIL06] given by

∂tu− ν∆u + (u · ∇)u +∇p = f in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω,

u = 0 on (0, T ]× ∂Ω,
u(0, ·) = u0 in Ω.

(1.1)

The domain Ω ⊂ Rd with d ∈ {2, 3} is bounded and connected with Lipschitz continuous
boundary ∂Ω which does not depend on time. The function u : (0, T ] × Ω → Rd represent
the velocity field and p : (0, T ] × Ω → R the (zero-mean) kinematic pressure of an incom-
pressible Newtonian fluid moving under the external kinematic body force f : (0, T ]×Ω→ Rd

with a suitable initial condition u0 for the velocity. The constant scalar ν = µ/ρ0 is the kin-
ematic viscosity, with µ the dynamic viscosity and ρ0 the (constant) density of the fluid under
consideration.
The first equation in (1.1) represents the balance of momentum, while the second equation

enforces the conservation of mass. For ease of presentation, homogeneous Dirichlet boundary
conditions have been assumed.
To compare flows on domains of different sizes, we consider the rescaling of the variables in

the Navier-Stokes equations into dimensionless variables given by

x∗ := x/L,
u∗ := u/V,
t∗ := V t/L,

p∗ := [p− p0]/ρ0V
2,

f∗ := fL/ρ0V
2,

where L is a reference length, V a reference velocity, p0 a reference pressure and ρ0 a reference
density. Note that with an abuse of notation, here f and p represent the non-kinematic body
forces and pressure respectively. Using the chain rule, the momentum balance equation in the

5



6 1. Preliminaries

dimensionless variables becomes

∂t∗u∗ −
(

µ

ρ0V L

)
∆∗u∗ + (u∗ · ∇∗)u∗ +∇∗p∗ = f∗.

The dimensionless parameter Re := ρ0V L
µ = V L

ν is called the Reynolds number. Flows in similar
geometries, i.e, if Ω∗ = Ω/L, are then called dynamically similar if the Reynolds numbers for
the two flows coincide. See [Lay08, Section 5.4] and [Joh16, Section 2.3] for further details.

1.2. Function Spaces
Lebesgue Spaces. Let Ω ⊂ Rd for d ∈ {2, 3} be a bounded, connected and Lipschitz continu-
ous domain. For scalar valued functions and 1 ≤ p ≤ ∞ the standard Lebesgue space [DE11;
Eva98] is

Lp(Ω) = {f : Ω→ R | f is measurable and ‖f‖Lp(Ω) <∞}

where the norm is defined by

‖v‖Lp(Ω) :=


(∫

Ω|f |
p dx

)1/p
for 1 ≤ p <∞,

ess supx∈Ω|f | for p =∞.

We further denote the subspace

Lp0(Ω) := {v ∈ Lp(Ω) |
∫

Ω
v dx = 0}

of zero-mean Lp functions. Similarly, we define on the boundary of the domain Ω the space

Lp(∂Ω) = {f : ∂Ω→ R | f is measurable and ‖f‖Lp(∂Ω) <∞}

with the norm

‖v‖Lp(∂Ω) :=


(∫
∂Ω|f |

p ds
)1/p

for 1 ≤ p <∞,
ess supx∈∂Ω|f | for p =∞.

Sobolev Spaces. The standard Sobolev spaces [DE11; Eva98] are then defined for k ∈ N0
and 1 ≤ p ≤ ∞ as

Wk,p(Ω) := {v ∈ Lp(Ω) | Dαv ∈ Lp(Ω) ∀|α| ≤ k}

where the derivatives Dαv exist in the weak sense. Equipped with the norm

‖v‖Wk,p(Ω) :=


(∑
|α|≤k‖v‖

p
Lp(Ω)

)1/p
for 1 ≤ p <∞,∑

|α|≤k‖v‖L∞(Ω) for p =∞,

the Sobolev space Wk,p(Ω) is a Banach space. We will also consider the semi-norm

|v|Wk,p(Ω) :=


(∑
|α|=k‖v‖

p
Lp(Ω)

)1/p
for 1 ≤ p <∞,∑

|α|=k‖v‖L∞(Ω) for p =∞.
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The dual space of Wk,p(Ω) is then denoted by W−k,p(Ω). In the case of p = 2 we will use the
usual notation of Hk(Ω) =Wk,2(Ω). This space equipped with the inner-product

(v, w)Hk(Ω) :=
∑
|α|≤k

(Dαv,Dαw)L2(Ω)

is a Hilbert space.
Furthermore, we define the so called Sobolev space with fractional exponent [EG04] for a

general non-integer exponent 0 < s < 1 and 1 ≤ p <∞ by

Ws,p(Ω) :=
{
v ∈ Lp(Ω) | v(x)− v(y)

‖x− y‖s+d/p
∈ Lp(Ω× Ω)

}
.

For non-integer s > 1, we set σ = s− bsc and define Ws,p(Ω) by

Ws,p(Ω) := {v ∈ Wbsc,p(Ω) | Dαv ∈ Wσ,p(Ω), ∀α, |α| = bsc}.

As in the integer case for p = 2, we use the notation Hs(Ω) =Ws,2(Ω).
Using weak derivatives, we define differential equations in a distributional sense only. In

order to make sense of boundary conditions, we need the notion of traces.

Theorem 1.1 (Trace Theorem for Hs). For r > 1/2 and s > 3/2 there exist surjective trace
operators γ0 : Hr(Ω) → Hr−1/2(∂Ω) and γ1 : Hs(Ω) → Hs−3/2(∂Ω) that are extensions of
the boundary values and boundary normal derivatives respectively. Provided that u ∈ C1(Ω) it
holds that

γ0u = u|∂Ω, γ1u = ∇u · n|∂Ω.

Proof. See [Riv08, Section 2.1.3].

Now the space H1
0(Ω) denotes the closure of C∞0 (Ω) in H1(Ω). This is the space of H1-

functions whose trace vanishes on the boundary ∂Ω.

Theorem 1.2. The space C∞0 (Ω) is dense in Wk,p(Ω) with 1 ≤ p <∞.

Proof. See [BF13, Theorem III.2.11].

Theorem 1.3 (Generalised Poincaré inequality). Let Γ ⊂ ∂Ω have non-vanishing (d−1)-
dimensional measure. Then for 1 ≤ p < ∞, there exists c > 0 such that for all u ∈ {v ∈
W1,p(Ω) : γ0v = 0} it holds that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

Proof. See [BF13, Proposition III.2.38].

Corollary 1.4. The norm ‖·‖H1 and the semi norm | · |H1 are equivalent on H1
0(Ω), i.e.

‖∇(·)‖L2(Ω) is a norm on H1
0(Ω).

Remark 1.5. We will denote vector-valued spaces by bold-face letters, i.e.

L2(Ω) =
[
L2(Ω)

]d
, Hk(Ω) =

[
Hk(Ω)

]d
, . . .

In the notation of vector- and scalar-valued norms or inner-products we will not distinguish
between the two cases. However, the argument of the norm or inner-product will always make
it clear which is meant.
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Since we will be working with H(div)-conforming FEM we also need the space

H(div; Ω) := {v ∈ L2(Ω) | ∇ · v ∈ L2(Ω)}.

Together with the inner-product

(v,w)H(div;Ω) := (v,w)L2(Ω) + (∇ · v,∇ ·w)L2(Ω)

this is also a Hilbert space, c.f. [Joh16].

Theorem 1.6. The space C∞0 (Ω) is dense in H(div; Ω).

Proof. See [BF13, Section IV.3.2].

For boundary conditions on the normal component in H(div) spaces, we again require the
notion of traces.

Theorem 1.7 (Trace Theorem for Hdiv). There exists a continuous trace operator γn :
H(div; Ω)→ H−1/2(∂Ω) such that

γnu = u · n|∂Ω

holds for all u ∈ C∞0 (Ω), where n denotes the outward-pointing unit normal vector on ∂Ω.
Furthermore, we have the Stokes formula∫

Ω
u · ∇w dx +

∫
Ω
w∇ · u dx = 〈γnu, γ0w〉H−1/2,H1/2

for all u ∈H(div; Ω) and w ∈ H1(Ω).

Proof. See [BF13, Section IV.3.2] or [EG04, Corollary B.57].

Furthermore, we require spaces of divergence-free functions. We define

C∞,div
0 (Ω) := {v ∈ C∞0 (Ω) | div v = 0}.

With V = H1
0(Ω) we define the space

Vdiv := {v ∈ V | ∇ · v = 0}.

and similarly, we define

Hdiv := {v ∈H(div; Ω) | ∇ · v = 0,v · n|∂Ω = 0}.

Bochner Spaces. Since we are considering the time-dependent Navier-Stokes equations, we
additionally require the concept of Bochner spaces.

Definition 1.8. Let X be a Banach space with norm ‖·‖. The space

Lp(0, T ;X )

is the set of all measurable functions v : [0, T ]→ X such that

‖v‖Lp(0,T ;X ) :=


(∫ T

0
∥∥v(t)

∥∥p dt
)1/p

<∞ for 1 ≤ p <∞,
ess supt∈[0,T ]

∥∥v(t)
∥∥ <∞ for p =∞.

These are the functions which are in Lp in time and take values in the space X . This space
with the above norm is again a Banach space, c.f. [BF13, Proposition II.5.2].
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1.3. The Ladyzhenskaya-Babuska-Brezzi Condition
Following [GR86; Riv08], let us consider following abstract setting: Let X and Q be Hilbert
spaces with norms ‖·‖X and ‖·‖Q respectively. Denote by X ′ and Q′ the dual spaces of X and
Q respectively. Then consider a continuous bilinear form b(·, ·) : X × Q → R and define the
operator

B : X → Q′

and its dual operator
B′ : Q→ X ′

by
Bv(q) = B′q(v) = b(v, q).

We then define the kernel of B:

V = ker(B) = {v ∈ X | b(v, q) = 0 ∀q ∈ Q}

as well as its orthogonal set

V ⊥ = {w ∈ X | (v, w)X = 0 ∀v ∈ V }

and its polar set
V ◦ = {φ ∈ X ′ | φ(v) = 0 ∀v ∈ V }.

We can then formulate the following result:

Lemma 1.9 (The inf-sup Condition). The following properties are equivalent

(i) The Ladyzhenskaya-Babuška-Brezzi condition is satisfied, i.e. there exists β > 0 such
that

inf
q∈Q\{0}

sup
v∈X\{0}

b(v, q)
‖q‖Q‖v‖X

> β. (LBB)

(ii) The operator B is an isomorphism from V ⊥ onto Q′ and

‖Bv‖Q′ ≥ β‖v‖X .

(iii) The dual operator B′ is an isomorphism from Q onto V ◦ and

‖B′q‖X′ ≥ β‖q‖Q .

Proof. See [GR86, Lemma 4.1].

Lemma 1.10. Let Ω be a bounded and Lipschitz continuous domain in Rd. Then the pair
X = H1

0(Ω) and Q = L2
0(Ω) satisfy the condition (LBB) with b(v, q) =

∫
Ω p∇ · v dx.

Proof. See [EG04, Corollary B.71] or [Riv08, Lemma 6.4].

Remark 1.11. Pairs of spaces that fulfil the Ladyzhenskaya-Babuška-Brezzi condition will be
referred to as inf-sup stable.
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1.4. The Weak Formulation of the Navier-Stokes Equations
Let v ∈ C∞0 (Ω) be an arbitrary test function. Multiplying the momentum balance equation
of the Navier-Stokes equations (1.1) with v, integrating and using integration by parts for the
viscous and pressure terms gives

∂t

∫
Ω

u · v dx + ν

∫
Ω
∇u : ∇v dx +

∫
Ω

((u · ∇)u) · v dx−
∫

Ω
pdiv v dx =

∫
Ω

f · v dx (1.2)

where the boundary integrals vanish since v|∂Ω = 0. Due to the density of C∞0 (Ω) in H1
0(Ω),

we may consider test functions v ∈ V = H1
0(Ω). To remove the pressure and include the

conservation of mass, we simplify the problem by restricting the problem to v ∈ Vdiv. We
then have the following problem:

Problem P1 (Weak Formulation - Time-independent test functions). For u0 ∈Hdiv

and f ∈ L2(0, T ; V′) find u ∈ L2(0, T ; Vdiv) such that

∂t

∫
Ω

u(t) · v dx + ν

∫
Ω
∇u(t) : ∇v dx +

∫
Ω

((u(t) · ∇)u(t)) · v dx = 〈f(t),v〉V ′,V

u(0) = u0

(1.3)

for all v ∈ Vdiv in (C∞0 ((0, T )))′.

Remark 1.12. A solution of this problem is weakly continuous from [0, T ] into Hdiv. Therefore
the initial condition makes sense, even though u is only in L2([0, T ]) [Tem77].
This definition of the weak formulation is insufficient as it is necessary to test with the

solution to get the energy equation. To solve this we use time-dependent test functions. Let
therefore v ∈ C∞0 (0, T ; C∞,div

0 (Ω)). We multiply the momentum balance equation with v,
integrate with respect to Ω and use integration by parts for the diffusion term. Integrating
with respect to time and using integration by parts to shift the time-derivative onto the test
function then gives

−
∫ T

0

∫
Ω

u · ∂tv dx dt+
∫ T

0

[
ν

∫
Ω
∇u(t) : ∇v dx +

∫
Ω

((u(t) · ∇)u(t)) · v dx
]

dt

=
∫ T

0
〈f(t),v〉V ′,V dt (1.4)

where space integrals at t ∈ {0, T} vanish due to v(0) = v(T ) = 0 in Ω.

Problem P2 (Weak Formulation - Time-dependent test functions). For u0 ∈ Hdiv

and f ∈ L2(0, T ; V′) find u ∈ L2(0, T ; Vdiv) such that ∂tu ∈ L1(0, T ; (Vdiv)′) which satisfies
(1.4) for all v ∈ C∞0 (0, T ; Vdiv) and u(0) = u0.

Remark 1.13. Here the initial condition for the solution immediately makes sense as functions
u ∈ L2(0, T ; Vdiv) for which additionally ∂tu ∈ L1(0, T ; (Vdiv)′) holds, are continuous with
values in (Vdiv)′ in the strong topology [BF13].

Theorem 1.14 (Equivalence of Weak Formulations). Let f ∈ L1(0, T ; (Vdiv)′) and let
u ∈ L2(0, T ; Vdiv). Then u has a weak derivative ∂tu ∈ L1(0, T ; (Vdiv)′) and satisfies (1.4) iff
u satisfies (1.3).
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Proof. See [BF13, Chapter V].

Theorem 1.15 (Solvability). Let Ω be a bounded and connected domain in Rd with Lipschitz
continuous boundary ∂Ω and let ν > 0 be given. For u0 ∈ Hdiv and f ∈ L2(0, T ; H−1) there
exists a weak solution of the Navier-Stokes equations

(u, p) ∈
(
L2(0, T ; Vdiv) ∩ L∞(0, T ; Hdiv)

)
×W−1,∞(0, T ;L2

0(Ω))

with
∂tu ∈ L

4/d(0, T ; Vdiv)

satisfying

1
2‖u(t)‖2L2(Ω) + ν

∫ t

0
‖∇u(τ)‖2L2(Ω) dτ ≤ 1

2‖u0‖2L2(Ω) +
∫ t

0
〈f(τ),u(τ)〉V ′,V dτ (1.5)

for all t ∈ [0, T ]. In the case d = 2, the solution is unique and we have equality in (1.5).

Proof. See [Gal00] or [BF13, Chapter V].

Remark 1.16. The uniqueness of such a solution in three dimensions is still an open problem.
It is possible to prove uniqueness of a solution u ∈ Ls(0, T ; Lq(Ω)) with s > 2, q > 3 and
2/s + 3/q = 1, however, the existence of such a solution is unknown [Joh16]. It is also an open
question whether "this gap reflects an essential property of real fluids or an inadequacy in the
model or analysis" [Lay08]. Connected to this gap is the Millennium Problem of the Clay
Mathematics Institute as described in [Fef00].





2. Spatial Discretisation
We will now consider the spatial discretisation of the weak formulation of the incompressible
Navier-Stokes equations in an H(div)-conforming finite element context. To this end we begin
by introducing some discontinuous Galerkin FEM notation. With this we then derive discrete
forms for the corresponding continuous weak multilinear forms for the viscous, convective
and pressure-velocity coupling terms respectively. With the discrete problem formulated, we
will discuss the solvability thereof and under certain assumptions state a discretisation error
estimate and convergence result from the literature. Finally, we give some examples of H(div)-
conforming finite element spaces.

2.1. Discrete Setting
2.1.1. Notation
Let Th be a shape-regular mesh of the domain Ω with mesh size

h := max
T∈Th

hT

where hT denotes the diameter of the element T ∈ Th. For simplicity, we assume that ∂Ω is
polygonal in order for the mesh to describe the domain exactly. Since we will be working with
dG-FEM we require the concept of mesh facets, averages and jumps. For further details we
refer to [DE11; Riv08].

Definition 2.1. Let Th be a mesh of Ω ⊂ Rd. A (closed) subset F of Ω is called a mesh facet
if F has positive (d− 1)-dimensional Hausdorff measure and if one of the following conditions
holds:

1. There exist mesh elements T1 6= T2 such F = ∂T1 ∩ ∂T2. In this case F is called an
interface.

2. There exists a mesh element T such that F = ∂T ∩∂Ω. In this case F is called a boundary
facet.

For a given mesh Th, the set of interfaces is the denoted by F ih and the set of boundary
facets is denoted by Fbh. We then denote the complete set of facets by

Fh := F ih ∪ Fbh.

Furthermore, the set
FT := {F ∈ Fh | F ⊂ ∂T}

contains the facets which are part of the boundary of a single element T ∈ Th. The maximum
number of facets composing the boundary the mesh elements is denoted by

N∂ := max
T∈Th

card(FT ). (2.1)

13
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T1

T2
F

nT1 = nF

nT2

Figure 2.1.: Unit normal vectors on an interior facet in the dG setting.

Definition 2.2. Let v be a scalar-valued function which is sufficiently smooth to admit a
(possibly two valued) trace on all interfaces. Then for all F ∈ F ih we define the jump

JvKF := v|T1
− v|T2

and the average
{{v}}F := 1

2
(
v|T1

+ v|T2

)
.

If v is vector valued, we define the jump and average to act component-wise. Furthermore, we
will drop the index F whenever no confusion can arise.

Remark 2.3. We extend the notion of jumps and averages to boundary facets. For all F ∈ Fbh
we set

JvKF = {{v}}F = v|T .

Lemma 2.4. For two sufficiently smooth functions u and v which admit a possibly two valued
trace on all interfaces, we have

JuvK = JuK{{v}}+ {{u}}JvK.

Proof. On every interface F = ∂T1 ∩ ∂T2 we have

JuvK = u|T1
v|T1
− u|T2

v|T2

= 1
2
(
u|T1

+ u|T2

) (
v|T1
− v|T2

)
+
(
u|T1
− u|T2

) 1
2
(
v|T1

+ v|T2

)
= {{u}}JvK + JuK{{v}}.

Definition 2.5. For all F ∈ Fh we define the unit normal nF to F as

1. nT1 , the unit normal vector pointing from T1 to T2 if ∂T1 ∩ ∂T2 = F ∈ F ih.

2. n, the unit outward pointing normal to Ω if F ∈ Fbh.

The orientation of the unit normal on an interface is arbitrary depending on the choice of T1
and T2, however, it is kept fixed for the remainder of this thesis. See Figure 2.1.
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2.1.2. Broken Sobolev Spaces
For a given mesh Th and k ∈ N0 we define the broken Sobolev space as

Hk(Th) := {v ∈ L2(Ω) | v|T ∈ H
k(T ) for all T ∈ Th}.

Definition 2.6. The broken gradient ∇h : H1(Th)→ L2(Ω) is defined such that

(∇hv)
∣∣
T

:= ∇(v|T )

for all T ∈ Th. For simplicity, we therefore drop the index h in case we consider the broken
gradient restricted to a single fixed element.

Lemma 2.7. For all v ∈ H1(Ω) we have ∇hv = ∇v in L2(Ω).

Proof. C.f. [DE11, Lemma 1.22].

We also define the broken H(div) space

H(div; Th) := {v ∈ L2(Ω) | v|T ∈H(div;T ) for all T ∈ Th}.

Definition 2.8. The broken divergence operator ∇h· : H(div; Th) → L2(Ω) is defined such
that

(∇h · v)
∣∣
T

:= ∇ · (v|T ).

Lemma 2.9. For all v ∈H(div; Ω) we have ∇h · v = ∇ · v in L2(Ω).

Proof. C.f. [DE11, Section 1.2.6].

Lemma 2.10 (Characterisation of H(div; Ω), c.f. [DE11; Joh16]). Let Th be an ad-
missible triangulation of the domain Ω. For a function w ∈ H(div; Th) ∩ W1,1(Th) we have
that w ∈H(div; Ω) if and only if

JwK · nF = 0 for all F ∈ F ih. (2.2)

Proof. Let w ∈H(div; Th) ∩W1,1(Th) and ϕ ∈ C∞0 (Ω). Integration by parts then yields∫
Ω

w · ∇ϕ dx =
∑
T∈Th

∫
T

w · ∇ϕ dx

= −
∑
T∈Th

(∫
T

(∇ ·w)ϕ dx−
∫
∂T

(w · nT )ϕds
)

= −
∑
T∈Th

∫
T

(∇ ·w)ϕ dx +
∑
T∈Th

∑
F∈FT

∫
F

(w · nF )ϕds

= −
∫

Ω
(∇h ·w)ϕ dx +

∑
F∈Fi

h

∫
F

(JwK · nF )ϕ ds +
∑
F∈Fb

h

∫
F

(w · nF )ϕds (2.3)

where the last term in (2.3) vanishes since ϕ|∂Ω = 0. Therefore, if we have JwK ·nF = 0 for all
F ∈ F ih it holds ∫

Ω
w · ∇ϕ dx = −

∫
Ω

(∇h ·w)ϕdx for all ϕ ∈ C∞0 (Ω). (2.4)
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dG ElementsH(div) ElementsH1 Elements

Figure 2.2.: (Dis-)continuity of the tangential component (red) and the normal component (blue) for different
FEM.

This means that ∇ · w = ∇h · w ∈ L2(Ω). Conversely, if (2.4) holds then by the above
computation it follows that ∑

F∈Fi
h

∫
F

(JwK · nT )ϕ ds = 0.

We then get (2.2) by choosing the support of ϕ to intersect exactly one interface. This is
possible since ϕ is arbitrary in C∞0 (Ω).

Figure 2.2 illustrates this result by comparing the continuity of the tangential and normal
components across element facets for different finite elements.

2.2. Discrete Problem
Let us assume that we have sufficiently regular data and a sufficiently regular exact solution of
the Navier-Stokes equation so that we can consider the weak formulation (1.3). To discretise
this, we split the problem into three parts and consider the diffusion part

a(u,v) =
∫

Ω
∇u : ∇v dx

the velocity pressure coupling
b(v, q) = −

∫
Ω
q∇ · v dx

and the convection term
c(u,v,w) =

∫
Ω

((u · ∇)v) ·w dx

separately.

Discrete Spaces. To keep this section as general as possible, we follow [SL17a; SLL+18] and
consider a general FEM velocity-pressure space pair (Vh, Qh) on which we place the following
assumptions:

Assumption A1.

Vh = {v ∈H(div; Ω) : v|T ∈ Vk(T ), ∀T ∈ Th; v · n|∂Ω = 0} ⊂H(div; Ω)
Qh = {q ∈ L2

0(Ω) : q|T ∈ Pl(T ), ∀T ∈ Th} ⊂ L2
0(Ω)
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with l ∈ {k−1, k} and a local space Vk(T ) of polynomial order k. The choice of local space will
be specified in Section 2.3. Note that this also includes H1-conforming FEM but excludes fully
discontinuous dG-FEM due to Lemma 2.10. However, we will only focus on H(div)-conforming
methods.

Assumption A2. The spaces Vh and Qh are divergence conforming, i.e.

∇ ·Vh ⊆ Qh. (2.5)

This condition ensures the pointwise divergence free nature of the velocity solution as we will
show in Lemma 2.18.

Assumption A3. The FEM spaces Vh and Qh fulfil the discrete Babuška-Brezzi condition,
i.e. there exists β0 > 0, independent of h and k, such that

inf
qh∈Qh\{0}

sup
v∈Vh\{0}

b(vh, qh)
‖qh‖Qh‖vh‖Vh

≥ βh > β0 > 0. (LBBh)

Analogue to the smooth case we then say that Vh and Qh form an inf-sup stable FE pair.
We will see in Section 2.2.2 that in the H(div)-conforming FE context the continuous velocity
pressure coupling term b(·, ·) and the discrete counterpart bh(·, ·) coincide.

In Section 2.3 we will go into further detail of FEM pairs which fulfil these assumptions and
which will be used in numerical experiments conducted later.

2.2.1. The Symmetric Interior Penalty Method for Diffusion
As a test problem for diffusion, we begin with the weak formulation of the Poisson problem
with homogeneous Dirichlet boundary conditions

Find u ∈ V such that a(u,v) = f(v) for all v ∈ V (2.6)

with V = H1
0(Ω), the bilinear form a(u,v) =

∫
Ω∇u : ∇v dx and the linear form f(v) =∫

Ω f · v dx. Following [DE11], we want to compute a discrete approximate of the solution to
(2.6) in the broken space Vh ⊂ V from the discrete problem

Find uh ∈ Vh such that ah(uh,v) = fh(v) for all v ∈ Vh (2.7)

where ah : Vh ×Vh → R and fh : Vh → R are some appropriate discrete bilinear and linear
forms approximating a(·, ·) and f(·).

Consistency. We assume, that there exists a subspace V∗ ⊂ V so that the exact solution u
is in V∗ and that we can extend the discrete bilinear form to V∗ ×Vh such that we are able
to plug in the exact solution into the first argument. Note that an extension to V×Vh is in
general not possible [DE11]. In order to ensure that all terms during the derivation remain
well posed we define

V∗ = Vh ⊕ (V ∩H2(Th))
on which we derive the SIP bilinear form. Note, however, that we will see that the final bilinear
form will be well-posed for

V∗ = Vh ⊕ (V ∩Hs(Th))
with some s > 3/2 due to Theorem 1.1 and the appearance of normal derivatives on facets.
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Definition 2.11. We call the discrete problem (2.7) consistent if for the exact solution u ∈ V∗
of (2.6) we have

ah(u,vh) = fh(vh) for all vh ∈ Vh. (2.8)

Remark 2.12. We observe that the definition of consistency is equivalent to Galerkin ortho-
gonality, i.e, we have that (2.8) holds if and only if

ah(u− uh,vh) = 0 for all vh ∈ Vh.

Derivation. Let Th be an admissible triangulation of the domain Ω. To derive the symmet-
ric interior penalty formulation for the bilinear form a(u,v) =

∫
Ω∇u : ∇v dx we begin by

localising to each element and applying integration by parts

a
(0)
h (v,w) =

∫
Ω
∇hv : ∇hw dx

=
∑
T∈Th

∫
T
∇v : ∇w dx

= −
∑
T∈Th

∫
T

(∆v)w dx +
∑
T∈Th

∫
∂T

(∇v · nT ) ·w ds.

Observing that for all interior facets F = ∂T1∩∂T2 we have nF = nT1 = −nT2 , we may rewrite
the second term as a sum over facets∑

T∈Th

∫
∂T

(∇v · nT ) ·w ds =
∑
F∈Fi

h

∫
F

(∇v|T1
· nT1) ·w|T1

+ (∇v|T2
· nT2) ·w|T2

ds

+
∑
F∈Fb

h

∫
F

(∇v · nF ) ·w ds

=
∑
F∈Fi

h

∫
F
J(∇v)wK · nF ds +

∑
F∈Fb

h

∫
F

(∇v · nF ) ·w ds.

Now using Lemma 2.4 we have

J(∇hv)wK = {{∇hv}}JwK + J∇hvK{{w}}.

Taking into account the definition of jumps and averages on boundary facets we obtain

a
(0)
h (v,w) = −

∑
T∈Th

∫
T

(∆v)w dx +
∑
F∈Fh

{{∇hv}} · nF · JwK +
∑
F∈Fi

h

J∇hvK · nF · {{w}}.

Inserting the exact solution v = u into this then gives

a
(0)
h (u,w) = fh(w) +

∑
F∈Fh

∫
F
{{∇hu}} · nF · JwK ds.

In order to obtain consistency we modify the discrete bilinear form to

a
(1)
h (v,w) =

∫
Ω
∇hv : ∇hw dx−

∑
F∈Fh

∫
F
{{∇hv}} · nF · JwK ds.
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Another property we would like to conserve from the continuous bilinear form is symmetry. In
order to get a symmetric bilinear form we modify a(1)(·, ·) to get

asymh (v,w) =
∫

Ω
∇hv : ∇hw dx−

∑
F∈Fh

∫
F

(
{{∇hv}} · nF · JwK + JvK · {{∇hw}} · nF

)
ds.

This is still a consistent bilinear form due to the continuity of the exact solution. Finally, for
solvability of the discrete problem we need the discrete bilinear form to be coercive. Currently
we have

asymh (v,v) = ‖∇hv‖2L2(Ω) − 2
∑
F∈Fh

∫
F
{{∇hv}} · nF · JvK ds.

Since we do not have any a priori knowledge of the sign of the second term, we cannot expect
discrete coercivity without the addition of further terms. In order to get discrete coercivity of
the discrete bilinear form we penalise facets jumps, i.e.

aSIP
h (v,w) =

∫
Ω
∇hv : ∇hw dx−

∑
F∈Fh

∫
F

(
{{∇hv}} · nF · JwK + JvK · {{∇hw}} · nF

)
ds

+
∑
F∈Fh

σ

hF

∫
F
JvK · JwK ds

(2.9)

for some parameter σ > 0 yet to be determined and the local facet diameter hF . This bilinear
form is still consistent in the sense of (2.8) since the exact solution is continuous.

Basic properties. The symmetric interior penalty bilinear form motivates the definition of
the following discrete energy-norm

|||v|||2e := ‖∇hv‖2L2(Ω) +
∑
F∈Fh

σ

hF

∥∥JvK∥∥2
L2(F )

and the stronger norm

|||v|||2e,] := |||v|||2e +
∑
T∈Th

hT ‖∇v · nT ‖2L2(∂T ) .

Lemma 2.13 (Coercivity). Assume that the jump penalty parameter σ > 0 is sufficiently
large. Then the bilinear form aSIP

h is coercive on Vh, i.e. there exists a constant Cσ > 0 such
that

aSIP
h (v,v) ≥ Cσ|||v|||2e for all v ∈ Vh.

Proof. See [Riv08, Lemma 6.6] or [DE11, Lemma 4.12].

Remark 2.14. Coercivity is given for σ > C2
trN∂ , c.f. [DE11], where Ctr originates from the

discrete inverse trace inequality and N∂ is as defined by (2.1). On simplices, the constant Ctr

is known to scale as
√

(k+1)(k+d)
d [WH03], i.e. for coercivity we require σ ∼ k2.

Lemma 2.15 (Boundedness). There exists a constant C > 0, independent of h, such that
for all v ∈ V∗ and w ∈ Vh it holds

aSIP
h (v,w) ≤ C|||v|||e,]|||w|||e.

Proof. See [DE11, Lemma 4.16].
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Non-Homogeneous Dirichlet Boundary Conditions. In the case of non-homogeneous Dirich-
let boundary conditions

u = g on (0, T ]× Γ

on some part of the boundary Γ ⊆ ∂Ω we loose consistency of SIP bilinear form. Inserting the
exact solution into (2.9) gives

aSIP
h (u,vh) = −

∫
Γ

g∇hvh · nF ds +
∑
F∈Fb

h

σ

hF

∫
F∩Γ

g · vh ds.

We can recover consistency by adding these terms to the right-hand side, i.e. we define a new
right-hand side

fDh (vh) :=
∫

Ω
f · vh dx−

∫
Γ

g∇hvh · nF ds +
∑
F∈Fb

h

σ

hF

∫
F∩Γ

g · vh ds

such that aSIP
h (u,vh) = fDh (vh) holds for all vh ∈ Vh.

2.2.2. Velocity-Pressure Coupling
Let Th be an admissible decomposition of the domain Ω. The velocity pressure coupling
appears in the momentum equation through the term b(v, q) =

∫
Ω(∇q) ·v dx. Now let (v, q) ∈

H1
0(Ω)×H1(Ω). To derive the discrete formulation we again begin by localising to each element

and applying integration by parts

b
(0)
h (v, q) =

∫
Ω

(∇hq) · v dx

=
∑
T∈Th

∫
T

(∇q) · v dx

= −
∑
T∈Th

∫
T

(∇ · v)q dx +
∑
T∈Th

∫
∂T

v · nT q ds.

As in the derivation of the SIP bilinear form we use that for all interior facets F = ∂T1 ∩ ∂T2
we have nF = nT1 = −nT2 to get∑

T∈Th

∫
∂T

v · nT q ds =
∑
F∈Fi

h

∫
F

(v|T1
· nT1)q|T1

+ (v|T2
· nT2)q|T2

ds +
∑
F∈Fb

h

∫
F

v · nF q ds

=
∑
F∈Fi

h

∫
F
Jv · nF qK ds +

∑
F∈Fb

h

∫
F

v · nF q ds.

Together with our definition of boundary jumps this reduces to∑
T∈Th

∫
∂T

v · nT q ds =
∑
F∈Fh

∫
F
Jv · nF qK ds.

Following [Kan07], we make the design choice to replace q with the consistent flux q̂ = {{q}} in
the right-hand side of the above equation. This flux is chosen to make the problem symmetric,
c.f. [Kan07, Section 4.1.3]. Due to our definition of boundary averages and jumps and since
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the average takes the same value on T1 and T2 we get the usual [DE11; Riv08] dG-form of the
velocity-pressure coupling

bdG
h (v, q) = −

∫
Ω

(∇h · v)q dx +
∑
F∈Fh

∫
F
JvK · nF {{q}}.

For the case of H(div)-conforming FEM we can further simplify this by taking into account
Lemma 2.10 together with the Dirichlet boundary conditions which gives us

bh(v, q) = −
∫

Ω
(∇h · v)q dx

and since v ∈ H(div) also implies that ∇ · v ∈ L2(Ω) by Lemma 2.9, we can even take the
continuous divergence operator and we get the standard velocity pressure coupling

bh(v, q) = b(v, q) = −
∫

Ω
(∇ · v)q dx.

2.2.3. Upwinding for the Convection Part
Derivation. We begin by discretising the linearised convection term c(β,v,w) =

∫
Ω(β·∇)v·w

with the convective velocity field β for which we assume that ∇ · β = 0 holds pointwise and
that β · n = 0 holds on the boundary ∂Ω. The idea is to preserve coercivity, i.e. we want that
ch(β,v,v) = 0 holds. We again begin by localising to each element

c
(0)
h (β,v,w) =

∫
Ω

(β · ∇h)v ·w dx =
∑
T∈Th

∫
T

(β · ∇)v ·w dx.

Using the divergence-free nature of the convective velocity and integration by parts, we
observe that

0 =
∫
T

(β · ∇)v ·w dx

= −
∫
T
β · (∇(v ·w)) dx−

∫
∂T

(β · nT )v ·w ds

= −
∫
T

[
(β · ∇)w · v + (β · ∇)v ·w

]
dx +

∫
∂T

(β · nT )v ·w ds. (2.10)

In the final step we have used

∫
T
β · (∇(v ·w)) dx =

∫
T
β ·

∇
 d∑
i=1

viwi


dx

=
∫
T

d∑
j=1

d∑
i=1

[
βjvj

∂wi
∂xj

+ βjwj
∂vi
∂xj

]
dx

=
∫
T

(β · ∇)w · v dx +
∫
T

(β · ∇)v ·w dx.

Rearranging (2.10) and testing with w = v gives∫
T

(β · ∇)v · v dx = 1
2

∫
∂T

(β · nT )v · v ds.
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Therefore

c
(0)
h (β,v,v) =

∑
T∈Th

1
2

∫
∂T

(β · nT )v · v ds

=
∑
F∈Fi

h

1
2

∫
F

(β · nF )Jv · vK ds +
∑
F∈Fb

h

1
2

∫
F

(β · nF )v · v ds.

Lemma 2.4 gives Jv · vK = 2JvK · {{v}} and further using that β · n|∂Ω = 0 we have

c
(0)
h (β,v,v) =

∑
F∈Fi

h

∫
F

(β · nF )JvK · {{v}}ds.

So we get the discrete convective term

c
(1)
h (β,v,w) =

∫
Ω

(β · ∇h)v ·w dx−
∑
F∈Fi

h

∫
F

(β · nF )JvK · {{w}}ds.

For further stability of this bilinear form, we penalise jumps of the discrete solution in a least
squares sense. This can be interpreted as upwinding in terms of fluxes [DE11]. The new
bilinear form is then given by

ch(β,v,w) =
∫

Ω
(β · ∇h)v ·w dx−

∑
F∈Fi

h

∫
F

(β · nF )JvK · {{w}}ds

+
∑
F∈Fi

h

∫
F

γ

2 |β · nF | JvK · JwK ds

where the (optional) stabilisation is controlled by the parameter γ ≥ 0. In the case of γ = 1
this corresponds to upwinding.

Basic Properties. In connection with the convective term we introduce the norm for all
v ∈ V∗

|||v|||2β = ‖v‖2L2(Ω) + |v|2β,upw

with the upwind semi-norm

|v|2β,upw =
∑
F∈Fi

h

∫
F

γ

2 |β · nF |
∣∣JvK

∣∣2 ds

which represents additional control over β-scaled velocity jumps [SL17a]. Additionally, we
define the stronger norm

|||v|||2β,] = |||v|||2β +‖β‖2∞
∑
T∈Th

h−2
T ‖v‖

2
L2(T ) +‖β‖∞

∑
T∈Th

‖v‖2L2(∂T ) .

Lemma 2.16 (Coercivity). Let ∇ · β = 0 in Ω and β · n = 0 on ∂Ω. Then for all v ∈ Vh

we have that the convective term ch is coercive with respect to | · |β,upw, i.e.

ch(β,v,v) = |v|2β,upw.
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Proof. This follows by the construction of the convective term ch.

Lemma 2.17 (Boundedness). Let ε1, ε2 > 0. There exists C > 0 such that for all (v,w) ∈
V∗ ×Vh

|ch(β,v,w)| ≤ C
( 1

2ε1
+ 1
ε2

)
|||v|||2β,] + ε1

2 ‖w‖
2
L2(Ω) + ε2|w|2β,upw.

Proof. See [SL17a, Lemma 3.4].

2.2.4. The Spatially Semi-Discrete Problem
In order to formulate the continuous-in-time but spatially discretised problem, let us consider
the following space-time spaces for the velocity and pressure

VT
h = {vh ∈ L2(0, T ; Vh) | ∂tvh ∈ L2(0, T ; Vh)} and QTh = L2(0, T ;Qh).

Then the spatially semi-discrete weak formulation of the Navier-Stokes equations is:

Problem P3 (Spatially semi-discrete Navier-Stokes). For f ∈ L2(0, T ; V′) and u0h =
uh(0) find (uh, ph) ∈ VT

h ×QTh such that for all (vh, qh) ∈ Vh ×Qh it holds

(∂tuh,vh)L2(Ω) + aSIP
h (uh,vh) + ch(uh,uh,vh) + b(vh, ph)− b(uh, qh) = 〈f ,vh〉V′,Vh

(2.11)

where u0h is an appropriate approximation of u0.

Lemma 2.18. If the global spaces Vh and Qh are divergence conforming, i.e. (2.5) holds,
then the velocity approximation to Problem P3 is pointwise divergence free.

Proof. Since ∇ ·Vh ⊆ Qh, we may test

0 = bh(uh, qh) =
∫

Ω
qh∇h · uh dx

with the test function qh = ∇h · uh. This gives

0 = bh(uh,∇h · uh) =
∫

Ω
(∇h · uh)2 dx = ‖∇h · uh‖2L2(Ω).

By the positive definiteness of norms, it follows that ∇h · uh = 0 must hold.

Remark 2.19. As a result of Assumption A2 and Lemma 2.18 the discrete velocity resulting
from (2.11) is pointwise divergence free, i.e.

uh ∈ {v ∈ Vh | ∇ · vh(x) = 0, ∀x ∈ Ω}.

Because of this and our assumption of homogeneous Dirichlet boundary conditions we may
replace β with uh and use the convective term ch(·, ·, ·) as derived above.

Theorem 2.20. Assume that the space pair Vh ×Qh is inf-sup stable. Then Problem P3 has
a unique solution (uh, ph) ∈ VT

h ×QTh . Furthermore, the discrete velocity admits the following
energy estimate:

1
2‖uh(T )‖2L2(Ω) +

∫ T

0
Cσ|||uh(t)|||2e + |uh(t)|uh,upw dt ≤ ‖u0h‖2L2 + 3

2‖f‖
2
L1(0,T ;L2) (2.12)

with the discrete coercivity constant Cσ > 0 from Lemma 2.13.
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Proof. We start by proving (2.12) following [DAL15; SL17a]. Testing (2.11) with (uh, 0) ∈
Vdiv
h ×Qh gives

(∂tuh,uh)L2(Ω) + aSIP
h (uh,uh) + ch(uh,uh,uh) = (f ,vh)L2(Ω).

Using the product rule we see that ∂t‖uh‖2L2(Ω) = ∂t(uh,uh)L2(Ω) = 2(∂tuh,uh)L2(Ω). Using
this and the coercivity properties from Lemma 2.13 and Lemma 2.16 to estimate the left side
from below and using the Cauchy-Schwarz inequality to estimate the right side from above,
we get

1
2

d
dt‖uh‖

2
L2(Ω) + Cσ|||uh|||2h + |uh(t)|uh,upw ≤ ‖f‖L2(Ω)‖uh‖L2(Ω). (2.13)

Using the chain-rule and (2.13) we then see that

‖uh‖L2(Ω)
d
dt‖uh‖L2(Ω) = 1

2
d
dt‖uh‖

2
L2(Ω) ≤ ‖f‖L2(Ω)‖uh‖L2(Ω)

as a result of which we have
d
dt‖uh‖L2(Ω) ≤ ‖f‖L2(Ω). (2.14)

Integrating (2.14) with respect to time then gives

‖uh(t)‖L2(Ω) ≤ ‖uh0‖L2(Ω) + ‖f‖L1(0,t;L2) ≤ ‖uh0‖L2(Ω) + ‖f‖L1(0,T ;L2).

Inserting this into the right-hand side of (2.13), integrating with respect to time and using
Young’s inequality then gives

1
2
(
‖uh(T )‖2L2(Ω) − ‖u0h‖2L2(Ω)

)
+
∫ T

0
Cσ|||uh(t)|||2e + |uh(t)|uh,upw dt

≤ (‖uh0‖L2(Ω) + ‖f‖L1(0,T ;L2))
∫ T

0
‖f‖L2(Ω) dt

= ‖uh0‖L2(Ω)‖f‖L1(0,T ;L2) + ‖f‖2L1(0,T ;L2)

≤ 1
2‖uh0‖2L2(Ω) + 3

2‖f‖
2
L1(0,T ;L2).

Taking 1/2 ‖u0h‖2L2(Ω) to the right-hand side we then obtain (2.12).
The ODE system (2.11) defining uh is quadratic in the non-linearity and therefore (locally)

Lipschitz [Joh16; Lay08]. Applying the theorem of Carathéodory (c.f. [Joh16, Theorem A.50])
gives us existence and uniqueness in some local time-interval [0, t] with t ≤ T . Due to the
energy estimate (2.12) the solution cannot blow up for t ∈ [0, T ] which gives us the global
statement [Joh16; Lay08].
The existence and uniqueness of the discrete pressure then follows from the discrete Babuška-

Brezzi condition for the pair Vh ×Qh. For this, let

Vdiv
h = {v ∈ Vh | b(vh, qh) = 0 ∀qh ∈ Qh}

then
(Vdiv

h )◦ = {φ ∈ V′h | φ(vh) = 0 ∀vh ∈ Vdiv
h }.

We define
B′ : Qh → (Vdiv

h )◦
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by B′qh(vh) = b(vh, qh). Now let uh be the unique velocity solution. Then we define φ ∈ V′h

φ(vh) = (f ,vh)L2(Ω) − (∂tuh,vh)L2(Ω) − aSIP
h (uh,vh)− ch(uh,uh,vh)

which is also in (Vdiv
h )◦ since uh is divergence free and so in Vdiv

h . Due to the inf-sup stability,
we can apply Lemma 1.9 (iii) so there exists a unique ph ∈ Qh such that

B′ph = φ.

Error estimates and convergence rate results. In order to obtain error estimates and con-
vergence rates we additionally require the following assumptions (c.f. [SL17a; SLL+18]).

Assumption A4. The global velocity space Vh has an optimal approximation property, i.e.
there exits an approximation operator jh : V → Vh such that for all v ∈ Hr(Ω) with r > 2/3
and s = min{r, k + 1} it holds

‖v− jhv‖L2(T ) + hT ‖v− jhv‖H1(T ) ≤ ChsT |v|Hs(T )

for all T ∈ Th.

Assumption A5. The approximation operator jh fulfils the commuting diagram property:

∇ · (jhv) = π0 (∇ · v)

with the local orthogonal L2-projection π0 : L2(T )→ Pk(T ).

Assumption A6. The local space Vk(T ) satisfies the discrete trace inequality, i.e, for all
v ∈ Vk(T ) it holds

‖v‖L2(∂T ) ≤ CtrN
1/2
∂ h

−1/2
T ‖v‖L2(T ), ∀T ∈ Th.

Assumption A7. We assume that Ω is a convex polygon for d = 2 or of class C1,1 for
d ∈ {2, 3}.

Theorem 2.21 (Regularity of the Stokes problem). Let Assumption A7 hold true. Then
for all g ∈ L2(Ω) the solution (us, ps) ∈ V×Q of the stationary Stokes problem

Find (us, ps) ∈ V×Q s.t. a(us,v) + b(v, ps)− b(us, q) = (g,v)L2 for all (v, q) ∈ V×Q

also fulfils the regularity property (us, ps) ∈H2 ×H1 and the energy estimate
√
ν‖us‖H2(Ω) +

‖p‖H1(Ω) ≤ C‖g‖L2(Ω).

Proof. See [BF13, Theorem IV.5.8].

Definition 2.22 (Stationary Stokes projector). Let v ∈ Hs(Th) for r > 3/2 such that
∇ · v = 0 holds pointwise. The Stokes projection πsv ∈ Vdiv

h of v is the unique finite element
solution of the problem

ah(πsv,w) = a(v,w) ∀ w ∈ Vdiv
h .

The projection operator πs is called the Stokes projector.
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Theorem 2.23 (Stokes projection error estimate). Let Assumption A7 hold true. For
r > 3/2 and v ∈Hr we have with s = min{r, k + 1} that there exists C > 0 such that

‖v− πsv‖L2(Ω) + h|||v− πsv|||e,] ≤ Ch inf
wh∈Vdiv

h

|||v−wh|||e,] ≤ Ch
s|v|Hs(Ω).

Proof. See [SL17a; SL17b].

Assumption A8. In the setting of Theorem 2.23 we assume in the H1-conforming case that

‖∇hπsv‖L∞(Ω) ≤ C‖∇hv‖L∞(Ω)

and in the H(div)-conforming case that

‖v− πsv‖L∞(Ω) + h‖∇hπsv‖L∞(Ω) ≤ Ch‖∇hv‖L∞(Ω).

In Section 2.3 we will discuss the validity of these assumptions and present examples of
spaces which fulfil them.
Theorem 2.24 (Velocity discretisation error estimate). Let u be the solution to Problem
P1 and uh the solution of Problem P3. Let us additionally assume that u ∈ L2(0, T ; Hr(Th))∩
L1(0, T ; W1,∞(Ω)) for some r > 3/2 and uh(0) = πsu(0). With the error splitting

u− uh = (u− πsu)− (uh − πsuh) = η − eh

we then have for the discretisation error eh that

1
2‖eh‖

2
L∞(0,T ;L2) +

∫ T

0
νCσ|||eh|||2e + |eh|2uh,upw dt

≤ eGu(T )
∫ T

0
‖∂tη‖2L2 + ‖u‖L∞‖∇hη‖2L2 + (1 + Ch−2)‖∇u‖L∞‖η‖2L2 dt (2.15)

with the Gronwall constant given by

Gu(T ) = T + ‖u‖L1(0,T ;L∞(Ω)) + C‖∇u‖L1(0,T ;L∞)(Ω). (2.16)

Proof. See [SLL+18, Theorem 5.6].

Corollary 2.25 (Velocity convergence rate). In the setting of Theorem 2.24, assume ad-
ditionally that

u ∈ {v ∈ L2(0, T ; H∞) : ∂tv ∈ L2(0, T ; Hr)}
for some r > 3/2. For s = min{r, k+ 1} and a constant C > 0 independent of ν and h we have

1
2‖eh‖

2
L∞(0,T ;L2) +

∫ T

0
νCσ|||eh|||2e + |eh|2uh,upw dt

≤ Ch2(s−1)eGu(T )
∫ T

0
h2|∂tu|2Hs +

[
‖u‖L∞ + (h2 + C)‖∇u‖L∞

]
|u|2Hs dt. (2.17)

Proof. See [SLL+18, Corollary 5.9].

Remark 2.26 (Pressure and Re-semi-robustness). We note that the error estimate in Theorem
2.24 is both pressure-robust and Re-semi-robust [SLL+18]. That is, the velocity error estimate
is independent of the pressure and can therefore not be corrupted by poor pressure approxim-
ations (pressure-robust) and the Gronwall constant in (2.16) does not explicitly depend on the
Reynolds number (Re-semi-robust).
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2.3. Approximations of H(div)
Two examples of H(div)-conforming finite element spaces on simplicial meshes are the Brezzi-
Douglas-Marini (BDM) spaces for k ≥ 1 given by

BDMBDMBDMk := {vh ∈H0(div,Ω) | vh|T ∈ PPPk(T ) ∀T ∈ Th}

and the Raviart-Thomas (RT) spaces for k ≥ 0 given by

RTRTRTk := {vh ∈H0(div,Ω) | vh|T ∈ RTRTRTk(T ) ∀T ∈ Th}

with the local Raviart-Thomas space

RTRTRTk(T ) := PPPk(T )⊕ xPk(T )

and H0(div,Ω) := {v ∈ H(div; Ω) | v · n|∂Ω = 0}. Pairing Vh = BDMBDMBDMk with Qh = {q ∈
L2(Ω) | q|T ∈ Pk−1(T ) ∀T ∈ Th} and pairing Vh = RTRTRTk with Qh = {q ∈ L2(Ω) | q|T ∈
Pk(T ) ∀T ∈ Th} are known to give inf-sup stable pairs, i.e.

inf
qh∈Qh

sup
vh∈Vh

∫
Ω(∇ · vh)qh dx

‖vh‖H(div;Ω)‖qh‖L2(Ω)
≥ βh > β0 > 0

holds with β0 > 0 independent of h [JLM+17] and independent of k [LS17]. From the definition
of these spaces we can conclude that these pairs are also divergence conforming, i.e.

∇ ·Vh ⊆ Qh.

Furthermore, these choices of velocity approximation spaces satisfy the assumptions made
in Chapter 2. For further details see for example [BBF13, Proposition 2.5.4] or [JLM+17] for
Assumption A4, see [BBF13, Proposition 2.5.2] for Assumption A5 and [DE11] for Assumption
A6. The validity of Assumption A8 is still an open problem in the H(div)-conforming context,
c.f. [SLL+18, Remark 5.4].
Remark 2.27. On rectangular or rectangular hexahedral meshes Kh consider the local space
Pk1,k2(K) := {p(x1, x2) | p(x1, x2) = ∑

i≤k1,j≤k2 x
i
1x
j
2}. Then the Raviart-Thomas space is

Vh = RTRTRT[k] := {vh ∈H0(div,Ω) | vh|K ∈ RTRTRT[k](K) ∀K ∈ Kh}

where the local Raviar-Thomas space on rectangles and rectangular hexahedrons is defined by

RTRTRT[k](K) =

Pk+1,k(K)× Pk,k+1(K) d = 2
Pk+1,k,k(K)× Pk,k+1,k(K)× Pk,k,k+1(K) d = 3.

Together with the pressure space

Qh = Qk
disc =

Pk,k(K) d = 2
Pk,k,k(K) d = 3

this pair also builds an inf-sup stable finite element pair which is divergence conforming satis-
fying our assumptions, c.f. [BBF13; CKS06; SST02]. For the case d = 3 the space Pk1,k2,k3(K)
is defined analogous to the two dimensional case.



28 2. Spatial Discretisation
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BDMk(T ) RTk(T ) RT[k](K)

b
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Figure 2.3.: BDM space on triangles and RT space on triangles and rectangles.

Remark 2.28. The dimension of the local BDMBDMBDMk(T ) spaces is given by

dimBDMBDMBDMk(T ) =

(k + 1)(k + 2) d = 2
1
2(k + 1)(k + 2)(k + 3) d = 3

on simplices and the dimension of the local RTRTRTk(T ) spaces is given by

dimRTRTRTk(T ) =

(k + 1)(k + 3) d = 2
1
2(k + 1)(k + 2)(k + 4) d = 3

on simplices. On rectangular or rectangular hexahedral elements the dimension of the local
Raviart-Thomas space is

dimRTRTRT[k](K) =

2(k + 1)(k + 2) d = 2
3(k + 1)2(k + 2) d = 3.

The degrees of freedom for the low order cases k ∈ {0, 1, 2} can bee seen in Figure 2.3. For
further details on the construction of these spaces we refer to [BBF13].

Remark 2.29. Another approach for H(div)-conforming FEM on simplicial meshes has been to
enrich BDM and RT spaces locally on each element with divergence-free polynomials. Further
enrichment has been based on using rational functions. Here the tangential components of the
basis functions across interfaces are modified to ensure tangential continuity. For more details,
see [BBF13, Sec. 8.9.1.1].
Furthermore, [CKS05] use a completely discontinuous approach and reconstruct an exactly

divergence free velocity in H(div; Ω) via a post-processing step.
Remark 2.30. In the H1-conforming case we have the Scott-Vogelius pair PPPk/Pk−1

disc on bary-
center refined simplicial meshes is for k ≥ d as an inf-sup stable FE pair [Qin94; Zha04] which
is divergence conforming.



3. IMEX Multistep Schemes
The spatial discretisation of the time-dependent Navier-Stokes equations (1.1) as described in
Chapter 2 leads to a large initial value DAE system of the form

M u̇h = A(uh, ph) + C(uh)

where A is the linear Stokes part and right-hand side, C is the non-linear convective term in
the Navier-Stokes equations and M is the mass matrix, i.e.

Muh = (uh, vh)L2(Ω)

A(uh, ph) = −aSIP
h (uh,vh)− bh(vh, ph) + bh(uh, qh) + fh(vh)

C(uh) = −ch(uh,uh,vh)

in Vh ×Qh. For ease of notation, we will drop the explicit dependence on h here.
Discretising the time derivative by some finite difference scheme then results in a time-

stepping scheme. In order to avoid the necessity of solving a non-linear system of equations
in each time step we want to treat the convective term explicitly. On the other hand, the
diffusion part is very stiff and should therefore be treated implicitly so as to avoid very small
time steps. Furthermore, the implicit treatment of the divergence constraint is essential for
us as it ensures the pointwise divergence feee nature of the spatial discretisation considered
in Chapter 2. As a result of this we want to treat the Stokes part implicitly. The implicit
treatment of A and explicit treatment of C leads to so-called IMEX schemes [ARW95].

In this chapter we will derive IMEX multistep methods, i.e. time stepping methods which
consider multiple previous steps to advance the solution. We will consider schemes up to
formal order three. We will then analyse these schemes by considering a scalar test problem as
is customary in ODE analysis, and extend the analysis from the literature to schemes formal
order three. We note that there is no direct implication from the scalar test problem and
our large system. However, this analysis gives us some heuristics about the relative restrictive
nature of the schemes.

3.1. Derivation
We follow [ARW95] to derive general multistep IMEX schemes of order s ≥ 1. For a fixed time
step τ > 0, let us therefore consider the general s-step linear multistep IMEX scheme

1
τ

s−1∑
j=−1

ajMun−j =
s−1∑
j=−1

bjA(un−j) +
s−1∑
j=0

cjC(un−j). (3.1)

for an differential equation of the form

M u̇ = A(u) + C(u) (3.2)

29
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where C is the part which we want to treat explicitly and A the part we want to treat implicitly.
Note that we have "hidden" the pressure p in an additional component of u in order to make
the derivation more concise. The operators M,A and C are therefore extended to act on the
appropriate components of u. Note that M is therefore not invertible, i.e. we have a DAE
system.
Given that u, A and C are sufficiently smooth we can build a Taylor expansion around

tn = τn. For this we we observe that

u(tn + τ) = u(tn) + τ u̇(tn) + 1
2τ

2ü(tn) + . . .

u(tn) = u(tn)

and

u(tn − kτ) = u(tn)− kτ u̇(tn) + 1
2(kτ)2ü(tn)− . . . .

With this a Taylor expansion of (3.1) around tn = τn gives

1
τ

 s−1∑
j=−1

aj

Mu(tn) +

a−1 −
s−1∑
j=1

jaj

M u̇(tn) + · · ·+ τp−1

p!

a−1 +
s−1∑
j=1

(−j)paj

Mu(p)(tn)

−
s−1∑
j=0

cjC(u(tn)) + τ
s−1∑
j=1

jcj
dC
dt

∣∣∣∣∣
t=tn
− · · · − τp−1

(p− 1)!

s−1∑
j=1

(−j)p−1cj
dp−1C

dtp−1

∣∣∣∣∣
t=tn

−
s−1∑
j=−1

bjA(u(tn))− τ

b−1 −
s−1∑
j=1

jbj

 dA
dt

∣∣∣∣∣
t=tn
− . . .

− τp−1

(p− 1)!

b−1 +
s−1∑
j=1

(−j)p−1bj

 dp−1A

dtp−1

∣∣∣∣∣
t=tn

+O(τp).

Inserting (3.2) into this gives us a scheme of order p provided that
s−1∑
j=−1

aj = 0

a−1 −
s−1∑
j=1

jaj =
s−1∑
j=0

cj =
s−1∑
j=−1

bj = 1

1
2

a−1 +
s−1∑
j=1

j2aj

 = −
s−1∑
j=1

jcj = b−1 −
s−1∑
j=1

jbj

...

1
p!

a−1 +
s−1∑
j=1

(−j)paj

 =
s−1∑
j=1

(−j)p−1cj
(p− 1)! = 1

(p− 1)!

b−1 +
s−1∑
j=1

(−j)p−1bj

 .

(3.3)

Theorem 3.1. For the s-step IMEX scheme (3.1) it holds that

(a) The 2p + 2 constraints of the system (3.3) are linearly independent if p ≤ s. There
therefore exist IMEX schemes of order s.
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(b) An s-step IMEX scheme has maximal order of accuracy equal to s.

(c) The family of s-step IMEX schemes of order s has s parameters.

Proof. This proof is based on [Ruu93] where the constraint ∑s−1
j=−1 bj = 1 was lost due to the

additional assumption a−1 = 1.
To show (a) and (c) we only need to consider the case p = s since the linear independence

for p < s is then clear. For x = [a−1, a0, . . . , ss−1, b−1, b0, . . . , bs−1, c0, c1, . . . , cs−1]T ∈ R3s+2

and b = [1, 0, 0 . . . , 0]T ∈ R2s+2 we can rewrite the system (3.3) as Ax = b with A given as

A =



0 · · · 0 1 1 · · · 1

0
V T

1

0 0 · · · 0
−1

−DsV
T

2
−2
...
−s

0
1

V T
2 -V T

2...
1


where

V1 =



1 1 1 · · · 1
1 0 0 · · · 0
1 −1 1 · · · (−1)s
...

...
... . . . ...

1 1− s (1− s)2 · · · (1− s)s


and V2 =


1 0 · · · 0
1 −1 · · · (−1)s−1

...
... . . . ...

1 1− s · · · (1− s)s−1



are the Vandermonde matrices of the sequences {x1
j = 2 − j}s+1

j=1 and {x2
j = 1 − j}sj=1 whose

elements are each pairwise different. The matrix Ds is the diagonal matrix

Ds =


1 0 · · · 0
0 2 . . . ...
... . . . . . . 0
0 · · · 0 s

 .

The two Vandermonde matrices have non-vanishing determinant [Fis14] and have therefore full
rank while Ds is also of full rank. From this we see that the rows and columns of A are linearly
independent. Therefore, the 2p + 2 constraints of the system (3.3) are linearly independent
and the system admits a (3s+ 2)− (2p+ 2) p=s= s parameter family of solutions.
To show (b) let us assume that we have an s-step IMEX scheme of order s + r for some
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r ≥ 1. From the Taylor expansion above, we see that for such a scheme it must hold that

s−1∑
j=0

cj =
s−1∑
j=−1

bj

s−1∑
j=1

(−j)cj = b1 +
s−1∑
j=1

(−j)bj

...
s−1∑
j=1

(−j)scj = b1 +
s−1∑
j=1

(−j)sbj .

By setting dj = cj − bj we can rewrite this as

b1 +
s−1∑
j=0

dj = 0

b1 +
s−1∑
j=1

(−j)dj = 0

...

b1 +
s−1∑
j=1

(j)sdj = 0.

(3.4)

As before we can rewrite (3.4) in matrix form as By = 0 with y = [b−1, d0, d1, . . . , ds−1]T and

B =


1 1 1 · · · 1
1 0 −1 · · · 1− s
...

...
... . . . ...

1 0 (−1)s · · · (1− s)s

 .

We observe that B = V T
1 which is non-singular. Therefore we have ker(B) = {0} which in

turn implies that b−1 = 0 and cj = bj for j = 0, 1, . . . s − 1. However, for the scheme to be
IMEX it is necessary for b−1 6= 0. Therefore a s-step IMEX scheme cannot have order greater
than s.

3.1.1. IMEX Schemes of Order 1
Setting p = s = 1, (3.3) gives the restrictions

a−1 + a0 = 0
1 = a−1 = c0 = b−1 + b0.

This gives the one-parameter family of first-order IMEX schemes

1
τ

[Mun+1 −Mun] = [(1− γ)A(un) + γA(un+1)] + C(un) (3.5)
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where we restrict 0 ≤ γ ≤ 1 to prevent a large truncation error.
The choice γ = 0 leads to the explicit Euler scheme

Mun+1 −Mun = τA(un) + τC(un)

which is fully explicit and which we will not consider here.

SBDF1 Scheme. Setting γ = 1 gives the scheme

Mun+1 −Mun = τA(un+1) + τC(un) (3.6)

which applies the implicit Euler scheme to A and the explicit Euler scheme to C. This scheme
has been considered for example in [MT98, Section 18]. Schemes such as this where the time
derivative together with the implicit part are treated with a backward differentiation formula
(BDF), c.f. [HV03], and some extrapolation formula is applied to the explicit part, are called
semi-implicit BDF (SBDF) schemes. The scheme (3.6) will therefore be referred to as SBDF1.

3.1.2. IMEX Schemes of Order 2
Setting p = s = 2 in (3.3) gives the restrictions

a−1 + a0 + a1 = 0
1 = a−1 − a1 = c0 + c1 = b−1 + b0 + b1

1
2[a−1 + a1] = −c1 = b−1 − b1

which leaves two free parameters. We choose −c1 = γ. It then follows that c0 = γ + 1,
a−1 = γ + 1/2, a1 = γ − 1/2 and a0 = −2γ. By further choosing b1 = δ, we get b−1 = γ + δ and
b0 = 1− γ − 2δ. This gives the family of second order IMEX scheme

1
τ

[(
γ + 1

2

)
Mun+1 − 2γMun +

(
γ − 1

2

)
Mun−1

]
= (γ + 1)C(un)− γC(un−1)

+ (γ + δ)A(un+1) + (1− γ − 2δ)A(un) + δA(un−1). (3.7)

We will consider the following choices for (γ, δ) which give the following schemes:

SBDF2 Scheme. Setting (γ, δ) = (1, 0) in (3.7) gives the splitting method
1
2τ [3Mun+1 − 4Mun +Mun−1] = A(un+1) + 2C(un)− C(un−1).

This is again a SBDF scheme and we will therefore refer to it as SBDF2.

CNAB Scheme. Setting (γ, δ) = (1/2, 0) gives
1
τ

[Mun+1 −Mun] = 1
2
[
A(un+1) +A(un)

]
+ 3

2C(un)− 1
2C(un−1)

which applies the Crank-Nicolson method to the implicit part and the second-order Adams-
Bashforth method to the explicit part. It is thus called the CNAB (Crank-Nicolson, Adams-
Bashforth) splitting method. This method has also been considered, e.g. in [MT98, Section
19]
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Coefficients
Scheme (γ, δ) a−1 a0 a1 b−1 b0 b1 c0 c1

SBDF2 (1, 0) 3/2 −2 1/2 1 0 0 2 −1
CNAB (1/2, 0) 1 −1 0 1/2 1/2 0 3/2 −1/2
CNAB(1/16) (1/2, 1/16) 1 −1 0 9/16 3/8 1/16 3/2 −1/2
CNAB(1/4) (1/2, 1/4) 1 −1 0 3/4 0 1/4 3/2 −1/2
CNLF (0, 1/2) 1/2 0 −1/2 1/2 0 1/2 1 0

Table 3.1.: Second order IMEX Coefficients.

CNAB(δ) Schemes. The choice γ = 1/2 which leads to the second order Adams-Bashforth
method to the explicit part has been considered in the cited literature together with other
choices of δ. Due to the similarity of these schemes to the CNAB scheme, we shall refer to
them as CNAB(δ). The choice δ = 1/16 has been considered by [ARW95; FHV97] which gives
the scheme

1
τ

[Mun+1 −Mun] = 9
16A(un+1) + 3

8A(un) + 1
16A(un−1) + 3

2C(un)− 1
2C(un−1)

and [FHV97; NL79] considered the choice δ = 1/4 which in turn gives the scheme

1
τ

[Mun+1 −Mun] = 3
4A(un+1) + 1

4A(un−1) + 3
2C(un)− 1

2C(un−1).

CNLF Scheme. The choice (γ, δ) = (0, 1/2) in (3.7) gives the scheme

1
2τ [Mun+1 −Mun−1] = 1

2
[
A(un+1) +A(un−1)

]
+ C(un)

which [ARW95] refer to as CNLF (Crank-Nicolson, Leap Frog) since it applies the Leap Frog
scheme to the time derivative together with the explicit part and a scheme similar to Crank-
Nicolson to the implicit part.

To summarise, the coefficients of the second order IMEX multistep schemes are given in
Table 3.1.

3.1.3. IMEX Schemes of Order 3

Setting p = s = 3 in (3.3) gives the set of restrictions

a−1 + a0 + a1 + a2 = 0
1 = a−1 − a1 − 2a2 = c0 + c1 + c2 = b−1 + b1 + b1 + b2

1
2[a−1 + a1 + 4a2] = −c1 − 2c2 = b−1 − b1 − 2b2

1
6[a−1 − a1 − 8a2] = 1

2[c1 + 4c2] = 1
2[b−1 + b1 + 4b2].



3.2. Analysis: Restrictions on the Explicit Eigenvalue 35

The parametrisation (γ, δ, η) chosen by [ARW95] gives the following family of schemes:

1
τ

[(1
2γ

2 + γ + 1
3 + δ

)
Mun+1 +

(3
2γ

2 − 2γ + 1
2 − δ

)
Mun +

(3
2γ

2 + γ − 1
)
Mun−1

+
(
−1

2γ
2 + 1

6

)
Mun−2

]
=
(
γ2 + 3γ

2 + 1 + 23
12δ

)
C(un)−

(
γ2 + 2γ + 4

3δ
)
C(un−1)

+
(
γ2 + γ

2 + 5
12δ

)
C(un−2) +

(
γ2 + γ

2 + η

)
A(un+1) +

(
1− γ2 − 3η + 23

12δ
)
A(un)

+
(
γ2 − γ

2 + 3η − 4
3δ
)
A(un−1) +

( 5
12δ − η

)
A(un−2).

SBDF3 Scheme. The choice (γ, δ, η) = (1, 0, 0) gives the scheme:
1
τ

[11
6 Mun+1 − 3Mun + 3

2Mun−1 − 1
3Mun−2

]
= A(un+1) + 3C(un)− 3C(un−1) + C(un−2)

which applies the 3rd order BDF formula to the implicit term and an extrapolation to the
explicit term. We will therefore refer to it as the SBDF3 scheme.

3.2. Analysis: Restrictions on the Explicit Eigenvalue
For the analysis of the methods derived in Section 3.1 we will follow the approach taken by
[FHV97]. We will therefore consider the scalar test equation

ẋ = αx+ βx (3.8)

with α, β ∈ C to analyse the stability properties of the schemes. This differs to the more
restrictive approach taken by [ARW95] where the test equation ẋ = αx + iβx with α, β ∈ R
was used. In our context α and β represent the eigenvalues of implicit part A and the explicit
part C respectively [FHV97]. Note that this implies that both operators A and C are linear.
This means that this section is only directly applicable to the Oseen problem which can be
seen as a linearised variant of the Navier-Stokes problem and appears as an auxiliary problem
to the Navier-Stokes equations [Joh16, Chapter 5]. Applying the general IMEX scheme (3.1)
to the scalar test problem (3.8) gives rise to the linear difference equation

s−1∑
j=−1

ajx
n−j = τ

s−1∑
j=−1

bjαx
n−j + τ

s−1∑
j=0

cjβx
n−j . (3.9)

Let ζ ∈ C. Inserting xn−j = (ζ)s−j−1 into (3.9) and making the substitutions τα → λ and
τβ → µ gives us the characteristic equation

Φ(ζ) :=
s−1∑
j=−1

ajζ
s−1−j − λ

s−1∑
j=−1

bjζ
s−1−j − µ

s−1∑
j=0

cjζ
s−1−j . (3.10)

It is known, c.f. [HNW93, Section III.3], that the solution of the linear difference equation
(3.9) has the form

xn+1 = p1(n)(ζ1)n + p2(n)(ζ2)n + · · ·+ pl(n)(ζl)n
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where ζ1, . . . , ζl are the roots of Φ(ζ) with respective multiplicity m1, . . . ,ml and pj(n) are
polynomials of degree mj − 1.

To obtain boundedness for xn+1 as n → ∞ we require that
∣∣ζj∣∣ ≤ 1 and for

∣∣ζj∣∣ = 1 we
additionally need that mj = 1. This motivates the following definitions (see for example
[HNW93; HW96]):

Definition 3.2. The multistep method (3.1) is called stable if the roots of the characteristic
polynomial (3.10) satisfy the following conditions:

1. All roots of Φ(ζ) lie in or on the unit circle in C;

2. All roots on the unit circle are simple.

Now dividing Φ(ζ) by ζs and substituting z = 1/ζ the characteristic equation becomes

Ψ(z) :=
s−1∑
j=−1

ajz
j+1 − λ

s−1∑
j=−1

bjz
j+1 − µ

s−1∑
j=0

cjz
j+1. (3.11)

For ease of notation we denote

E(z) =
s−1∑
j=−1

ajz
j+1, F (z) =

s−1∑
j=−1

bjz
j+1 and G(z) =

s−1∑
j=0

cjz
j+1

so that the modified characteristic equation becomes Ψ(z) = E(z) − λF (z) − µG(z). For
stability it is therefore necessary for the roots of (3.11) to satisfy |z| ≥ 1 with strict inequality
for multiple roots. The stability function must therefore not vanish for all z < 1, i.e. a
necessary condition for stability is

Ψ(z) 6= 0 for all |z| < 1. (3.12)

This condition is also sufficient if we omit the necessity for roots with |z| = 1 to be single. As
in [FHV97] we therefore take (3.12) as a criterium for stability and check separately whether
multiple roots with modulus 1 occur.

Definition 3.3. The set

S =
{
µ ∈ C | The explicit method (i.e. λ = 0) is stable.

}
is called the stability region of the explicit part of the IMEX scheme.

We can characterise the boundary ∂S of the stability region of the explicit method by setting
λ = 0 in (3.11), inserting z = eiθ and rearranging for µ to get the so called root locus curve
[HW96]:

µS(θ) = E(eiθ)
G(eiθ) for θ ∈ [π, π].

Then the interior int(S) of the region of stability S where all roots have modulus strictly less
than 1, is given by the complement of the set {µ(z) : |z| ≤ 1}.

Definition 3.4. Let cj = 0 for j = 0, . . . , s − 1. The remaining implicit multistep scheme is
called A-stable if for the set

S̃ =
{
λ ∈ C | The (implicit) method is stable.

}
it holds that S̃ ⊂ C− = {z ∈ C | Re(z) ≤ 0}.
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Definition 3.5. The set
D =

{
µ ∈ C | The IMEX scheme is stable for all λ ∈ C−.

}
is the stability region of the explicit part of the IMEX scheme for which A-stability is preserved
for the implicit part of the scheme.
We observe D ⊂ S. To characterise the boundary of D we use the following lemma:

Lemma 3.6. Let M(θ) := E(eiθ)/F (eiθ) and N(θ) := G(eiθ)/F (eiθ). Suppose that Re(N(θ)) 6≡ 0
and that M(θ), N(θ) are bounded for all θ ∈ [−π, π]. Then ∂D ⊂ {µD(θ) : θ ∈ [−π, π]} with

µD(θ) := d
dθ

(
M(θ) +M(−θ)

N(−θ)

) d
dθ

(
N(θ)
N(−θ)

)−1

.

Proof. See [FHV97, Lemma 3.2].

As a result of Lemma 3.6 we have a description of the boundary ∂D under the assumption
that F (eiθ) does not vanish and Re(N(θ)) 6≡ 0 for θ ∈ [−π, π]. This means that we can plot
both ∂S and ∂D in order to get a sense of how much of a restriction, the demand for A-stability
of the implicit part, is on the explicit part of the individual IMEX scheme.

3.2.1. 1st Order Schemes
SBDF1 Scheme. For the SBDF1 and CNLF schemes we can show that we have A-stability
for the implicit eigenvalue (i.e. λ ∈ C−) if the explicit eigenvalue is in the stability domain S
of the explicit scheme. To this end, let

ϕµ(z) := E(z)− µG(z)
F (z) .

Then the stability criterium (3.12) becomes
λ 6= ϕµ(z) for all |z| < 1. (3.13)

If we look at the SBDF1 scheme we have the coefficients a−1 = 1, a0 = −1, b−1 = 1, b0 = 0
and c0 = 1. This gives

E(z) = 1− z, F (z) = 1 and G(z) = z

For stability of the explicit method, i.e. the explicit Euler method (λ = 0), we require for the
root of the modified characteristic equation

Ψ(z) = 1− z − µz
to have modulus greater or equal than 1. Setting Ψ(z) = 0 we get that z = 1/1+µ which gives
the stability domain of the explicit Euler scheme

S = {µ ∈ C : |1 + µ| ≤ 1}.
If we then look at

ϕµ(z) = 1− z − µz
we see that

Re(ϕµ(z)) = Re(1− z(1 + µ)) > 0
for all |z| < 1 and µ ∈ S, giving A-stability for the implicit eigenvalues so long as the explicit
eigenvalues are within the stability domain of the explicit Euler scheme.
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3.2.2. 2nd Order Schemes
SBDF2 Scheme. For the SBDF2 scheme we have a−1 = 3/2, a0 = −2, a1 = −1/2, b−1 =
1, b0 = 0, b1 = 0, c0 = 2 and c1 = −1 which gives us

E(z) = 1
2(z − 3)(z − 1), F (z) = 1 and G(z) = z(2− z).

This in turn yields the root locus curve for the stability domain of the explicit method

µS(θ) = (eiθ − 3)(eiθ − 1)
2eiθ(2− eiθ) .

To compute the stability domain of the explicit method in order to obtain A-stability of the
implicit method we have

M(θ) = 1
2(eiθ − 3)(eiθ − 1) and N(θ) = eiθ(2− eiθ).

Applying Lemma 3.6 gives us the root locus curve, characterised by

µD(θ) = d
dθ

(
M(θ) +M(−θ)

N(−θ)

) d
dθ

(
N(θ)
N(−θ)

)−1

= d
dθ

(
(eiθ − 3)(eiθ − 1) + (e−iθ − 3)(e−iθ − 1)

2e−iθ(2− e−iθ)

) d
dθ

(
eiθ(2− eiθ)
e−iθ(2− e−iθ)

)−1

= ieiθ(eiθ − 1)3(3eiθ − 1)
(1− 2eiθ)2

[
−6ie3iθ(eiθ − 1)2

(1− 2eiθ)2

]−1

= −1
6e
−2iθ(eiθ − 1)(3eiθ − 1)

= −1
6(1− e−iθ)(3− e−iθ)

for θ ∈ [π,−π] where the derivatives have been computed using Wolfram|Alpha [Wol18a;
Wol18b]. In Figure 3.1 we see these stability regions in the complex plane. Here we observe,
that in this case, the restriction for A-stability is not much stronger than just requiring stability
in the explicit part.

CNAB(δ) Schemes. The Crank-Nicolson/Adams-Bashforth type schemes have the coeffi-
cients a−1 = 1, a0 = −1, a1 = 0, b−1 = 1/2 + δ, b0 = 1/2− 2δ, b1 = δ, c0 = 3/2 and c1 = −1/2.
The resulting polynomials are given by

E(z) = 1− z, F (z) = δz2 + 1
2(1− 4δ)z + 1

2 + δ and G(z) = 1
2z(3− z).

This gives the locus root curve of the explicit two-step Adams-Bashforth method

µS(θ) = 2(1− eiθ)
eiθ(3− eiθ)

for θ ∈ [−π, π].
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Figure 3.1.: Stability Region of the SBDF2 Scheme.

The choice δ = 1
16 yields the polynomials

M(θ) = 16(1− eiθ)
e2iθ + 6eiθ + 9 and N(θ) = 8eiθ(3− eiθ)

e2iθ + 6eiθ + 9 .

Applying Lemma 3.6 to parametrise the boundary of the stability domain D we get

µD(θ) = d
dθ

(
M(θ) +M(−θ)

N(−θ)

) d
dθ

(
N(θ)
N(−θ)

)−1

= d
dθ

 16(1−eiθ)
e2iθ+6eiθ+9 + 16(1−e−iθ)

e−2iθ+6e−iθ+9
8e−iθ(3−e−iθ)
e−2iθ+6e−iθ+9


 d

dθ

 8eiθ(3−eiθ)
e2iθ+6eiθ+9

8e−iθ(3−e−iθ)
e−2iθ+6e−iθ+9



−1

= 2ieiθ(eiθ − 1)3(3e2iθ + 34eiθ − 5)
(1− 3eiθ)2(3 + eiθ)3

−(3 + eiθ)3(1− 3eiθ)2

9ieiθ(eiθ − 1)2(1 + 3eiθ)(e2iθ + 10eiθ + 1)

= −2(eiθ − 1)(3e2iθ + 34eiθ − 5)
9(1 + 3eiθ)(e2iθ + 10eiθ + 1)

where the derivatives have been determined using Wolfram|Alpha [Wol18c; Wol18d].
The choice δ = 1

4 yields the polynomials

M(θ) = 4(1− eiθ)
e2iθ + 3 and N(θ) = 2eiθ(3− eiθ)

e2iθ + 3 .
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This in turn gives the locus root curve parametrised by

µD(θ) = d
dθ

(
M(θ) +M(−θ)

N(−θ)

) d
dθ

(
N(θ)
N(−θ)

)−1

= d
dθ

 4(1−eiθ)
e2iθ+3 + 4(1−e−iθ)

e−2iθ+3
2e−iθ(3−e−iθ)

e−2iθ+3


 d

dθ

 2eiθ(3−eiθ)
e2iθ+3

2e−iθ(3−e−iθ)
e−2iθ+3



−1

= 2ieiθ(eiθ − 1)3(3e3iθ + 7e2iθ + 25eiθ − 3)
(1− 3eiθ)2(3 + e2iθ)2

−(1− 3eiθ)2(3 + e2iθ)2

3ieiθ(eiθ − 1)2(3e4iθ + 4e3iθ + 34e2iθ + 4eiθ + 3)

= −2(eiθ − 1)(3e3iθ + 7e2iθ + 25eiθ − 3)
3(3e4iθ + 4e3iθ + 34e2iθ + 4eiθ + 3)

where the derivates have again been determined using Wolfram|Alpha [Wol18e; Wol18f]. The
three stability regions for the explicit part of the CNAB(δ) schemes can be seen in Figure 3.2.
Here we see that in the case of δ = 1/4, requiring A-stability is not significantly stronger a
condition than simply requiring stability of the explicit part. However, for the case δ = 1/16
we see that D is significantly smaller than S.
To compute the explicit stability domain for A-stability of the implicit part with δ = 0 we

are unable to utilise Lemma 3.6 since M(θ) = 2(1−eiθ)/(1+eiθ) is unbounded for θ close to π and
−π. However, we have

ϕµ(z) = 2(1− z)− µz(3− z)
1 + z

(3.14)

= 2 + 2z − z − z2 − 3z + z2 − µz(3− z)
1 + z

= (2− z)(1 + z)− (1 + µ)z(3− z)
1 + z

= 2− z − (1 + µ)z(z − 3)
1 + z

. (3.15)

Let us define χ(z) := −z(z−3)/1+z. We then observe

Re
(
χ(eiθ)

)
= cos3 θ − 2 cos2 θ + sin2 θ cos θ − 3 cos θ − 4 sin2 θ

sin2 θ + (cos θ + 1)2

= cos θ sin2 θ + cos3 θ + 2 cos2 θ + cos θ − 2 sin2 θ − 2 cos2 θ − 4 cos θ − 2(sin2 θ + cos2 θ)
sin2 θ + (cos θ + 1)2

= (cosθ − 2)(sin2 θ + (cos θ + 1)2)
sin2 θ + (cos θ + 1)2

= cos θ − 2.

For θ → π we then have Re(χ(eiθ)) → −3, but
∣∣∣χ(eiθ)

∣∣∣ → ∞. Therefore χ maps the unit
circle to the half plane {ξ ∈ C : Re(ξ) ≥ −3} and the imaginary axis lies entirely in this
image. This means that if Im(1 + λ) 6= 0, the image of the unit disk under ϕµ and C− have a
non-empty intersection which in turn means that λ ∈ R for λ to be in D. Now for real λ

Re(ϕµ(eiθ)) = 2− cos θ + (1 + λ)(cos θ − 2)
= −λ(2− cos θ)
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Figure 3.2.: Stability Region of the CNAB(δ) Schemes.

so Re(ϕµ(eiθ)) ≥ 0 if λ ≤ 0. Furthermore, for λ ≤ 0 we see from (3.15) that the unit circle is
mapped into C− if additionally 1 + λ ≥ 0. This gives the domain D = [−1, 0] and D is indeed
a subset of S.

CNLF Scheme. For the CNLF scheme we can proceed similarly as for the SBDF1 scheme.
Here a−1 = 1/2, a0 = 0, a1 = −1/2, b−1 = 1/2, b0 = 0, b1 = 1/2, c0 = 1 and c1 = 0. This gives

E(z) = 1
2(1− z2), F (z) = 1

2(1 + z2) and G(z) = z

which in turn yields the root locus curve

µS(θ) = 1− e2iθ

2eiθ

= 1
2(e−iθ − eiθ)

= −i sin(θ)

for θ ∈ [−π, π]. So µ has to be restricted to [−i, i], however, we have to check whether multiple
roots occur on the boundary. Setting µ = i we get the modified characteristic equation for the
explicit method

Ψ(z) = 1
2(1− z2)− iz

= −1
2(z + 1)2

which has the double root z1,2 = −i. Furthermore, µ = −1 gives

Ψ(z) = 1
2(1− z2) + iz

= −1
2(z − 1)2
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which has the double root z1,2 = i. Therefore, the region of stability for the explicit part of
the method is

S = (−i, i).
Let us now look at ϕµ(z) together with µ = −i sin(θ):

ϕµ(z) = 1− z2 + 2iz sin(θ)
1 + z2

= 1− z2 + 2iz sin(θ)
1 + z2

1 + z̄2

1 + z̄2

= 1− (z2 − z̄2)−|z|4 + 2iz sin(θ)(1 + z̄2)
1 + z2 + z̄2 +|z|4

.

The denominator is clearly real and positive for|z| < 1. Now with z = a+ib we can characterise
the numerator by

Re(1− (z2 − z̄2) + 2iz sin(θ)(1 + z̄2)) = 1 +|z|4 − 2 sin(θ) Im(z(1 + z̄2))
= 1 +|z|4 − 2 sin θ Im((a+ ib)(1 + a2 − 2iab− b2))
= 1 +|z|4 − 2 sin θ(−2a2b+ a2b+ b− b3)
= 1 +|z|4 − 2 sin θ(b(1−|z|2))
= (1−|z|2)(1 +|z|2 − 2b sin(θ))

and this is strictly positive for |z| < 1. So A-stability for the implicit eigenvalue is given
provided that the explicit eigenvalue is in S.
Remark 3.7. The result S = (−i, i) shows that this scheme is inappropriate for our numerical
studies since our choice of discrete convective term ch(β,u,v) is only skew-symmetric in the
H1-conforming context where both the jump term and upwinding term vanish. In the H(div)-
conforming contex, these terms do not vanish and due to our choice of using upwind fluxes
the corresponding operator has eigenvalues with a non-vanishing real part. The CNLF scheme
is therefore inherently unstable in our context and will therefore not be considered in the
numerical experiments.

3.2.3. 3rd Order Schemes
SBDF3. The coefficients of the SBDF3 scheme are given by a−1 = 11/16, a0 = −3, a1 =
3/2, a2 = −1/3, b−1 = 1, b0 = 0, b1 = 0, b2 = 0, c0 = 3, c1 = −3 and c2 = 1. This gives us
gives us

E(z) = 11
6 − 3z + 3

2z
2 − 1

3z
3, F (z) = 1 and G(z) = 3z − 3z2 + z3.

The locus root curve of the explicit part of the SBDF3 scheme is given by

µS(θ) = 11− 18eiθ + 9e2iθ − 2e3iθ

6(3eiθ − 3e2iθ + e3iθ)

for θ ∈ [−π, π]. The plot of this in the complex plane can be seen in Figure 3.3. Due to the
second Dahlquist barrier, c.f. [HW96, Theorem V.1.6], any A-stable multistep scheme is at
most of order two, so the BDF3 scheme is not A-stable. Therefore there is no restriction D
within S for which we get A-stability for the implicit part of the SBDF3 scheme.
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3.3. Analysis: Restrictions on the Implicit Eigenvalue
Requiring full A-stability is a severe restriction on the methods considered. We will therefore
consider the less demanding stability restriction of A(α)-stability since this is sufficient in most
practical situations [FHV97].
Definition 3.8. A linear multistep method is said to be A(α)-stable if for 0 < α < π/2 the set

Wα = {ζ ∈ C :
∣∣arg(−ζ)

∣∣ < α}

is a subset of the stability region of the method [HW96].
We will now consider for which values of α we have stability for arbitrary µ ∈ S given that

λ ∈ Wα.
Lemma 3.9. Let E,F and G be the parts of the modified characteristic polynomial (3.11)
corresponding to the time-derivative, implicit and explicit part of an IMEX scheme respectively.
Suppose we have ∣∣arg(E(z)− µG(z))

∣∣ ≤ π

2 + β and
∣∣arg(F (z))

∣∣ ≤ γ
for all |z| = 1 and µ ∈ ∂S, with β + γ < π/2. Then the IMEX scheme is stable for any µ ∈ S
and λ ∈ Wα, with α = π/2− β − γ.

Proof. See [FHV97, Lemma 4.1].

3.3.1. 2nd Order Schemes
To determine the angle β in Lemma 3.9 we observe that for schemes of order two, we have

E(z)− µG(z) = a−1(1− ρ1z)(1− ρ2z) (3.16)

where ρ1 and ρ2 are the roots of the characteristic polynomial of the explicit part of the method.
For µ ∈ ∂S we then have |ρ1| = 1 and |ρ2| ≤ r for some constant r ≤ 1 determined by the
explicit method. "It follows by geometrical considerations that we can take β = arcsin(r)"
[FHV97].
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SBDF2 Scheme. For the SBDF2 scheme, (3.16) reads

1
2(z − 3)(z − 1)− µz(2− z) = 3

2(1− ρ1z)(1− ρ2z).

If µ ∈ ∂S we may write ρ1 = eiθ. Inserting this into the above equation then yields

(1
2 + µ)z2 − 2(µ+ 1)z + 3

2 = 3
2(ρ2e

iθz2 − (ρ2 + eiθ)z + 1)

and since ∂S is parametrised by µ(θ) = (eiθ−3)(eiθ−1)/2eiθ(2−eiθ), reparametrisation θ 7→ −θ and
comparing coefficients yields

ρ2 = 2− 3eiθ
3− 6eiθ .

So |ρ2| ≤ 5/9. Furthermore, arg(F (z)) = arg(1) = 0 so we can apply Lemma 3.9 and get the
lower bound for the stability angle

α = π

2 − arcsin(5
9) ≈ 0.31π.

Note that this is significantly smaller than π/2, the value for α of the BDF2 multistep method
[HW96].

CNAB(δ) Schemes. For this set of schemes (3.16) reads

(1− 2)− µ

2 z(3− z) = (1− ρ1z)(1− ρ2z).

For µ ∈ ∂S we have ρ1 = eiθ which yields

µ

2 z
2 − (1 + 3µ

2 )z + 1 = ρ2e
iθz2 − (ρ1 + ρ2)z + 1.

For µ ∈ ∂S we also know that µ(θ) = 2(1−eiθ)/eiθ(3−eiθ). Then reparametrising µ(θ) with θ 7→ −θ
and comparing coefficients gives

ρ2 = eiθ − 1
3eiθ − 1

the absolute value of which attains its maximum for θ ∈ {−π, π} with the value 1/2 which
yields the bound β = arcsin(1/2). To apply Lemma 3.9 we now need to establish γ for which
we need to distinguish between the three considered values of δ:
• δ = 0: We have F (z) = 1/2(1 + z) which gives the bound γ = arcsin(1) = π/2 so that

Lemma 3.9 does not provide us with a positive angle α. However, Lemma 3.9 is only a
sufficient condition and not necessary. Nevertheless, we can show that there is no positive
angle such that the scheme is stable for all µ ∈ S and λ ∈ Wα:

From (3.14) we have

ϕµ(z) = 2(1− z)− µz(3− z)
1 + z

.
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(a) SBDF2 (b) CNAB(1/16) (c) CNAB(1/4)

Figure 3.4.: Exterior of shaded region: Approximate stability domain for λ with arbitrary µ ∈ S for the SBDF2,
CNAB(1/16) and CNAB(1/4) respectively.

If we then take z = −1 + iε on the unit circle and µ = −1− ε+O(ε2) on ∂S we get

ϕµ(z) = 2(2− iε)− (−1− iε+O(ε2))(−1 + iε)(4− iε)
1 + (−1 + iε)

= 4− 2iε+ (1 + iε+O(ε2))(4 + 5iε+ ε2))
iε

= −iε+O(ε2)
iε

= −1 +O(ε)

which shows that we can have values for ϕµ(z) arbitrarily close to the negative real axis.
• δ = 1/16: Here F (z) = 1/16(z+3)2 which gives us the bound γ = 2 arcsin(1/3) which in turn

gives the angle
α = π

2 − arcsin 1
2 − 2 arcsin 1

3 ≈ 0.12π.

• δ = 1/4: This leads to F (z) = 1/4(z2 + 3) and thus gives the bound γ = arcsin(1/3). We
then get the stability angle

α = π

2 − arcsin 1
2 − arcsin 1

3 ≈ 0.23π.

By plotting the set {ϕµ(z) : µ ∈ S, |z| < 1} which is the complement of the region of
the values for λ for which the scheme is stable with arbitrary µ ∈ S, [FHV97] established
experimental values for the value α. These sets can be seen in Figure 3.4. The values for α as
measured by [FHV97] can be seen in Table 3.2.

Scheme SBDF2 CNAB(1/16) CNAB(1/4)
αtheo 0.31π 0.12π 0.23π
αexp 0.32π 0.14π 0.30π

Table 3.2.: Theoretical and experimental values for α, denoted by αtheo and αexp respectively.
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(a) The entire region (b) Enlargement of the origin

Figure 3.5.: Exterior of shaded region: Approximate stability domain for λ with arbitrary µ ∈ S for the SBDF3
scheme.

We observe for the CNAB(1/16) and SBDF2 schemes that the theoretical bounds are close to
the experimental ones. However, for the CNAB(1/4) scheme we see that experimental bound
is significantly larger than the theoretical one. Nevertheless, since the SBDF2 scheme permits
the larges angle α, we expect this scheme to be the least restrictive with respect to stability.

3.3.2. 3rd Order Schemes
SBDF3. To establish the value for α for A(α)-stability of the implicit scheme for arbitrary
values µ ∈ S, we proceed as in [FHV97] by plotting the set {ϕµ(z) : µ ∈ S, |z| < 1} for
sufficiently many |z| < 1 and µ ∈ S. In this case we sampled 2.7 × 107 point from this set.
The result can be seen in Figure 3.5. Note that the non-smooth boundary of the domains is
due to the finite nature of our sample. However, this does not effect our measurement of α,
as we have sufficiently many points close to the origin for a good estimate of the angle α. By
enlarging the area around the origin we can measure the experimental bound for the angle α.
In this case we get an upper bound of α ≈ 0.11π. This is again significantly smaller that the
angle of α = 0.48π [HW96] for the BDF3 method.
Remark 3.10 (Summary). The semi-discrete analysis of time stepping schemes using a scalar
test problem as we have done in the preceding two sections only has a very limited application
to the incompressible flow setting we require the methods for. The analysis stems from an
ODE framework, while our application is a DAE system. Furthermore, as we have already
stated, this analysis assumes the operator to be treated explicitly to be linear which is not the
case in the Navier-Stokes setting.
Nevertheless, we can draw the following conclusions. For one, we have seen that the SBDF1

scheme has the largest stability region for the explicit part and no restriction to it in order to
obtain A-stability in the implicit part. We can therefore expect this scheme to allow the largest
time steps since it is with the choice of time step that we can force the eigenvalues to be inside
the stability region. Within the regime of second order multistep schemes we can expect the
SBDF2 method to allow the largest time steps since it has the largest stability region for the
explicit part of the scheme and present the largest angle for A(α)-stability. Furthermore, the
analysis has shown that the CNLF scheme is only sensible in a setting with a skew symmetric
convection operator which would result in purely imaginary eigenvalues.
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As in Chapter 3 this chapter will consider the time integration of a DAE system of the form

M u̇h = A(uh, ph) + C(uh) (4.1)

where M is the mass-matrix, A the Stokes operator and right-hand side while C is the con-
vective part. Similar to the IMEX multistep methods we want to split the time-integration
of the problem (4.1) into two parts treating A(u, p) implicitly and C(u) explicitly. However
we now do this within a Runge-Kutta setting. IMEX Runge-Kutta methods were introduced
by [ARS97] and the underlying idea is to combine an explicit Runge-Kutta method with an
implicit Runge-Kutta method which work on the same intermediate time-levels into a scheme
which is expected to have the same accuracy as the minimum accuracy of the two separate
methods.
The use of Runge-Kutta methods also presents the possibility of going to higher order meth-

ods compared to the use of backwards-difference formulas which become unstable if the order is
greater than six. Indeed, [KC03] present methods up to order five for ODE systems originating
from convection-diffusion-reaction equations.
We will begin with a short introduction to the basic definitions connected to Runge-Kutta

methods. We then define IMEX Runge-Kutta schemes available in the literature suitable for
our application which go up to formal order three. Finally, we consider the joint stability
region of the resulting method.

4.1. Basics of Runge-Kutta Schemes

In this section we will introduce some of the basic notation and definitions regarding Runge-
Kutta schemes, found, e.g. in [HNW93; HW96].

Definition 4.1. Let s ∈ N, aij ∈ R for 1 ≤ j < i ≤ s, bi ∈ R for 1 ≤ j ≤ s and cj = ∑i−1
j=1 aij .

The scheme

ki = f(t+ τci, xn + τ
i−1∑
j=1

aijkj) for i = 1, . . . , s

xn+1 = xn + τ
s∑
i=1

biki

is called an s-stage explicit Runge-Kutta method (ERK) for the problem

ẋ = f(t, x)
x(t0) = x0.

(4.2)

47
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Remark 4.2. Runge-Kutta schemes can be summarised in a Butcher tableau:

0
c2 a21
c3 a31 a32
...

...
... . . .

cs as1 as2 · · · as,s−1
b1 b2 · · · bs−1 bs

Definition 4.3. Let s ∈ N, aij ∈ R, bi ∈ R for 1 ≤ i, j ≤ s and cj = ∑s
j=1 aij . The scheme

ki = xn + f(t+ τci, τ
s∑
j=1

aijkj) for i = 1, . . . , s

xn+1 = xn + τ
s∑
i=1

biki

is called an s-stage Runge-Kutta method for the problem (4.2). If aij = 0 for j > i we call it a
diagonally implicit Runge-Kutta method (DIRK) and if additionally aii = γ for 1 ≤ i ≤ s we
call it a singularly diagonal implicit Runge-Kutta method (SDIRK).

These methods can again be summarised in a Butcher tableau, now with non-zero entries
on and possibly above the diagonal of the matrix A.

Definition and Proposition 4.4. Let A ∈ Rs×s and b ∈ Rs be the coefficients of an implicit
Runge-Kutta method. The function

R(z) = det(I − zA+ z1bT )
det(I − zA)

with 1 = (1, . . . , 1)T , is called the stability function of the corresponding RK method. It can
be interpreted as the numerical solution of the test problem

ẏ = λy, y0 = 1

with z = λτ after one step of the method.

Definition 4.5. The set
S = {z ∈ C :

∣∣R(z)
∣∣ ≤ 1}

is called the stability domain of the method. As for the multistep case we call the method
A-stable if S ⊂ C−.

Definition 4.6. A Runge-Kutta method is called L-stable if it is A-stable and it additionally
holds that

lim
z→∞

R(z) = 0

Proposition 4.7. Let A ∈ Rs×s and b ∈ Rs be an s-stage implicit A-stable Runge-Kutta
method such that A is non-singular. If A, b satisfy one of the following conditions

bj = asj for j = 1, . . . , s (4.3)
b1 = ai1 for i = 1, . . . , s, (4.4)

then the method is L-stable.
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0 0 0
c1 â21 a21 a22
c2 â31 â32 a31 a32 a33
...

...
... . . . ...

...
... . . .

cs âs+1,1 âs+1,2 · · · âs+1,s 0 as+1,1 as+1,2 as+1,3 · · · as+1,s+1
q q · · · q q q q q · · · q
b̂1 b̂2 · · · b̂s b̂s+1 b1 b2 b3 · · · bs+1

Table 4.1.: IMEX Runge-Kutta Butcher tableau consisting of a compatible pair of Runge-Kutta schemes.

Remark 4.8. Methods which satisfy (4.3), are called stiffly accurate. Stiffly accurate Runge-
Kutta methods are of special relevance in the context of the Navier-Stokes equations because
(4.2) is a DAE system. Stiffly accurate methods are important when dealing with DEA’s
[HW96] since the application of non-stiffly accurate methods to DAE systems can lead to a
reduction of the order of the method [KM06].

4.2. IMEX Runge-Kutta Schemes
Following [ARS97], let s ∈ N and consider a s-stage DIRK method with the coefficients Ã ∈
Rs×s, b̃ ∈ Rs and c̃ ∈ Rs. Further set σ = s + 1 and consider an (s + 1)-stage ERK scheme
given by the coefficient set Â ∈ Rσ×σ and b̂ ∈ Rσ such that ĉT = (0, c̃T ). We can then extend
the Butcher tableau of the implicit scheme into a tableau of a (s+ 1)-stage method A ∈ Rσ×σ,
b ∈ Rσ and c ∈ Rσ where

A =
(

0 0
0 Ã

)
, bT = (0, b̃T ), cT = (o, c̃T ) = ĉT

We also assume that both the explicit and implicit methods are stiffly accurate as a result of
which we have that un+1 = ũs+1. Since we solve for ũs in each stage, the divergence constrained
will be enforced on each stage. Having that un+1 = ũs+1 is therefore essential since we aim
for un+1 to be exactly divergence free rather than in an interpolated sense. Combining the
two Butcher tableaus of the explicit and implicit methods we get a general IMEX-RK Butcher
tableau as shown in Table 4.1. Note that in Table 4.1 we have not restricted ai1 = 0 for
2 ≤ i ≤ s + 1 as in [ARS97] in order to include the type of IMEX-RK schemes introduced
by [KC03] which use ESDIRK methods to discretise the implicit part, i.e. the first stage
of the implicit method is an explicit one. The resulting methods then work as described in
Algorithm 4.1. Note that if we are in the ARS regime and only consider DIRK methods for
the implicit part rather than allowing ESDIRK methods, the evaluation in line 2 of Algorithm
4.1 is unnecessary.

4.2.1. Examples of Stiffly Accurate IMEX Runge-Kutta Schemes

We will now list the schemes available in the cited literature (although we do not claim this
list to be extensive) which fit into our setting. Most IMEX-RK methods available in the
literature only consider a stiffly accurate scheme in the implicit part and then construct the
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Data: un
1 Evaluate C1 = C(un)
2 Evaluate S1 = A(un)
3 for i = 2 to s+ 1 do
4 Solve (M + τaiiA)ũi = Mun − τ

∑i−1
j=1

{
âijC

j + aijS
j
}

5 if i < s+ 1 then
6 Evaluate Ci = C(ũi)
7 Evaluate Si = A(ũi)
8 end
9 end
Result: un+1 = ũs+1

Algorithm 4.1.: IMEX Runge-Kutta time-integration using a stiffly accurate method.

0 0 0 0 0
1 1 0 0 1

1 0 0 1

Table 4.2.: The Butcher tableau of the first order ARS(1,1,1) IMEX Runge-Kutta method.

explicit scheme such that b̂ = b, see for example [ARS97; Bos09; BPR13; KC03; PR05] for
such schemes. As these methods do not fit into our setting we will not list them here.
As in [PR00] where a number of these methods are listed, we will characterise the schemes

by the initials of their authors and the triplet (s, σ, p) where s is the number of stages in the
implicit method, σ is the number of stages in the explicit method and p is the order of the
overall method.

First Order Methods. The only first order method which fits into our setting, is the forward-
backward Euler method presented by [ARS97] which we will refer to as ARS(1,1,1). The
Butcher tableau for this method can be seen in Table 4.2. Observe that the resulting method
is identical to the IMEX multistep SBDF1 method and will therefore not be considered any
further here.

Second Order Methods. Also from [ARS97] we have the ARS(2,2,2) method which takes a
second order stiffly accurate SDIRK method and constructs a suitable explicit method such
that b̂i = âs+1,i. The coefficients of this scheme can be seen in Table 4.3.

Another stiffly accurate method is the the LRR(3,2,2) scheme from [LRR00]. Although not
originally named as an IMEX-RK method, it was put into the IMEX-RK framework by [PR00].
The corresponding Butcher tableau can be seen in Table 4.4. The implicit part of this method
is not singularly diagonally implicit.
Furthermore, we have the second order BPR(4,4,2) method from [BPR17] which uses four

stages in both the explicit and implicit part. This schemes is stiffly accurate and uses a SDIRK
method in the implicit part. The coefficients of the scheme can be seen in Table 4.5.
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0 0 0 0 0 0 0
γ γ 0 0 0 γ 0
1 δ 1− δ 0 0 1− γ γ

δ 1− δ 0 0 1− γ γ

γ = 1−
√

2
2 , δ = 1− 1

2γ

Table 4.3.: Butcher tableau of the second order ARS(2,2,2) IMEX Runge-Kutta method.

0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 1/2 0 0
1/3 1/3 0 0 0 0 0 1/3 0
1 0 1 0 0 0 0 3/4 1/4

0 1 0 0 0 0 3/4 1/4

Table 4.4.: Butcher tableau of the second order LRR(3,2,2) IMEX-RK method.

Third Order Methods. The third order IMEX-RK scheme presented by [ARS97] requires
four stages for both the implicit and explicit part. The coefficients of this scheme can be seen
in Table 4.6. Here the diagonal coefficient was chosen to be rational as 1/2 and we again have
a stiffly accurate SDIRK method in the implicit part and b̂i = âs+1,i.

Another third order method was devised by [BPR13]. Here we require five implicit stages
but only three explicit stages. However, since the implicit scheme is an ESDIRK method, we
only have to solve four linear systems per time step so the computational effort required for
this method comparable to the ARS(4,4,3) scheme. The coefficient set of this method can be
seen in Table 4.7. Note that even though the implicit scheme is an ESDIRK method, none of
the stages are computed with an explicit method. As we can see in Algorithm 4.1, an ESDIRK
method only includes an explicit evaluation of the Stokes part with the solution of the previous
time step in the right-hand side. As a result the solution resulting from this method will only
be pointwise divergence free if the initial condition is also pointwise divergence free.

Higher-Order Schemes. IMEX Runge-Kutta methods of order four and five consisting of six
and eight stages respectively were derived in [KC03]. Like the BPR(5,3,3) method the implicit
part is treated with ESDIRK schemes so, for example, only five linear systems have to be
solved for the fourth order method. Although the implicit part of the schemes considered are
L-stable, these schemes are constructed such that b = b̂ so the methods are unsuitable for our
applications.

0 0 0 0 0 0 0 0 0 0 0
1/4 1/4 0 0 0 0 0 1/4 0 0 0
1/4 13/4 −3 0 0 0 0 0 1/4 0 0
3/4 1/4 0 1/2 0 0 0 1/24 11/24 1/4 0
1 0 1/3 1/6 1/2 0 0 11/24 1/6 1/8 1/4
1 0 1/3 1/6 1/2 0 0 11/24 1/6 1/8 1/4

Table 4.5.: Butcher tableau of the second order BPR(4,4,2) IMEX-RK method.
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0 0 0 0 0 0 0 0 0 0 0
1/2 1/2 0 0 0 0 0 1/2 0 0 0
2/3 11/18 1/18 0 0 0 0 1/6 1/2 0 0
1/2 5/6 −5/6 1/2 0 0 0 −1/2 1/2 1/2 0
1 1/4 7/4 3/4 −7/4 0 0 3/2 −3/2 1/2 1/2

1/4 7/4 3/4 −7/4 0 0 3/2 −3/2 1/2 1/2

Table 4.6.: The Butcher tableau of the third order ARS(4,4,3) method.

0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1/2 1/2 0 0 0

2/3 4/9 2/9 0 0 0 5/18 −1/9 1/2 0 0
1 1/4 0 3/4 0 0 1/2 0 0 1/2 0
1 1/4 0 3/4 0 0 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 0 0 1/4 0 3/4 −1/2 1/2

Table 4.7.: The Butcher tableau of the third order BPR(5,3,3) method.

Computational Efficiency. Unlike the ARS(2,2,2) scheme the LRR(3,2,2) scheme consists of
a DIRK method for the implicit part rather than an SDIRK method. As a result the linear
system which has to be solved in line 4 of Algorithm 4.1 is different for each stage. This reduces
the efficiency of the method since we have to compute and store three different matrix inverses
which in turn makes the scheme very memory intensive. We will therefore not consider this
scheme further.
Furthermore, the BPR(4,4,2) method although using a SDIRK scheme in the implicit part,

requires four stages in each time step, twice as many as ARS(2,2,2). It is therefore twice as
computationally expensive compared to the ARS(2,2,2) method and we will also not consider
this scheme any further.

Stability. Rather than considering the stability regions of the implicit and explicit part sep-
arately, we will consider the stability region of the combined scheme. The stability function of
an IMEX Runge-Kutta scheme is given by

R(x+ iy) = det(Id−xA− iyÂ+ z1bT + iy1b̂T )
det(Id−xA− iyÂ)

,

c.f. [CdFN01; KC03]. Here x = τα and y = τβ, where α ∈ R represents the eigenvalue of the
implicit part and β ∈ R represents the eigenvalue of the explicit part resulting from a scalar
test equation

ẋ = αx+ iβx

as in [ARW95; ARS97]. Note that this is a different and more restrictive setting compared
with Chapter 3 where α, β were allowed to be complex valued.
The stability function of the ARS(2,2,2) method is then given by

R(x+ iy) = 1 + (1− 2γ)x+ γ(δ − 1)y2 + i[y + γ(1− δ − γ)xy]
(1− γx)2 .
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Figure 4.1.: Stability regions of the IMEX Runge-Kutta methods using an (E)SDIRK method in the implicit
part.

The stability of the third order ARS(4,4,3) scheme is

R(x+iy) = 48(6− 6x+ x3)− 144(1− x)y2 + 3x2y2 − 7y4 + i[48(6− 6x− y2)y + 29x3y + 57xy3]
18(x− 2)4

and the stability function of the third order BPR(5,3,3) method is defined as

R(x+iy) = 48− 48x+ 8x2 − x4 − 24y2 + 24xy2 − 4x2y2 + i[48y − 48xy + 8x3y − 8y3 + 8xy3]
3(x− 2)4 .

The boundary of the resulting stability domains, i.e.
∣∣R(x+ iy)

∣∣ ≤ 1, can be seen in Figure
4.1. From this result we expect the ARS(4,4,3) to allow the largest time steps in practice while
we expect the second order method to be the most restrictive. This compares with [ARS97]
where the time step restriction on y = τβ was considered for a given ration α/β = x/y.





5. Numerical Experiments
In this chapter we will use the IMEX schemes discussed in Chapters 3 and 4 for a number
of computations in the open source high-order FEM package Netgen/NGSolve [Sch97; Sch14]
available at ngsolve.org. We begin by discussing the inherent time step restriction arising
from the explicit treatment of the convection operator. We then consider a number of numerical
experiments both in 2 and 3 dimensions to illustrate the theoretical results and to evaluate the
performance of the different schemes in practice.

5.1. Time Step Restrictions
5.1.1. IMEX Multistep Schemes
Explicit treatment of convection gives a restriction on the time step [KKW17; LS16]. For
simplicity consider the scalar transport problem:

∂tu+ a∂xu = 0 in (0, T ]× Ω
u(0, ·) = u0 in Ω

(5.1)

with some appropriate boundary condition. Finite element spatial semi-discretisation then
leads to a system

∂tMuh + Luh = 0. (5.2)

Using an explicit scheme with constant time step τ to solve this in time then leads a scheme
of the form

un+1
h = Lunh (5.3)

where L is the resulting operator which advances the solution forward in time.

Definition 5.1 (Stability). For a given norm ‖·‖, a scheme of the form (5.3) is called stable,
c.f. [HV03], if there exists a constant C > 0, independent of τ , such that

‖un+1
h ‖ ≤ C‖u0

h‖.

Lemma 5.2 (Inverse estimate). Let a < b ∈ R, I = (a, b) and define h = b− a. For every
polynomial v ∈ Pk(I) it holds that

‖v′‖L2(I) ≤ 2
√

3k
2

h
‖v‖L2(I) . (5.4)

Proof. See [Sch99, Theorem 3.91].

Lemma 5.3 (Inverse trace estimate). In the context of Theorem 5.2 it holds

‖v‖L2(∂I) ≤
k + 1√
h
‖v‖L2(I). (5.5)
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Proof. See [WH03, Theorem 2].

Lemma 5.4 (Time step restriction). An explicit time-stepping scheme applied to the semi-
discretised transport problem (5.2) is stable provided the time step admits a Courant-Friedrichs-
Lewy (CFL) condition of the form

τ ≤ C h

k2
1
|a|

for some C > 0, independent of h, k and a.

Remark 5.5. The scaling of the CFL condition with respect to the polynomial order k is
quadratic according to Lemma 5.4. For a pure transport problem this is a sharp bound [KS05]
However, as we will see later, this bound does not seem to be sharp for the Navier-Stokes
equations and numerically it has been observed in [FWK18; KKW17] that the scaling k−1.5

seems to give a sharp bound for the CFL condition in the Navier-Stokes setting.

Proof of Lemma 5.4. We follow [HW08]. Let us consider an equidistant mesh {Ik} of the
interval (a, b) with |Ik| = xk−xk−1 = h. Let {`ki}Ni=1 be the local FEM basis on the element Ik.
So on each element we have to solve

∂tM
kuh + aCkuh = 0

with the local mass matrix
(M k)ij =

∫
Ik
`ki(x)`kj(x) dx

and local stiffness matrix
(Ck)ij =

∫
Ik
`ki(x)

d`kj
dx (x) dx.

Note that we omit any facet terms in the operator Ck. The addition of these would not effect
the bound as volume derivatives will dominate due to the quadratic scaling in the inverse
inequality (5.4) compared with the trace inequality (5.5). In [HW08] the operator Ck − E is
considered where E is a zero matrix with unity entries in the diagonal corners, but this still
gives a crude estimate and does not account for any choice of flux.
Now let I = [−1, 1] be the reference domain and consider the affine transformation

x(r) = xk−1 + 1 + r

2 h

from the reference domain to an element Ik. Furthermore let {`i}Ni=1 be the FEM basis on this
reference domain. For the local mass matrix we then have

M k
ij =

∫
Ik
`ki(x)`kj(x) dx =

∫
I
`i(r)`j(r)

h

2 dr = h

2Mij

while for the stiffness matrix we observe

Ck
ij =

∫
Ik
`ki(x)

d`kj
dx (x) dx =

∫
I
`i(r)

d`j
dr (r) 2

h

h

2 dr = Cij

where the h scaling from the Jacobian of the integral transform is canceled out by the change of
variable in the derivative term. On the reference domain we further introduce the differentiation
matrix Dr defined by

(Dr)ij = d`j
dr

∣∣∣∣∣
ri
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where {rm}Nm=1 are the quadrature points on the reference interval, i.e, for a local approxima-
tion

u(r) ' uh(r) =
N∑
m=1

u(rm)`m(r)

we have that
u′h(r) = Druh(r).

For the mass, stiffness and differentiation matrices on the reference domain we observe

(MDr)ij =
N∑
m=1

MimDr,mj

=
N∑
m=1

∫
I
`i(r)`m(r) drd`j

dr

∣∣∣∣∣
rm

=
∫
I
`i(r)

N∑
m=1

d`j
dr (rm)`m(r) dr

=
∫
I
`i(r)

d`j
dr (r) dr

= Cij ,

i.e.
MDr = C. (5.6)

Having constructed the spatial operators let us consider the explicit Euler scheme for simplicity.
For this we have

M kun+1
h −M kunh = −τaCkunh

⇐⇒ h

2Mun+1
h − h

2Munh = −τaCunh

⇐⇒ Mun+1
h = Munh −

2τ
h
aCunh

⇐⇒ un+1
h = unh −

2τ
h
aM−1Cunh

= (Id−2τ
h
aM−1C)unh.

So we have stability if ‖ Id−2τ/hM−1C‖ ≤ 1. A necessary condition for this is
1
h
‖aM−1C‖ ≤ 1

τ
.

Using (5.6) and the inverse estimate (5.4) we then have

‖aM−1C‖2 = sup
‖uh‖L2=1

‖aM−1Cuh‖2L2

= |a|2 sup
‖uh‖L2=1

‖Druh‖2L2

= |a|2 sup
‖uh‖L2=1

‖u′h‖2L2

≤|a|2 sup
‖uh‖L2=1

C1k
4‖uh‖2L2 .
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Thus we have a necessary stability condition on the time step

τ ≤ C h

k2
1
|a|
.

Remark 5.6. The same CFL scaling for a stable time step is obtained by [KS05], where an
upper bound on the spectral radius of the time stepping operator is claimed, giving stability
in the sense that the spectrum of the operator is inside the stability region of the explicit time
stepping scheme c.f. [HV03, Chapter 6].

5.1.2. IMEX Runge-Kutta Schemes
The ARS(1,1,1) IMEX-RK method and the SBDF1 method are identical, which indicates that
we should be faced with a similar time step restriction as for the IMEX multistep schemes.

Lemma 5.7 (Time Step Restriction for Explicit Convection (Runge-Kutta)). Under
the assumptions of Lemma 5.4 an explicit Runge-Kutta method for the model transport problem
(5.1) is stable provided the CFL condition

τ ≤ Ccon
h

k2
1
|a|

holds for some constant Ccon > 0, independent of h and k.

Proof. Consider a two stage ERK method for the model transport problem (5.1). The method
then reads

c1 = Ck(un)
ũ1 = un − τ â21(M k)−1c1

c2 = Ck(ũ1)
un+1 = ũ2

= un − τ(â31(M k)−1c1 + â32(M k)−1c2)
= un − τ(â31(M k)−1Ck(un)− τ â32(M k)−1C(un − τ â21(M k)−1Ck(un))
= un − τ(â31 + â32)(M k)−1Ck(un) + τ2â31â21((M k)−1Ck)2(un)

= un − τ(M k)−1Ck(un) + τ2

2 ((M k)−1Ck)2(un)

= un − τ 2
h
M−1C(un) + τ2

2

(2
h
M−1C

)2
(un).

We have used the assumption âsi = b̂i on the one hand together with the first order condition∑
i b̂i = 1 to obtain

1 = b̂1 + b̂2 + b̂3 = â31 + â32 + 0

and on the other with ∑j âij = ci and the second order condition ∑i b̂iĉi = 1/2 to obtain

1
2 = b̂1 · 0 + b̂2 · ĉ2 + 0 · ĉ3 = â32 · â21.
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In the final step we used that M k = h
2M and that Ck = C. Note, however, that the step

of making un+1 independent of the coefficients of the ERK scheme is not necessary since the
coefficients âij are real numbers independent of τ, h and k. So to obtain stability we essentially
have the same bound (up to the constant) on the time step τ with respect to the norm of the
operator (M k)−1Ck = 2

hM
−1C giving again the CFL condition

τ ≤ Ccon
h

k2 .

5.2. Numerical Examples in Two Dimensions

5.2.1. General Set-up

In the following computations we will use H(div)-conforming BDMBDMBDMk elements of order k for
the velocity space Vh and piecewise polynomial, discontinuous elements Pk−1

disc of order k − 1
for the pressure space Qh. As we have seen in Section 2.3, these two spaces build an inf-sup
stable and pointwise divergence free finite element pair. This method will be abbreviated as
BDMk.
In the SIP Stokes bilinear form we choose the jump penalisation parameter σ = 6 (k+1)(k+d)

d
for the IMEX multistep schemes as used in [SL17a]. For the Runge-Kutta methods we use
σ = 4k2 as used by [SLL+18]. Note that we have the essential scaling of k2 for both choices,
c.f. Remark 2.14. In the convective term we include the upwinding factor with γ = 1 as used
in [SLL+18].
To solve the arising linear systems Ax = b we use a preconditioned Richardson iteration

xk+1 = xk + P (b−Axk)

in each time step and we iterate until the relative `2-residual ‖b−Ax‖/‖b‖ is less than 10−11.
The preconditioner P is the inverse of the pressure regularised system-matrix M∗p-reg where
M∗p-reg(uh, ph) = M∗(uh, ph) − ρ

∫
Ω phqh dx and the choice ρ = 10−6. Since this matrix is

symmetric and non-singular, we can compute the factorsation using NGSolve’s implementation
of a sparse Cholesky factorisation which we found to be faster than using the direkt solver
UMFPACK [Dav04].

5.2.2. Planar Lattice Flow

The first problem we will consider is the ’planar lattice flow’ [Ber88] studied for example
in [SL17a; SL17b; SLL+18]. This initial velocity solves the stationary incompressible Euler
equations [MB01] while in the viscous Navier-Stokes context diffusion and the time derivative
balance. For ν ≥ 0 and x ∈ Ω = (0, 1)2 the exact solution is given by

u(x, t) = e−8νπ2t

(
sin(2πx1) sin(2πx2)
cos(2πx1) cos(2πx2)

)

p(x, t) = 1
4(cos(4πx1)− cos(4πx2))e−16νπ2t



60 5. Numerical Experiments

(a) Velocity field and magnitude (b) Pressure

Figure 5.1.: Initial state of the planar vortex problem.

Figure 5.2.: Meshes with hmax = 0.25 resulting in 42 triangles and hmax = 0.063 resulting in 600 triangles
respectively.

This flow has a saddle point structure and is therefore "dynamically unstable so that small
perturbations result in a very chaotic motion" [MB01]. The velocity field and the pressure at
t = 0 can be seen in Figure 5.1.

The two meshes used for the majority of the computations of this problem are shown in
Figure 5.2. We will refer to the mesh with hmax = 0.25 as the coarse mesh and the mesh with
hmax = 0.063 as the fine mesh. On the boundary we impose periodic boundary conditions.
This ensures that the velocity is not artificially kept stable by fixing the FEM solution to the
exact solution by a Dirichlet condition on (at least a part of) the boundary. The viscosity is
chosen to be ν = 10−5. With the characteristic length L = 1 and the characteristic velocity
V = 1 being the maximal velocity at t = 0, the Reynolds number is then Re = 105.

Time Step Restriction: Polynomial Order. As a result of Lemma 5.4, we expect that the
explicit treatment of the convective term leads to a time restriction which scales linearly with
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Figure 5.3.: Largest time step for a stable solution at T = 1 for different IMEX schemes and polynomial orders
on the coarse mesh.

respect to the mesh resolution and magnitude of the convective velocity and scales quadratically
with respect to the polynomial order, i.e.

τ ≤ Cconv
h

k2
1
‖u‖∞

.

In order to establish the stability of the schemes considered in practice and to determine
whether the above CFL condition is sharp we test to find the largest stable time step for a
given mesh size h and polynomial order k. We consider the scheme to be stable if the numerical
solution at T = 1 still has the same vortex structure as the initial solution.

In Figure 5.3 we see the results for all IMEX methods on the coarse mesh. We observe that
the IMEX multistep method allowing the largest time step is the SBDF1 scheme followed by
the SBDF2 scheme. The Crank-Nicolson schemes were the most restrictive within the second
order schemes while the third order SBDF3 scheme had the strongest time step restriction of
all considered schemes. The fact that the SBDF2 method is less restrictive compared with
the CNAB(δ) schemes is consistent with the results from Chapter 3 where the SBDF2 scheme
presented the largest stability area of the explicit part of the scheme and the largest A(α)-
stability angle. Within the Runge-Kutta methods the BPR(5,3,3) scheme allowed the largest
time steps while both ARS schemes had very similar stability limits. This is not consistent
with the stability area computed in Section 4.2 from which we expected the ARS(4,4,3) method
to allow the largest time step.
We note that rather than the quadratic scaling with respect to k an increase in polynomial

order only required a time step decrease by a factor of about 3/2. This weaker restriction on
the time step with respect to the polynomial order of the finite element space was also observed
in [FWK18; KKW17] for the Navier-Stokes equation where an experimental factor of 1.5 was
established for a method similar to SBDF2 from [KIO91] which treats the convective part
explicitly but also splits the pressure from the diffusion term into a pressure Poisson equation.
The computations in [FWK18] suggest that this is a sharp bound.

Time Step Restriction: Mesh Size. Figure 5.4 shows the largest "stable" time step for a
series of finer meshes using the BDM8 elements and the set of IMEX schemes considered.
The term "stable" is interpreted as before. We note that the second and third order schemes
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Figure 5.4.: Largest time step for a stable solution at T = 1 for different IMEX schemes using BDM8 elements.

performed as expected with a linear scaling between the mesh diameter and the largest stable
time step. Within the multistep regime the SBDF2 scheme allowed for the largest time steps
and the SBDF3 scheme performed similarly to the second order schemes. The IMEX Runge-
Kutta methods performed similarly, with the BPR(5,3,3) method initially again allowing the
largest time steps.
However, the first order SBDF1 scheme did not perform as expected. Here the scaling was

closer to 3/2. Also on the finest mesh considered hmax = 0.025 the SBDF1 scheme has the
strongest time step restrictions of all the schemes considered. It is unclear why this method
scales differently with respect to hmax, and the analysis considered in Section 3.2 and Section
5.1 does not help since it only gave us heuristic information on the considered schemes.
For each time step of the ARS(2, 2, 2) method we have to solve two linear systems and for

the ARS(4, 4, 3) and BPR(5, 3, 3) methods we have to solve four linear systems in each time
step respectively. This compares to the single linear system which has to be solved in each
time step when using IMEX multistep methods. We therefore want to establish if and by how
much IMEX Runge-Kutta methods allow for larger time steps to offset the larger number of
linear systems which have to solved in a computation.
In Table 5.1 we see the reciprocal of the largest stable time step of the SBDF2 and SBDF3

IMEX multistep methods and of all three IMEX Runge-Kutta methods considered here for
spatial orders k = 2, . . . , 10. Comparing the results for the IMEX Runge-Kutta methods
and SBDF method of the same expected temporal order we observe that the second order
ARS(2, 2, 2) method admits a time step which is on average 1.46 times larger than that admit-
ted by the SBDF2 method for a given polynomial order in the CFL limit. So the additional
effort required to solve two linear systems instead of one is only partially offset by the possib-
ility of a larger time step. We get a similar result when considering the third order schemes.
The ARS(4, 4, 3) method allows a time step which is on average 2.20 larger than for the SBDF3
method and the BPR(5, 3, 3) method allows a time step which is on average 2.62 times larger
than for the SBDF3 method for a give order k in the CFL stability limit. As a result the
computational effort of having to solve four linear systems instead of one can again only be
partially offset by the use of larger time steps.
In Table 5.2 we compare the largest stable time step of the same methods for different

meshes. We observe that the ARS(2, 2, 2) method admits a time step which is on average 1.57
times larger than that admitted by the SBDF2 method for a given mesh. So again, we cannot
completely offset the additional effort of having to solve two linear systems instead of one by
the choice of a larger time step in the CFL stability limit. For the third order Runge-Kutta
methods we also see that the additional effort of having to solve four linear systems in each
time step is only partially offset in the stability limit. The ARS(4, 4, 3) method allows a time
step which is on average 2.46 compared with SBDF3 and the BPR(5, 3, 3) method allows a
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1/τ τRK/τmult

Order SBDF2 SBDF3 ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) ARS(2, 2, 2)/SBDF2 ARS(4, 4, 3)/SBDF3 BPR(5, 3, 3)/SBDF3
2 25 35 18 18 14 1.38889 1.94444 2.50000
3 42 60 29 28 24 1.44828 2.14286 2.50000
4 64 95 44 43 36 1.45455 2.20930 2.63889
5 90 130 61 58 50 1.47541 2.24138 2.60000
6 116 170 78 76 65 1.48718 2.23684 2.61538
7 147 215 100 95 81 1.47000 2.26316 2.65432
8 179 260 122 116 98 1.46721 2.24138 2.65306
9 215 315 146 138 116 1.47260 2.28261 2.71552
10 252 366 171 161 135 1.47368 2.27329 2.71111
Average 1.45976 2.20392 2.62092

Table 5.1.: Reciprocal of the largest stable time step for different polynomial orders on the coarse mesh and the
factor by which IMEX Runge-Kutta methods allow a larger time step for a scheme of the same order
compared with SBDF schemes of the same order.

1/τ τRK/τmult

hmax SBDF2 SBDF3 ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) ARS(2, 2, 2)/SBDF2 ARS(4, 4, 3)/SBDF3 BPR(5, 3, 3)/SBDF3
0.25 180 260 122 116 98 1.47541 2.24138 2.65306
0.16 270 370 168 150 128 1.60714 2.46667 2.89063
0.1 405 575 265 230 192 1.5283 2.5 2.99479
0.065 615 840 422 368 335 1.45735 2.28261 2.50746
0.04 1084 1450 680 560 545 1.59412 2.58929 2.66055
0.025 1928 2475 1100 930 1070 1.75273 2.66129 2.31308
Average 1.56917 2.45687 2.66993

Table 5.2.: Reciprocal of the largest stable time step for different mesh diameters and BDM8 elements on the
coarse mesh and the factor by which IMEX Runge-Kutta methods allow a larger time step for a
scheme of the same order compared with SBDF schemes of the same order.

time step which is on average 2.69 larger than that for SBDF3 for a given mesh.
Note that this comparison in efficiency of these time stepping schemes is only valid in the

CFL stability limit. However, we consider this to be a valid comparison since we do not observe
any temporal discretisation error from the schemes with time steps below the CFL limit in
this example, c.f. below.

Time Step Convergence. We aim to check that the IMEX methods considered are of the
order with respect to the time step as expected from their construction. To ensure a high
spatial resolution we use high order BDM8 elements on both the coarse and fine meshes. The
results for the IMEX multistep methods and IMEX Runge-Kutta methods can be seen in
Figure 5.5 and Figure 5.6 respectively. The dotted lines with circular mark indicate the results
from the coarser mesh and the dashed lines with square mark indicate the results from the fine
mesh. Note that it is sufficient to look at the error at T = 1, since the L2- and H1-errors are
monotonically increasing in this example.
In each case the largest time step is very close to the stability limit, and the observed error

for these time steps indicates that the solution is close to becoming unstable. On the fine
mesh, we observe that the SBDF1 scheme is of order 1 as expected. We also see that the
stability restriction on the time step for all second and third order schemes is so strong, that
the dominating source of error is the spatial discretisation. This is indicated by the fact that
after an initial sharp drop in the error there is no improvement for smaller time steps. The
fact that second order time stepping is sufficient in this example is not surprising since in time
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Figure 5.5.: The L2-norm and H1-semi-norm velocity errors at T = 1, computed using BDM8 elements and
IMEX multistep methods. Computations on the coarse mesh (hmax = 0.25) are indicated by dotted
lines with round markings while the computations using the fine mesh (hmax = 0.063) are indicated
by dashed lines with square markings.

hmax ‖u− uex‖L2(Ω) ‖∇h(u− uex)‖L2(Ω)

SBDF1 SBDF2 CNAB CNAB(1/16) CNBA(1/4) SBDF3 Order SBDF1 SBDF2 CNAB CNAB(1/16) CNBA(1/4) SBDF3 Order
0.25 3.19× 10−2 3.19× 10−2 3.19× 10−2 3.19× 10−2 3.19× 10−2 3.19× 10−2 - 1.10 1.10 1.10 1.10 1.10 1.10 -
0.16 1.16× 10−2 1.16× 10−2 1.16× 10−2 1.16× 10−2 1.16× 10−2 1.16× 10−2 2.3 4.84× 10−1 4.84× 10−1 4.84× 10−1 4.84× 10−1 4.84× 10−1 4.84× 10−1 1.8
0.1 2.82× 10−3 2.82× 10−3 2.82× 10−3 2.82× 10−3 2.82× 10−3 2.82× 10−3 3.0 2.04× 10−1 2.04× 10−1 2.04× 10−1 2.04× 10−1 2.04× 10−1 2.04× 10−1 1.8
0.063 4.35× 10−4 4.35× 10−4 4.35× 10−4 4.35× 10−4 4.35× 10−4 4.35× 10−4 4.0 7.46× 10−2 7.46× 10−2 7.46× 10−2 7.46× 10−2 7.46× 10−2 7.46× 10−2 2.2
0.04 9.21× 10−5 9.21× 10−5 9.21× 10−5 9.21× 10−5 9.21× 10−5 9.21× 10−5 3.4 2.83× 10−2 2.83× 10−2 2.83× 10−2 2.83× 10−2 2.83× 10−2 2.83× 10−2 2.1
0.025 2.32× 10−5 2.32× 10−5 2.32× 10−5 2.32× 10−5 2.32× 10−5 2.32× 10−5 2.9 1.15× 10−2 1.15× 10−2 1.15× 10−2 1.15× 10−2 1.15× 10−2 1.15× 10−2 1.9

Table 5.3.: The L2-norm and H1-semi-norm velocity error at T = 1, computed using BDM2 elements and the
constant time step τ = 10−4. The convergence orders are computed from the SBDF2 results.

the solution only changes with a mild exponential factor due to the large Reynolds number
chosen in this experiment.

Space Convergence. To see if the IMEX schemes have an effect on convergence with respect
to mesh resolution we consider the L2-norm and H1-semi-norm error at T = 1 for a series of
meshes with hmax between 0.25 and 0.025 using BDM2, BDM4 and BDM8 elements with a
constant time step τ = 10−4.
In Figure 5.7 we see the results for the SBDF2 scheme and the convergence rates are better

than expected from Corollary 2.25. We observe convergence of order k+1 in the L∞(0, T ; L2)-
norm and of order k in the L∞(0, T ; H1)-norm. Figure 5.8 shows the results for the ARS(2,2,2)
scheme. For order 8 elements we do not see any improvement in the error for meshes smaller
that hmax = 0.063, since the error is at machine precision. Table 5.3, Table 5.4 and Table 5.5
show the results for all IMEX multistep methods considered while Table 5.6, Table 5.7 and
Table 5.8 show the results from the IMEX Runge-Kutta methods. For order 2 and 4 all schemes
give the same results. For order 8 we see that the SBDF1 scheme gives larger errors. As we
have seen above this is since with τ = 10−4, k = 8 and hmax = 0.063, the time discretisation
error dominates over the spatial error.

Large T. To see how the different schemes perform when considering larger and practically
relevant end times T we take T = 40. For the spatial discretisation we use BDM8 elements
on the fine mesh. For the temporal discretisation we choose two constant time steps τ = 10−3
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Figure 5.6.: The L2-norm and H1-semi-norm velocity errors at T = 1, computed using BDM8 elements and
IMEX Runge-Kutta methods. Computations on the coarse mesh (hmax = 0.25) are indicated by
dotted lines with round markings while the computations using the fine mesh (hmax = 0.063) are
indicated by dashed lines with square markings.
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Figure 5.7.: Mesh convergence: The L2-norm and H1-semi-norm velocity error at T = 1, computed with BDMk
elements on the coarse mesh using the SBDF2 time stepping method.
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Figure 5.8.: Mesh convergence: The L2-norm and H1-semi-norm velocity error at T = 1, computed with BDMk
elements on the coarse mesh and using the ARS(2, 2, 2) IMEX Runge-Kutta time stepping method.
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hmax ‖u− uex‖L2(Ω) ‖∇h(u− uex)‖L2(Ω)

SBDF1 SBDF2 CNAB CNAB(1/16) CNBA(1/4) SBDF3 Order SBDF1 SBDF2 CNAB CNAB(1/16) CNBA(1/4) SBDF3 Order
0.25 4.50× 10−4 4.50× 10−4 4.50× 10−4 4.50× 10−4 4.50× 10−4 4.50× 10−4 - 2.41× 10−2 2.41× 10−2 2.41× 10−2 2.41× 10−2 2.41× 10−2 2.41× 10−2 -
0.16 7.26× 10−5 7.26× 10−5 7.26× 10−5 7.26× 10−5 7.26× 10−5 7.26× 10−5 4.1 4.82× 10−3 4.82× 10−3 4.82× 10−3 4.82× 10−3 4.82× 10−3 4.82× 10−3 3.6
0.1 6.86× 10−6 6.86× 10−6 6.86× 10−6 6.86× 10−6 6.86× 10−6 6.86× 10−6 5.0 7.32× 10−4 7.32× 10−4 7.32× 10−4 7.32× 10−4 7.32× 10−4 7.32× 10−4 4.0
0.063 4.19× 10−7 4.19× 10−7 4.19× 10−7 4.19× 10−7 4.19× 10−7 4.19× 10−7 6.1 1.03× 10−4 1.03× 10−4 1.03× 10−4 1.03× 10−4 1.03× 10−4 1.03× 10−4 4.2
0.04 3.25× 10−8 3.24× 10−8 3.24× 10−8 3.24× 10−8 3.24× 10−8 3.24× 10−8 5.6 1.44× 10−5 1.44× 10−5 1.44× 10−5 1.44× 10−5 1.44× 10−5 1.44× 10−5 4.3
0.025 3.14× 10−9 3.13× 10−9 3.13× 10−9 3.13× 10−9 3.13× 10−9 3.13× 10−9 5.0 2.31× 10−6 2.31× 10−6 2.31× 10−6 2.31× 10−6 2.31× 10−6 2.31× 10−6 3.9

Table 5.4.: The L2-norm and H1-semi-norm velocity error at T = 1, computed with BDM4 elements and the
constant time step τ = 10−4. The convergence orders are computed from the SBDF2 results.

hmax ‖u− uex‖L2(Ω) ‖∇h(u− uex)‖L2(Ω)

SBDF1 SBDF2 CNAB CNAB(1/16) CNBA(1/4) SBDF3 Order SBDF1 SBDF2 CNAB CNAB(1/16) CNBA(1/4) SBDF3 Order
0.25 2.19× 10−8 2.19× 10−8 2.19× 10−8 2.19× 10−8 2.19× 10−8 2.19× 10−8 - 2.13× 10−6 2.13× 10−6 2.13× 10−6 2.13× 10−6 2.13× 10−6 2.13× 10−6 -
0.16 7.96× 10−10 7.96× 10−10 7.96× 10−10 7.96× 10−10 7.96× 10−10 7.96× 10−10 7.4 1.16× 10−7 1.16× 10−7 1.16× 10−7 1.16× 10−7 1.16× 10−7 1.16× 10−7 6.5
0.1 2.44× 10−11 1.06× 10−11 1.06× 10−11 1.06× 10−11 1.06× 10−11 1.06× 10−11 9.2 1.97× 10−9 1.96× 10−9 1.96× 10−9 1.96× 10−9 1.96× 10−9 1.96× 10−9 8.7
0.063 2.21× 10−11 6.55× 10−13 1.13× 10−12 6.40× 10−13 6.38× 10−13 7.85× 10−13 6.0 2.10× 10−10 7.78× 10−11 7.93× 10−11 7.80× 10−11 7.84× 10−11 7.82× 10−11 7.0
0.04 2.21× 10−11 8.40× 10−13 1.30× 10−12 8.47× 10−13 8.45× 10−13 9.47× 10−13 -0.5 2.21× 10−10 1.00× 10−10 1.01× 10−10 1.00× 10−10 1.00× 10−10 1.01× 10−10 -0.5
0.025 2.21× 10−11 7.16× 10−13 1.25× 10−12 7.30× 10−13 7.34× 10−13 8.56× 10−13 0.3 2.71× 10−10 1.55× 10−10 1.55× 10−10 1.55× 10−10 1.54× 10−10 1.55× 10−10 -0.9

Table 5.5.: The L2-norm and H1-semi-norm velocity error at T = 1, computed using BDM8 elements and the
constant time step τ = 10−4. The convergence orders are computed from the SBDF2 results.

hmax ‖u− uex‖L2(Ω) ‖∇h(u− uex)‖L2(Ω)

ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) Order ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) Order
0.25 3.19× 10−2 3.19× 10−2 3.19× 10−2 - 1.10 1.10 1.10 -
0.16 1.22× 10−2 1.22× 10−2 1.22× 10−2 2.2 4.91× 10−1 4.91× 10−1 4.91× 10−1 1.8
0.1 3.13× 10−3 3.13× 10−3 3.13× 10−3 2.9 2.08× 10−1 2.08× 10−1 2.08× 10−1 1.8
0.065 4.58× 10−4 4.58× 10−4 4.58× 10−4 4.5 7.46× 10−2 7.46× 10−2 7.46× 10−2 2.4
0.04 9.05× 10−5 9.05× 10−5 9.05× 10−5 3.3 2.82× 10−2 2.82× 10−2 2.82× 10−2 2.0
0.025 2.16× 10−5 2.16× 10−5 2.16× 10−5 3.0 1.13× 10−2 1.13× 10−2 1.13× 10−2 1.9

Table 5.6.: The L2-norm and H1-semi-norm velocity error at T = 1, computed using BDM2 elements and the
constant time step τ = 2×10−3. The convergence orders are computed from the ARS(2,2,2) results.

hmax ‖u− uex‖L2(Ω) ‖∇h(u− uex)‖L2(Ω)

ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) Order ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) Order
0.25 4.51× 10−4 4.51× 10−4 4.51× 10−4 - 2.42× 10−2 2.42× 10−2 2.42× 10−2 -
0.16 7.57× 10−5 7.57× 10−5 7.57× 10−5 4.0 4.99× 10−3 4.99× 10−3 4.99× 10−3 3.5
0.1 6.88× 10−6 6.88× 10−6 6.88× 10−6 5.1 7.35× 10−4 7.35× 10−4 7.35× 10−4 4.1
0.065 4.07× 10−7 4.07× 10−7 4.07× 10−7 6.6 1.02× 10−4 1.02× 10−4 1.02× 10−4 4.6
0.04 3.14× 10−8 3.14× 10−8 3.14× 10−8 5.3 1.42× 10−5 1.42× 10−5 1.42× 10−5 4.1
0.025 3.00× 10−9 3.00× 10−9 3.00× 10−9 5.0 2.26× 10−6 2.26× 10−6 2.26× 10−6 3.9

Table 5.7.: The L2-norm and H1-semi-norm velocity error at T = 1, computed using BDM4 elements and the
constant time step τ = 2×10−3. The convergence orders are computed from the ARS(2,2,2) results.

hmax ‖u− uex‖L2(Ω) ‖∇h(u− uex)‖L2(Ω)

ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) Order ARS(2, 2, 2) ARS(4, 4, 3) BPR(5, 3, 3) Order
0.25 2.19× 10−8 2.19× 10−8 2.19× 10−8 - 2.14× 10−6 2.14× 10−6 2.14× 10−6 -
0.16 7.94× 10−10 7.94× 10−10 7.94× 10−10 7.4 1.17× 10−7 1.17× 10−7 1.17× 10−7 6.5
0.1 1.07× 10−11 1.07× 10−11 1.07× 10−11 9.2 1.96× 10−9 1.96× 10−9 1.96× 10−9 8.7
0.065 4.53× 10−13 5.12× 10−13 4.30× 10−13 7.3 8.10× 10−11 8.63× 10−11 7.65× 10−11 7.4
0.04 7.00× 10−13 7.58× 10−13 6.62× 10−13 -0.9 1.11× 10−10 1.25× 10−10 9.74× 10−11 -0.6
0.025 8.34× 10−13 8.61× 10−13 7.96× 10−13 -0.4 1.79× 10−10 2.10× 10−10 1.51× 10−10 -1.0

Table 5.8.: The L2-norm and H1-semi-norm velocity error at T = 1, computed using BDM8 elements and the
constant time step τ = 2×10−3. The convergence orders are computed from the ARS(2,2,2) results.
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Figure 5.9.: Development of the L2-norm and H1-semi-norm velocity error on the fine mesh with BDM8 ele-
ments. The dotted lines indicate the time step τ = 10−3 and dashed lines τ = 10−4.
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Figure 5.10.: The L2-norm and H1-semi-norm velocity error on the fine mesh with BDM8 elements. The dotted
lines indicate the time step τ = 1/700 and dashed lines τ = 1/7000.

and τ = 10−4 for the multistep methods and for the Runge-Kutta methods we use time steps
1.4 times larger. This is because we established above that in the CFL stability limit the
ARS(2,2,2) method allows time steps which are 1.4 times larger than the stable time steps for
the SBDF2 method. Note that τ = 10−3 is close to the stability limit of the SBDF3 scheme
on the fine mesh we established earlier.
The development of the L2-norm and H1-semi-norm velocity error over time for the IMEX

multistep methods and IMEX Runge-Kutta methods can be seen in Figure 5.9 and Figure 5.10
respectively. We see that all IMEX schemes considered give us nearly identical results with
both time steps. If we look at Figure 5.11, we can observe that the smallest error was obtained
by the CNAB(1/16) scheme, however, the difference between the schemes is negligible. We also
clearly observe the mild exponential growth in the error as expected from Theorem 2.24. The
exponential growth stops at close to T = 34 where the FEM solution no longer has standing
vortex structure of the exact solution and we see in Figure 5.12 that at T = 40 the four vertices
have merged into two vertices and the solution no longer has the structure of the analytical
solution.
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Figure 5.11.: The results from Figure 5.9 and Figure 5.10 zoomed to the time interval [10.9, 14.1].

Figure 5.12.: Velocity magnitude of the FEM solution at t = 10, 20, 30, 40 computed on the fine mesh with
BDM8 finite elements.

5.2.3. Laminar Flow Past a Cylinder
As a second problem we will consider the benchmark problem from the DFG Priority Research
Program "Flow Simulations on High Performance Computers" which is formulated in [STD+96]
and denoted by the authors as "2D-3". Here the laminar flow around a cylinder inside a channel
is considered over a fixed period of time with a time dependent inflow profile.
The domain Ω is a rectangle without a circular obstacle close to the vertical center of the

channel
Ω = [0, 2.2]× [0, 0.41]\{x | ‖x− (0.2, 0.2)‖2 ≤ 0.05}.

The boundary is composed of three sections. The inflow boundary Γin = {x ∈ Ω | x1 = 0}, the
outflow boundary Γout = {x ∈ Ω | x1 = 2.2} and the solid wall boundary Γwall = ∂Ω\Γin∪Γout.
On the inflow boundary we prescribe a time-dependent parabolic inflow profile with Dirichlet
boundary conditions. This is given by

u(0, x2; t) = sin(πt8 ) · 4
(3

2 · u
)
· x2(0.41− x2)

0.412

with a mean velocity u. On the outflow boundary we prescribe homogeneous Neumann bound-
ary conditions (−ν∇u+pI) ·n = 0 and no-slip Dirichlet boundary conditions on the remaining
wall boundary Γwall. The viscosity is fixed as ν = 10−3. With the reference length L = 0.1
being the diameter of the obstacle and the reference velocity V = 1 being the maximum of the
mean velocity on the inflow profile we get the Reynolds number Re = 100.
To discretise the domain we use four triangulations and BDM8, H(div)-conforming, point-

wise divergence free finite elements. The elements on the circular obstacle are then curved to
give a piecewise 8th order approximation of the circle. The coarsest mesh resolves the circular
obstacle with hcirmax = 0.03 and hvolmax = 0.08 in the volume while on the finest mesh we have
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Figure 5.13.: Coarsest mesh for the computation of the reference values of the benchmark problem 2D-3.

hcirmax = 0.001 and hvolmax = 0.02. The coarsest of these meshes can be seen in Figure 5.13. The
upwinding parameter is again γ = 1 while the symmetric interior penalty parameter is now
chosen as σ = 4k2.
For the temporal discretisation we will not consider the full set of IMEX schemes. We

have seen in Section 5.2.2 that the temporal error can dominate for the SBDF1 scheme even
for a temporally simple problem. We shall therefore not consider this any further. Within
the IMEX multistep schemes of expected order two we will only consider the SBDF2 scheme
and the CNAB(1/16) method. This is because the SBDF2 scheme is conceptually simple and
involves no explicit evaluation of the Stokes part while the CNAB(1/16) gave the marginally
best results with large T for the planar vortex problem. Additionally, we will still consider
the SBDF3 method in order to check whether it presents any advantages when dealing with
temporally more challenging problems compared to the planar vortex problem. Within the
IMEX Runge-Kutta regime we will use all three methods considered in the previous example.
For each discretisation we consider a large time step close to the stability limit and one small
time step.
For this benchmark problem there are five quantities of interest. We consider the forces

acting on the circular obstacle, given by the drag and lift coefficients defined as

cD(t) = 2
Lu(t)2

∫
Γcirc

(
ν
∂u(t)
∂n + pn

)
· ex ds

cL(t) = 2
Lu(t)2

∫
Γcirc

(
ν
∂u(t)
∂n + pn

)
· ey ds

where L = 0.1 is the diameter of the obstacle, Γcirc is the boundary of the circle and ex, ey
are the unit vectors in the x- and y-direction respectively. The reference values are then the
maximal drag and lift coefficients over time as well as the time at which they are attained.
Furthermore, we compute the pressure difference of the solution at the front and back of the
disk

∆p(t) = p(0.15, 0.2; t)− p(0.25, 0.2; t).

The reference value is then ∆p(8).
We compare our results to those obtained by John and Rang [JR10] using adaptive time-

stepping and QQQ2/Pdisc
1 H1-conforming finite elements. Unlike [JR10] we compute the boundary

integrals for the reference values directly rather than using a volume term which is equivalent to
the boundary term in the H1-conforming case. This is possible since such boundary integrals
are necessary for dG- and H(div)-methods and therefore implemented in NGSolve.
The curves for the quantities of interest resulting from the SBDF2 scheme on the coarsest

mesh are shown in Figure 5.14 and the velocity solution computed on the same mesh using
the SBDF3 method is shown in Figure 5.15. Qualitatively, these results match the reference
results, c.f. [Joh16, Example D.9].
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Figure 5.14.: Curves of the quantities of interest for the benchmark problem 2D-3. Results from the coarsest
mesh with BDM8 elements and largest time step using the SBDF2 scheme.

The results from our computations are shown in Table 5.9. We see that the BPR(5,3,3)
method does not lead to satisfactory results and both mesh and time step refinement gives no
better results with this scheme. For all other schemes we observe that we obtain very similar
results compared to the reference results. We also see that the spatial resolution is the major
contributing factor concerning the accuracy of the results. The results on the finest mesh agree
with the reference results up to order 10−5 in tD,max and cD,max, order 10−4 in tL,max, order
10−5 in cL,max and order 10−7 in ∆p(8).

Remark 5.8 (Upwinding). We have conducted all numerical experiments shown in this and the
previous sections with the upwinding term included by setting γ = 1 in the dG convective
term. Our experience in this thesis has shown that this term is necessary for the planar vortex
problem together with large time steps but not relevant for smaller time steps. We observed
that the L2-error was marginally smaller without upwinding for small times t, c.f. Figure 5.16.
For the 2d-3 benchmarking problem we did not observe the necessity of the upwinding term
even for large time steps.

5.3. Numerical Examples in Three Dimensions

We will now consider numerical examples in 3D to see how the time-integration schemes per-
form in this situation. Here the CFL bound on the time step and the memory efficiency of the
schemes becomes more important as in three dimensions an internal degree of freedom usu-
ally has more neighbouring degrees of freedom compared with the situation in two dimensions
[Joh16]. Therefore the linear systems are less sparse, requiring more memory and it usually
takes longer to solve these systems. This makes larger time steps even more important.
As we have seen above, the SBDF2 method allows on the one hand the largest time steps

and on the other hand gives results as accurate as any the other second order IMEX multistep
scheme. It is therefore the only second order IMEX multistep scheme we will consider here.
Furthermore, we will consider the SBDF3 scheme as we have not yet seen any difference between
this and the second order schemes. For the IMEX Runge-Kutta methods we have seen that
the BPR(5,3,3) method can lead to unsatisfactory results. Hence, we will only continue to
consider the ARS IMEX Runge-Kutta methods.
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Figure 5.15.: The velocity solution of the problem 2D-3 at time t = 2, 4, 5, 6, 7 and 8. Computed on the coarsest
mesh with BDM8 elements using the SBDF3 time-integration and the time step τ = 1/3000.
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Method hvol
max/h

cir
max τ tD,max cD,max tL,max cL,max ∆p(8)

SBDF2 0.08/0.03 1/2000 3.9365 2.9509305244 5.691 0.4780164260 -0.1114870980
0.08/0.03 1/8000 3.9365 2.9509294999 5.69125 0.4778435307 -0.1115040793
0.04/0.01 1/3000 3.93633 2.9504925238 5.693 0.4778986650 -0.1116266081
0.04/0.01 1/8000 3.93625 2.9504921191 5.693 0.4778292496 -0.1116325692
0.03/0.005 1/4000 3.93625 2.9506955148 5.69275 0.4779168548 -0.1116175367
0.03/0.005 1/10000 3.9363 2.9506952931 5.692875 0.4778827308 -0.1115956342
0.02/0.001 1/10000 3.9363 2.9509039205 5.6928 0.4778977300 -0.1116160903

CNAB(1/16) 0.08/0.03 1/2500 3.9364 2.950929846 5.6912 0.4779023524 -0.1114980666
0.08/0.03 1/8000 3.9365 2.9509294730 5.69125 0.4778389607 -0.1115045057
0.04/0.01 1/4500 3.93622 2.9504921772 5.69288 0.4778390898 -0.1116316386
0.04/0.01 1/8000 3.93625 2.9504920928 5.693 0.4778247174 -0.1116329385
0.03/0.005 1/5500 3.936364 2.9506953349 5.692909 0.4778856147 -0.1116201964
0.03/0.005 1/10000 3.9363 2.950695276 5.6929 0.4778756872 -0.1116210979
0.02/0.001 1/10000 3.9363 2.9509039028 5.6928 0.4778948273 -0.1116163315

SBDF3 0.08/0.03 1/3000 3.93633 2.9509294191 5.69133 0.4778310846 -0.1115052133
0.08/0.03 1/8000 3.9365 2.9509294323 5.691375 0.4778320619 -0.1115052005
0.04/0.01 1/5500 3.93636 2.9504920504 5.693091 0.4778172798 -0.1116335411
0.04/0.01 1/8000 3.93625 2.9504920531 5.693 0.4778178578 -0.1116335398
0.03/0.005 1/7000 3.936286 2.95069525 5.692857 0.4778713176 -0.1115930670
0.03/0.005 1/10000 3.9363 2.950695251 5.6929 0.4778713294 -0.1116214888
0.02/0.001 1/10000 3.9363 2.9509038756 5.6928 0.4778904428 -0.1116167246

ARS(2,2,2) 0.08/0.03 1/1300 3.936154 2.9509426433 5.690769 0.4775244248 -0.1115253178
0.08/0.03 1/5300 3.936415 2.9509339066 5.691132 0.4777266511 -0.1115119203
0.04/0.01 1/2000 3.936 2.9504994611 5.6925 0.4775783113 -0.1116498784
0.04/0.01 1/5300 3.936226 2.9504949193 5.69283 0.4777117097 -0.1116406309
0.03/0.005 1/2600 3.936154 2.9507009303 5.692692 0.4776776831 -0.1116345357
0.03/0.005 1/6600 3.936212 2.9506975644 5.692727 0.4777867194 -0.1116270960
0.02/0.001 1/6600 3.936212 2.9509060637 5.692727 0.4778049750 -0.1116223963

ARS(4,4,3) 0.08/0.03 1/1300 3.936154 2.9509371677 5.690769 0.4775978114 -0.1115221105
0.08/0.03 1/3600 3.936111 2.9509333853 5.691389 0.4777423376 -0.1115111325
0.04/0.01 1/2500 3.936 2.9504953213 5.6928 0.4776907140 -0.1116424726
0.04/0.01 1/3600 3.935833 2.9504944000 5.693056 0.4777270690 -0.1116397483
0.03/0.005 1/3200 3.93625 2.9506978462 5.692813 0.4777729232 -0.1116282958
0.03/0.005 1/4450 3.936264 2.9506971423 5.692747 0.4778016551 -0.1116262324
0.02/0.001 1/4450 3.936264 2.9509056346 5.692747 0.4778199441 -0.1116215338

BPR(5,3,3) 0.08/0.03 1/1150 4.071305 2.9515422801 5.690435 0.4773333460 0.0503485002
0.08/0.03 1/3000 4.069667 2.9514740971 5.691 0.4774839120 0.0495976333
0.04/0.01 1/2100 4.070952 2.9510836483 5.692381 0.4774421594 0.0496965050
0.04/0.01 1/3000 4.070667 2.9510613594 5.692667 0.4774834432 0.0494515015
0.03/0.005 1/2650 4.070943 2.9512771026 5.692453 0.4775250147 0.0495495227
0.03/0.005 1/3800 4.070526 2.9512576411 5.692632 0.4775570657 0.0493244109

Ref. [JR10] [5 · 10−4, 0.1] 3.93625 2.950918381 5.6925 0.47787543 -0.11161567

Table 5.9.: Results for the reference values of the benchmark problem "Flow Around a Cylinder" 2D-3 using
IMEX multistep methods and IMEX Runge-Kutta methods together with BDM8 elements.
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Figure 5.16.: Error development of the planar vortex computed on the fine mesh using BDM8 elements and a
time step τ = 10−4 for the SBDF2 scheme with and without upwinding.

5.3.1. General Set-up

The dG-parameters are taken to be γ = 1 and σ = 4k2 as before in the computations in Section
5.2.3. The initial mesh of the cube consists of 6 tetrahedra (this is the coarsest tetrahedral
decomposition possible). To obtain finer meshes we take the previous mesh and refine each
tetrahedron into 8 tetrahedra. As a result all meshes considered here are structured.

5.3.2. Ethier-Steinman Problem

We consider the analytical solution to the Navier-Stokes equations derived by Ethier and
Steinman in [ES94]. For Ω = [−1, 1]3, the initial state is given by

u0(x, y, z) = −a

eax sin(ay ± dz) + eaz cos(ax± dy)
eay sin(az ± dx) + eax cos(ay ± dz)
eaz sin(ax± dy) + eay cos(az ± dx)


and

p0(x, y, z) = −a
2

2
[
e2ax + e2ay + e2az + 2 sin(ax± dy) cos(az ± dx)ea(y+z)

+ 2 sin(ay ± dz) cos(ax± dy)ea(z+x)

+ 2 sin(az ± dx) cos(ay ± dz)ea(x+y)
]

for real coefficients a and d. Like the planar vortices this solution was built such that the
convective term balances with the pressure gradient and in the Navier-Stokes context the
viscous term is balanced by the temporally unsteady term. For ν > 0, the solution is then
given by

u(x, t) = u0(x)e−νd2t and p(x, t) = p0(x)e−2νd2t. (5.7)

As in [ES94; DE11], we take a = π/4 and d = π/2 in (5.7) and the resulting velocity field can be
seen in Figure 5.17. We choose the kinematic viscosity to be ν = 0.01, and on the boundary
we impose Dirichlet boundary conditions on all 6 faces of the cube according to the analytical
solution.
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Figure 5.17.: Velocity field and pressure iso-surfaces of the Ethier-Steinman solution at t = 0 with a = π/4 and
d = π/2.
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Figure 5.18.: The largest stable time step for the Ethier-Steinman problem. Computed using BDM elements of
order k on a mesh consisting of 6 tetrahedra (right) and using on BDM4 elements (left) respectively.

Stability. We investigate if we observe different behaviour in 3D with respect to the CFL
condition compared to our computations in 2D, i.e. whether the scaling with respect to k and
hmax is as before. For this we consider the Ethier-Steinman problem (5.7) once on the initial
mesh with BDM elements of order 4 ≤ k ≤ 10 and once on a series of uniform refined meshes
with BDM4 elements.
The results can be seen in Figure 5.18. We observe that both SBDF schemes scale with

respect to the polynomial order k with the factor 3/2 as in the 2D case. However, for the
ARS(2,2,2) we observed a linear scaling with respect to the polynomial order k. It is unclear
why the CFL scaling of the IMEX Runge-Kutta schemes is weaker here than in the earlier,
convection dominated two dimensional case, and the heuristic information from the analysis
above does not help to explain this.
Due to the different scalings with respect to k the ARS(2,2,2) allowed for time steps between

1.4 (at k = 4) and 2 (at k = 10) times larger than for SBDF2 while the ARS(4,4,3) method
allowed for time steps between 2 and 2.5 times larger than SBDF2.
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Figure 5.19.: The full L2(0, 1;L2(Ω))-norm (left) and L2(0, 1;H1(Ω))-norm (right) velocity error for the modified
Ethier-Steinman problem. Computed using BDM8 elements on a unstructured tetrahedral mesh
with hmax = 0.8 over a series of time steps.

5.3.3. Modified Ethier-Steinman Problem
The Ethier-Steinman benchmarking solution (5.7) has a mild exponential factor in time similar
to the planar vortex problem in Section 5.2. To introduce larger variations in time making the
time-integration more difficult we modify the Ethier-Steinman solution with respect to time
so as to preserve the initial condition and the balance of the convective term with the pressure
gradient by multiplying the velocity with a cosine function in time. The aim is to see the
temporal order of the considered IMEX schemes which we were unable to observe before.

The new analytical solution reads

u(x, t) = u0(x) cos(2πt)e−νd2t and p(x, t) = p0(x) cos2(2πt)e−2νd2t. (5.8)

Clearly the time derivative can no longer be balanced by the diffusion term. Using the product
rule we see

∂tu(x, t) = u0(x)(−νd2 cos(2πt)e−νd2t − 2π sin(2πt)e−νd2)
= −ν∆u− u0(x)2π sin(2πt)e−νd2t.

So to fulfil the incompressible Navier-Stokes equations we have to introduce a body forcing
term

f(x, t) = −u0(x)2π sin(2πt)e−νd2t.

We shall refer to this problem as the modified Ether-Steinman problem.

Temporal Convergence. We consider the modified Ethier-Steinman problem over the time
interval [0, 1]. We take a = π/4, d = π/4 and ν = 0.01 in (5.8) as before. On the boundary
we again impose Dirichlet boundary conditions according to the exact solution. For this
temporal convergence study we use BDM8 elements on an unstructured tetrahedral mesh with
hmax = 0.8 containing 169 tetrahedra. The time steps are chosen between 1/500 and 1/13000 for
all four schemes considered here so as to see temporal convergence of the different methods.
The results are shown in Figure 5.19. Unlike the planar vortex example in Subsection

5.2.2 we observe that the SBDF2 and ARS(2,2,2) schemes are of second order as expected.
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Similarly [BPR13] observed second order convergence for the ARS(2,2,2) method applied to a
hyperbolic system of conservation laws with diffusive relaxation. However for the ARS(4,4,3)
scheme we only observe convergence of order 5/2. This compares with [BPR13], where an order
of convergence between 2.4 and 3.3 was observed for the ARS(4,4,3) method. The SBDF3 only
converges with quadratically with the time step. In fact, the SBDF3 method gives virtually
identical results as SBDF2. It is not clear why we observe this drop in the order of the method
since the k-step BDF schemes applied to DAE systems (fully implicit) are of order k for k ≤ 6
[HW96; KM06].
With respect of accuracy we see that the ARS(2,2,2) method gives results which are more

accurate by an order of magnitude compared to SBDF2. Furthermore, the ARS(4,4,3) method
gives results which are up to an order of magnitude more accurate than the ARS(2,2,2) results.
To take into account the additional effort, we compare the results from the ARS(2,2,2) method
with a time step twice as large as for SBDF2. We find that the ARS(2,2,2) results are more
accurate by a factor of 4.5 in the L2(L2)-error and a factor of 2 in the L2(H1)-error. However,
the ARS(4,4,3) results are more accurate by a factor between 8 and 21 and between 2 and 8
with respect to the L2(L2) and L2(H1) errors compared to SBDF2 when considering the same
computational effort, i.e. time steps four times as large.
Remark 5.9 (Upwinding). As in the 2d case all results presented here were computed with the
upwinding term in the discretised convection operator included with γ = 1. In practice we
observed for the 3d computations considered here that the upwinding term was necessary in
the CFL stability limit, however, with a time step 1.1 times below this there was no significant
difference between the results with and without the upwinding term.

5.4. Assessment of the Schemes
We summarise the results obtained in Sections 5.2 and 5.3:

SBDF1
• Allows the largest time steps in the CFL limit for all multistep methods on coarse
meshes and for 2 ≤ k ≤ 10.
• CFL scaling τ ≤ C(h/k)1.5 better with respect to k but worse with respect to h
than expected.
• The temporal error can dominate for problems with simple behaviour in time.
• First order convergence in time of the scheme was observed.

Second order multistep schemes
• We did not observe any significant difference between the schemes concerning ac-
curacy.
• CFL bound τ ≤ Ch/k1.5 observed in both the convection dominated 2d case and

diffusion dominated 3d case, i.e. scaling with respect to h as expected and better
with respect to k than expected.
• The SBDF2 scheme allows the largest time step in the CFL limit.
• Second order convergence with respect to the time step was observed for the SBDF2
scheme for the modified Ethier-Steinman problem.
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SBDF3
• With respect to accuracy, the SBDF3 method performed similarly to the SBDF2

method throughout.
• Same CFL scaling as for second order schemes but smaller constant than SBDF2,
leading to smaller time steps in the CFL limit.
• Order reduction with respect to the time step observed so that we only obtained
second order convergence with the additional effort of computing the matrix and
preconditioner for the SBDF3 steps and having to use smaller time steps compared
with SBDF2.

ARS(2,2,2)
• Second order convergence in time was observed.
• Since the first step is second order this method can give slightly more accurate
results for the same effort compared with SBDF2.
• The CFL restriction results in a higher computational cost compared with the
SBDF2 method in the stability limit.
• CFL condition τ ≤ Ch/k1.5 observed in convection dominated case but τ ≤ Ch/k
observed in the diffusion dominated case.
• More accurate than SBDF2 by a factor 4.5 in the L2-error and a factor 2 in the H1-
error for the same computational cost observed for the modified Ethier-Steinman
problem.

ARS(4,4,3)
• Order of 5/2 observed in practice.
• Results more accurate than SBDF2 by an order of magnitude for the same computa-

tional cost observed for temporally challenging modified Ethier-Steinman problem.
• Higher computational cost than SBDF3 in the CFL stability limit.

BPR(5,3,3)
• Results for the 2d-3 benchmarking problem where inaccurate and did not converge
towards reference results.

We can therefore discard a number of methods. Due to the order reduction of the SBDF3
scheme and the lack of accuracy of the BPR(5,3,3) method we can reject using either of these
methods for divergence-free Navier-Stokes computations.
For problems which present simple behaviour in time (such as a mild exponential term) the

temporal error dominated in the case of the SBDF1 scheme when a high spatial resolution was
considered. This scheme should therefore not be used.
Between the second order IMEX multistep schemes we did not observe any significant differ-

ences between the individual schemes with respect to accuracy. In the non-incremental form
the CNAB(δ) schemes require us to store the Stokes matrix A in addition to the convection
operator C and the system matrix M∗. These schemes therefore require more memory com-
pared with SBDF2 in a non-incremental implementation. These schemes also require smaller
time steps in the CFL limit compared with SBDF2. We therefore come to the conclusion
that the SBDF2 scheme is the best scheme in the regime of second order multistep methods.
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Computationally it is the cheapest method and conceptually very simple, combining the BDF2
method for the Stokes part with a second order extrapolation for the convection term.
In a straight forward implementation of the methods, as we considered in this Chapter,

IMEX Runge-Kutta methods also present advantages in the following situations. In temporally
challenging problems we have seen that IMEX Runge-Kutta methods give more accurate results
for the same computational cost. Even though the ARS(4,4,3) method is not of 3rd order in
practice, we have seen that it gives results which are an order of magnitude more accurate
than SBDF2 for the same computational effort. Even ARS(2,2,2) presented slightly better
results than SBDF2 for the modified Ethier-Steinman problem. We attribute this to the first
time step which in the case of IMEX Runge-Kutta schemes is a higher order approximation
rather than a first order approximation used to compute the first time step in the second order
IMEX multistep methods. This also means that IMEX Runge-Kutta methods use less memory
compared with IMEX multistep schemes if the multistep scheme is not carefully implemented.
As a result the code for an IMEX Runge-Kutta implementation can be structured more easily
in a simple implementation. However, in situations simpler with regard to time the need to
solve multiple linear systems per time step in combination with the CFL condition makes
IMEX Runge-Kutta methods require computational effort in the CFL limit compared with
SBDF2 for the same level of accuracy.
As a result we conclude that each of the SBDF2, ARS(2,2,2) and ARS(4,3,3) methods can

be an effective method depending on the given problem. It is therefore advantageous to test
each of these schemes and then to take a higher order scheme if significant differences can be
observed in the results.

Remark 5.10. The theoretical considerations we have used to study IMEX multistep and IMEX
Runge-Kutta methods for the Navier-Stokes equations are limited. In Sections 3.2–3.3 and
4.2 we used a scalar test-problem to obtain stability in the sense that the eigenvalue of the
scalar problem has to be contained in the stability domain of the time stepping method. The
generalisation of this then takes the eigenvalue of the scalar problem and treats it as the
maximal eigenvalue of the multidimensional problem. This approach assumes that all the
operators are linear to have the concept of eigenvalues but the convection operator we treat
explicitly is non-linear. Consequently, this only shows which schemes should have the best
constant in the time step restriction. The CFL condition for stability in Section 5.1 brought us
closer to a practical time step restriction. In practice we observed that this bound seems sharp
with respect to h as already noted by [JL04; KKW17]. Furthermore, we also observed that
this bound is not sharp with respect to the polynomial order k, a result previously observed
by [KKW17]. However, the CFL bound was only shown for a scalar transport problem rather
than for the full Navier-Stokes problem.
Essentially the full discrete analysis of the IMEX multistep and IMEX Runge-Kutta schemes

applied to the Navier-Stokes equations is missing. For the first order SBDF1 (or impli-
cit/explicit Euler) method applied to the incompressible Navier-Stokes equations a fully dis-
crete analysis has been conducted in [He08]. For the second order CNAB method fully discrete
analysis has been conducted in [HS07; Ton04; MT98]. Unfortunately, the stability analysis in
these papers assumes that the time step is bounded by negative powers of the viscosity and
ignores any dependence on the polynomial order k of the FEM space.
In our literature research we did not find any fully discrete analysis for IMEX Runge-Kutta

methods for the Navier-Stokes equations. This is therefore an open problem. Another open
problem is a discrete analysis giving a sharp stability bound on the time step to give the
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stability bounds observed in practice a theoretical foundation.
Remark 5.11 (Other time-stepping techniques for the Navier-Stokes equations). There is a wide
range of alternative time-integration approaches for the incompressible Navier-Stokes equations
besides the additive IMEX splittings we have considered in this thesis. Within an IMEX
regime, i.e. treating the Stokes part implicitly and the convection part explicitly, multiplicative
decomposition methods such as the operator-integrator-factor splitting introduced by [MPR90]
and used in [LS16] are possible. This method presents the advantage over additive IMEX
schemes that a different time step can be used for the implicit and explicit part since the two
part are solved in separate steps. This circumvents the CFL condition of the explicit part
restricting the entire method which was the case for our schemes.
Other methods include projection methods such as pressure-correction methods. An over-

view of projection methods for the Navier-Stokes equations can be found in [GMS06]. Here
the the velocity and pressure are advanced in separate sub-steps such that the saddle-point
structure of the coupled system is avoided. A method which combines the velocity-pressure
splitting approach and the IMEX approach to to diffusion and convection was presented in
[KIO91]. We note however that such methods which split the velocity and pressure entirely
should not be used in conjunction with pointwise divergence FEM, as presented in Chapter
2, as it is the coupling between the velocity and pressure is the essential component which
enforces the divergence constraint pointwise, c.f. Lemma 2.18.
A different type of method which are referred to as IMEX methods by [Joh16] are schemes

which do not treat the entire convective term explicitly. Instead the convective term in lin-
earised by substituting the advection velocity field with some extrapolation term consisting of
previous velocities.
Fully implicit methods are also possible. In this case Newton’s method or a Picard iteration

can be used to solve the non-linear system arising in each time step, c.f. for example [Joh16]
for a comparison of these two approaches.
Related to Runge-Kutta methods are Rosenbrock-type methods [HW96]. The are essentially

Newton linearisations of DIRK methods, where the Jacobian is only updated once per time
step rather than at every intermediate stage.





6. Conclusion and Outlook

In this thesis we considered implicit-explicit time splitting schemes for the temporal discret-
isation of the incompressible Navier-Stokes equations in connection with H(div)-conforming
exactly divergence free FEM. In this chapter we summarise the most important aspects focused
on in this thesis, cover the results attained and explain some of the remaining problems.

Summary

The Navier-Stokes equations. We began in Chapter 1 by introducing the incompressible
Navier-Stokes equations and covering notation and results from Functional Analysis such as
weak derivatives and the Ladyzhenskaya-Babuška-Brezzi condition in an abstract setting. We
then formulated the weak form of the Navier-Stokes with both time-independent and time-
dependent test functions and covered the equivalence of these two formulations. After this we
cited the solvability of the Navier-Stokes equations in the weak formulation and remarked on
the open problems connected with this.

Spatial semi-discretisation. In Chapter 2 we covered the spatial semi-discretisation of the
incompressible Navier-Stokes equations using H(div)-conforming finite elements. We showed
that a function from the broken space H(div; Th) is also in the global space H(div; Ω) if and
only if the function is continuous in the normal component across element facets. As a result
we required dG formulations of the multi-linear forms in the weak formulation of the Navier-
Stokes equations. We therefore derived the Symmetric Interior Penalty method for the Poisson
problem, as a prototype for the diffusion term, showed that in the H(div)-conforming context
we can use the continuous velocity-pressure coupling term in the discrete setting and we derived
a dG formulation of the convective term with an optional upwind stabilisation term.
Having formulated the spatially semi-discrete Navier-Stokes problem we proved the existence

and uniqueness of solutions to this problem for inf-sup stable velocity-pressure space pairs.
Following this we cited recently proven error estimates and convergence results which are both
pressure- and Reynolds-semi-robust. We concluded the chapter with an overview of possible
finite element approximations of H(div) leading to inf-sup stable and pointwise divergence-free
methods.

IMEX Multistep schemes. Chapter 3 was concerned with the temporal discretisation of
the spatial semi-discrete Navier-Stokes equations using implicit-explicit multistep methods.
Following the cited literature we derived IMEX multistep schemes up to formal order three for
a general ODE consisting of two parts. We then analysed these schemes extending the work
of the literature cited to the SBDF3 method. Within this analysis we considered the stability
region of the explicit part of the schemes resulting from a scalar test problem as is customary
in ODE analysis and constructed the restrictions within this region necessary for A-stability of
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the implicit part of the method. Furthermore, we considered A(α)-stability of these schemes,
and constructed theoretical and numerical estimates of α.

IMEX Runge-Kutta methods. In Chapter 4 we discussed basic notation and definitions
regarding Runge-Kutta methods. We presented stiffly accurate IMEX Runge-Kutta methods
which we considered to be suitable for the application of pointwise divergence free FEM and
available in the cited literature. Of these we restricted ourself to a subset of schemes which
we could expect to be competitive with respect to the computational cost of the schemes. For
this remaining set we then computed the respective stability domains to give a qualitative
prediction of the relative time step restrictions.

Numerical experiments. In Section 5.1 we proved the CFL condition τ ≤ Ch/k2 by consider-
ing a scalar transport problem. Section A then covered some implementational aspects. With
Section 5.2 we began the numerical simulations to test the performance of the IMEX schemes
coved in Chapter 3 and Chapter 4 in practice. For this we used the finite element package
NGSolve. In two dimensions we considered the planar vortex problem at Re = 105 on a peri-
odic square and the Schäfer-Turek benchmark problem 2D-3 which contains a time-dependent
inflow boundary condition. In three dimensions we considered the Ethier-Steinman problem
as well as a modified version thereof to make the resulting problem challenging with respect
to the temporal integration.
For the first problem we observed that the expected CFL condition τ ≤ Ch/k2 was too strong

with respect to the polynomial order k and that in fact τ ≤ Ch/k3/2 gives a sharp bound on
the time step for stability. We also saw that of the multistep schemes considered the SBDF1
scheme allowed for the largest time step with respect to k and the SBDF2 scheme allowed
the largest time step within the second order multistep schemes throughout. Furthermore, we
showed that in the CFL stability limit IMEX Runge-Kutta methods allow larger time steps
than multistep schemes, however, the additional computational effort resulting from having to
solve additional linear systems in each time step cannot be offset by using larger time steps.
With respect to accuracy we showed that the SBDF1 scheme is a first order method. However,
for all higher order method we were unable to see the temporal order of convergence in this
example, since the CFL restriction on the time step resulted in the dominance of the spatial
discretisation error.
The second problem we computed in two dimensions we consider to be temporally more

challenging than the first due to the time dependent inflow profile. However, here we also did
not observe any significant difference between the results from the schemes used except for the
BPR(5,3,3) method wich yielded incorrect results. The main factor influencing the accuracy
of the results was the spatial discretisation.
With the Ethier-Steinman problem in three dimensions we looked again at the CFL sta-

bility limit in a diffusion dominated situation. Here we saw a milder CFL restriction for the
ARS(2,2,2) method than before with the scaling τ ≤ Ch/k. Nevertheless, the CFL scaling
with respect to h and k for the IMEX multistep schemes remained as in the two dimensional,
convection dominated case.

To establish the temporal order of the schemes expected to be of order greater than one,
something we were unable to verify with the previous problems, we constructed a problem with
more complicated behaviour in time. We achieved this by multiplying the Ethier-Steinman
velocity-solution with cos(2πt) and adapting the pressure and right-hand side such that this

https://ngsolve.org
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new velocity-pressure pair is a solution to the Navier-Stokes equations. Using this problem
we showed that the SBDF2 and ARS(2,2,2) methods are of order two as expected. However,
we also showed that the SBDF3 scheme is not of third order but only displays quadratic
convergence with respect to the time step. Additionally we showed that the ARS(4,4,3) is
also not of order three as expected but is of order 5/2. We also observed that the ARS(4,4,3)
method can yield results the error of which is an order of magnitude smaller than those given
by the SBDF2 method for the same computational effort.
Overall, we concluded in Section 5.4 with an assessment of the schemes presented in this

thesis. We concluded that dependant on the specific problem at hand (i.e. if the problem is
difficult with respect to the time integration or how memory intensive the problem is and how
much time is needed to assemble the matrices) the SBDF2, ARS(2,2,2) or ARS(4,4,3) scheme
can be the most effective IMEX method.

Open Problems
With respect to the fully discrete analysis of IMEX methods applied to the incompressible
Navier-Stokes equations further work is required. As we have discussed, fully discrete analysis
is available for the SBDF1 and CNAB schemes [He08; HS07; MT98; Ton04]. However, these
result do not immediately reflect the CFL stability condition observed in this thesis and other
works, e.g. [JL04; KKW17]. Also the currently available stability analysis does not account
for higher order methods which have been used in conjunction with IMEX methods in this
thesis and for example [KKW17; LS16; SJL+18; SLL+18]. With respect to the CFL condition
it would be interesting to find a Navier-Stokes flow example where the classical CFL condition
τ ≤ Ch/k2 is a sharp bound on the time step or alternatively, give a theoretical foundation for
the milder CFL condition τ ≤ Ch/k3/2 observed here and in the cited literature. Furthermore,
a theoretical explanation to the stronger CFL condition τ ≤ (h/k)3/2 of the SBDF1 scheme
remains an open problem.
We did not find any fully discrete analysis of IMEX Runge-Kutta methods applied to the

incompressible Navier-Stokes equations in the literature. This is therefore also a problem
which should be considered in further research. Here it would also be relevant to find the
reason behind the different CFL scalings of the ARS methods observed between the two and
three dimensional examples.
Concerning the order reduction observed for the SBDF3 and ARS(4,4,3) methods, a theoret-

ical understanding is missing. Furthermore, during our numerical simulations we successively
stopped considering methods which are more complicated or which gave inaccurate results
compared with the other remaining schemes. As a result we did not come to apply these
schemes to the temporally difficult problem and thus we did not observe the actual temporal
order of schemes such as the CNAB scheme. Investigating the order of the schemes we did not
consider in Section 5.3 which could be relevant for other applications also remains open for
further work.
Finally, a comparison regarding accuracy and computational effort in practice between the

IMEX approach taken here and other methods such as using Newton’s method or a Picard
iteration is yet to be done. Here it would be of further interest in which situations the different
approaches perform best.





Appendix A.

Implementational Aspects

A.1. IMEX Multistep Schemes
To avoid the modification of the right-hand side resulting from time-independent non-homogeneous
boundary conditions, as described in Section 2.2.1, we bring the schemes into incremental form
to homogenise the boundary conditions, i.e. we solve for ∆ui := un+1 − un.

SBDF1 Scheme. The SBDF1 scheme reads
1
τ

(
Mun+1 −Mun

)
+A(un+1, pn+1) + C(un) = 0

with the mass-matrix M , the Stokes matrix A and the convection operator C. Taking the
implicit terms to the left-hand side and the explicit terms to the right-hand side then yields

Mun+1 + τA(un+1, pn+1) = Mun − τC(un).

Denoting M∗ := M + τA we therefore get for the increment ∆un+1 := un+1 − un

M∗(∆un+1,∆pn+1) = −τ(A(un, pn) + C(un)).

Second order Schemes. General second order IMEX schemes are of the form
1
τ

(
a−1Mun+1 + a0Mun + a1Mun−1

)
+ b−1A(un+1, pn+1) + b0A(un, pn)

+b1A(un−1, pn−1) + c0C(un) + c1C(un−1) = 0.

Multiplying this by τ and taking all explicit terms to the right-hand side gives

a−1Mun+1 + τb−1A(un+1, pn+1) = −a0Mun − a1Mun−1 − τ
[
b0A(un, pn)

+ b1A(un−1, pn−1) + c0C(un) + c1C(un−1)
]
.

Denoting the right-hand side operator by M∗ we get

M∗(∆un+1,∆pn+1) = −(a−1 + a0)Mun − a1Mun−1

− τ
(
(b−1 + b0)A(un, pn) + b1A(un−1, pn−1) + c0C(un) + c1C(un−1)

)
.

Inserting the SBDF2 coefficients (a−1, a0, a1) = (3/2,−2, 1/2), (b−1, b0, b1) = (1, 0, 0) and
(c0, c1) = (2,−1) into the above equation then gives

M∗ = 3
2M + τA
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and for the right-hand side

1
2Mun − 1

2Mun−1 − τ
(
A(un, pn) + 2C(un)− C(un−1)

)
.

The CNAB coefficients (a−1, a0, a1) = (1,−1, 0), (b−1, b0, b1) = (1/2, 1/2, 0) and (c0, c1) =
(3/2,−1/2) then gives

M∗ = M + τ

2A

while on the right-hand side we have

−τ
(
A(un, pn) + 3

2C(un)− 1
2C(un−1)

)
.

The CNAB(1/16) coefficients (a−1, a0, a1) = (1,−1, 0), (b−1, b0, b1) = (9/16, 3/8, 1/16) and
(c0, c1) = (3/2,−1/2) then gives the matrix for the left-hand side as

M∗ = M + τ
9
16A

and for the right-hand side

−τ
(15

16A(un, pn) + 1
16A(un−1, pn−1) + 3

2C(un)− 1
2C(un−1)

)
.

The CNAB(1/4) coefficients (a−1, a0, a1) = (1,−1, 0), (b−1, b0, b1) = (3/4, 0, 1/4) and (c0, c1) =
(3/2,−1/2) then give

M∗ = M + τ
3
4A

and for the right-hand side we have

−τ
(3

4A(un, pn) + 1
4A(un−1, pn−1) + 3

2C(un)− 1
2C(un−1)

)
.

SBDF3 Scheme. As with the previous schemes we bring the SBDF3 scheme into incremental
form to homogenise the boundary conditions. The resulting scheme is

M∗(∆un+1,∆pn+1) = 7
6Mun − 3

2Mun−1 + 1
3Mun−2

− τ
(
A(un, pn) + 3C(un)− 3C(un−1) + C(un−2)

)
with

M∗ = 11
6 M + τA.

A.2. IMEX Runge-Kutta Schemes
As for the multistep schemes we bring the Runge-Kutta schemes into incremental form to
homogenise Dirichlet boundary-conditions. Here the increment is defined as ∆ui := ũi − un
where ũi is the i-th stage of the Runge-Kutta method. The resulting incremental form of a
general IMEX-RK method is described in Algorithm A.1.
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Data: un
1 Set ũ1 = un
2 for i = 2 to s+ 1 do
3 Evaluate Ci = C(ũi)
4 Evaluate Si = A(ũi)
5 Solve (M + τai+1,i+1A)∆ũi+1 = −τ∑i

j=1
{
âi+1,jCj + ai+1,jSj

}
− τai+1,i+1S1

6 Set ũi+1 = ∆ũi+1 + un
7 end
Result: un+1 = ũs+1

Algorithm A.1.: Incremental form of IMEX Runge-Kutta scheme using a stiffly accurate method.

A.3. Time dependent Dirichlet Data
For time-dependent Dirichlet boundary conditions we directly use the non-incremental form of
both the IMEX multistep and IMEX Runge-Kutta methods. In order to solve for homogeneous
Dirichlet conditions we split the velocity

un+1 = un+1
0 + un+1

D (A.1)

where u0 admits homogeneous Dirichlet conditions and un+1
D is some known velocity function

with the correct boundary conditions. We then solve for un+1
0 by taking M∗un+1

D to the
right-hand side, i.e.

M∗un+1
0 = f̃(un)−M∗un+1

D

where f̃(un) is the right-hand side resulting from the forcing term and all explicit terms of the
time stepping scheme. The new solution then obtained by inserting the two components back
into (A.1).
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