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Abstract

In this paper, we apply compressed sensing to video compression. Compressed sensing
(CS) techniques exploit the observation that one needs much fewer random measurements
than given by the Shannon-Nyquist sampling theory to recover an object if this object is
compressible (i.e., sparse in the spatial domain or in a transform domain). In the CS framework,
we can achieve sensing, compression and denoising simultaneously. We propose a fast and
simple online encoding by application of pseudo-random downsampling of the two-dimensional
fast Fourier transform to video frames. For off-line decoding, we apply a modification of the
recently proposed approximate message passing (AMP) algorithm. The AMP method has
been derived using the statistical concept of ’state evolution’, and it has been shown to
considerably accelerate the convergence rate in special CS-decoding applications. We shall
prove that the AMP method can be rewritten as a forward-backward splitting algorithm.
This new representation enables us to give conditions that ensure convergence of the AMP
method and to modify the algorithm in order to achieve higher robustness. The success of
reconstruction methods for video decoding also essentially depends on the chosen transform,
where sparsity of the video signals is assumed. We propose to incorporate the 3D dual-tree
complex wavelet transform that possesses sufficiently good properties of directional selectivity
and shift invariance while being computationally less expensive and less redundant than other
directional 3D wavelet transforms.

Keywords: Compressed sensing, video online compression, approximate message passing al-
gorithm, high-speed jet flow, 3D directional wavelets, forward-backward splitting algorithm

I. INTRODUCTION

The large amount of raw data acquired in a high-speed camera needs to be compressed
immediately before storage and transmission. In this paper, we consider the problem of how
one can implement simple and fast online compression of real-time high-speed camera images
and how one can effectively recover/decode the original images by an offline algorithm.

Conventional approaches to image/video compression are usually computationally expensive
in encoding and they remain relatively simple in decoding processing. Popular compression
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methods are based on decorrelation transforms. Applying quantization and entropy encoding
to the obtained transform coefficients, one can compress the images. Frequently used tools
are JPEG or JPEG2000 with the discrete cosine transform or a wavelet transform as kernel
algorithm. In the last few years, directional wavelets such as ridgelets, contourlets, shearlets,
and curvelets have been proposed to explore the geometric and structural sparsity of images.
Adaptive wavelet transforms e.g. bandlets, tetrolets, and easy path wavelet transform have also
been shown to obtain sparse representations of images. However, these sophisticated transforms
require high computational burden, they are therefore not suitable for real-time compression of
high-speed camera images. For example, the 2D wavelet forward transform of a 1024 × 1024

image takes 0.54 seconds, and the 2D curvelet forward transform [5] takes 6.8 seconds (test
in a laptop with 2.1 GHz Intel Core 2 Duo CPU and 2.0 GB memory). This is not enough
efficient for a high-speed camera with 2500 fps (frames per second) considered in our project.

By contrast with the usual approach to acquire large data sets followed by compression, the
theory of compressed sensing/compressive sampling (CS) [6], [12] suggests that a compressible
unknown signal can be recovered by a small number of random measurements using sparsity-
promoting nonlinear recovery algorithms. The CS-based data acquisition depends on the sparsity
of data in a certain basis (or frame) rather than on its bandwidth limited by Shannon-Nyquist
sampling theorem. Naturally, the image recovery results for a sparsely sampled signal essentially
depend on the chosen reconstruction method and the chosen transform domain, where the signal
is assumed to be sparse. In this paper, we will consider how one can benefit from the CS
theory for the online compression of acquired sequent images by a high-speed camera, instead
of improving the camera’s imaging instrumentation.

A. Related work

Applications of CS to video processing are still in an infant stage. Wakin et al. [31] first
applied the compressive imaging to representation and encoding of videos acquired by a special
single-pixel camera model. The results show that a 3D video reconstruction (joint frames)
using a 3D wavelet transform is better than the 2D frame-by-frame reconstruction using a
2D wavelet transform. In [11], the problem of signal reconstruction from its quantized signal
vector is viewed as a compressive sensing recovery problem where the quantized coefficients
are subsampled measurements. Baig et al. [2] considered Gaussian quantization effects on CS
videos.Park and Wakin [23] proposed a multiscale CS video processing algorithm, where the
CS measurements are taken independently for each frame, and where motion estimation is also
applied at the decoding step. The crucial idea of this method is that the motion estimation and
CS sparsity-promoting reconstruction is carried out alternately in the multiscale framework.
Cossalter et al. [9] also considered the motion estimation in CS video analysis. Stankovic [30]
and Prades-Nebot et al. [25] divided each frame into non-overlapping blocks and approximate
each block by a linear combination of blocks in previously transmitted frames the CS decoding
process. Zheng and Jacobs [36] proposed a video compressive sensing method using spatial
domain sparsity, where key frames or reference frames are fully sampled and CS measurements
are applied to the difference between the successive frames and the other frames. Xu et al. [33]
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incorporated a user attention model with visual rhythm analysis in CS video processing which
can automatically determine regions of interest. For every group of successive video frames, the
reference frames are fully sampled and build a user attention model to automatically determine
regions of interest for non-reference frames that are sampled by CS. Marcia and Willett [22] use
CS for increasing the resolution of digital videos. Liu et al. [19] considered maximum frame
rate video acquisition by applying a block-based adaptive framework for compressed sensing.
Kang et al. [18] applied distributed compressive video sensing, where in the decoding step,
compressed video data can be efficiently reconstructed using a modified gradient projection for
the reconstruction algorithm.

B. Contribution of this paper

In this paper, we apply the CS technique to compression of videos and of a high-speed jet
flow. We use 10% pseudo-random downsampling of 2D FFT as CS measurement matrices for
each frame of high-speed camera data. The online compression only involves a 2D FFT that
takes 0.08 seconds for the compression of a 1024× 1024 image.

In the decoding step, we apply the new approximate message passing (AMP) reconstruction
method that has recently been introduced by Donoho, Maleki and Montanari [13]. The AMP
algorithm is based on a heuristic formalism in statistics called ’state evolution’ [3], [13], [14].
In this paper, we show that the AMP method can be interpreted as a forward-backward splitting
algorithm. This new representation enables us to give a proof of convergence of this iterative
reconstruction algorithm under suitable restrictions. Further, we derive some modifications of
the AMP algorithm in order to improve its robustness.

For application in 3D video compression, the AMP reconstruction method is connected with
a sparsity condition based on the dual-tree complex wavelet transform (DTCWT) [28], i.e.,
we assume that the considered data can be well decorrelated and sparsely represented by the
wavelet coefficients of the DTCWT. The DTCWT has a reasonable arithmetical complexity,
good directional sensitivity and shift invariance. Therefore this transform is an efficient method
to represent edges and surfaces sparsely.

Observe that the online compression and denoising of video data is achieved by a sensing
step using the 2D FFT, without any pre-analysis and complicated adaptive transforms of the
video source. The method has low complexity and is easily implementable for real-time work.

Extensive numerical experiments for different video data will show the good performance
of the AMP method in combination with the 3D DTCWT, where we particularly compare the
AMP with the common iterative soft thresholding (IST), and where (besides 3D DTCWT) the
3D tensor product wavelet transform is applied as sparsity constraint.

The paper is organized as follows. In Section 2, we summarize the idea of compressed sensing
and introduce the iterative soft thresholding as well as the AMP algorithm for reconstruction,
where the latter can be seen as a generalization of IST. Section 3 focusses on the AMP method.
We show its representation as a forward-backward splitting algorithm and give several remarks
on its heuristic background and on possible modifications that enhance its robustness. In Section
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4, we shortly explain, how the 3D dual-tree complex wavelet transform can be incorporated
into the AMP reconstruction. Finally, Section 5 is devoted to extensive numerical experiments
with video data and a real high-speed jet flow. Section 6 contains some concluding remarks.

II. COMPRESSED SENSING AND AMP RECONSTRUCTION

The theory of compressed sampling studies the problem how the original signal can be
recovered from highly incomplete measurements. Let y be a signal that is sampled and let f
be a small number of measured samples. The size of y is N × 1 and the size of f is n × 1,
where n << N . Further, let Ã be the n×N measurement matrix such that f can be written as

f = Ãy + ϵ,

where ϵ denotes noise. The recovery of the signal y ∈ RN from the observation f ∈ Rn is
an underdetermined linear system that leads to a seriously ill-posed problem because there are
much fewer rows than columns of Ã. However, let us assume that the signal y possesses a
sparse representation in a certain basis or a frame, i.e., there is a transform matrix Ψ ∈ RM×N

(with M = N for a basis and M > N for a frame), such that Ψy contains only a small set of
significant entries (e.g., K < n nonzero coefficients). Further, let the measurement matrix Ã be
not correlated with Ψ. Usually, one assumes that Ã satisfies the so-called Restricted Isometry
Property (RIP) [6]. Then y can be reconstructed with high accuracy from the incomplete
measurements f , see [6], [12], [16].

Applying a transform Ψ to y, we obtain in coefficient domain

f = ÃΨ−1Ψy + ϵ = Ax+ ϵ

with x := Ψy and A = ÃΨ−1, where the Ψ is a forward transform and Ψ−1 is its inverse
transform. Throughout the paper, we will assume that the transform matrix Ψ represents an
orthonormal basis or a Parseval frame, i.e., we have Ψ∗Ψ = IN .

In order to solve the reconstruction problem we consider now the unconstrained optimization
problem

min
x

(
1

2
∥f −Ax∥2 + λ∥x∥0

)
,

where the first term forces x to be a reasonable (approximate) solution of the linear system
Ax = f , and the second term forces x to be a sparse vector. Here, the quasi-norm ∥x∥0
denotes the number of nonzero components in the vector x, and hence a small value ∥x∥0
means sparsity of y in the basis/frame Ψ. However, the above functional is not convex, and its
solution is NP-hard. A convex relaxation leads to the usually considered optimization problem

min
x

(
1

2
∥f −Ax∥2 + λ∥x∥1

)
. (1)

The regularization parameter λ needs to be tuned suitably. Equation (1) is a so-called synthesis
formulation, where one seeks the sparse coefficient vector x in the transform domain, while the
minimization problem

min
y

(
1

2
∥f − Ãy∥2 + λ∥Ψy∥1

)
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is an analysis formulation, where one directly seeks the image y whose coefficient vector Ψy

is sparse.
For simplicity, let us assume here that again x ∈ RN and that A ∈ Rn×N . (In the case that

Ψ is a frame with M > N , the dimension N can be simply replaced by M .)
Iterative soft shrinkage/thresholding (IST) is one of the most popular methods to solve the ℓ1-

norm CS decoding problem (1) because of its simplicity and efficient performance. Specifically,
the iteration step of IST is given by

xk+1 = Tλtk(xk + tk A
∗zk), (2)

zk+1 = f −Axk+1 (3)

with x0 = 0, z0 = f , and where tk is an appropriate step size at each iteration step. Here, the
operator Tα : Rn → Rn is the soft shrinkage operator, defined for each component by

Tα(x)i := (|xi| − α)+ sgn (xi).

In the last two years, many convergence accelerating improvements of the IST have been
proposed. The main objective is to devise a faster method, keeping the simplicity of the IST
method and significantly improving the global convergence rate. Here, we just mention a few
ideas including Beck and Teboulle’s first-order fast IST method (FISTA) [4], Daubechies et al’s
accelerated projected gradient method [10], Wright et al’s SpaRSA (sparse reconstruction via
separable approximation) [32], and Bregman iteration methods [15], [24], [35], [37].

In this paper, we focus on the AMP algorithm proposed in [3], [13], [20] that has been proved
to be extremely effective in reconstructing sparse signals from a small number of incoherent
linear measurements. The AMP method offers the low complexity of IST and the reconstruction
power of basis pursuit.

Compared to the conventional IST (2)-(3), the AMP only adds one additional term, see [21].
The AMP algorithm reads

xk+1 = Ttk(xk +A∗zk), (4)

zk+1 = f −Axk+1 +
N

n
⟨T ′

tk(xk +A∗zk)⟩ zk, (5)

with initial conditions x0 = 0, z0 = f . Here, for x = (x1, . . . , xN )T we write ⟨x⟩ :=∑N
i=1 xi/N , and T ′

tk is the first derivative of the thresholding operator (applied separately to
each component).

As in [13], [3], we assume that the measurement matrix A satisfies AA∗ = In (resp. ÃÃ∗ =

In).

Remark.
Message passing methods are used in statistics/machine learning and for computing of in-

ferences in graphical models and graph-based error correcting codes. Within the last years,
these belief propagation methods and their relation to compressed sensing methods and linear
programming have been extensively studied, see e.g. [1], [17], [20], [26], [27], [34]. The basic
variables of these special iterative algorithms are messages being associated to directed edges
in the graph that encode the structure of the statistical model.
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III. AMP AS A FORWARD-BACKWARD SPLITTING ALGORITHM

In this section, we show that the AMP iteration can be understood as a special forward-
backward splitting algorithm. This observation enables us to present sufficient conditions for
the convergence of the AMP algorithm.

In convex analysis, iterative algorithms for solving optimization problems of the form

min {F (x) = f1(x) + f2(x) : x ∈ H} (6)

have been studied extensively. Here, H denotes a Hilbert space, and f1, f2 are functionals from
H to R ∪ {∞} which are lower semicontinuous, convex, and not identically equal to +∞. If
f2 is moreover differentiable in H with a Lipschitz continuous gradient for some β > 0, then
the following theorem, based on proximity operators, has been proved in [8].

Theorem 3.1: Suppose that (6) possesses at least one solution. Let {βk}k∈N be a sequence
in (0,∞) such that infk∈N βk > 0 and supk∈N βk < 2/β, let (µk)k∈N be a sequence in (0, 1]

such that infk∈N µk > 0, and let an and bn be sequences in H such that
∑

k∈N ∥ak∥ < +∞
and

∑
k∈N ∥bk∥ < +∞. Fix x0 ∈ H, and for every k ∈ N set

xk+1 = xk + µk

(
proxβkf1 (xk − βk(∇f2(xk) + bk)) + ak − xk

)
. (7)

Then the sequence (xk)k∈N converges weakly to the solution of (6).

We want to apply the above theorem to solve (1) and put H = RN ,

f1(x) := λ∥x∥1, f2(x) :=
1

2
∥Ax− f∥22.

Then the gradient
∇f2(x) = A∗(Ax− f)

is Lipschitz continuous of order β = ∥A∗A∥2, where we may use the spectral matrix norm. We
assume that A consists of randomly sampled rows of a unitary matrix (as the Fourier matrix),
such that we have AA∗ = In and β = 1. Further, the proximity operator

proxβkf1(x) := arg min
y∈RN

{
βkf1(y) +

1

2
∥x− y∥22

}
= arg min

y∈RN

{
βkλ∥y∥1 +

1

2
∥x− y∥22

}
is given by

proxβkf1(x) = Tβkλ(x),

where Tβkλ denotes the soft shrinkage operator as before. Hence, the iteration (7) reads

xk+1 = xk + µk (Tβkλ(xk − βk(A
∗(Axk − f) + bk)) + ak − xk) .

In the special case µk = 1, ak = 0 and tk = βkλ for all k ∈ N, we obtain the special
forward-backward splitting iteration

xk+1 = Ttk (xk − βk(A
∗(Axk − f) + bk)) . (8)

Observe that the IST algorithm in (2)-(3) is of the above form with bk = 0. Indeed, we have a
simple heuristic interpretation of IST. The addition of the term −βk∇f2(xk) = −βk(A

∗(Axk−
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f) forces a decrease of the first term of the functional in (1), while the application of the soft
shrinkage operator Ttk forces the reduction of the 1-norm of xk − βk(A

∗(Axk − f). We now
obtain

Theorem 3.2: The AMP iteration (4)- (5) with the threshold recursion

tk+1 = λ+
Ntk
n

⟨T ′
tk(xk +A∗zk)⟩ = λ+

tk
n
∥xk+1∥0

can be represented as a forward-backward splitting algorithm of the form

xk+1 = Tβkλ (xk − βk(A
∗(Axk − f) + bk)) (9)

with starting values x0 = 0, b0 := 0 and β0 := 1, where the sequences {βk}k≥1 and {bk}k≥1

are given by the iterations

βk+1 := 1 +
βk
n
∥xk+1∥0 (10)

bk+1 :=
βk+1 − 1

βk+1
(bk −A∗A(xk+1 − xk)) (11)

for k = 0, 1, 2, . . ..
The AMP sequence {xk}k≥0 converges if supk∈N βk < 2 and

∑
k∈N ∥bk∥ < ∞.

Proof.
Considering the iteration in (4)-(5) and applying the definition of the soft shrinkage operator,

we define
γk :=

N

n
⟨T ′

tk−1
(xk−1 +A∗zk−1)⟩ =

1

n
∥xk∥0,

where ∥xk∥0 denotes the number of nonzero components in the current iteration vector xk.
Then the AMP method in (4)-(5) simply reads

xk+1 = Ttk(xk +A∗zk),

zk+1 = f −Axk+1 + γk+1zk,

or equivalently,

xk+1 = Ttk(xk +A∗(f −Axk) +A∗γkzk−1), (12)

zk+1 = f −Axk+1 + γk+1zk. (13)

The iteration (12) is equivalent with (8) if

βk(A
∗(f −Axk)− bk) = A∗(f −Axk) +A∗γkzk−1,

i.e.,
βkbk = (1− βk)A

∗(Axk − f)−A∗γkzk−1.

Hence, using (13), we can derive the following recursion formula for bk,

βkbk = (1− βk)A
∗(Axk − f) + γkA

∗(Axk−1 − f − γk−1zk−2)

= (1− βk)A
∗(Axk − f) + γkA

∗(Axk−1 − f)

+γk (βk−1bk−1 − (1− βk−1)A
∗(Axk−1 − f)) .
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We apply the threshold recursion that has been already proposed in [14],

tk+1 = βk+1λ = λ+
Ntk
n

⟨T ′
tk(xk +A∗zk)⟩ = λ+ tkγk+1 = λ(1 + βkγk+1),

that yields γk+1 =
tk+1−λ

tk
= βk+1−1

βk
, and the recursion for bk simplifies to

βkbk = (βk − 1)(bk−1 −A∗A(xk − xk−1)).

For βk we have the recursion βk+1 = 1+βkγk+1. Finally, the conditions for convergence follow
directly from Theorem 3.1. �

Remarks.
1. We remember that for f2(x) = 1

2∥Ax − f∥2 we have ∇f2(x) = A∗(Ax − f). Hence, the
“correction vector” bk in the above AMP iteration in (9) is nothing but a suitable average of
the gradients of f2 at the iteration vectors xk. Indeed we find b1 =

β1−1
β1

(∇f2(x0)−∇f2(x1)),
and a simple induction argument yields

bk =

k∑
ℓ=0

αℓ∇f2(xℓ)

with

αk =
1− βk
βk

, α0 =

k∏
ν=1

βν − 1

βν
, αℓ =

1

βℓ

k∏
ν=1

ν ̸=ℓ

βν − 1

βν
for 1 ≤ ℓ ≤ k − 1.

In particular, we observe that
∑k

ℓ=0 αℓ = 0. Hence, the AMP method can heuristically be
interpreted as follows. Instead of applying only the gradient of the current iteration vector xk

a certain linear combination of gradients of the preceding iteration vectors is taken in order to
ensure faster convergence.

2. The above considerations about the sequence {bk}k∈N particularly imply that A∗Abk = bk

for k ∈ N. Hence, with fk := f −Abk, the iteration in (9) can be rewritten as

xk+1 = Tβkλ (xk − βk(A
∗(Axk − fk))) .

The recursion for bk in Theorem 3.2 simply leads to the iteration formula for fk,

fk+1 =
1

βk+1
f +

βk+1 − 1

βk+1
(fk +A(xk+1 − xk)) .

This representation of the AMP-method shows a certain connection to iteration algorithms based
on Bregman distances, see e.g. [15], [24], [35], where corrected vectors fk are used in the IST
iteration.

3. The threshold recursion in Theorem 3.2 has been proposed by Donoho et al. [14]. In order to
satisfy the convergence condition supk∈N βk < 2, we may rather put the more general threshold
rule according to

tk+1 = βk+1λ = λ+
Cktk
n

∥xk+1∥0 = λ(1 +
Ckβk
n

∥xk+1∥0)
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with some constants Ck > 0, see Section 5. In this case the iterations (10) and (11) for {βk}k∈N
and {bk}k∈N have to be modified and read

βk+1 := 1 +
Ckβk
n

∥xk+1∥0

bk+1 :=
βk+1 − 1

βk+1
(Ckbk −A∗(Axk+1 − f) + CkA

∗(Axk − f))

for k = 0, 1, 2, . . .. Furthermore, it can be advantageous to allow that λ = λk decays to zero
for k → ∞, and

tk+1 = βk+1λk+1 = λk +
Ntk
n

⟨T ′
tk(xk +A∗zk)⟩ = λk + tkγk+1 = λk(1 + βkγk+1),

see [14]. This yields the recursion βk+1 = λk

λk+1
(1 + βkγk+1) and according slight changes in

the iteration procedure.

4. The numerical implementation of the above AMP method is not numerically stable, therefore,
we replace the term ∥xk∥0 by the number of components in xk with modulus greater than a
fixed small value ϵ in our numerical experiments.

5. The above observation that the AMP algorithm can be seen as a special forward-backward
splitting method, may also help to understand the powerfulness of this general iteration scheme
in [8]. In particular, it shows that the sequences {ak}k∈N and {bk}k∈N in (7) may not be just
understood as tolerances for inexact evaluations. Instead, a suitable choice of these sequences
may yield essential convergence acceleration.

6. We also explored a possible connection between the AMP method and the Bregman operator
splitting (BOS) algorithm in [37], where a single forward-backward operator splitting step is
used to solve the subproblems of the Bregman iteration. Although the formulations may look
similarly at first glance, there are no close connection between them. The main reason is that
there is almost no freedom in the BOS algorithm for changing constants depending on the level.
The two constants δ and µ in [37] are fixed and do not depend on the level k of the iteration.
Even if we use relaxation parameters (e.g. δk instead of δ), there is no simple connection. This
is due to the fixed determination of fk without any freedom to put a constant, while in the
AMP method we have a constant in the second iteration that depends on ∥xk−1∥0.

IV. AMP FOR COMPRESSED VIDEO SENSING

Now, we want to apply the AMP algorithm with sparsity assumption in the 3D wavelet
domain for data reconstruction. Let Â denote a block matrix of the form

Â = Id ⊗ Ã :=


Ã

Ã
. . .

Ã

 ∈ Cdn×dN ,

where Ã ∈ Rn×N is the 2D-measurement matrix in each slice of the considered 3D domain. In
our experiments, we shall use 2D partial FFT measurements, i.e., Ã is obtained by a random
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choice of about 10% of the pseudo-random sampling of the unitary Fourier matrix (see Figure 1
(a)). One can also use a structured random matrix, e.g., a circular random matrix (see Figure 1
(b)), which can easily be stored in memory, and where the matrix vector multiplication Ãy can
be efficiently calculated by the FFT algorithm. Generally, the pseudo-random Fourier matrix
achieves better performance than a circular random matrix in the case of low-rate measurement.

(a) (b)

Fig. 1. CS measurement matrices with 10% sampling. (a) Pseudo-random sampling of the Fourier matrix. (b)
Circular random matrix (the first row is produced by a random vector). The white points denote sampling.

For decoding, we apply the AMP-method together with a 3D-wavelet transform exploiting
the sparsity of video data and of the high-speed jet flow in the wavelet domain. Particularly,
we implement the 3D discrete wavelet transform (DWT) with Daubechies filters and the three-
dimensional dual-tree complex wavelet transform (3D DTCWT).

Let Ψ be the transform matrix of the DWT resp. the DTCWT, and Ψ−1 the inverse transform.
Then the AMP iteration reads in the transform domain

xk+1 = Ttk(xk +ΨÂ∗zk), (14)

zk+1 = f − ÂΨ−1xk+1 + ĉk+1zk, (15)

where
ĉk+1 =

N

n
⟨T ′

tk(ΨÂ∗zk + xk)⟩ =
1

n
∥xk+1∥0,

and with initial data x0 = z0 = 0. The techniques described in Remark 3 and 4 can be also
applied to the DTCWT-domain AMP.

Originally, the DTCWT has been designed as a two-dimensional transform enhancing the
usual tensor-product DWT regarding its (insufficient) shift invariance and its directional selectiv-
ity. For the DTCWT, we refer especially to the survey by Selesnick et al. [28]. The 3D DTCWT
has been already successfully applied for 3D video data, see e.g. [29]. The principle by which
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the 2D DTCWT resolves the problem of the mixing of orientations (as it happens for the 2D
tensor-product DWT) can also be used to resolve the mixing of orientations in the 3D case. The
oriented 3D DTCWT is expansive by 4, while the application of the corresponding filter banks
remains to be simple and efficient. It is important to notice that the checkerboard artifacts of the
conventional separable 3D wavelet transform become even more serious in 3 dimensions. The
advantages of the 3D DTCWT compared to the separable 3D wavelet transform can be observed
in our numerical examples. Furthermore, the DCTWT is more efficient than 3D curvelets or
other generalizations of directional wavelet frames to three dimensions. The Matlab software
for the 3D DTCWT can be found on http://taco.poly.edu/WaveletSoftware/.

V. NUMERICAL EXPERIMENTS

We have tested the methods for an animated Cartoon video sequence, the standard Foreman
video sequence and a real high-speed jet flow with a frame ratio of 2500 frames per second.
We have used 2D partial FFT frame-by-frame measurements in our experiments, where the
size of each frame is 128 × 128 and we applied 30% measurements of the videos and 10%

measurements of jet flow.
The AMP method is now used for a 3D joint-frame decoding for a 64-frame sequent flow. In

our numerical experiments we compare the performances of the following decoding methods:

1) Iterative soft thresholding with sparsity assumption in spatial domain (with Ψ = IN and
Ã = A) (IST),

2) approximate message passing method with sparsity assumption in spatial domain (AMP),
3) iterative soft thresholding with sparsity assumption in wavelet domain (Ψ denotes the

transform matrix of the 3D discrete wavelet transform with Daubechies (D4) filters) (IST-
DWT),

4) iterative soft thresholding with sparsity assumption in the complex wavelet domain (Ψ de-
notes the transform matrix of the 3D dual-tree complex wavelet transform) (IST-DTCWT),

5) approximate message passing method with sparsity assumption in the complex wavelet
domain (AMP-DTCWT).

The SNR (signal-to-noise ratio) is computed by 20 log10
∥f∥2

∥f−f̂∥2

where f is the original image

and f̂ is the reconstruction. We use the decreasing sparsity-measurement tradeoff parameter
Ck = C0(1 − k/Niter) (see Remark 3 in Section 3) and the thresholding value λk = λ0(1 −
k/Niter), where k denotes the iteration index and Niter is the total number of iterations. In our
experiments, we use Niter = 20. Generally, a larger Niter results in a better recovery at the cost
of more computational time. The sparsity-measurement tradeoff parameter C0 and threshold λ0

of course depend on the data. We take the values λ0 = 0.6 and C0 = 1.2 for the AMP-DTCWT
method and C0 = 0.8 for the spatial-domain AMP method. Our experiments show, that the
choice Ck = 1 proposed by Donoho et al. [14] leads not to a robust algorithm for the general
cases. As already seen in Theorem 3.2, the condition Ck||xk||0

n < 1 is crucial for convergence
of the AMP algorithm, and this can be achieved by a careful choice of the threshold values
during the iterations.
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For (almost) exact recovery by the reconstruction algorithm, the number of measurements n

should be 2-10 times as high as the sparsity ||y||0 in spatial domain or as ∥x∥0 = ∥Ψy∥0 in
coefficient domain. However, in our work, we try to use less measurements in order to reduce
the cost of online compression since we do not need 100% exact reconstruction. In this case
we usually have ∥xk∥0/n > 1, and the algorithm originally proposed in [14] will not converge
without a suitable choice of λk and Ck.

In Figure 2 (a), we display the 32nd frame (the middle frame) of the cartoon video. Figures
2 (b)-(f) show the decoding results by IST, AMP, IST-DWT, IST-DTCWT and AMP-DTCWT,
respectively. Furthermore, Figure 3 shows the comparison of SNR values for the five algorithms
during the iterative decoding procedure. Generally, we observe that the algorithms with sparsity
constraints in the wavelet domain/complex wavelet domain are favorable and yield reasonable
results already after a small number of iterations. In our case, the DTCWT is a better choice
than the 3D wavelet transform because the reconstruction of structural features is most important
for the cartoon video. The AMP-DTCWT based method obviously enhances the convergence
performance. Here we only need 7 iterations to achieve a good reconstruction with a high SNR
value.

Figures 4 and 5 show the decoding comparisons for the 32nd frame of the high-speed jet flow.
Again, the AMP techniques gain the performance of reconstruction. In contrast to the cartoon
video, the original measured jet flow (as shown in Fig. 4 (a)) includes noises. So the SNR value
may be not the best quantity to assess the reconstruction. At least regarding the visual quality,
the AMP-DTCWT displays best results where edges are reconstructed and noises are removed
efficiently. In fact, we only need the edges and structures from the off-line decompressed image
in order to observe the evolution of the turbulent flow.

Figures 6 and 7 show the decoding comparisons for the 32nd frame of the Foreman video. In
this case, the algorithms with wavelet/complex wavelet sparsity constraints gain the performance
very well. Obviously, the AMP technique further improves the results. The AMP-DTCWT
achieves the best results in terms of SNR values and visual quality.

Finally, we also give the detailed comparisons of SNR values for other frames after recon-
struction with 20 iterations. In Table I, we provide the information for middle frames from 24th
to 39th frame for the Cartoon video, the Jet flow and the Foreman video. The last row lists the
average SNR values of all 64 frames for the different methods. As it can be seen from Figures
3, 5 and 7, the difference in performance is even much more in favor of the AMP-DTWCT if
we had compared the results already after 10 iterations.

However, in current understanding, the direct CS methods (without additional encoder/decoder
for spatiotemporal correlation of video signals) can not simply achieve low-bit compression
rates for images or videos as produced by JPEG2000 or by H.264. In Figure 8, we show a
comparison to traditional compression methods based on the discrete curvelet transform [5] and
on the discrete wavelet transform with hard thresholding, respectively. As usual, we decompose
the images by the curvelet and the wavelet transform, respectively, and then perform the
reconstruction using only the 1628 most significant wavelet/curvelet coefficients (1 % of data).
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Both methods obtain higher SNR values than CS coding. This is of course reasonable, because
both the curvelet and the wavelet method choose the best transform coefficients ’adaptively’
while CS encoding chooses the Fourier coefficients randomly. But for the traditional methods,
one has also to store and to transmit the location information of the curvelet or wavelet
coefficients for each frame, while for CS coding one only keeps the location of random
sampling one time and does not need to transmit it. Comparing the encoding effort, one can
indeed apply the CS technique for low-complexity and energy-efficient online encoding of
videos. In this case of 128× 128 images, the online computational time for the CS encoding,
wavelet transform and curvelet transform is 0.0016 seconds, 0.032 seconds, and 0.281 seconds,
respectively. Thus, CS-methods are especially attractive for data compression of high-speed
cameras, where the encoding is required to be simple and fast. Another important potential
advantage of CS encoding is that it can be implemented by hardware for simultaneous data
acquisition and compression.

VI. CONCLUSIONS

In this paper, the compressed sensing (CS) technique is applied to low-complexity and energy-
efficient online compression of video sequences and high-speed jet flows. The CS encoding
is promising since it can be implemented easily by hardware, and it is very efficient. This is
especially attractive for data compression by high-speed cameras, where the encoding is required
to be simple and fast. The CS-technique shifts the computational cost of high-fidelity video
decompression to offline processing. We applied a recently proposed AMP method together with
a 3D dual-tree complex wavelet transform for our decoding. The method can efficiently recover
the original video signals using very few partial Fourier measurements. The spatiotemporal
correlations of the video signal, being ignored by the simple encoding, are exploited well by
the proposed decoding method. We have shown that the AMP method can be seen as a general
forward-backward splitting algorithm. In particular, we can derive conditions for the convergence
of AMP that lead to improvements of its performance by suitable parameter choice. Further,
significant connections of the AMP with Bregman iterations are also addressed.

To further improve the current results, one can apply other measurement matrices (e.g.,
structured random matrices) to achieve faster computation in the encoding phase, and incorporate
inter-frame techniques from conventional video compression to explore the temporal redundancy
in the decoding phase. How to apply optimal thresholding parameters is another next work.
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(a) (b) SNR = 18.0879 dB

(c) SNR= 18.0234 dB (d) SNR=18.5335 dB

(e) SNR= 18.9709 dB (f) SNR=19.3739 dB

Fig. 2. Cartoon video: the comparison of the 32nd frame with SNR values. (a) Original data. (b) IST
reconstruction. (c) AMP reconstruction. (d) IST-DWT reconstruction. (e) IST-DTCWT reconstruction. (f) AMP-
DTCWT reconstruction.
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Fig. 3. Cartoon video: comparison of the SNR change as the number of iteration increases, by different methods: IST
(dotted line), AMP (solid line with squares), IST-DWT (dot-dashed line), IST-DTCWT (dashed line), AMP-DTCWT
(solid line with circles).
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(a) (b) SNR = 20.2282 dB

(c) SNR= 20.5407 dB (d) SNR=19.5246 dB

(e) SNR= 19.9223 dB (f) SNR=20.0399 dB

Fig. 4. Jet flow: the comparison of the 32nd frame with SNR values. (a) Original data. (b) IST reconstruction. (c)
AMP reconstruction. (d) IST-DWT reconstruction. (e) IST-DTCWT reconstruction. (f) AMP-DTCWT reconstruction.
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Fig. 5. Jet flow: comparison of the SNR change as the number of iteration increases, by different methods: IST
(dotted line), AMP (solid line with squares), IST-DWT (dot-dashed line), IST-DTCWT (dashed line), AMP-DTCWT
(solid line with circles).
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(a) (b) SNR = 24.1243 dB

(c) SNR= 24.2749 dB (d) SNR=27.2177 dB

(e) SNR= 27.5431 dB (f) SNR=28.8220 dB

Fig. 6. Foreman: the comparison of the 32nd frame with SNR values. (a) Original data. (b) IST reconstruction. (c)
AMP reconstruction. (d) IST-DWT reconstruction. (e) IST-DTCWT reconstruction. (f) AMP-DTCWT reconstruction.
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Fig. 7. Foreman: comparison of the SNR change as the number of iteration increases, by different methods: IST
(dotted line), AMP (solid line with squares), IST-DWT (dot-dashed line), IST-DTCWT (dashed line), AMP-DTCWT
(solid line with circles).

(a) SNR=20.2524 dB (b) SNR=26.2758 dB

Fig. 8. Compression by tradition methods by keeping 1628 most significant coefficients. (a) Curvelet thresholding
and reconstruction. (b) Wavelet thresholding and reconstruction.
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Index of frames IST AMP IST-DWT IST-DTCWT AMP-DTCWT

24
Cartoon 17.7345 17.6737 18.1336 18.6439 19.0492
Jet Flow 20.4525 20.9124 20.2709 20.6069 20.7331
Foreman 24.3111 24.5051 27.2768 27.3916 28.5506

25
Cartoon 17.75711 17.6990 18.1104 18.6921 19.1120
Jet Flow 21.4331 22.0000 21.2142 22.0077 22.1323
Foreman 24.2957 24.5088 27.1866 27.5058 28.6755

26
Cartoon 17.7920 17.7315 19.9471 18.6703 19.0913
Jet Flow 21.5136 21.9198 20.9791 21.8937 22.0583
Foreman 24.1805 24.3838 27.0332 27.4727 28.6829

27
Cartoon 17.8206 17.7554 18.0934 18.7439 19.1499
Jet Flow 20.5071 20.9212 19.8141 20.5992 20.7513
Foreman 24.1164 24.3196 26.9539 27.4545 28.6222

28
Cartoon 17.8514 17.7809 18.1302 18.7549 19.1449
Jet Flow 20.618 20.7305 19.5977 20.4009 20.5224
Foreman 24.1414 24.3415 27.1282 27.5848 28.8416

29
Cartoon 17.8936 17.8280 18.2154 18.7797 19.1433
Jet Flow 20.9468 21.2433 19.8733 20.9726 21.1308
Foreman 24.1539 24.3556 27.1438 27.6813 28.9765

30
Cartoon 17.9993 17.9340 18.2078 18.8576 30.2334
Jet Flow 21.0428 21.3640 20.0200 20.9726 21.1461
Foreman 24.1786 24.3753 27.0515 27.6987 28.9597

31
Cartoon 18.0626 17.9962 18.3554 18.9867 19.3739
Jet Flow 21.2379 20.6074 19.3877 20.0516 20.1830
Foreman 24.1752 24.3495 27.1046 27.7054 28.9376

32
Cartoon 18.0879 18.0234 18.5335 18.9709 19.3739
Jet Flow 20.2882 20.5407 19.5246 19.9223 20.0399
Foreman 24.1243 24.2749 27.2177 27.5431 28.8220

33
Cartoon 18.0703 18.013 18.4899 18.9079 19.2490
Jet Flow 20.9096 21.1414 20.4178 20.7871 20.9408
Foreman 24.1045 24.2510 27.3676 27.3849 28.5790

34
Cartoon 18.1053 18.0517 18.3943 18.9227 19.2574
Jet Flow 21.4247 21.6615 20.3987 21.2156 21.4216
Forman 24.2307 24.3910 27.5602 27.6002 28.7615

35
Cartoon 18.1589 18.0998 18.4187 19.0421 19.3853
Jet Flow 20.8079 20.9425 19.6219 20.3421 20.5023
Foreman 24.1418 24.3129 27.5474 27.6081 28.7687

36
Cartoon 18.1354 18.0790 18.3487 19.0620 19.4218
Jet Flow 20.2938 20.4672 19.5286 20.3488 20.5420
Foreman 24.1169 24.2945 27.5100 27.5818 28.7233

37
Cartoon 18.0913 18.0342 18.3958 18.9946 19.3949
Jet Flow 21.2720 21.3680 20.1066 21.2472 21.4048
Foreman 24.1788 24.3677 27.6053 27.7354 28.8988

38
Cartoon 18.0896 18.0339 18.4531 18.9652 19.3962
Jet Flow 21.4698 21.5835 20.1596 21.4440 21.6561
Foreman 24.2667 24.4673 27.7694 27.8174 28.9921

39
Cartoon 18.1181 18.0584 18.5669 19.0419 19.4949
Jet Flow 21.0320 21.1768 19.8859 20.8085 20.9638
Foreman 24.3000 24.5068 27.7838 27.8284 28.9658

Average
Cartoon 17.9859 17.9167 18.3585 18.8232 19.2287
Jet Flow 20.7646 21.0397 20.1236 20.7259 20.9044
Foreman 24.2973 24.4589 27.5235 27.4845 28.7078

TABLE I
PERFORMANCE COMPARISON IN SNR VALUE BY DIFFERENT METHODS, FOR CARTOON VIDEO, JET FLOW AND

FORMAN VIDEO.


