
Sparse phase retrieval of one-dimensional signals by Prony’s method

Robert Beinert1 and Gerlind Plonka2

1Institut für Mathematik und Wissenscha�liches Rechnen

Karl-Franzens-Universität Graz

2Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Gö�ingen

Abstract: In this paper, we show that sparse signals f representable as a linear combination of a

�nite number N of spikes at arbitrary real locations or as a �nite linear combination of B-splines

of orderm with arbitrary real knots can be almost surely recovered from O(N 2) intensity mea-

surements ��F[f ](ω) ��
2 up to trivial ambiguities. The constructive proof consists of two steps,

where in the �rst step the Prony method is applied to recover all parameters of the autocorre-

lation function and in the second step the parameters of f are derived. Moreover, we present

an algorithm to evaluate f from its Fourier intensities and illustrate it at di�erent numerical

examples.
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1. Introduction

Phase retrieval problems occur in many scienti�c �elds, particularly in optics and com-

munications. They have a long history with rich literature regarding uniqueness of so-

lutions and existence of reliable algorithms for signal reconstruction, see e.g. [SEC+15]

and references therein. Usually, the challenge in solving one-dimensional phase retrieval

problems is to overcome the strong ambiguousness by determining appropriate further

information on the solution signal. Previous literature on characterization of ambigui-

ties of the phase retrieval problemwith given Fourier intensities is often concerned with

the discrete problem, where a signal x inRN or CN has to be recovered. For an overview

on the complete characterization of nontrivial ambiguities is this discrete case as well as

on appropriate additional signal information we refer to our survey [BP15a] and further

recent results in [BP17, Bei17a, Bei17b].

Contribution of this paper. In this paper, we consider the continuous one-dimensional

sparse phase retrieval problem to reconstruct a complex-valued signal from the modu-

lus of its Fourier transform. Applications of this problem occur in electron microscopy,

wave front sensing, laser optics [SST04, SSD+06] as well as in X-ray crystallography and

speckle imaging [RCLV13]. For the posed problem, we will show that for sparse signals

the given Fourier intensities are already su�cient for an almost sure unique recovery,

and we will give a construction algorithm to recover f .
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We assume that the sparse signal is either of the form

f (t ) =

N
∑

j=1

c
(0)
j δ(t −Tj ) (1.1)

or, form > 0,

f (t ) =

N
∑

j=1

c
(m)
j Bj,m (t ) (1.2)

with c
(m)
j ∈ C, Tj ∈ R for j = 1, . . . ,N , where δ denotes the Delta distribution, and Bj,m

is the B-spline of orderm being determined by the (real) knots Tj < Tj+1 < . . . < Tj+m .

We want to recover these signals from the Fourier intensities | f̂ (ω) |2 and will show

that only O(N 2) samples are needed to recover f , i.e. all coe�cients c
(m)
j , j = 1, . . . ,N

and knots Tj , j = 1, . . . ,N +m, almost surely up to trivial ambiguities. The proposed

procedure is constructive and consists in two steps. In a �rst step, we employ Prony’s

method in oder to recover all parameters of the (squared) Fourier intensity function
��F[f ](ω) ��

2. In a second step, we recover the parametersTj and the complex coe�cients

cj that determine the desired signal.

Related work on sparse phase retrieval. While the general phase retrieval problem

has been extensively studied for a long tome, the special case of sparse phase retrieval

grew to a strongly emerging �eld of research only recently, particularly often connected

with ideas from compressed sensing. Most of the papers consider a discrete setting,

where the N -dimensional real or complex k-sparse vector x has to be reconstructed

from measurements of the more general form |〈aj , x〉|
2 with vectors aj forming the rows

of a measurement matrix A ∈ CM×N . The needed numberM of measurements depends

on the sparsity k .

If A presents rows of a Fourier matrix, this setting is close to the sparse phase re-

trieval problem considered in optics, see e.g. [JOH13]. Here the problem is �rst rewritten

as (non-convex) rank minimization problem, then a tight convex relaxation is applied

and the optimization problem is solved by a re-weighted l1-minimization method. The

related approach in [ESM+15] employs the magnitudes of the short-time Fourier trans-

form and applies the occurring redundancy for unique recovery of the desired signal. A

corresponding reconstruction algorithm is then based on an adaptation of the GESPAR

algorithm in [SBE14].

In [LV13], the measurement matrix A is taken with random rows and the PhaseLift

approach [CSV13] leads to a convex optimization problem that recovers the sparse so-

lution with high probability. Employing a thresholded gradient descent algorithm to a

non-convex empirical risk minimization problem that is derived from the phase retrieval

problem, Cai et al. [CLM16] have established the minimax optimal rates of convergence

for noisy sparse phase retrieval under sub-exponential noise.

Other papers rely on the compressed sensing approach to construct special frame
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vectors aj to ensure uniqueness of the phase retrieval problem with high probability,

where the number of needed vectors is O(k ), see e.g. [WX14, OE14, IVW17].

We would like to emphasize that all approaches employing general or random mea-

surement matrices in phase retrieval are quite di�erent in nature from our phase re-

trieval problem based on Fourier intensity measurements. In this paper, we want to stick

on considering Fourier intensity measurements because of their particular relevance in

practice.

Early attempts to exploit sparsity of a discrete signal for unique recovery using Fourier

intensities go back to unpublished manuscripts by Yagle [Yaga, Yagb], where a variation

of Prony’s method is applied in a non-iterative algorithm to sparse signal and image

reconstruction. Unfortunately, the algorithm proposed there not always determines the

signal support correctly.

The continuous one-dimensional phase retrieval problem has been rarely discussed

in the literature, see [Wal63, Hof64, RCLV13, Bei17b, BP15b]. In the preprint [RCLV13],

the authors also considered the recovery of sparse continuous signals of the form (1.1).

However, in that paper the sparse phase retrieval problem is in turn transferred into

a turnpike problem that is computationally expensive to solve. Moreover there exist

cases, where a unique solution cannot be found, see [Blo75]. Our method circumvents

this problem by proposing an iterative procedure to �x the signal support (resp. the

knots of the signal represented as a B-spline function) where the corresponding signal

coe�cients are evaluated simultaneously.

Organization of this paper. In Section 2, we shortly recall the mathematical formula-

tion of the considered sparse phase retrieval problem and the notion of trivial ambigui-

ties of the phase retrieval problem that always occur.

Section 3 is devoted to the special case of phase retrieval for signals of the form (1.1).

Using Prony’s method, we give a constructive proof for the unique recovery of the N -

sparse signal f up to trivial ambiguities using 3/2N (N − 1)+ 1 Fourier intensity measure-

ments. Here we have to assume that the knot di�erencesTj −Tk are pairwise di�erent.

In Section 4, the ansatz is generalized to the unique recovery of spline functions of

the form (1.2) where we need to employ 3/2(N +m)(N +m − 1) + 1 Fourier intensity

measurements. In Section 5, we present an explicit algorithm for the considered sparse

phase retrieval problem and illustrate it at di�erent examples.

2. Trivial ambiguities of the phase retrieval problem

We wish to recover an unknown complex-valued signal f : R → C of the form (1.1) or

(1.2) with compact support from its Fourier intensity |F[f ] | given by

��F[f ](ω) �� ≔
��� f̂ (ω)

��� ≔
����

∞
∫

−∞

f (t ) e−iωt dt
����

(ω ∈ R).
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Unfortunately, the recovery of the signal f is complicated because of the well-known

ambiguousness of the phase retrieval problem. Transferring [BP15a, Proposition 2.1] to

our setting, we can recover f only up to the following ambiguities.

Proposition 2.1. Let f be of a signal of the form (1.1) or a non-uniform spline function of

the form (1.2). Then

(i) the rotated signal eiα f for α ∈ R,

(ii) the time shifted signal f (· − t0) for t0 ∈ R,

(iii) and the conjugated and re�ected signal f (−·)

have the same Fourier intensity |F[f ] |.

Proof. Applying the properties of the Fourier transform, we have

(i) F[eiα f ] = eiα F[f ];

(ii) F[f (· − t0)] = e−iωt0 F[f ];

(iii) F[f [−·]] = F[f ].

Considering the absolute value of each equation yields the assertion. �

Although the ambiguities in Proposition 2.1 always occur, they are of minor interest

because of their close relation to the original signal. For this reason, we call ambigu-

ities caused by rotation, time shift, conjugation and re�ection, or by combinations of

these trivial. In the following, we will show that for the considered sparse signals the

remaining non-trivial ambiguities only occur in rare cases.

3. Phase retrieval for distributions with discrete support

Initially, we restrict ourselves to the recovery of signals f of the form (1.1) with complex-

valued coe�cients c
(0)
j and spike locationsT1 < · · · < TN .

f̂ (ω) =

N
∑

j=1

c
(0)
j e−iωTj (ω ∈ R),

and the known squared Fourier intensity |F[f ] |2 can be represented by

��� f̂ (ω)
���
2
=

N
∑

j=1

N
∑

k=1

c
(0)
j c

(0)

k
e−iω (Tj−Tk ) . (3.1)
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Thus, in order to recover f being determined by the coe�cients c
(0)
j ∈ C and the knots

Tj ∈ R, j = 1, . . . ,N , we will recover all parameters of the exponential sum in (3.1) in a

�rst step and then derive the desired parameters of f in a second step.

3.1. First step: Parameter recovery by Prony’s method

Assuming that the non-zero knot di�erences Tj − Tk with j , k are pairwise di�er-

ent, and denoting the distinct frequencies Tj − Tk in increasing order by τℓ with ℓ =

−N (N−1)/2, . . . , N (N−1)/2, we can rewrite (3.1) as

P (ω) :=
��� f̂ (ω)

���
2
=

N (N−1)/2
∑

ℓ=−N (N−1)/2

γℓ e
−iωτℓ

= γ0 +

N (N−1)/2
∑

ℓ=1

(

γℓ e
−iωτℓ

+ γ ℓ e
iωτℓ
)

(3.2)

with the related coe�cients γℓ ≔ c
(0)
j c

(0)

k
for the non-zero frequencies τℓ = Tj −Tk and

γ0 ≔
∑N

j=1 |c
(0)
j |

2 for the zero frequency. Since τ−ℓ = −τℓ , the coe�cients in (3.2) ful�ll

the conjugated symmetry γ−ℓ = γ ℓ .

In order to recover the parameters τℓ and the unknown coe�cients γℓ from the ex-

ponential sum (3.2) we employ Prony’s method [Hil87, PT14]. Let h > 0 be chosen such

that hτℓ < π for all ℓ = 1, . . . , N (N−1)/2.

Using the intensity values P (hk ) =
��� f̂ (hk )

���
2
, k = 0, . . . , 2N (N − 1) + 1, the unknown

parameters γℓ and τℓ in (3.2) can be determined by exploiting the algebraic Prony poly-

nomial Λ(z) de�ned by

Λ(z) ≔

N (N−1)/2
∏

ℓ=−N (N−1)/2

(

z − e−ihτℓ
)

=

N (N−1)+1
∑

k=0

λk z
k , (3.3)

where λk denote the coe�cients in the monomial representation of Λ(z). Obviously,

Λ(z) is always a monic polynomial, which means that λN (N−1)+1 = 1.

Using the de�nition of the Prony polynomial Λ(z) in (3.3), we observe that

N (N−1)+1
∑

k=0

λk P (h(k +m)) =

N (N−1)+1
∑

k=0

N (N−1)/2
∑

ℓ=−N (N−1)/2

λkγℓ e
−ih (k+m)τℓ

=

N (N−1)/2
∑

ℓ=−N (N−1)/2

γℓ e
−ihmτℓ Λ

(

e−ihτℓ
)

= 0

for m = 0, . . . ,N (N − 1). Consequently, the vector of remaining coe�cients λ ≔

(λ0, . . . , λN (N−1) )
T of the Prony polynomial Λ(z) can be determined by solving the linear

equation system

Hλ = −h (3.4)
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with H ≔ (P (h(k +m)))
N (N−1)

m,k=0
and h ≔ (P (h(N (N − 1) + 1 +m)))

N (N−1)
m=0 . Since the

Hankel matrixH can be written as

H = V
T diag

(

γ−N (N−1)/2, . . . ,γN (N−1)/2

)

V

with the Vandemonde matrix V ≔ (e−hkτℓ )
N (N−1)/2,N (N−1)+1

ℓ=−N (N−1)/2,k=0
, the linear equation system

(3.4) possesses a unique solution if and only if the unimodular values e−ihτℓ di�er pair-

wise for ℓ = −N (N−1)/2, . . . , N (N−1)/2. This assumption has been ensured by choosing an

h such that hτℓ ∈ (−π, π), since the τℓ had been supposed to be pairwise di�erent.

Knowing the coe�cients λk of Λ(z), we can determine the unknown frequencies τℓ
by evaluating the roots of the Prony polynomial (3.3). The coe�cients γℓ can now be

computed by solving the over-determined equation system

N (N−1)/2
∑

ℓ=−N (N−1)/2

γℓ e
−ihkτℓ

= P (hk ) (k = 0, . . . , 2N (N − 1) + 1) (3.5)

with a Vandermonde-type system matrix.

The procedure summarized above is the usual Prony method, adapted to the non-

negative exponential sum P (ω) in (3.2). In the numerical experiments in Section 5, we

will apply the approximate Prony method (APM) in [PT10]. APM is based on the above

considerations but it is numerically more stable and exploits the special propertiesγ−ℓ =

γ ℓ and τ−ℓ = −τℓ for ℓ = 0, . . . , N (N−1)/2.

Let us now investigate the question, how many intensity values are at least necessary

for the recovery of P (ω) in (3.2). Counting the number of unknowns of P (ω) in (3.2),

we only need to recover the 3/2N (N − 1) + 1 real values γ0 and Reγℓ , Imγℓ , τℓ , for ℓ =

1, . . . N (N−1)/2. We will show now that using the special structure of the real polynomial

P (ω) in (3.2) and of the Prony polynomial Λ(z) in (3.3), we indeed need only 3/2N (N −

1) + 1 exact equidistant real measurements P (kh), k = 0, . . . , 3/2N (N − 1) to recover all

parameters determining P (ω). This can be seen as follows.

Reconsidering Λ(z) in (3.3) with τ0 = 0 and τℓ = −τ−ℓ , we obtain

Λ(z) = (z − 1)

N (N−1)/2
∏

ℓ=1

(

z − eihτℓ
) (

z − e−ihτℓ
)

= (z − 1)

N (N−1)/2
∏

ℓ=1

(

z2 − 2z cos(hτℓ ) + 1
)

=

N (N−1)+1
∑

k=0

λk z
k ,

where all occurring coe�cients λk are real. Moreover, since

z−
(N (N−1)+1)/2Λ(z) = (z

1/2 − z−
1/2)

N (N−1)/2
∏

ℓ=1

(

z − 2 cos(hτℓ ) + z
−1
)
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is antisymmetric, it follows that

λN (N−1)+1−k = −λk (k = 0, . . . , N (N−1)/2),

and particularly λN (N−1)+1 = −λ0 = 1. In order to determine the unknown coe�cients

λk , k = 1, . . . , N (N−1)/2 of

Λ(z) =

N (N−1)/2
∑

k=0

λk
(

zk − zN (N−1)+1−k
)

,

we employ (3.2) and observe that form = 0, . . . , N (N−1)/2 − 1,

N (N−1)/2
∑

k=0

λk [P (h(k +m)) − P (h(N (N − 1) + 1 +m − k ))]

=

N (N−1)/2
∑

k=0

λk



N (N−1)/2
∑

ℓ=1

γℓ
(

e−ih (k+m)τℓ − e−ih (N (N−1)+1+m−k )τℓ
)

+

N (N−1)/2
∑

ℓ=1

γ ℓ

(

eih (k+m)τℓ − eih (N (N−1)+1+m−k )τℓ
)



=

N (N−1)/2
∑

ℓ=1

γℓ e
−ihmτℓ

N (N−1)/2
∑

k=0

λk
(

e−ihkτℓ − e−ih (N (N−1)+1−k )τℓ
)

+

N (N−1)/2
∑

ℓ=1

γ ℓ e
ihmτℓ

N (N−1)/2
∑

k=0

λk
(

eihkτℓ − eih (N (N−1)+1−k )τℓ
)

=

N (N−1)/2
∑

ℓ=1

γℓ e
−ihmτℓΛ(e−ihτℓ ) +

N (N−1)/2
∑

ℓ=1

γ ℓ e
ihmτℓΛ(eihτℓ ) = 0.

Therefore, the vector of unknown coe�cients λ ≔ (λ1, . . . , λN (N−1)/2)
T can be already

evaluated from the system

N (N−1)/2
∑

k=1

λk [P (h(k +m)) − P (h(N (N − 1) + 1 +m − k ))]

= [P (hm) − P (h(N (N − 1) + 1 +m))] (m = 0, . . . , N (N−1)/2 − 1).

The parameters τℓ are then extracted from the zeros of Λ(z), and the coe�cients γℓ ,

ℓ = 0, . . . , N (N−1)/2, are computed as in (3.5) but with k = 0, . . . , 3/2N (N − 1).



8 Robert Beinert and Gerlind Plonka

3.2. Second step: Unique signal recovery

Having determined the parametersτℓ aswell as the corresponding coe�cientsγℓ of (3.2),

we want to reconstruct the parametersTj and c
(0)
j , j = 1, . . . ,N , of f in (1.1) in a second

step.

Theorem 3.1. Let f be a signal of the form (1.1), whose knot di�erences Tj − Tk di�er

pairwise for j,k ∈ {1, . . . ,N } with j , k , and whose coe�cients satisfy |c
(0)
1 | , |c

(0)
N
|.

Further, let h be a step size such that h(Tj − Tk ) ∈ (−π, π) for all j,k . Then f can be

uniquely recovered from its Fourier intensities |F[f ](hℓ) | with ℓ = 0, . . . , 3/2N (N − 1) up

to trivial ambiguities.

Proof. Applying Prony’s method to the given data |F[f ](hℓ) |, we can compute the

frequenciesτℓ and the related coe�cientsγℓ of the squared Fourier intensity (3.2). Again,

we assume that the frequencies τℓ occur in increasing order and, further, denote the list

of positive frequencies by T ≔ {τℓ }
N (N−1)/2

ℓ=1
.

Obviously, the maximal distance τN (N−1)/2 now corresponds to the lengthTN −T1 of the

unknown f in (1.1). Due to the trivial shift ambiguity, we can assume without loss of

generality thatT1 = 0 andTN = τN (N−1)/2. Further, the second largest distance τ(N (N−1)/2)−1

corresponds either toTN−1−T1 or toTN −T2. Due to the trivial re�ection and conjugation

ambiguity, we can assume that TN−1 = τ(N (N−1)/2)−1. By de�nition, there exists a τℓ∗ > 0

in our sequence of parameters T such that τℓ∗ + τ(N (N−1)/2)−1 = τN (N−1)/2, and τℓ∗ hence

corresponds to the knot di�erence TN −TN−1. Thus, we obtain

c
(0)
N
c
(0)
1 = γN (N−1)/2, c

(0)
N−1

c
(0)
1 = γ (N (N−1)/2)−1, and c

(0)
N
c
(0)
N−1
= γℓ∗ .

These equations lead us to

c
(0)
N =

γN (N−1)/2

c
(0)
1

, c
(0)
N−1 =

γ(N (N−1)/2)−1

c
(0)
1

,

and thus to
���c

(0)
1

���
2
=

γN (N−1)/2γ(N (N−1)/2)−1

γℓ∗
.

Since f can only be recovered up to a global rotation, we can assume that c
(0)
1 is real

and non-negative, which allows us to determine the coe�cients c
(0)
1 , c

(0)
N
, and c

(0)
N−1

in a

unique way.

To determine the remaining coe�cients and support knots of f , we notice that the

third largest distance τ(N (N−1)/2)−2 corresponds either toTN −T2 or toTN−2−T1. As before,

we always �nd a frequency τℓ∗ such that τ(N (N−1)/2)−2 + τℓ∗ = τN (N−1)/2.

Case 1: If τ(N (N−1)/2)−2 = TN −T2, then we have

τℓ∗ = τN (N−1)/2 − τ(N (N−1)/2)−2 = (TN −T1) − (TN −T2) = T2 −T1
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with the related coe�cient γℓ∗ = c
(0)
2 c

(0)
1 . Moreover, we have γ (N (N−1)/2)−2 = c

(0)
N
c
(0)
2 such

that

c
(0)
2 =

γℓ∗

c
(0)
1

=

γ (N (N−1)/2)−2

c
(0)
N

. (3.6)

Case 2: If τ(N (N−1)/2)−2 = TN−2 −T1, then we have

τℓ∗ = τN (N−1)/2 − τ(N (N−1)/2)−2 = (TN −T1) − (TN−2 −T1) = TN −TN−2

with the related coe�cient γℓ∗ = c
(0)
N
c
(0)
N−2

and γ (N (N−1)/2)−2 = c
(0)
N−2

c
(0)
1 . Thus,

c
(0)
N−2
=

γ ℓ∗

c
(0)
N

=

γ (N (N−1)/2)−2

c
(0)
1

. (3.7)

However, only one of the two equalities in (3.6) and (3.7) can be true, since if both were

true then γℓ∗c
(0)
N
= c

(0)
1 γ (N (N−1)/2)−2 and c

(0)
1 γ ℓ∗ = c

(0)
N
γ (N (N−1)/2)−2 lead to

������

c
(0)
N

c
(0)
1

������
=

�����

γ (N (N−1)/2)−2

γℓ∗

�����
=

������

c
(0)
1

c
(0)
N

������

contradicting the assumption that |c0
N
| , |c01 |. Consequently, either the equation in (3.6)

or the equation in (3.7) holds true and we can either determineT2 with c
(0)
2 orTN−2 with

c
(0)
N−2. Removing all parameters τℓ from the sequence of distances T that correspond to

the di�erences Tj − Tk of the recovered knots, we can repeat this approach to �nd the

remaining coe�cients and knots of f inductively. �

If we identify the space of complex-valued signals of the form (1.1) with the real space

R
3N , the condition that two knot di�erences Tj1 − Tk1 and Tj2 − Tk2 are equal for �xed

indices j1, j2, k1, and k2 de�nes a hyper plane with Lebesgue measure zero. An analogous

observation follows for the condition |c
(0)
1 | = |c

(0)
N |. The signals excluded in Theorem 3.1

hence form a negligible null set.

Corollary 3.2. Almost all signals f in (1.1) can be uniquely recovered from their Fourier

intensities ��F[f ] �� up to trivial ambiguities.

Remark 3.3. 1. Since the proof of Theorem 3.1 is constructive, it can be used to re-

cover an unknown signal (1.1) analytically and numerically. If the number N of spikes

is known beforehand then the assumption of Theorem 3.1 can be simply checked dur-

ing the computation. If the assumption regarding pairwise di�erent distances Tj − Tk
is not satis�ed, then the application of Prony’s method in the �rst step yields less than
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N (N − 1) + 1 pairwise distinct parameters τℓ . The second assumption |c0N | , |c
0
1 | can be

veri�ed in the second step, where c
(0)
1 , c

(0)
N−1

, and c
(0)
N

are evaluated.

2. A similar phase retrieval problem had been transferred to a turnpike problem in

[RCLV13]. The turnpike problem deals with the recovery of the knots Tj from an un-

labeled set of distances. Although this problem is solvable under certain conditions, a

backtracing algorithm can have exponential complexity in the worst case, see [LSS03].

4. Retrieval of spline functions with arbitrary knots

In this section, we generalize our �ndings to spline functions of orderm ≥ 1. Let us recall

that the B-splines Bj,m in (1.2) being generated by the knot sequence T1 < · · · < TN+m
are recursively de�ned by

Bj,m (t ) ≔
t−Tj

Tj+m−1−Tj
Bj,m−1 (t ) +

Tj+m−t

Tj+m−Tj+1
Bj+1,m−1 (t )

with

Bj,1 (t ) ≔ 1[Tj ,Tj+1 ) (t ) ≔




1 t ∈ [Tj ,Tj+1),

0 else,

see for instance [Boo78, p. 131]. Further, we notice that for 0 ≤ k ≤ m − 2 the kth

derivative of the spline f in (1.2) is given by

dk

dtk
f (t ) =

N+k
∑

j=1

c
(m−k )
j Bj,m−k (t ), (4.1)

where the coe�cients c
(m−k )
j are recursively de�ned by

c
(m−k )
j ≔ (m − k )

c
(m−k+1)
j − c

(m−k+1)
j−1

Tj+m−k −Tj
(j = 1, . . . ,N + k ),

with the convention that c
(m−k+1)
0 = c

(m−k+1)

N+k
= 0, see [Boo78, p. 139]. For k = m − 1,

equation (4.1) coincides with a step function, i.e., with the right derivative of the linear

spline f (m−2) . Further, in a distributional manner, themth derivative of f is given by

dm

dtm
f (t ) =

N+m
∑

j=1

c
(0)
j δ(t −Tj ) (4.2)

with the coe�cients

c
(0)
1 := c

(1)
1 , c

(0)
N+m

:= −c
(1)
N+m−1

, c
(0)
j ≔ c

(1)
j − c

(1)
j−1 (j = 2, . . . ,N +m − 1),
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and the Dirac delta distribution δ.

Applying the Fourier transform to (4.2), we now obtain

f̂ (m) (ω) = (iω)m f̂ (ω) =

N+m
∑

j=1

c
(0)
j e−iωTj . (4.3)

and thus

ω2m ��� f̂ (ω)
���
2
=

N+m
∑

j=1

N+m
∑

k=1

c
(0)
j c

(0)

k
e−iω (Tj−Tk ) . (4.4)

Since the exponential sum on the right-hand side of (4.4) has exactly the same structure

as the exponential sum in (3.2), we can immediately generalize Theorem 3.1 by consid-

ering

P (ω) := ω2m ��� f̂ (ω)
���
2
=

(N+m )(N+m−1)/2
∑

ℓ=−(N+m )(N+m−1)/2

γℓ e
−iωτℓ . (4.5)

Theorem 4.1. Let f be a spline function of the form (1.2) of orderm, whose knot distances

Tj − Tk di�er pairwise for j,k ∈ {1, . . . ,N +m} with j , k , and whose coe�cients satisfy

|c
(0)
1 | , |c

(0)
N+m
|. Further, let h be a step size such that h(Tj −Tk ) ∈ (−π, π) for all j,k . Then

f can be uniquely recovered from its Fourier intensities |F[f ](hℓ) | with ℓ = 0, . . . , 3/2(N +

m)(N +m − 1) up to trivial ambiguities.

Proof. The statement can be established by proceeding in the same manner as in Sec-

tion 3. First we apply Prony’s method to the given samples (hℓ)2m |F[f ](hℓ) |2 with

ℓ = 0, . . . , 3/2(N +m)(N +m − 1) in order to determine the coe�cients and frequencies

of P (ω) in (4.5). In a second step, the values c
(0)
j and Tj in (4.3) can be determined ana-

lytically as discussed in Theorem 3.1. Reversing the de�nition of c
(m−k )
j , we can �nally

compute the unknown coe�cients c
(m)
j by

c
(1)
j = c

(0)
j + c

(1)
j−1 (j = 1, . . . ,N +m − 1)

and

c
(m−k+1)
j =

Tj+m−k−Tj
m−k c

(m−k )
j + c

(m−k+1)
j−1 (j = 1, . . . ,N + k − 1)

with c
(1)
0 ≔ 0 and c

(m−k+1)
0 ≔ 0, which �nishes the proof. �

Corollary 4.2. Almost all spline functions f of orderm in (1.2) can be uniquely recovered

from their Fourier intensities ��F[f ] �� up to trivial ambiguities.
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5. Numerical experiments

Since the proofs of Theorem 3.1 and Theorem 4.1 are constructive, they can be straight-

forwardly transferred to numerical algorithms to recover a spline function from its

Fourier intensity. However, the classical Prony method introduced in subsection 3.1 is

numerically unstable with respect to inexact measurements and to frequencies lying

close together. For this reason, there are numerous approaches to improve the classi-

cal method. In order to verify Theorem 3.1 and Theorem 4.1 numerically, we apply the

so-called approximate Prony method (APM) proposed by Potts and Tasche in [PT10,

Algorithm 4.7] for recovery of parameters of an exponential sum of the form

P (ω) =

M
∑

ℓ=−M

γℓ e
−iωτℓ (5.1)

with τℓ = −τ−ℓ and γℓ = γ−ℓ . The algorithm can be summarized as follows, where the

exact number 2M+1 of the occurring frequencies in (5.1) needs not be known beforehand.

Algorithm 5.1 (Approximate Prony method [PT10]).

Input: upper bound L ∈ N of the number 2M + 1 of exponentials; measurements P (hk )

with k = 0, . . . , 2M̆ and M̆ ≥ L; accuracies ε1, ε2, and ε3.

1. Compute a right singular vector λ(1)
≔ (λ

(1)

k
)L
k=0

corresponding to the smallest

singular value of the rectangular Hankel matrixH ≔ (P (h(k +m)))2N−L,L
k,m=0

.

2. Evaluate the roots z
(1)
j = r

(1)
j eiω

(1)
j of the polynomial Λ(1) (z) ≔

∑L
k=0

λ
(1)

k
zk with

ω
(1)
j ∈ [0, π) and |r

(1)
j − 1 | ≤ ε1.

3. Compute a right singular vector λ
(2)
≔ (λ

(2)

k
)L
k=0

corresponding to the sec-

ond smallest singular value of the rectangular Hankel matrix H ≔ (P (h(k +

m)))2N−L,L
k,m=0

.

4. Evaluate the roots z
(2)
j = r

(2)
j eiω

(2)
j of the polynomial Λ(2) (z) ≔

∑L
k=0 λ

(2)

k
zk with

ω
(2)
j ∈ [0, π) and |r

(2)
j − 1 | ≤ ε1.

5. Determine all frequencies of the form ωℓ ≔
1/2 (ω

(1)
j +ω

(2)

k
) if there exist indices j

and k with |ω
(1)
j −ω

(2)

k
| ≤ ε2, and denote the number of found frequencies by M̃ .

6. Compute the coe�cientsγℓ as least squares solution of the over-determined linear

system
M̃
∑

ℓ=−M̃

γℓ e
ihkτℓ

= P (hk ) (k = 0, . . . , 2M̆ )



Phase retrieval of non-uniform splines by Prony’s method 13

with τℓ = −τ−ℓ = ωℓ/h by using the diagonal preconditioner

D ≔ diag
(

1−|k |

M̃+1

)M̃

k=−M̃
.

7. Delete all pairs (τℓ ,γℓ ) with |γℓ | ≤ ε3.

8. Repeat step 6 with respect to the remaining frequencies τℓ .

Output: coe�cients γℓ and frequencies τℓ .

A second adaption of the proof of Theorem 4.1 concerns the reconstruction of the

coe�cients c
(m)
j from the recovered coe�cients c

(0)
j . In order to describe the relation

between the coe�cients as linear equation system, we de�ne the rectangular matrices

C
(m−k ) ∈ R (N+k−1)×(N+k ) for k = 0, . . . ,m − 1 elementwise by

C
(m−k )

jℓ
≔





m−k
Tj+m−k−Tj

ℓ = j,

k−m
Tj+m−k−Tj

ℓ = j − 1,

0 else,

and C
(0)

jℓ
≔





1 ℓ = j,

−1 ℓ = j − 1,

0 else.

Then, the recursion between the coe�cients c
(m−k+1)
j and c

(m−k )
j can be stated as

C
(m−k )

c
(m−k+1)

= c
(m−k ) ,

where we use the coe�cient vectors c(m−k ) ≔ (c
(m−k )
j )N+kj=1 . Instead of computing the

coe�cients stepwise from left to right, we can determine the coe�cients c
(m)
j by solving

the over-determined linear equation system

C
(0) · · ·C (m−1)

c
(m)
= c

(0). (5.2)

With these modi�cations, we recover a spline function of orderm from its Fourier in-

tensity by the following algorithm.

Algorithm 5.2 (Phase retrieval).

Input: Fourier intensities |F[f ](hk ) | with k = 0, . . . , 2M̆ , step size h > 0, orderm ≥ 0

of the spline function, upper bound L of the number N +m of knots with L(L − 1) < M̆ ,

accuracy ε .

1. Compute the squared Fourier intensity of themth derivative of the spline at the

given points by

|F[f (m)](hk ) |2 = (hk )2m |F[f ](hk ) |2 (k = 0, . . . , 2M̆ ).
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2. Apply the approximate Prony method (Algorithm 5.1) to determine the knot dis-

tances τℓ with ℓ = −(N+m) (N+m−1)/2, . . . , (N+m) (N+m−1)/2 in increasing order and

the corresponding coe�cients γℓ .

3. Update the reconstructed distances and coe�cients by

τℓ ≔
τℓ − τ−ℓ

2
and γℓ ≔

γℓ + γ−ℓ
2

for ℓ = 0, . . . , (N+m) (N+m−1)/2.

4. SetT1 ≔ 0,TN+m ≔ τ(N+m )(N+m−1)/2, andTN+m−1 ≔ τ((N+m )(N+m−1)/2)−1; �nd the index

ℓ∗ with |τℓ∗ − TN+m + TM+m−1 | ≤ ε ; and compute the corresponding coe�cients

by

c
(0)
1 ≔

�����

γ (N+m )(N+m−1)/2 γ ((N+m )(N+m−1)/2)−1)

γℓ∗

�����

1
2

as well as

c
(0)
N+m ≔

γ (N+m )(N+m−1)/2

c
(0)
1

and c
(0)
N ≔

γ ((N+m )(N+m−1)/2)−1

c
(0)
1

.

Initialize the lists of recovered knots and coe�cients by

T ≔ [T1,TN+m ,TN+m−1] and C (0)
≔ [c

(0)
1 , c

(0)
N+m
, c

(0)
N+m−1

],

and remove the used knot distances from the set T := {τℓ }
(N+m )(N+m−1)/2

ℓ=0
.

5. For the maximal remaining distance τk∗ in T, determine the index ℓ∗ with |τk∗ +

τℓ∗ −TM+n | ≤ ε .

a) If |τk∗ − τℓ∗ | ≤ ε , the knot distance corresponds to the centre of the interval

[T1,TM+n ]. Thus append T by TN+m/2 and C (0) by γk∗/c (0)1 .

b) Otherwise, compute the values d (r)
≔ γk∗/c (0)1 and d (l)

≔ γℓ∗/c (0)1 . If

����
c
(0)
N+m

d
(r)
− γℓ∗

����
<
����
c
(0)
N+m

d
(l)
− γk∗

����
,

then assume that (3.7) with d (r) , γk∗ , c
(0)
N+m

instead of c
(0)
N−2

, γ (N (N−1)/2)−2, c
(0)
N

holds true and appendT by 1/2 (τk∗ +TN+m −τℓ∗ ) andC
(0) byd (r) , else assume

that (3.6) with d (l) , γk∗ , c
(0)
N+m

instead of c
(0)
2 , γ (N (N−1)/2)−2, c

(0)
N

holds true and

append T by 1/2 (τℓ∗ +TN+m − τk∗ ) and C
(0) by d (l) .

Remove all distances between the new knot and the already recovered knots from

T and repeat step 5 until the set T is empty.

6. Determine the coe�cients c
(m)
j by solving the over-determined equation system

(5.2).
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Output: knotsTj and coe�cients c
(m)
j of the signal (1.1) (m = 0) or the spline function in

(1.2) (m > 0).

Example 5.3. In the �rst numerical example, we consider a spike function as in (1.1)

with 15 spikes. More precisely, the locationsTj and the coe�cients c
(0)
j of the true spike

function f are given in Table 1. In order to recover f from the Fourier intensity mea-

surements |F[f ](hℓ) | with ℓ = 0, . . . , 1000 and with h ≈ 3.655 073 · 10−2, we apply

Algorithm 5.2 with the accuracies ε ≔ 10−3, ε1 ≔ 10−5, ε2 ≔ 10−7, and ε3 ≔ 10−10. The

results of the phase retrieval algorithm and the absolute errors of the knots and coe�-

cients of the recovered spike function are shown in Figure 1. Although the approximate

Prony method has to recover 211 knot di�erences, the knots and coe�cients of f are

reconstructed very accurately. �

Example 5.4. In the second example, we apply Algorithm 5.2 to recover the piecewise

quadratic spline function (m = 3) in (1.2) with the knots and coe�cients in Table 2

from the Fourier intensity measurements |F[f ](hℓ) | with ℓ = 0, . . . , 400 and with h ≈

3.088 663 · 10−2. As accuracies for the phase retrieval algorithm and the approximate

Prony method, we choose ε ≔ 10−3, ε1 ≔ 10−5, ε2 ≔ 10−10, and ε3 ≔ 10−10. In Figure 2,

the recovered function is compared with the true signal. Again, the reconstructed knots

and coe�cients have only very small absolute errors. �
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