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Abstract

Sparse representation of seismic data is a crucial step for seismic forward modeling
and seismic processing such as multiple separation, migration, imaging, and sparsity-
promoting data recovery. In this paper, a new locally adaptive wavelet transform,
called easy-path wavelet transform (EPWT), is applied for the sparse representation
of seismic data. The EPWT is an adaptive geometric wavelet transform that works
along a series of special pathways through the input data and exploits the local corre-
lations of the data. The transform consists of two steps: reorganizing the data follow-
ing the pathways according to the data values, and then applying a one-dimensional
wavelet transform along the pathways. This leads to a very sparse wavelet represen-
tation. In comparison to conventional wavelets, the EPWT concentrates most energy
of signals at smooth scales and needs less significant wavelet coefficients to represent
signals. Numerical experiments show that the new method is really superior over the
conventional wavelets and curvelets in terms of sparse representation and compression
of seismic data.

Keywords: Easy-path wavelet transform, seismic processing, adaptive wavelets, sparse
representation, curvelets

1 Introduction

Current seismic acquisitions deploy a few ten thousands of shot gathers [25]. Each shot
point may also contain more than 104 receivers for land seismic data. For a single source-
receiver pair, the signal is typically recorded during a few seconds at a rate of a few ms,
leading to a few thousands samples per trace. In total, three-dimensional acquisitions
easily contain data volumes of a few terabytes. In that context, an efficient transform for
compressing data and later processing the data is a key element.

The most striking feature in seismic data is the presence of texture-like wave fronts.
In the last two decades, wavelets have been used as one popular tool for seismic data

1



processing. A primary aim of wavelet expansions is to find a sparse representation for
seismic data. A signal representation is sparse when it can capture a signal with a small
number of significant coefficients or components. Generally, a sparser transform is attrac-
tive for signal processing tasks, e.g., data compression and fast forward modeling, taking
advantage of the multiscale and local temporal-frequency analysis.

Tensor product two-dimensional wavelets are not optimal for representing geometric
structures because their support is not suited to directional geometric properties. Re-
cently, several geometric wavelets including curvelets [1, 2], shearlets [10], contourlets [7]
were proposed to represent the directional features. These non-adaptive highly redundant
function frames have strong anisotropic directional selectivity. For a smooth object f

with discontinuities along C2-continuous curves, the best m-term approximation f̃m by
curvelets/shearlets thresholding obeys ‖f − f̃m‖2

2 ≤ Cm−2 (log m)3, while for wavelets the
decay rate is only m−1. In the last few years, the curvelets have been applied to the fields
of seismic exploration, see e.g., seismic denoising [11, 19], data recovery [12], multiple re-
moval [13], migration [3], imaging [8] and forward modeling of wave propagation [24]. A
detailed comparison between wavelets, contourlets, curvelets, and their combination for
seismic denoising was also examined [23]. More applications of curvelets can be found in
recent review papers by two of the authors [16, 17].

However, curvelets are quite redundant (about 3 − 7 times more than for wavelets in
two-dimensional problems), i.e., the number of coefficients in curvelet domain is larger
than the number of pixels in the original data. This redundancy factor is useful for de-
noising, but it prevents the use of curvelets in other fields such as data compression and
forward modeling, where a sparse representation is very important. Also, curvelets or
shearlets are not adaptive with respect to the regularity of images. They lose their near
optimal approximation properties when the data is composed of features having singular-
ities along curves being not exactly C2-smooth. Some adaptive wavelet transforms have
been presented in the image processing community. For instance, Le Pennec and Mallat
[15] proposed bandlet orthogonal bases and frames that adapt the geometric regularity of
data. The main idea of bandlets is that they warp wavelets along a geometric flow and
generate bandlet orthogonal bases in different bands. Dekel and Leviatan [6] introduced
a geometric wavelet transform, based on an adaptive binary partition of image domain to
match the geometric features of the images. Krommweh [14] proposed an adaptive Haar
wavelet transform, named tetrolet transform, which allows so-called tetromino partitions
such that the local image geometry is taken into account. The tetrominoes are borrowed
from a famous computer game classic ’Tetris’ where shapes are built by connecting four
equal-sized squares, each joined together with at least one other square along an edge.
Some other approaches for locally adaptive image representations also exist, based on the
lifting scheme, see e.g. [4, 9]. Using the seislet transform, one needs a priori information
such as the local dip along which the signal is smooth. But then the stability of the wavelet
transform strongly suffers, and the obtained results only marginally outperform the usual
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fast wavelet transform.
Recently, a nonlinear locally adaptive easy-path wavelet transform was proposed by

Plonka [20] for a sparse representation of two-dimensional images. The EPWT is related
with the idea of grouplets [18], where one applies a weighted Haar wavelet transform to
points that are grouped by a so-called association field. The concept of EPWT is very
effective and simple to understand. Starting with some suitable point of a given data
set, one seeks a path through all data points, such that there is a strong correlation
between neighboring data points in this path. By choosing the ”best neighbor” strategy
using a given optimality rule, all data points are used in the pathways only once. Then
one can apply a suitable one-dimensional (1D) discrete wavelet transform to the function
along the path. The choice of the path vector ensures that most wavelet coefficients
remain small. The same idea is repeated to the wavelet low-pass part. The EPWT has a
generalized multiresolution structure and adaptive scaling and wavelet functions depend
on the considered images. It also works well for other data structures as e.g. for data on the
sphere by suitable extension [21]. It has been proved that the EPWT leads, for a suitable
choice of the pathways, to optimal N -term approximation for piecewise Hölder continuous
functions with singularities along curves [22]. The idea of EPWT is not restricted to the
two-dimensional case, it can be also applied to higher-dimensional data.

In this paper, we apply the EPWT, for the first time, to obtain sparse representations
of seismic data in the oil and gas exploration. Numerical experiments show that it is
promising for potential applications in seismic fields.

2 Easy-path wavelet transform

In this section, we briefly introduce the easy-path wavelet transform [20]. In each decom-
position level, this transform includes two basic steps: (1) finding the path vector and
then (2) applying a one-dimensional discrete wavelet transform along the path vector.

Let N1, N2 be two positive integers with N1N2 = 2Ls, with L, s ∈ N. Let f =
(f(i, j))(i,j)∈I be a digital function where I = {(i, j) : i ∈ [0, N1 − 1], j ∈ [0, N2 − 1]}
denotes an index set. In the fields of seismic exploration for a 2D (two-dimensional) shot
gather, the i denotes an index of time coordinate, and the j denotes an index of spatial
receiver coordinate. Let J = J(I) be a 1D index set for I by rearranging the I(i, j) column
by column, i.e., J(i, j) := i+jN1. Further, we define a neighborhood of an index (i, j) ∈ I

by
N(i, j) = {(i1, j1) ∈ I \ {(i, j)} : |i− i1| ≤ AΩ, |j − j1| ≤ AΩ}.

In this paper, we consider AΩ = 1. Hence, an index that does not lie at the boundary
has eight neighbors, an index at the boundary has five neighbors, and an index at a
corner has only three neighbors. The next point of the pathway is always taken from the
direct neighbors, so that the pathway is continued in the two-dimensional graph. If using
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AΩ > 1, one can choose the next point from an extended neighboring area. This ”nonlocal
strategy” can lead to better performances at the cost of more computations.

Let us consider an L-level decomposition of the EPWT. At the first level, we determine
a complete path vector pL through I resp. J(I) and then apply a 1D periodic wavelet
transform to the function values along this path pL. For simplicity, we use the 1D index
set J(I). We start with pL(0) := 0 and search the minimum of absolute differences of the
function values corresponding to the neighborhood of the index 0, to determine the second
index pL(1)

pL(1) = arg min
k
{|fL(0)− fL(k)|, k ∈ {1, N1, N1 + 1}}.

For instance, assuming the second value pL(1) is equal to N1 + 1, we can find pL(2) by
looking for the minimum of absolute difference of the function values corresponding to the
neighborhood of the index N1 + 1 expect the index 0 that has been used already in the
path vector pL. We then have

pL(2) := arg min
k
{|fL(N1 + 1)− fL(k)|, k ∈ {1, 2, N1, N1 + 2, 2N1, 2N1 + 1, 2N1 + 2}}.

Generally, given the index pL(l), l ∈ [0, N1N2 − 1], we determine the next value pL(l + 1)
by

pL(l + 1) := arg min
k
{|fL(pL(l))− fL(k)|, k ∈ N(pL(l)), k 6= pL(v), v = 0, ..., l.}.

We proceed in this simple manner to determine a path vector through the index set
J(I) that is locally adapted to the function f . This is the so-called easy path. In the
path vector, we only reorder the data points according to their values, and put the points
with similar values together. These points can be called local neighborhood (if AΩ = 1)
or nonlocal neighborhood (if AΩ > 1). The aim is to find a path vector such that the
absolute differences between neighbored function values along the path remain as small as
possible (i.e., make the function smoother), so that the wavelet transform along the path
can result in less significant coefficients. In this way we achieve a sparse representation of
the data.

If the choice of the neighborhood is not unique, one may use a pre-given rule (e.g., a
favorite direction) to determine a unique pathway. If, for a given pL(l), no neighbor can
be chosen (i.e., all indices in the neighborhood have already been used in path pL), one
needs to interrupt the path and starts with a new index pL(l + 1) from the remaining
unused indices in J(I). After finding the complete path vector pL, we apply a one-level
discrete orthogonal or biorthogonal wavelet transform to the vector of function values
(fL(pL(l))) along the path pL. We obtain low-pass smooth coefficients and high-pass
wavelet coefficients after the one-level decomposition.

Then, we apply the same strategy to the low-pass part and carry out a path vector
pL−1 for the second-level wavelet decomposition. For this purpose, we relate the low-
pass coefficients cL−1

l to two neighboring indices pL(2l) and pL(2l + 1), and seek a path
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Figure 1: Some shapes of supports of EPWT adaptive basic functions.

vector through the obtained index sets {pL(2l), pL(2l + 1)}, l = 0, . . . , N1N2/2− 1, where
we again exploit the local correlations between neighbored data values. We repeat the
same strategy in further levels. The number of decomposition levels depend on the data.
Usually, one can apply five to ten levels to obtain satisfying results. The inverse EPWT
needs to use the indices of the path vector p = (pL, pL−1, . . .). Therefore, the path vector
p has to be stored in memory. According to the strategy of this storage, two versions
named rigorous EPWT and relaxed EPWT have been constructed by Plonka [20]. The
searching and storage of the path vectors cause essential costs in EPWT. In Section 3, we
offer a way, how these costs can be considerably reduced for seismic data.

The EPWT can be understood as an adaptive geometric wavelet transform. Some
examples of the adaptive supports of the EPWT basis functions are shown in Figure 1,
when the 1D Haar wavelet transform is applied in the EPWT algorithm. Here we just
outline the forward and inverse EPWT algorithm in Table 1 and 2. For more details on
the EPWT, we refer to [20].

Input: Decomposition level L, seismic data f

or its 1D reordered version cL := (f(l))N1N2−1
l=0 .

For j = L,L− 1, . . . , 1 do
1) Find a suitable path vector pj through indices (or index sets for j < L).
2) Apply the 1D periodic wavelet transform to the vector cj along the

path vector pj to obtain low-pass coefficients cj−1 and high-pass
coefficients dj−1.

3) Store the high-pass coefficients in dj−1 and the path vector pj and go to
the first step for low-pass components.

end
Output: coefficient vector g = (dL−1, dL−1, ..., d0, c0)
and the path vector p = (pL, pL−1, ..., p1).

Table 1: Forward EPWT algorithm.
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Input: coefficient vectors c0 and d0, . . . , dL−1, path vector p,
and the decomposition level L.
For j = 0, ..., L− 1 do
1) Apply the inverse 1D periodic wavelet transform to

the vector (cj , dj) in order to obtain cj+1
p .

2) Apply the permutation to reorder the data cj+1(pj+1(k)) := cj+1
p (k).

end
Output: reconstructed data cL or f .

Table 2: Inverse EPWT algorithm.

3 Coding strategies for the path vectors of EPWT

The bottleneck of the EPWT is certainly the cost related to store the path vectors pj .
However, especially for seismic data, one can reduce these costs essentially if a large portion
of data does not contain essential information. The cost for storage of pL can even fall
away if the path works like for usual wavelet transform along data rows or columns, see
Figure 2 (a). However, the EPWT is much more effective than the tensor product wavelet
transform according to their ability to exploit the local correlations of the data. The path
vector pL in Fig. 2 (b) can be stored with minimal memory allocation. Compared to
Figure 1 (a) with the “usual path”, where horizontal directions are preferred, we only
need to store the direction from the fourth to the fifth index (being different from the
usual way) and from the 9-th to the 10-th index. Then the complete path vector in Fig.
2 (b) is already determined by the specification that each index is contained exactly one
times in the path vector.

(a) (b)

Figure 2: A simple example to show the performance of easy path. (a) The path without
storage cost. (b) Path that takes the data values into account.
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In Figure 3, we show another example (a detail of Figure 4), where the path vector pL

of length 384 is chosen such that the previous direction of the path is preferred as long as
the data values of the corresponding pixels do not differ too much. For that purpose, we
can fix a certain bound C and say that for given indices pL(l− 1) and pL(l) the next path
component pL(l + 1) is taken in “path direction” if

|f(p(l))− f(p(l + 1))| < C.

That means, we are not longer seeking for the optimal neighbor but prefer the first neighbor
(in the known direction) if the corresponding function value is good enough. Obviously,
with a large bound C we end up on a path vector like in Fig. 2 (a) as for the usual wavelet
transform along the rows of the data, and without adaptivity costs. The path pL in Fig. 3
has now (relatively) small entropy, since we need to store only a change of path direction.
This can be done with small numbers. Also, we can take into account that each index
occurs only one times in the path vector, such that the number of admissible neighbors of
an index gets smaller.

For further levels of the EPWT, similar strategies can be developed. For example, our
experiments for data in Fig. 4 with gray values between 0 and 255 have shown that pL

can be stored with an entropy of about 0.8 bit per pixel for C = 20; 0.4 bpp for C = 40
and 0.07 bpp for C = 100.

Figure 3: Possible path vector in a detail data of Figure 4.

4 Numerical experiments

In this section, we want to demonstrate the good performance of the EPWT method
for seismic data compression, in comparison with wavelets and curvelets. In the ex-
periments, we use the Daubechies DB4 wavelets [5] for the wavelet transform and the
second-generation curvelets [2] for the discrete curvelet transform .
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Figure 4 (a) is a typical simulated 2D shot gather with 128 × 128 size. Figure 4
(b), (c), and (d) are the results reconstructed by using the largest 1024 coefficients of
wavelets, curvelets, and EPWT. The EPWT provides a much better sparse representation
than the wavelets and curvelets, in terms of both SNR (signal-to-noise ratio) values and
preservation of wave fronts. Due to the high redundancy of curvelets, the fixed-number
reconstruction has a lower SNR value than the wavelet reconstruction. Unfortunately,
wavelet reconstructions result in serious oscillating artifacts (mosaic phenomenon) along
the edges, due to its poor ability to analyze curve singularities.

SNR = 1.52 dB

(a) (b)
SNR = −3.79 dB SNR = 10.93 dB

(c) (d)

Figure 4: Reconstruction by the largest 1024 coefficients. (a) Original simulated seismic
data. (b) Wavelet reconstruction. (c) Curvelet reconstruction. (d) EPWT reconstruction.

Figure 5(a) shows a comparing result by bandlet transform. We select the largest 20000
bandlet coefficients in this case. We do not select 1024 coefficients because the reconstruc-
tion of 1024 coefficients almost can not result in visual geometric features. Although the
bandlet transform works along geometric edges, it can not capture enough features by
these coefficients because of its large redundancy. Another similar transform is grouplet
transform that performs a wavelet transform along a geometric path. However, current
grouplet version is only for Haar transforms and there are again essential adaptivity costs
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since the association field has to be stored in each level.
Figure 5(b) displays the coefficients after sorting for different transforms, showing that

the EPWT coefficients have the fastest decay.

SNR = −2.50 dB
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Figure 5: (a) Reconstruction using 20000 coefficients in the bandlet transform. (b) Coeffi-
cients after sorting from large to small amplitudes. Solid line, dotted line, and dot-dashed
line denote EPWT, wavelets, curvelets, respectively.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
−5

0

5

10

15

20

25

30

35

40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−5

0

5

10

15

20

25

30

(a) (b)

Figure 6: (a) SNR vs number of reconstructed coefficients. (b) SNR vs percentage of
reconstructed coefficients to total coefficients. Dotted line, dot-dashed line, and solid line
denote wavelets, curvelets, and EPWT, respectively.

Figure 6 shows the change of SNR of reconstructed data as the number of coefficients
increases. The EPWT displays the good ability for sparse representation of seismic data,
because the EPWT can find the pathways easily along the wave fronts. Even using the
same percentage of coefficients (where the curvelet transform uses almost three times
as many coefficients) as shown in Figure 6 (b), the EPWT displays similar SNR values
as curvelets known to be optimal for sparse representation of data containing smooth
discontinuities [1].
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Figure 7: Reconstruction of real seismic data by using 1024 coefficients. (a) Original data.
(b) Curvelet reconstruction. (c) Wavelet reconstruction. (d) EPWT reconstruction.

In Figure 7, we test the methods on a real seismic data. The original size of the data
is 1125× 1511, i.e., the vertical time coordinate (0 to 4.5 seconds) indicates 1125 samples
in each trace, and the horizontal spatial coordinate indicates 1511 traces. The interval
between traces is 4 milliseconds. In our test, we take a central part of the data with size
256×256, as shown in Fig. 7 (a). The vertical axis corresponds to time and the horizontal
axis corresponds to the position of the receivers. We consider the reconstructions by using
the largest 1024 coefficients of curvelets, wavelets and EPWT, respectively. The EPWT
displays outstanding superiority for the edge-preserving sparse reconstruction. Figure 8
(a)-(c) show the differences between the input data and reconstructed data by using the
curvelets, wavelets and the EPWT, respectively. Fig. 8 (d) shows a comparison of central
traces taken from Fig. 7 (a)-(d). The dotted lines display the trace from input data. The
solid lines, from left to right, denote curvelet reconstruction, wavelet reconstruction, and
EPWT reconstruction. It can be seen that the EPWT method preserves the amplitude of
data well, which is important for practical application.

Figure 9 shows the ability of the EPWT method for compressing seismic data with
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(a) (b)

(c) (d)

Figure 8: Reconstructed errors by (a) curvelets, (b) wavelets, and (c) EPWT. (d) A
comparison of central traces from reconstructed results by different methods, as shown in
Fig. 7. The dotted lines denote original data. The solid lines, from left to right, denote
curvelet, wavelet, and EPWT reconstruction.

aliased dips. In order to get aliased data with ”geometrical aliasing”, We for example select
one trace over ten from original input data with 1511 traces. The new input data now
consists of 152 traces. Fig. 9 (a) shows the data with aliased dips, where the wave fronts
are not continue due to the aliased dips. The sampling in the horizontal axis indicates the
selected traces over 10, i.e., 1, 11, ..., 1511. Fig. 9 (b), (c) and (d) show the compressed
results by reconstructing the 1024 largest coefficients of curvelets, wavelets, and EPWT,
respectively. Once more, the EPWT better works for the compression of data even with
aliased dips. The signal is well-preserved in the compressed result.

Seismic tomography consists of retrieving the Earth properties from measurements
at the surface, typically travel times picked on shot gathers. The unknown sub-surface
parameters are defined in the depth domain. There is thus a need for defining a veloc-
ity model for data depth structures from time recorded data. First arrival travel time
tomography is a widely used method in that context (e.g. [26]). Only a part of the seis-
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Figure 9: Compression of data with aliased dips. (a) Original data with aliased dips
(missed traces). (b) Curvelet compression. (c) Wavelet compression. (d) EPWT compres-
sion.

mic information is selected, namely the first arrival waves. The inversion scheme later
consists of inverting the picked travel times to estimate the velocity model. The sparse
representation of the first arrival waves is useful for the tomography. Figure 10 (a) shows
a close-up of a synthetic seismic data. Figure 10 (b)-(d) shows the sparse reconstruction
by 500 largest coefficients of the curvelets, wavelets and EPWT, following by a simple
amplitude detector (i.e., to detect the first 20 nonzero values in each trace) to extract the
first arrival waves. For clarity, we only give the close-up of their reconstructed results. In
above all comparisons, we only consider sparse approximation (without coding step) for
data compression. The additional coding step can gain the performance of compressive
methods naturally.

5 Conclusion

In this paper, we apply a new adaptive easy-path wavelet transform for sparse representa-
tion and compression of seismic data. As a first step, numerical results for two-dimensional
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(a) (b)

(c) (d)

Figure 10: Reconstruction of first arrive waves by using 500 coefficients. (a) Original data.
(b)-(d) Reconstruction by curvelets, wavelets, and EPWT. Only local close-up parts are
shown, in order to see the difference more clearly.

(x, t) seismic data show good performances of the EPWT method in this field. The next
step would be to develop high-dimensional EPWT algorithm for sparse representation
of large volumes of data depending on possibly five dimensions: time and two spatial
coordinates for both sources and receivers.

Although the EPWT has surprising performances in terms of sparse representation of
seismic data, at the current stage, the main lack of the EPWT is its high computation cost
for searching and storing the path p. An alternative strategy to overcome this problem to
some extent is to apply the EPWT in wavelet sub-bands. That means, one first applies
a two-dimensional discrete wavelet transform to the data, and then applies the EPWT
in each wavelet coefficient subband. Due to the wavelet subband is 2j subsampling, the
biggest size of subband (e.g., the finest-scale subband) only has one-quarter size of the
original data. From experiments, this strategy based method only needs half computation
time (including the pre-computing time of the two-dimensional wavelet transform) for
a 256 × 256 data. Another motivation is that the wavelet coefficients represent edge
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information so that the EPWT could follow along the edges better than the previous
spatial-domain version. However, the additional pre-computed wavelet transform may
cause possible conventional wavelet-like artifacts.
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