
The Easy Path Wavelet Transform:

A New Adaptive Wavelet Transform for Sparse

Representation of Two-dimensional Data

Gerlind Plonka

Department of Mathematics, University of Duisburg-Essen,
Campus Duisburg, 47048 Duisburg, Germany

gerlind.plonka@uni-due.de

Dedicated to Manfred Tasche on the occasion of his 65th birthday

Abstract

We introduce a new locally adaptive wavelet transform, called Easy Path Wavelet
Transform (EPWT), that works along pathways through the array of function values
and exploits the local correlations of the data in a simple appropriate manner. The
usual discrete orthogonal and biorthogonal wavelet transform can be formulated in this
approach. The EPWT can be incorporated into a multiresolution analysis structure and
generates data dependent scaling spaces and wavelet spaces. Numerical results show the
enormous efficiency of the EPWT for representation of two-dimensional data.

Key words. wavelet transform along pathways, data compression, adaptive wavelet bases,
directed wavelets

AMS Subject classifications. 65T60, 42C40, 68U10, 94A08

1 Introduction

A crucial problem in data analysis is to construct efficient low-level representations,
thereby providing a precise characterization of features which compose it, such as edges and
texture components. Fortunately, in many relevant applications, the components of the
given multidimensional data are not independent, and so the data points can be assumed
to lie on or close to a low-dimensional nonlinear manifold embedded in a multidimensional
space.

Wavelets are particularly efficient to represent signals. Yet tensor product wavelet bases
are suboptimal for representing geometric structures because their support is not adapted
to directional geometric properties.

1

In order to be able to achieve sparser representations of images, correlations along
contours and geometry have to be taken into account. This is not straightforward to do
with an orthogonal basis, due to the large variety of contour features.

Many nice ideas have been developed to design approximation schemes for a more
efficient representation of two-dimensional data.

Curvelets [4, 5] and shearlets [15, 16] are examples of non-adaptive highly redundant
function frames with strong anisotropic directional selectivity. For piecewise Hölder con-
tinuous functions of order 2 with discontinuities along C2-curves Candès and Donoho [4]
proved that a best approximation fM of a given function f with M curvelets satisfies

‖f − fM‖2 ≤ C M−2 (log2 M)3,

while a (tensor product) wavelet expansion only leads to an approximation error O(M−1)
[21]. Up to the (log M)3 factor, this curvelet approximation result is asymptotically op-
timal (see [12], Section 7.4). A similar estimation has been achieved by Guo and Labate
[15] for shearlet frames.

However these results are not adaptive with respect to the assumed regularity of the
image. Thus, these frame approximations lose their near optimal properties when the
image is composed of edges which are not exactly piecewise C2.

Instead of choosing a priori a basis or a frame to approximate f , one can rather
adapt the approximation scheme to the image geometry. Within the last years, differ-
ent approaches have been developed in this direction [1, 2, 3, 6, 7, 9, 11, 13, 14, 17, 18,
19, 20, 22, 23, 25, 26, 27]. For example, one can construct an approximation fM which
is piecewise linear over an optimized triangulation including M triangles and satisfies
‖f − fM‖2 ≤ C M−2. This requires adapting the triangulation to the edge geometry (see
e.g. [11]). Also, different image processing algorithms have been developed to find such
approximations by detecting edges and constructing regular approximations between the
edges where the image is uniformly regular (see e.g. [26]). Donoho introduced multiscale
strategies to approximate the image geometry by wedgelets in order to obtain fast poly-
nomial time algorithms [14]. Wakin et al. proposed a compression scheme that mixes
wedgelets and wavelets to obtain better practical approximation results [27]. Recently,
Dekel and Leviatan introduced geometric wavelets, based on an adaptive partition of the
domain to match the geometry of a given input function [9]. Recently, Jacques and Antoine
[19] proposed a wavelet frame construction with adaptive angular selectivity.

In [20], bandelet orthogonal bases and frames are introduced that adapt the geometric
regularity of the image. The considered bandelets are anisotropic wavelets that are warped
along a geometrical flow and generate bandelet orthonormal bases in different bands.
With this construction and an even generalized image model, where the edges may be
blurred, LePennec and Mallat [20] succeeded to show that their bandelet dictionary yields
asymptotically optimal M -term approximations.

In our opinion, the key idea is, not to start with the construction of a basis or frame
of scaling functions (and wavelets) but to consider locally adaptive low-pass and high-pass
filters that will determine a multiresolution structure.

Nonlinear lifting schemes that have been considered already by Claypoole et al. [6].
Further successful attempts in this direction are the nonlinear edge adapted multiscale

2

decompositions based on ENO schemes in [1, 2, 3, 7, 17, 18, 23]. Based on ideas by Harten
[17, 18], one starts with the cell average discretization of an integrable function f at a
fixed resolution 2−j and applies a linear decimation operator (usually a simple average
filter like the Haar low-pass filter). The choice of the nonlinear prediction operator is
now crucial; one faces the problem of accurately reconstructing f from its cell-average
data. The constructed nonlinear prediction operators use the Essentially Non-Oscillatory
(ENO) techniques, together with subcell resolution (ENO-SR) [1, 2, 23] and its two-
dimensional extension (ENO-EA) [3, 7, 23]. Basically, for each subcell Ik one selects
among all stencils {Sk−m, . . . , Sk+m}, which contain Ik, the stencil S̃k that minimizes
a certain measure of oscillation. Hence, the prediction operator essentially depends on
the data in the neighborhood of Ik. With this scheme the simple tree-like structure of
wavelet decompositions is retained, while at the same time a specific treatment of edges is
incorporated within transformation process. We remark that the ENO-EA schemes lead to
an optimal N -term approximation, i.e., ‖f−fM‖2 ≤ C M−2 for piecewise smooth functions
with discontinuities along C2-curves. Moreover, unlike the non-adaptive schemes, the
ENO-EA multiresolution techniques provide optimal approximation results also for BV -
spaces and Lp spaces, see [3, 24].

Mallat [22] has proposed a different idea, studying harmonic analysis transforms that
have similarities with Gestalt groupings. He implements a weighted Haar wavelet trans-
form which is applied successively to points that are grouped by a so-called association
field. Again, the low-pass filters are just averaging Haar filters, and the non-linearity lies
in the fact, that (depending on the determined subgrids) one can choose the “most suit-
able” neighbor of each image value for applying the averaging process. This idea leads to
a grouplet orthonormal Haar basis that adaptively depends on the underlying signal.

In this paper we want to explore the new idea of nonlinear locally adaptive easy path
wavelet transform (EPWT).

As in ENO-EA schemes, our considerations start from the discrete point of view. Given
a matrix of data that are obtained e.g. by a cell-average discretization of an integrable
function f at a fixed resolution, how one can find a way to process the data thereby
exploiting the local correlations of the data efficiently?

We will restrict ourselves to the two-dimensional case but the algorithm presented in
the paper can be easily transferred to higher dimensions. The idea is very simple. Starting
with some suitable point of a given data set, we look in a first step for a path through all
data points, such that there is a strong correlation between neighboring data points in this
path. For the rigorous EPWT, the values in the path vector can be found consecutively
as follows. Having reached one data point, we look at the neighborhood of this point and
choose the “best neighbor”, which has not been used yet in the path vector. This “best
neighbor” will be the next data point in the path. We have to make sure, that all given
data points are used in the path and that no data point is taken twice. Then we can
apply a suitable one-dimensional discrete wavelet transform to this vector, and the choice
of the path will ensure that most wavelet coefficients remain small. The same idea will be
repeated to the low-pass part obtained after applying the wavelet transform. The values
from the downsampled low-pass vector will be used to determine a low-pass filtered image
that has the same size as the original image and consists of pairs of (usually neighboring)
data points with equal value. Regarding these pairs of data points as units we now look for

3

a path through these pairs and apply the discrete wavelet transform again to the resulting
path vector. This idea will be repeatedly applied. In the jth level we consider sets of 2j

data points in the low-pass filtered image with equal values und apply the discrete wavelet
transform along a path through these sets.

In the paper, we shall use the convention that the path vectors p = (p(l))N−1
l=0 are

vectors of indices and the wavelet transform will be applied to the corresponding data,
i.e., to (f(p(l))N−1

l=0 .
After a suitable number of such iterations, we can apply a shrinkage procedure to the

wavelet coefficients obtained at the different levels in order to find a compressed digital
representation of the function.

For reconstruction of the function, one needs the vectors of wavelet coefficients and
the low-pass coefficients from the coarsest level as usual. Furthermore, in this approach
we also need to have the path vectors of indices along which the wavelet transform has
been applied at the different levels.

As we shall see from the numerical experiments, the EPWT can lead to an efficient
compression of digital two-dimensional data.

Observe that the EPWT is (usually) not a one-dimensional transform! Only in the
trivial case, if the path vectors at the second level and at all further considered levels
of EPWT are trivial, i.e., are identities on the (ordered) index sets, a one-dimensional
transform arises with rather poor approximation properties. Since we use a new path
vector at each level of the transform, the EPWT is highly nonlinear and data dependent.

We will show that the EPWT determines a generalized multiresolution structure and
defines scaling and wavelet spaces whose basis functions depend on the considered data.
As usual, the hierarchical structure of these spaces is maintained. We shall also focus on
the difference between the EPWT and a tensor product wavelet transform. In particular,
we show that the usual tensor product wavelet transform can not been seen as a special
case of the EPWT with suitably chosen path vectors. The approximation properties of
the EPWT scheme will be subject to further research.

Facing the efficient application of the EPWT, we have also to study the cost of adaptiv-
ity, i.e., the cost of storing the path vectors. These considerations lead us to a modification
of the rigorous EPWT, the so-called relaxed EPWT, such that an efficient storing of the
path vectors is possible.

The paper is organized as follows. In Section 2 we shall give the definitions and
notations that will be used in this paper. Section 3 is devoted to a detailed description
of the (rigorous) EPWT. The cost of adaptivity will be investigated in Section 4. In
particular, we shall give a procedure for path storing and derive the relaxed EPWT in
order to obtain path vectors that can be stored in a cheaper way. In Section 5, we
study the multiresolution structure of the EPWT for the Haar wavelet transform. In
particular, we will emphasize the differences between the EPWT and the tensor product
wavelet approach. Finally, in Section 6 we illustrate the efficiency of the new algorithm
by numerical examples. We shall apply the EPWT to images and show its ability to
sparsely represent directed structures. The EPWT algorithm is particularly efficient for
representation of real data sets.

4

2 Definitions and Notation

In order to explain the new idea of the EPWT, where we want to use the discrete one-
dimensional wavelet transform along path vectors through the matrix of data, we first need
some definitions and notations.

Let N1, N2 be two positive integers with N1N2 = 2Ls, with L, s ∈ N. For a digital
function f = (f(i, j))N1−1,N2−1

i=0,j=0 let I = {(i, j) : i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1} be
the corresponding index set. We say that for a given index (i, j) and a given function
f , the function value f(i, j) corresponds to the index (i, j). Further, we shall use a one-
dimensional representation of the index set I by taking the bijective mapping J : I →
{0, . . . , N1N2 − 1}, where

J((i, j)) := i + j N1.

The inverse mapping is then given by

j =
⌊J((i, j))

N1

⌋
, i = J((i, j)) − jN1.

Let fL ∈ R
N1N2 be the vector of function values of f corresponding to the index set J(I),

obtained by concatenating all columns of the matrix f ,

fL = (f(0, 0), f(1, 0), . . . , f(N1 − 1, 0), f(0, 1), f(1, 1), . . . , f(N1 − 1, N2 − 1))T .

We say that for a given index l = J((i, j)) and a given function f , the function value
fL(l) = f(i, j) corresponds to the index l.

We define a neighborhood of an index (i, j) ∈ I by

N(i, j) = {(i1, j1) ∈ I \ {(i, j)} : |i − i1| ≤ 1, |j − j1| ≤ 1}.
Hence, an index that lies not at the “boundary”, i.e., i �∈ {0, N1 − 1} and j �∈ {0, N2 − 1},
has eight neighbors, an index at the boundary but not at a vertex has five neighbors,
and an index at the vertex has only three neighbors, (for instance (0, 0) has the neighbors
(0, 1), (1, 0) and (1, 1)).

Using the one-dimensional index set J(I) = {0, 1, . . . , N1N2 − 1} instead of I, a neigh-
borhood of an index l ∈ J(I) with l = J((i, j)) is given by N(l) = J(N(i, j)). As before,
an index l not lying at the boundary has 8 neighbors,

N(l) = {l + 1, l − 1, l + N1, l − N1, l + N1 + 1, l + N1 − 1, l − N1 + 1, l − N1 − 1}.
We shall also consider disjoint partitions E of J(I), i.e. E = {J1, J2, . . . , Jr} where

Jµ ∩ Jν = ∅ for µ �= ν and ∪r
ν=1Jν = J(I). We then say that two subsets Jν and Jµ from

E with µ �= ν are neighbors, and we denote

Jν ∈ N(Jµ),

if there exists an index l ∈ Jν and an index l1 ∈ Jµ such that l ∈ N(l1).
We will look for path vectors through index subsets of J(I) and apply a one-dimensional

wavelet transform along these path vectors.
We say that a vector of indices (lk, . . . , lk+n), 0 ≤ k < k + n ≤ N1N2 − 1, is connected,

if we have lν+1 ∈ N(lν) for ν = k, . . . , k + n − 1. Such a connected index vector is called

5

pathway. We are interested in a complete path through the index set J(I). A complete
path through J(I) is an integer vector of length N1N2 containing all indices of J(I) in
a certain order, i.e., it is a permutation of (0, 1, 2, . . . , N1N2 − 1)T . This complete path
should be composed of a number of pathways, i.e. (pT

1 | pT
2 | . . . | pT

r)T , where pν ,
ν = 1, . . . , r, are connected (column) vectors of indices, and it is regarded as a column
vector of length N1N2 by concatenating p1, . . . ,pr.

One simple example of such a complete path is to take just (0, 1, 2, . . . , N1N2−1)T , and
the pathways used here are p1 = (0, 1, . . . , N1 − 1)T , p2 = (N1, N1 + 1, . . . , 2N1 − 1)T ,. . .,
pN2 = ((N2 − 1)N1, (N2 − 1)N1 + 1, . . . , N2N1 − 1)T , such that the complete path vector
is composed by N2 pathways. The transition from one pathway to the next in the path
vector is called interruption.

3 The rigorous EPWT

Let us now describe the (rigorous) easy path wavelet transform in full detail. We start
with the decomposition of the data f ∈ R

N1×N2 resp. fL ∈ R
N1N2, where we assume that

N1N2 = 2Ls with L, s ∈ N. Then we will be able to apply L levels of the EPWT.

Decomposition

First level

At the first level, we determine a complete path vector pL through J(I) and then apply
the discrete one-dimensional (periodic) wavelet transform to the function values along this
path pL.

We start with pL(0) := 0. In order to determine the second index pL(1), we seek the
minimum of absolute differences of the function values corresponding to the neighborhood
of the index 0, and put

pL(1) := argmin
k

{|fL(0) − fL(k)|, k ∈ {1, N1, N1 + 1}}.

For example, the second value pL(1) is equal to N1 + 1 if |fL(0)− fL(N1 + 1)| = |f(0, 0)−
f(1, 1)| attains the minimum above. We proceed in the same way in order to determine
the index pL(2). Let for example the first two values of pL be given by pL(0) = 0 and
pL(1) = N1 + 1. We now look for the minimum of absolute differences of the function
values corresponding to the neighborhood of the index N1 + 1, but we do not consider the
index 0 that has been used already in the path vector pL. Here, we determine

pL(2) := argmin
k

{|fL(N1 + 1) − fL(k)|, k ∈ {1, 2, N1, N1 + 2, 2N1, 2N1 + 1, 2N1 + 2}}.

We proceed in this manner, thereby determining a path vector through the index set
J(I) that is locally adapted to the function f (easy path). With the above procedure we
obtain a pathway such that the absolute differences between neighboring function values
fL(l) along the path remain as small as possible. Generally, having given the index pL(l),
0 ≤ l ≤ N1N2 − 2, we usually determine the next value pL(l + 1) by

pL(l + 1) := argmin
k

{|fL(pL(l)) − fL(k)|, k ∈ N(pL(l)), k �= pL(ν), ν = 0, . . . , l}.

6

It can happen that the choice of the next index value pL(l + 1) is not unique, since
the above minimum is attained by more than one index. In this case, one may just fix a
favorite direction in order to determine a unique pathway.

Another situation can occur during the procedure, namely that all indices in the neigh-
borhood of a considered index pL(l) have already been used in the path pL. In this case
we need to start with a new pathway, i.e., we have an interruption in the path vector. We
need to choose one index pL(l + 1) from the remaining ”free” indices in J(I) that have
not been taken in pL yet.

There are different possibilities how to start the next pathway. One simple choice is to
take just the smallest index from J(I) that has not been used so far. Another choice is to
look for a next index, such that again the absolute difference |fL(pL(l)) − fL(pL(l + 1))|
is minimal, i.e., we take in this case

pL(l + 1) = argmin
k

{|fL(pL(l)) − fL(k)|, k ∈ J(I), k �= pL(ν), ν = 0, . . . , l}. (3.1)

We proceed in this manner and obtain finally a complete path vector pL ∈ Z
N1N2 that

is a permutation of (0, 1, . . . , N1N2 − 1)T .

After having constructed the path pL, we apply one level of the discrete one-dimen-
sional Haar wavelet transform or any other discrete orthogonal or biorthogonal periodic
wavelet transform to the vector of function values (fL(pL(l)))N1N2−1

l=0 along the path pL.
We obtain the vector fL−1 ∈ R

N1N2/2 containing the low-pass part and the vector of
wavelet coefficients gL−1 ∈ R

N1N2/2. While the wavelet coefficients will be stored in gL−1,
we proceed now further with the low-pass vector fL−1 at the second level.

Second level
By slightly blowing up the low-pass vector fL−1, we first construct a smoothed function

vector f̃L−1 ∈ R
N1N2 as

f̃L−1(pL(2l)) := fL−1(l), f̃L−1(pL(2l + 1)) := fL−1(l), l = 0, . . . N1N2/2 − 1,

i.e., the obtained smoothed values in fL−1 now determine two (usually neighboring) func-
tion values in f̃L−1. See Figure 1 (middle) for the Haar wavelet transform. The corre-
sponding index sets

JL−1
l := {pL(2l),pL(2l + 1)}, l = 0, . . . N1N2/2 − 1,

determine a partition of J(I). Now, each such index set JL−1
l is considered as one object

and corresponds to the function value fL−1(l).
Again we want to exploit the local correlations in the smoothed array of function

values determined by fL−1 (resp. f̃L−1). We repeat the same procedure as in the first
step, but replacing the single indices with corresponding function values by the new index
sets JL−1

l and the corresponding smoothed function values fL−1(l). The new path vector
pL−1 ∈ Z

N1N2/2 is now a permutation of (0, 1, . . . , N1N2/2 − 1)T .
We start again with the first index set JL−1

0 , i.e., pL−1(0) := 0. We consider the
minimum of the absolute differences of function values of fL−1 for all neighboring index
sets, and choose the set for which the minimum is obtained. More precisely, we take

pL−1(1) := argmin
k

{|fL−1(0) − fL−1(k)| : JL−1
k ∈ N(JL−1

0)}.

7

We proceed in the same way. Having already found pL−1(l), 0 ≤ l ≤ N1N2/2 − 2, we
determine the next value pL−1(l + 1) by

pL−1(l + 1) := argmin
k

{|fL−1(pL−1(l)) − fL−1(k)| : JL−1
k ∈ N(JL−1

pL−1(l)
),

k �= pL−1(ν), ν = 0, . . . , l}.

Recall that the neighborhood of the index set JL−1
l is here

N(JL−1
l) = {JL−1

k : JL−1
k ∩ (

N(pL(2l)) ∪ N(pL(2l + 1))
) �= ∅, k �= l}.

If the new value pL−1(l + 1) is not uniquely determined by the minimizing procedure, we
can just fix favorite directions in order to obtain a unique path. If for the set JpL−1(l)

there is no neighboring index set that has not been used yet in the path vector pL−1, then
we have to interrupt the path and to find a good index set (that has been not used so far)
to start a new pathway. As at the first level, we try to keep the differences of function
values along the path small and choose in this case e.g.

pL−1(l + 1) := argmin
k

{|fL−1(pL−1(l)) − fL−1(k)|, 0 ≤ k ≤ N1N2/2 − 1,

k �= pL−1(ν), ν = 0, . . . , l}.

After having completed the path vector pL−1, we apply again the chosen discrete (periodic)
wavelet transform to the vector (fL−1(pL−1(l)))N1N2/2−1

l=0 along the path pL−1. Assuming
that N1N2/4 ∈ N, i.e. L ≥ 2, we obtain the vector fL−2 ∈ R

N1N2/4 containing the low-pass
part and the vector of wavelet coefficients gL−2 ∈ R

N1N2/4. While the wavelet coefficients
in gL−2 will be stored, we proceed now again with the low-pass vector fL−2 in the next
step.

Further levels

If N1N2 is of the form 2Ls with s ∈ N being greater than or equal to the lengths of
low-pass and high-pass filters in the used discrete wavelet transform, then we may apply
the procedure L times. For a given vector fL−j, 0 < j < L, we consider in the (j + 1)-th
step the index sets

JL−j
l = JL−j+1

pL−j+1(2l)
∪ JL−j+1

pL−j+1(2l+1)
, l = 0, . . . , N1N2/2j − 1

with the corresponding function values fL−j(l). Then we determine a path vector pL−j of
length N1N2/2j as a permutation of (0, 1, . . . , N1N2/2j −1)T . We start with pL−j(0) := 0
as before, and having found pL−j(l) we determine

pL−j(l + 1) := argmin
k

{|fL−j(pL−j(l)) − fL−j(k)| : JL−j
k ∈ N(JL−j

pL−j (l)
),

k �= pL−j(ν), ν = 0, . . . , l},

where

N(JL−j
l) = {JL−j

k : JL−1
k ∩

(
N(JL−j+1

pL−j+1(2l)
) ∪ N(JL−j+1

pL−j+1(2l+1)
)
)
�= ∅, k �= l}.

8

If {|fL−j(pL−j(l))− fL−j(k)| : JL−j
k ∈ N(JL−j

pL−j(l)
), k �= pL−j(ν), ν = 0, . . . , l} is an empty

set, then an interruption occurs and we put

pL−j(l + 1) := argmin
k

{|fL−j(pL−j(l)) − fL−j(k)|, 0 ≤ k ≤ N1N2/2j − 1,

k �= pL−j(ν), ν = 0, . . . , l}.

We apply the (periodic) wavelet transform to the vector (fL−j(pL−j(l)))N1N1/2j−1
l=0 along

the path pL−j thereby obtaining the low-pass vector fL−j−1 ∈ R
N1N2/2j+1

and the vector
of wavelet coefficients gL−j−1 ∈ R

N1N2/2j+1
.

Output

As output of the complete procedure after L iterations we obtain the coefficient vector

g = ((f0)T , (g0)T , (g1)T , . . . , (gL−1)T)T ∈ R
N1N2

and the vector determining the paths in each iteration step

p = ((p1)T , (p2)T , . . . , (pL)T)T ∈ R
2N1N2(1−1/2L).

These two vectors now contain the entire information about the originally given function
f ∈ R

N1×N2 (resp. fL ∈ R
N1N2).

In order to find a sparse representation of the original function f , we apply a shrinkage
procedure to the wavelet coefficients in the vectors gj , j = 0, . . . , L−1. In our experiments
in Section 4, we shall use the hard threshold function

Sσ(x) =
{

x |x| ≥ σ,
0 |x| < σ.

Reconstruction

The reconstruction of f resp. fL from g and p is given as follows.
For j = 0 to L − 1 do

Apply the inverse discrete wavelet transform to the vector
(

f j

gj

)
∈ R

s2j
in order to

obtain f j+1
p ∈ R

s2j+1
.

Apply the permutation

f j+1(pj+1(k)) := f j+1
p (k), k = 0, . . . , s2j+1 − 1.

end.

Example 3.1 We illustrate the simple idea of the EPWT in a small example. Let the
following matrix of function values be given

f =




0.4492 0.4219 0.4258 0.4375
0.4141 0.4531 0.4180 0.4258
0.4375 0.4297 0.4219 0.4219
0.4219 0.4258 0.4023 0.4141


 .

9

We use the one-dimensional numbering of indices given by J(I) with N1 = N2 = 4, i.e.,
N1N2 = 24. Applying the procedure described above and using the condition (3.1), the first
path vector reads

p4 = (0, 5, 2, 6, 7, 3 | 4, 9, 14, 10, 13, 8, 12 | 1 | 15, 14)T ,

where | indicates the interruptions. This path has three interruptions and is illustrated by
arrows in Figure 1 (left).

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

�

�

� �

�

�

� �

�

0

0

1

2

6

6

3

3

4

5

5

7

0

01

3

2

2

1

Figure 1. Illustration of the path vectors and the low-pass parts for the first two levels of the
EPWT with Haar wavelet transform. Index sets at the second and third level are illustrated by
different gray values.

Application of the Haar wavelet transform with (not normalized) filters h(0) = h(1) =
1/2 and g(0) = −1/2, g(1) = 1/2 gives (with truncation after four digits)

f3 = (0.4512, 0.4336, 0.4238, 0.4199, 0.4219, 0.4258, 0.4258, 0.4082),
g3 = (0.0020,−0.0039,−0.0020,−0.0020, 0, 0,−0.0117,−0.0059).

We now proceed to the second level. For the ’smoothed array’ of function values f̃3,

f̃3 =




0.4512 0.4199 0.4258 0.4258
0.4258 0.4512 0.4199 0.4258
0.4336 0.4336 0.4219 0.4219
0.4238 0.4238 0.4082 0.4082


 ,

we obtain the path p3 = (0, 1, 6, 5, 4, 3 | 2, 7) with one interruption illustrated by arrows in
Figure 1 (middle). Application of Haar wavelet transform gives

f2 = (0.4424, 0.4258, 0.4209, 0.4160),
g2 = (−0.0088, 0,−0.0010,−0.0078).

At the third level we start with the smoothed matrix f̃2,

f̃2 =




0.4424 0.4209 0.4258 0.4258
0.4258 0.4424 0.4209 0.4258
0.4424 0.4424 0.4209 0.4209
0.4160 0.4160 0.4160 0.4160




10

illustrated in Figure 1 (right), and obtain the path p2 = (0, 1, 2, 3). This leads to

f1 = (0.4341, 0.4185),
g1 = (−0.0083,−0.0024).

Finally, for p1 = (1, 2) the last transform yields f0 = (0.4263) and g0 = (−0.0078).

4 Cost of adaptivity: The relaxed EPWT

Compared to the usual tensor product wavelet transform, the rigorous EPWT introduced
in Section 3 strongly reduces the number of wavelet coefficients needed for lossy compres-
sion of two-dimensional data with same quality, see Section 6.

However, for reconstruction using the EPWT, we have to store the path vector p =
((p1)T , . . . , (pL)T)T ∈ R

2N1N2(1−1/2L), and the cost of storing this vector also needs to be
taken into account. In this section we want to study how this can be done efficiently.

At the first level of the EPWT, in pL, the path usually connects neighboring indices,
and we only need to store the next direction of the path instead of the whole next index.
Obviously, having eight directions (i.e., at most eight neighbors of one index), we can store
them with at most three bits. In the case of an interruption of the path, we may have
to store the complete new index in the worst case (depending on the choice of the new
starting index for the next pathway).

Compared with the costs for storing the wavelet coefficients, these costs of adaptivity
are not negligible.

Therefore we want to propose a procedure for a cheaper storing of the information in
the path vector p. This considerations will also lead us to a modification of the rigorous
EPWT algorithm presented in Section 3, the so-called relaxed EPWT, where a balance
between costs of storage of wavelet coefficients and costs of adaptivity (storage of p) can
be found.

4.1 First level: How to store the information of pL?

First, we want to present a procedure for cheaper storing the path pL as found with the
rigorous EPWT algorithm in Section 3. In order to decrease these storing costs further
we will later modify the rigorous EPWT algorithm suitably.

At the first level, the complete information of pL of length N1N2 can now be stored
in p̃L as follows.

(i) Put p̃L(0) := 0 since pL(0) = 0 is the fixed starting point.

(ii) For determining the second value in p̃L look clockwise through the neighbors of pL(0)
and put

p̃L(1) :=




0 if pL(1) = N1,
1 if pL(1) = N1 + 1,
2 if pL(1) = 1.

i.e., ’right’ is the fixed favorite direction, where we only need to store a zero in p̃L(1).

11

(iii) For all further path values use the following convention.

The favorite direction (that will be mapped to 0 in p̃L) is the direction which is kept
from the previous step, i.e., if

pL(l + 1) = pL(l) + (pL(l) − pL(l − 1)) = 2pL(l) − pL(l − 1),

then p̃L(l + 1) := 0. If the direction of the path is changed after the previous step
then look clockwise through the neighbors (starting with the favorite direction) and
determine p̃L accordingly. More precisely, consider the vector q = (q(µ))7µ=0 ∈ Z

8,

q =: (N1, N1 + 1, 1,−N1 + 1,−N1,−N1 − 1,−1, N1 − 1)T .

Find the index µ̃ ∈ {0, . . . , 7} with

q(µ̃) = pL(l) − pL(l − 1),

such that q(µ̃) determines the favorite direction. Consider a cyclic shift q̃ of q of
the form

q̃ := (q(µ̃), . . . ,q(7),q(0), . . . ,q(µ̃ − 1))T = (q̃(µ))7µ=0,

such that q̃(0) = q(µ̃). Observe that pL(l − 1) is a neighbor of pL(l) that has been
already taken in the path. In case that all seven remaining neighbors of pL(l) have
not been used in the path yet, put

p̃L(l + 1) :=




0 pL(l + 1) = p(l) + q̃(0),
1 pL(l + 1) = p(l) + q̃(1),
2 pL(l + 1) = p(l) + q̃(2),
3 pL(l + 1) = p(l) + q̃(3),
4 pL(l + 1) = p(l) + q̃(5),
5 pL(l + 1) = p(l) + q̃(6),
6 pL(l + 1) = p(l) + q̃(7).

The direction pL(l + 1) = p(l) + q̃(4) cannot occur in the path since q̃(4) = pL(l −
1) − pL(l).

Let us call a neighbor index of pL(l) admissible, if it is in J(I), and if this index did
not occur in the path already, i.e., it is different from pL(ν) for ν = 0, . . . , l.

If not all seven remaining neighbor indices of pL(l) are admissible, we slightly change
the above scheme by deleting first all components q̃(µ) in q̃ that do not lead to an
admissible index pL(l + 1) = pL(l) + q̃(µ). Let q̃sh = (q̃sh(µ))m−1

µ=0 ∈ Z
m, m ≤ 7,

contain only the admissible components of q̃ (without changing the order!). Now
put

p̃L(l + 1) := µ if pL(l + 1) = pL(l) + q̃sh(µ).

(iv) If the path pL contains an interruption, i.e., one pathway ends at pL(l) and pL(l+1) is
not a neighbor of pL(l), then the determination of p̃(l+1) depends on the procedure
used for finding the new starting index pL(l + 1). If pL(l + 1) is just the smallest
index of all free indices left, then we simply take p̃L(l + 1) := 0. (In fact we need

12

not to store p̃L(l + 1) in this case.) Now we proceed further similarly as before with
pL(l + 1) = pL(l) + N1 as the favorite direction. In our numerical examples (see
Section 6), we have taken a special procedure for finding a suitable new starting
point without high cost.

It can be simply observed that the above procedure, that maps pL into p̃L, is reversible,
i.e., pL can be uniquely reconstructed from p̃L.

Example 4.1 Consider again the 4×4 matrix of function values in Example 3.1. With the
above procedure, we translate the path p4 = (0, 5, 2, 6, 7, 3 | 4, 9, 14, 10, 13, 8, 12 | 1 | 15, 14)T

into the vector
p̃4 = (0, 1, 2, 1, 2, 0 | 1, 1, 0, 3, 0, 0, 0 | 0 | 1, 0)T ,

with the convention that for a starting point of a new pathway, we store in p̃4 the index
of this starting point in a vector of ordered remaining admissible indices.

Using the above procedure for storing the path p̃L, it is obvious that the cost of
adaptivity decreases if the path changes directions less often. This observation leads to
the concept of relaxed EPWT algorithm.

4.2 The relaxed EPWT (first level)

We completely adapt the basic idea of the rigorous EPWT but use a certain predetermined
bound θ1 as follows. Forcing to continue the pathway in the same direction, we allow to
take the direction that leads to the entry zero in p̃L if the difference of function values
satisfies

|f(pL(l)) − f(2pL(l) − pL(l − 1))| ≤ θ1,

independently from the other absolute differences |f(pL(l))−f(pL(k))| with k ∈ N(pL(l)).
If the index 2pL(l) + pL(l − 1) is not an admissible neighbor index of pL(l) then take the
smallest index of components in q̃sh for determining pL(l + 1) such that

|f(pL(l)) − f(pL(l) + q̃sh(µ))| ≤ θ1 (4.1)

is satisfied. If the above inequality (4.1) is not satisfied for all components of q̃sh, then we
take as in the rigorous EPWT

pL(l + 1) := argmin
k

{|f(pL(l) − f(pL(k))|, k ∈ N(pL(l)), k �= pL(ν), ν = 0, . . . , l},

or equivalently, with the above notation, pL(l + 1) := pL(l) + q̃sh(µ∗), where

µ∗ = argmin
µ

{|f(pL(l)) − f(pL(l) + q̃sh(µ))|}.

If the path vector pL contains an interruption at pL(l), then we may e.g. take as pL(l+1)
the smallest index of all free indices left. The corresponding path vector p̃L can now be
obtained using the procedure in Section 4.1.

Obviously, for θ1 = 0 the relaxed EPWT coincides with the rigorous EPWT. As we
will see, the relaxed EPWT may essentially reduce the costs for path storing.

13

Figure 2. Representation of the first path with θ1 = 0 (left) and with θ1 = 0.14 (right)

Considering again the 4×4 matrix of function values in Example 3.1, we now get with
a parameter θ1 = 0.1 the path p4 = (0, 4, 8, 12, 13, 14, 15, 11, 7, 3, 2, 1, 5, 9, 10, 6) and p̃4 is
the zero-vector of length 16.

Example 4.2 We consider a 16×16 image (a part of the pepper image) and are interested
in the path pL (and p̃L, respectively) for the first level of EPWT. The image values are
normalized to the range [0, 1). In Figure 2 we compare the path vectors for θ1 = 0 (rigorous
EPWT) and for θ1 = 0.14 (relaxed EPWT). Starting points of a new pathway are indicated
by circles. They have been obtained here by taking the smallest remaining admissible index.

Figure 2 shows that great differences between gray levels are avoided in the two paths.
Interestingly, the path for θ1 = 0 is not only more expensive but also contains more in-
terruptions than the other path. The path p̃L for θ1 = 0 consists of 120 zeros, 57 ones,
42 twos, 18 threes 10 fours, 4 fives and 5 times a six. The entropy of this path is 2.08
bit per pixel. For θ1 = 0.14 the obtained path p̃L consists of 241 zeros, 10 ones, 2 twos,
and 3 threes. This time the entropy of the path is 0.39. Observe that for larger images the
entropy of the path can be even smaller, see Section 6.

4.3 Further levels

In this subsection we describe the relaxed EPWT for the further levels and (at the same
time) the cheap storage of corresponding path vectors. At the jth level the procedure is
as follows.

(i) Put pL−j(0) := 0 and p̃L−j(0) := 0.

(ii) For l ≥ 0 do the following.

If pL−j(l) + 1 is an admissible neighbor of pL−j(l) and

|fL−j(pL−j(l)) − fL−j(pL−j(l) + 1)| ≤ θ1, (4.2)

14

then take pL−j(l + 1) := pL−j(l) + 1 and p̃L−j(l + 1) := 0.

(iii) If pL−j(l) + 1 is not an admissible neighbor of pL−j(l) or does not satisfy (4.2),
then we consider pL−j(l) − 1 as the next candidate: If pL−j(l) − 1 is an admissible
neighbor of pL−j(l) and

|fL−j(pL−j(l)) − fL−j(pL−j(l) − 1)| ≤ θ1,

then take pL−j(l + 1) := pL−j(l) − 1 and

p̃L−j(l + 1) :=
{

0 if pL−j(l) + 1 is not admissible,
1 if pL−j(l) + 1 is admissible.

(iv) If (ii) and (iii) do not apply then do the following.
• Determine all indices in {0, . . . , N1N2/2j − 1} that are admissible neighbors of
pL−j(l), i.e., have not been already used in pL−j .

• Put these neighbor indices ordered by size into a vector n, taking the smallest
number first. If pL−j(l) + 1 and/or pL−j(l) − 1 are in n then remove them and let
i0 ∈ {0, 1, 2} be the number of removed indices.

• Take the component n(µ∗) of n = (n(0),n(1), . . .)T with smallest index µ∗ such
that

|fL−j(pL−j(l)) − fL−j(n(µ∗))| ≤ θ1 (4.3)

is satisfied, and put pL−j(l + 1) := n(µ∗), p̃L−j(l + 1) := µ∗ + i0. If no component
n(µ) satisfies the inequality (4.3), then take

µ∗ := argmin
µ

{|fL−j(pL−j(l)) − fL−j(n(µ))|}

and put pL−j(l + 1) := n(µ∗), p̃L−j(l + 1) := µ∗ + i0.

(v) In case of path interruption use a predetermined convention to find the starting index
for the new pathway.

Obviously, for θ1 = 0, again the relaxed EPWT coincides with the rigorous EPWT,
and the above procedure for determining p̃L−j also applies for this case.

5 Adaptive Haar wavelet bases

How can the EPWT introduced in Section 2 be understood in terms of a multiresolution
analysis? What are the main differences between the tensor product wavelet transform
and the EPWT? In this section, we want to study these questions for the Haar wavelet
transform.

Let k ∈ N be a given integer such that 2−k is the finest resolution of a given function
f on Q := [0, 1)2,

f =
∑
µ∈Ik

aµ χ[0,1)2(2
k · −µ)

15

with Ik = {0, . . . , 2k − 1} × {0, . . . , 2k − 1}. Thus, f is a piecewise constant function on
the partition Dk(Q), where Dk(Q) denotes the set of dyadic squares with edge length 2−k

and measure 2−2k.
We consider the space

V2k = span {φ2k
ν , ν ∈ J(Ik)},

where each φ2k
ν is the L2-normalized characteristic function on one square in Dk(Q), i.e.,

φ2k
ν := 2kχ[0,1)2(2k ·−µ) with ν = J(µ). Obviously, {φ2k

ν , ν ∈ J(Ik)} forms an orthonormal
basis of V2k and we have f ∈ V2k, i.e., f =

∑
ν∈J(Ik) ãν φ2k

ν .
Let us fix the (normalized) Haar wavelet filter bank given by the analysis filters h, g

with h(0) = h(1) = 1/
√

2 and g(0) = −1/
√

2, g(1) = 1/
√

2. The synthesis filters h̃ and g̃
coincide with h and g, respectively. As we have seen in Sections 3 and 4, applying the first
level of the (rigorous or relaxed) EPWT with Haar filters, we first determine a path p2k

and then apply the one-dimensional Haar wavelet transform to the vector (f(p(µ))4
k−1

µ=0 .
This transform determines the new function spaces

V2k−1(f) := span {φ2k−1
ν :=

1√
2

(
φ2k
p2k(2ν) + φ2k

p2k(2ν+1)

)
: ν = 0, . . . , 22k−1 − 1},

W2k−1(f) := span {φ2k−1
ν :=

1√
2

(
φ2k
p2k(2ν) − φ2k

p2k(2ν+1)

)
: ν = 0, . . . , 22k−1 − 1}.

The space V2k−1(f) is generated by characteristic functions whose support consists of
two (usually) neighboring squares of Dk(Q). We have V2k−1(f) ⊂ V2k and W2k−1(f) ⊂ V2k,
and moreover

V2k−1(f) + W2k−1(f) = V2k, V2k−1(f) ⊥ W2k−1(f).

Clearly, there is a unique orthogonal decomposition of f = f2k into f2k−1 ∈ V2k−1(f)
and g2k−1 ∈ W2k−1(f). We proceed in this way and determine the spaces according to the
next path vectors pl, l = 2k − 1, . . . , 1 of length 2l,

Vl(f) := span {φl
ν :=

1√
2

(
φl+1
pl+1(2ν)

+ φl+1
pl+1(2ν+1)

)
: ν = 0, . . . , 2l − 1},

Wl(f) := span {φl
ν :=

1√
2

(
φl+1
pl+1(2ν)

− φl+1
pl+1(2ν+1)

)
: ν = 0, . . . , 2l − 1}

for l = 2k − 1, 2k − 2, . . . , 0. Then the support of functions φl
ν ∈ Vl consists of (usually)

connected areas generated by 2l squares from Dk(Q). Again we have Vl(f)+Wl(f) = Vl+1

and Vl(f) ⊥ Wl(f) as before.

Example 5.1 In V2k−1(f) and V2k−2(f), the basis functions can be characteristic func-
tions with supports of the form illustrated in Figure 2 and Figure 3, respectively.

Observe that the spaces Vl(f) and Wl(f), l = 1, . . . , 2k − 1, adaptively depend on the
considered original function f ∈ V2k. With the Haar filters given above we obtain the
unique orthogonal decomposition of f = f2k ∈ V2k,

f2k = f0 +
2k−1∑
l=0

gl,

16

Figure 3: Shapes of supports of possible generating characteristic functions of V2k−1(f).

Figure 4: Some shapes of supports of possible generating characteristic functions of V2k−2(f).

where f0 ∈ V0(f) = V0 is the average of f in Q, i.e., f0 = c χQ with c =
∫
Q f(x)dx,

and gl ∈ Wl(f) for l = 0, . . . , 2k − 1.

In the second part of this section we want to consider the EPWT in matrix form and
compare it with the usual tensor product wavelet transform.

Consider again the image f = (f(i, j))N1−1,N2−1
i=0,j=0 as in Section 2, and the corresponding

column vector fL ∈ R
N1N1 ,

fL = (f(0, 0), f(1, 0), . . . , f(N1 − 1, 0), f(0, 1), . . . , f(N1 − 1, N2 − 1))T

obtained by concatenating all columns of f . Let us introduce the transform matrix of the
Haar wavelet transform of length N ∈ 2N,

WN :=
1√
2




1 1 0 0 0 . . . 0 0
0 0 1 1 0 . . . 0 0

. . .

0 0 0 0 0 . . . 1 1
−1 1 0 0 0 . . . 0 0

0 0 −1 1 0 . . . 0 0
. . .

0 0 0 0 0 . . . −1 1




∈ R
N×N .

(For other periodic wavelet transforms the transform matrix can be determined similarly.)
The tensor product Haar wavelet transform (one level) applied to f now reads

(
f00 g01

g10 g11

)
= WN1 f WN2, (5.1)

where N1, N2 indicate the dimensions of the transform matrices, and f00, g01, g10, g11 are
matrices in R

N1/2×N2/2; f00 represents the low-pass part, g01, g10, g11 contain the wavelet
coefficients.

In order to compare this transform with the EPWT, we want to rewrite (5.1) with the
help of the column vector fL. The matrix multiplication WN1 f in (5.1) corresponds to the

17

(one-dimensional) Haar wavelet transform of columns of f and can be represented by

fL
c = (IN2 ⊗ WN1) f

L.

Here we have used the notation of a Kronecker product of matrices, i.e., IN2 ⊗ WN1 is a
blockdiagonal matrix of dimension N1N2 with blocks WN1 , and IN2 denotes the identity
matrix of size N2. For the wavelet transform of the rows, performed by the multiplication
with WN2 in (5.1), we first need to permute fL

c suitably. Let the permutation matrix
PN1N2 be given by

PN1N2 fL
c = (fL

c (0), fL
c (N1), . . . , fL

c ((N2 − 1)N1),
fL

c (1), fL
c (N1 + 1), . . . , fL

c ((N2 − 1)N1 + 1), fL
c (2), . . . , fL

c (N1N2 − 1))T .

Then we can perform the multiplication with IN2 ⊗WN2. One level of the tensor product
Haar wavelet transform now reads

fL−1
cr = P T

N1N2
(IN1 ⊗ WN2)PN1N2 (IN2 ⊗ WN1) f

L.

A reshaping of the column vector fL−1
cr to a matrix gives the same result as in (5.1).

Let us compare this formula with the EPWT. Observe that one level of the tensor
product wavelet transform is comparable to two levels of the EPWT.

At the first level we determine the path pL = pL(f) of length N1N2 that yields a
permutation matrix PpL of size N1N2 with entries

PpL(i, j) =
{

1 j = pL(i),
0 elsewhere.

Then the one-dimensional Haar wavelet transform is applied to the permuted function
vector, (

fL−1

gL−1

)
= WN1N2 PpL fL.

At the second level we determine the path pL−1 of length N1N2/2 yielding the permutation
matrix PpL−1 . The transform is now only applied to the low-pass part fL−1,

(
fL−2

gL−2

)
= WN1N2/2 PpL−1 fL−1.

Hence, two levels of the EPWT read

 fL−2

gL−2

gL−1


 =

(
WN1N2/2 PpL−1

IN1N2/2

)
WN1N2 PpL fL. (5.2)

Formula (5.2) nicely points out that the EPWT is a nonlinear transform, since the
permutation matrices PpL and PpL−1 strongly depend on the data in fL and fL−1.

A comparison of (5.2) and the tensor product transform shows the essential differences
between both approaches. While the ”first part” of the tensor product wavelet transform,
the wavelet transform of columns of f , (IN2 ⊗WN1) f

L, can also be realized by the EPWT

18

at the first level by using a suitable path vector pL, the important difference lies in the
”second part”. Applying the tensor product wavelet transform, the high-pass coefficients
obtained in fL

c are used a second time in the wavelet transform of rows. Hence, the wavelet
coefficients in g00 result from the application of two (one-dimensional) high-pass filters,
g10 is obtained from a high-pass filtering and a low-pass filtering etc. By contrast, with
the EPWT we do never apply a wavelet transform to wavelet coefficients that have been
obtained at previous levels. This observation clarifies that the tensor product wavelet
transform can not be found as a special case of the EPWT with suitably chosen path
vectors.

6 Numerical experiments

In this section we want to give some numerical examples to show the strong efficiency of
the new algorithm for sparse representation of data.
As filters we will use

a) the Haar wavelet filters given by

(h(k))1k=0 = (1/
√

2, 1/
√

2), (g(k))1k=0 = (1/
√

2,−1/
√

2)

and corresponding reconstruction filters h∗ = h, g∗ = g;

b) the periodic orthogonal wavelet transform with Daubechies filters

(h(k))3k=0 =
√

2 ((1 +
√

3)/8, (3 +
√

3)/8, (3 −
√

3)/8, (1 −
√

3)/8),
(g(k))1k=−2 =

√
2 ((1 −

√
3)/8,−(3 −

√
3)/8, (3 +

√
3)/8,−(1 +

√
3)/8),

and corresponding reconstruction filters h∗ = h, g∗ = g;

c) the periodic biorthogonal wavelet transform based on 7-9 biorthogonal filters as given
e.g. in [8] p. 279., Table 8.3.

We shall compare the EPWT for two-dimensional data compression with the usual
discrete tensor product periodic wavelet transform and with the discrete curvelet trans-
form. The compression is obtained by hard threshold of the wavelet coefficients. We want
to compare the number of coefficients used for the sparse representation and the peak
signal-to-noise ratio (PSNR), given by

PSNR = 20 log2
max |f(i, j)|
‖f − f̃‖2

,

where f stands for the original data and f̃ is the reconstructed sparse function.

In the first example we consider the 256 × 256 pepper image, i.e. 65536 coefficients
(normalized to the range [0, 1)). We are interested in a lossy compression of this image by
1024 coefficients, i.e. by 1/64 of the original data. Here, we consider the relaxed EPWT
with different bounds θ1 ∈ {0, 0.05, 0.1, 0.15} and use the three wavelet transforms given
in a), b), c). We compare these results to the tensor product wavelet transform and to

19

curvelets. The results are summarized in Table 6.1. In Figure 5, we show our compression
results for the (relaxed) EPWT with the 7-9 biorthogonal wavelet transform and compare
it with the tensor product wavelet transform and the curvelet transform.

decomp. number of coeff. PSNR of figure
wavelet transform θ1 levels after threshold reconstr. image
tensor prod. Haar 8 1024 23.90
tensor prod. Daub. 7 1024 24.81
tensor prod. 7-9 5 1024 24.39 4(a)

tensor prod. Haar 8 4096 29.88
tensor prod. Daub 7 4096 31.16
tensor prod. 7-9 5 4096 30.57

EPWT Haar 0.00 16 1024 30.44
EPWT Haar 0.05 16 1024 30.55
EPWT Haar 0.10 16 1024 29.65
EPWT Haar 0.15 16 1024 28.59

EPWT Daubechies 0.00 14 1024 31.20
EPWT Daubechies 0.05 14 1024 31.43
EPWT Daubechies 0.10 14 1024 30.71
EPWT Daubechies 0.15 14 1024 29.73
EPWT 7-9 filter 0.00 12 1024 30.63 4(c)
EPWT 7-9 filter 0.05 12 1024 31.03 4(d)
EPWT 7-9 filter 0.10 12 1024 30.36 4(e)
EPWT 7-9 filter 0.15 12 1024 29.55 4(f)

Table 6.1. Comparison of tensor product wavelet transform and easy path wavelet transform
for the pepper image.

Applying the redundant discrete curvelet transform (see in the Matlab toolbox
www.curvelet.org the function fdct wrapping demo recon.m) one obtains 184985 curvelet
coefficients for the pepper image. Using 1% threshold, i.e. 1850 coefficients, the recon-
structed image achieves an PSNR of 22.48, see Figure 5(b).

Let us now consider the cost of adaptivity for the rigorous and the relaxed EPWT.
With the method described in Section 4, we determine the path p̃16 of length 216 = 65536
for the pepper image. In particular, if the path is interrupted after p16(l) (resp. p̃16(l))
we use the following procedure for finding a starting index p16(l + 1) for a new pathway.

We take the vector n of all admissible indices, i.e., all indices in {0, 1, . . . , 65535} that
have not been used in (p16(ν))lν=0 (ordered by size). Let K be the lenght of this vector
and compute k0 := �K/7�. If k0 = 0, i.e., K < 7 then let n0 := n. If k0 > 0 we consider
the vector n0 := (n(1),n(1 + k0),n(1 + 2k0), . . . ,n(1 + 6k0)) of length 7. As a starting
index p16(l + 1) for a new pathway we now choose n(1 + ν0k0), where

ν0 := argmin
ν

|f16(p16(l)) − f16(n(1 + νk0))|, ν = 0, . . . , 6,

and we take p̃16(l + 1) := ν0.

20

(a)

PSNR = 24.39 dB

50 100 150 200 250

50

100

150

200

250
(b)

PSNR = 22.48 dB

50 100 150 200 250

50

100

150

200

250

(c)

PSNR = 30.63 dB

50 100 150 200 250

50

100

150

200

250
(d)

PSNR = 31.03 dB

50 100 150 200 250

50

100

150

200

250

(e)

PSNR = 30.36 dB

50 100 150 200 250

50

100

150

200

250
(f)

PSNR = 29.55 dB

50 100 150 200 250

50

100

150

200

250

Figure 5. Image compression using (a) the tensor product wavelet transform with 7-9 filter,
(b) the discrete curvelet transform, (c) the rigorous EPWT with 7-9 filter, and the relaxed

EPWT with 7-9 filter and (d) parameter θ1 = 0.05, (e) θ1 = 0.1, (f) θ1 = 0.15, see Table 6.1.

21

Observe, that with this procedure one may obtain a starting point of a new pathway
whose eight neighbors are all admissible such that also the number 7 can occur in p̃16.
Table 6.2 shows the distribution of the numbers 0, . . . , 7 in the path p̃16 and its entropy
for different bounds θ1. Observe that the path vectors p̃16 resp. p16 do not depend on the
used wavelet transform.

θ1 0.0 0.05 0.1 0.15
occurrence of 0 27636 58445 62556 63753
occurrence of 1 13494 3117 1207 705
occurrence of 2 9250 1610 694 359
occurrence of 3 6889 1031 438 275
occurrence of 4 4107 590 260 172
occurrence of 5 2456 361 185 117
occurrence of 6 1685 382 195 155
occurrence of 7 19 0 1 0

entropy (bit per pixel) 2.30 0.73 0.37 0.24

Table 6.2. Distribution of numbers 0, . . . , 7 in the path p̃16 and its entropy for different bounds
θ1 for the pepper image.

The path vectors for the further levels (p15, . . . ,p1) have together the length 216 − 1
and storing of them usually doubles the cost given in Table 6.2. Using different wavelet
transforms, we have found no essential differences in adaptivity costs.

For a rough comparison of the complete storing costs of the compressed pepper im-
age using the tensor product transform and the relaxed EPWT we apply the following
simplified scheme. We compute the cost for coding of the position of M non-zero wavelet
coefficients by −M

N log2
M
N − (N−M)

N log2
(N−M)

N , where N = 256× 256 is the number of all
coefficients in the image. Further, let b be the number of bits for encoding of one wavelet
coefficient. For the tensor product wavelet transform, the storing costs are composed of
the costs for encoding of the position of the non-zero coefficients and the costs for storage
of these coefficients. For the EPWT, we have in addition the storage cost of the path. For
b = 8 and b = 16, we have compared these costs for the Haar wavelet transform in Table
6.3, where we have used the above computed entropy of the path p̃16 as additional path
cost. Obviously, the EPWT performs especially well for large b.

wavelet transform θ1 number of coeff. b storage cost
after threshold (in bpp)

tensor prod. Haar - 4096 8 0.62
EPWT Haar 0.10 1024 8 0.61
EPWT Haar 0.15 1024 8 0.48

tensor prod. Haar - 4096 16 1.12
EPWT Haar 0.10 1024 16 0.74
EPWT Haar 0.15 1024 16 0.61

Table 6.3. Comparison of complete storage costs for the pepper image.

22

In the second example we are particularly interested in the ability of the EPWT to
compress directional structures of a function. For that purpose we use the 128×128 image
of a door lock with 214 = 16384 coefficients (normalized to the range [0, 1)), see Figure 6(a).
As before, we compare the reconstructed images after a wavelet shrinkage procedure with
512 remaining coefficients (compression ratio 1/64) for tensor product periodic wavelet
transform and the relaxed EPWT with different bounds θ1. The results for the tensor
product wavelet transform and for the EPWT are summarized in Table 6.4.

θ1 decomp. number of coeff. PSNR of entropy fig.
wavelet transform levels after threshold recon. image of p̃14

tensor prod. Haar - 7 512 22.16 -
tensor prod Daub. - 6 512 22.94 - 5(b)
tensor prod 7-9 - 4 512 22.49 -
EPWT Haar 0.00 14 512 28.04 2.22
EPWT Haar 0.05 14 512 28.37 1.11
EPWT Haar 0.10 14 512 27.74 0.55
EPWT Haar 0.15 14 512 26.85 0.32
EPWT Daub. 0.00 12 512 28.63 2.22 5(c)
EPWT Daub. 0.05 12 512 29.23 1.11 5(d)
EPWT Daub. 0.10 12 512 28.67 0.55 5(e)
EPWT Daub. 0.15 12 512 27.65 0.32 5(f)
EPWT 7-9 0.00 10 512 28.35 2.22
EPWT 7-9 0.05 10 512 28.99 1.11
EPWT 7-9 0.10 10 512 28.38 0.55
EPWT 7-9 0.15 10 512 27.69 0.32

Table 6.4. Comparison of tensor product wavelet transform and easy path wavelet transform for
the door lock image.

7 Conclusion

As we can see from the examples (see Table 6.1), compared with the traditional tensor
product wavelet transform, the new EPWT needs less than one fourth of wavelet coeffi-
cients in order to achieve a similar PSNR. Here one needs to keep in mind, that with the
two transforms not only the real wavelet coefficients themselves but also there positions
in the wavelet vectors have to be stored.

For the EPWT we also have to store the path vectors, thus it is highly desirable to
make these vectors as cheap as possible. The idea of relaxed EPWT is a first step in this
direction. In our numerical experiments we have observed that the performance of the
relaxed EPWT crucially depends on the choice of path vectors in all levels. Therefore
one should think about other versions of relaxed EPWT with high performance and much
cheaper path vectors. Instead of the simple method of favorite directions one may use
more sophisticated extrapolation methods for obtaining the next component of the path.

The EPWT may be also interesting for further theoretical investigations regarding
the nonlinear approximation of two-dimensional functions. In the future, we want to

23

(a) 20 40 60 80 100 120

20

40

60

80

100

120

(b)

PSNR = 22.94 dB

20 40 60 80 100 120

20

40

60

80

100

120

(c)

PSNR = 28.63 dB

20 40 60 80 100 120

20

40

60

80

100

120

(d)

PSNR = 29.23 dB

20 40 60 80 100 120

20

40

60

80

100

120

(e)

PSNR = 28.67 dB

20 40 60 80 100 120

20

40

60

80

100

120

(f)

PSNR = 27.65 dB

20 40 60 80 100 120

20

40

60

80

100

120

Figure 6. (a) Original image. Image compression using (b) the tensor product wavelet transform
with Daubechies filter, (c) the rigorous EPWT with Daubechies filter, and the relaxed EPWT

with Daubechies filter and (d) parameter θ1 = 0.05, (e) θ1 = 0.1 and (f) θ1 = 0.15, see Table 6.4.

study whether a characterization of certain function spaces in terms of decreasing order
of wavelet coefficients is also possible with the EPWT. Such results are e.g. available for
ENO-EA schemes (see [3]). In Section 4, we have used the characteristic function on the
square as a “basic function” in order to make the spaces Vj(f) and Wj(f) be subspaces of
L2([0, 1)2). For further analysis one may think also about other “basic functions” for the
interpretation of the EPWT in the two-dimensional case (as e.g. interpolating functions
with small support) in order to create an MRA with smoother function spaces Vj(f) and
Wj(f).

Acknowledgement.

This research in this paper is supported by the project PL 170/13-1 and 436 RUM
113/31/0-1. This is grateful acknowledged. The author thanks J. Krommweh and D. Roşca
for valuable comments for improving the presentation of the first version of the paper.
S. Dekel deserves special thanks for his ideas about a cheaper storing of path vectors,
that I have been able to realize only partially. Further, I would like to thank the unknown
referees for valuable comments that led to an essential revision of the paper, e.g. by stress-
ing the differences between the EPWT and tensor product wavelet transform, by a more
detailed study of adaptivity cost of EPWT that resulted in the relaxed EPWT, and by
the improvement of the presentation and the English language.

24

References

[1] S. AMAT, F. ARANDIGA, A. COHEN, R. DONAT, G. GARCIA and M. VON
OEHSEN, Data compression with ENO schemes - a case study, Appl. Comput. Har-
mon. Anal. 11 (2002), 273–288.

[2] F. ARANDIGA, A. COHEN, R. DONAT, N. DYN, Interpolation and approximation
of piecewise smooth functions, SIAM J. Numer. Anal. 43 (2005), 41–57.

[3] F. ARANDIGA, A. COHEN, R. DONAT, N. DYN, B. MATEI, Approximation of
piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear mul-
tiresolution techniques, Appl. Comput. Harmon. Anal., to appear.

[4] E.J. CANDÈS, D.L. DONOHO, New tight frames of curvelets and optimal represen-
tations of objects with piecewise singularities, Comm. Pure Appl. Math. 57 (2004),
219–266.

[5] E.J. CANDÈS, L. DEMANET, D.L. DONOHO, L. YING, Fast discrete curvelet
transforms, Multiscale Model. Simul. 5 (2006), 861–899.

[6] R.L. CLAYPOOLE, G.M. DAVIS, W. SWELDENS, R.G. BARANIUK, Nonlinear
wavelet transforms for image coding via lifting, IEEE Trans. Image Process. 12 (2003)
1449–1459.

[7] A. COHEN, B. MATEI, Compact representation of images by edge adapted multiscale
transforms. in Proc. IEEE Int. Conf. on Image Proc. (ICIP), 2001, Thessaloniki,
Greece, pp. 8-11.

[8] I. DAUBECHIES, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[9] S. DEKEL and D. LEVIATAN, Adaptive multivariate approximation using binary

space partitions and geometric wavelets, SIAM J. Numer. Anal. 43 (2006), 707–732.
[10] L. DEMANET and L. YING, Wave atoms and sparsity of oscillatory patterns, Appl.

Comput. Harmon. Anal. 23 (2007) 368–387.
[11] L. DEMARET, N. DYN, and A. ISKE, Image compression by linear splines over

adaptive triangulations. Signal Processing 86 (2006), 1604–1616.
[12] R.A. DEVORE, Nonlinear approximation, Acta Numerica, A. Iserles (Ed.), Cam-

bridge University Press, Cambridge, 1998, p. 51–150.
[13] M.N. DO and M. VETTERLI, The contourlet transform: An efficient directional

multiresolution image representation, IEEE Trans. Image Process. 14 (2005) 2091–
2106.

[14] D.L. DONOHO, Wedgelets: Nearly minimax estimation of edges, Ann. Stat. 27
(1999), 859–897.

[15] K. GUO and D. LABATE, Optimally sparse multidimensional representation using
shearlets, SIAM J. Math. Anal. 39 (2007), 298–318.

[16] K. GUO, W.-Q. LIM, D. LABATE, G. WEISS, and E. WILSON, Wavelets with
composite dilations, Electr. res. Announc. of AMS 10 (2004), 78–87.

[17] A. HARTEN, Discrete multiresolution analysis and generalized wavelets, J. Applied
Num. Math. 12 (1993), 153–193.

[18] A. HARTEN, Multiresolution representation of data: general framework, SIAM J.
Numer. Anal. 33 (1996), 1205–1256.

25

[19] L. JACQUES, J.-P. ANTOINE, Multiselective pyramidal decomposition of images:
wavelets with adaptive angular selectivity, Int. J. Wavelets Multiresolut. Inf. Process.
5 (2007), 785–814.

[20] E. Le PENNEC, and S. MALLAT, Bandelet image approximation and compression,
Multiscale Model. Simul. 4 (2005), 992–1039.

[21] S. MALLAT, A wavelet tour of signal processing, Academic Press, San Diego, 1999.

[22] S. MALLAT, Geometrical grouplets, Appl. Comput. Harmon. Anal. (2009), to appear.
[23] B. MATEI, Méthods multirésolution no-linéaires - Applications au traitement

d’image, PhD dissertation, Université Paris VI, 2002.

[24] B. MATEI, Smoothness characterization and stability in nonlinear multiscale frame-
work: theoretical results, Asymptotic Anal. 41 (2005), 277–309.

[25] D.D. PO and M.N. DO, Directional multiscale modeling of images using the contourlet
transform, IEEE Trans. Image Process. 15 (2006), 1610–1620.

[26] R. SHUKLA, P.L. DRAGOTTI, M.N. DO, and M. VETTERLI, Rate-distortion op-
timized tree structured compression algorithms for piecewise smooth images, IEEE
Trans. Image Process. 14 (2005), 343–359.

[27] M.B. WAKIN, J.K. ROMBERG, H. CHOI, and R.G. BARANIUK, Wavelet-domain
approximation and compression of piecewise smooth images, IEEE Trans. Image Pro-
cess. 15 (2006), 1071–108.

26

