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Abstract

The computation of sparse representations of data on the sphere (as e.g. topographical
data) is a crucial step for further processing such as multiple separation, migration, imaging
and sparsity promoting data-recovery. The Easy Path Wavelet Transform (EPWT) is
a new tool for sparse data representation that has recently been introduced for image
compression. In this paper we consider the EPWT on spherical triangulations. It is
a locally adaptive transform that works along pathways through the array of function
values and exploits the local correlations of the data in a simple appropriate manner.
In our approach the usual discrete one-dimensional orthogonal or biorthogonal wavelet
transform can be applied. The EPWT can be used for defining a multiresolution analysis
on the sphere in which the scaling spaces and the wavelet spaces depend adaptively on
the data. Issues of implementation of the EPWT are also considered.

KEY WORDS. wavelet transform along pathways, data compression on the sphere,
spherical triangulations.

1 Introduction

Today, we are faced with high amounts of data being generated by satellite observations
that need to be adequately processed and analyzed. Therefore, one important problem in
data analysis in geosciences is to construct efficient low-level representations using only a
very small part of the original data. However, these sparse approximations should provide
a precise characterization of relevant features of the data like discontinuities (edges) and
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texture components. In this paper, we propose a new transform for sparse representation
of data on spherical surfaces, the EPWT. This new tool can be applied for better data
analysis and data compression for problems in planetary science such as surface topography
and analysis of geoid of other bodies.

It is well-known that wavelets can represent piecewise smooth signals efficiently. How-
ever, higher-dimensional structures may not be represented suitably by sparse wavelet
decompositions based on tensor product wavelets, because directional geometrical proper-
ties of the data cannot be adapted. The last years have seen many attempts to construct
locally adaptive wavelet-based schemes that take into account the special geometry of the
data. In particular, for sparse representation of images, different ideas have been devel-
oped that try to exploit the local correlations of the data, see e.g. Claypoole et al (2003),
Cohen and Matei (2001), Dekel and Leviatan (2006), Ding et al (2007), Donoho (1999),
Mallat (2009), Plonka (2009), Shukla et al (2005).

We will especially focus on the EPWT recently introduced in Plonka (2009) for sparse
image representation. In this paper, we want to adapt the EPWT to triangulations of
the sphere. For this purpose, we apply the idea used in Roşca (2005a, 2005b) to obtain
a suitable spherical triangulation. We employ a polyhedral subdivision domain. The
triangular faces of the polyhedron are successively subdivided into four smaller triangles.
Each triangle can be transported radially to the sphere. This approach has been used
in Roşca (2005a, 2005b) for the construction of Haar wavelets and of locally supported
rational spline wavelets on the sphere. Different wavelet constructions on triangulations
of the sphere have been also studied by Schroeder and Sweldens (1995).

The idea of the EPWT on spherical triangulations is very simple. First we fix a
certain neighborhood of a triangle, e.g. the three triangles that have common edges with
the reference triangle. Next, we use a one-dimensional indexing of all triangles of the fixed
triangulation and assume that each function value of a given data vector is associated to
one triangle or rather its corresponding (one-dimensional) index. Now, in the first step we
select a path through the complete index set in such a way that data points associated to
neighboring indices in the path are strongly correlated. For that purpose, for each index
we choose “the best” neighbor index that has not been used yet in the path, such that
the absolute difference between neighboring data values is the smallest. The complete
path vector can be seen as a permutation of the original index vector. Then we apply a
suitable (one-dimensional) discrete wavelet transform to the data vector along the path,
and the choice of the path will ensure that most wavelet coefficients remain small. The
same procedure can be successively applied to the down-sampled data. After a suitable
number of iterations, we apply a shrinkage procedure to all wavelet coefficients in order
to find a sparse digital representation of the function. For reconstruction one needs the
path vector at each level in order to apply the inverse wavelet transform.

The paper is organized as follows. In Section 2 we shall give a detailed description of
the EPWT on triangulations of the sphere. In Section 3 we present an interpretation of
the algorithm for adaptive Haar wavelets on spherical triangulations based on a multires-
olution structure. Finally, Section 4 is devoted to implementation issues and numerical
experiments. We shall give an explicit description of a bijective mapping of a given trian-
gulation to a one-dimensional index set, and we shall explicitly determine a neighborhood
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of a given index in this one-dimensional index set.

2 EPWT on triangulations of the sphere

The main idea of the new algorithm is to exploit the local correlations of the data in an
efficient way.

2.1 Spatial and spherical triangulations

We consider the unit sphere S
2 of R

3 with the center O. Let Π be a convex polyhedron
with O inside and with triangular faces. For example we can take an icosahedron, a cube
with triangulated faces, an octahedron, etc. The surface (boundary) of the polyhedron
will be denoted by Ω. We denote by T = T 0 = {T1, . . . , TM} the set of faces of Π and
by V 0 the set of vertices. By recursive subdivision we obtain a uniform refinement of
T 0. For each triangle [M1M2M3] with vertices M1, M2, M3 in V 0, let A1, A2, A3 denote
the midpoints of the edges M2M3, M3M1 and M1M2, respectively. Then we consider the
refined triangulation of T 0

T 1 =
⋃

[M1M2M3]∈T 0

{[M1A2A3], [A1M2A3], [A1A2M3], [A1A2A3]}.

Continuing the refinement process in the same way, we obtain a triangulation T j of Ω for
j ∈ N. For application of the EPWT we will stop the refinement process at a suitable
sufficiently high (fixed) level j depending on the data set in the application. We define the
set of vertices V j accordingly. In particular, each triangle in T j is uniquely determined by
its three vertices. For application of the EPWT we will also need a one-dimensional index
set J = Jj for the triangles in T j . Using the octahedron, for j = 1, this one-dimensional
index set J can be assigned as shown in Figure 1 (right). Observe that for the octahedron
the number of triangles at the jth level is given by #J = #T j = 22j+3.

Let 〈·, ·〉Ω be the following inner product based on the given polyhedron

〈f, g〉Ω :=
∑

T∈T 0

1
a(T )

∫
T
f(x) g(x) dx, f, g ∈ L2(Ω),

where a(T ) is the area of the triangle T . As shown in Roşca (2005b), the induced norm
‖ · ‖Ω = 〈·, ·〉1/2

Ω is equivalent to the usual norm in L2(Ω). In order to obtain a spherical
triangulation, we now define for the given polyhedron Π the radial projection onto S

2,
p : Ω → S

2,

p(x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)
, (x, y, z) ∈ Ω.

The inverse mapping p−1 : S
2 → Ω is given by

p−1(η1, η2, η3) =
(
− η1d

aη1 + bη2 + cη3
,− η2d

aη1 + bη2 + cη3
,− η3d

aη1 + bη2 + cη3

)
,
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Figure 1. Illustration of the octahedron with T 1 triangulation (left) and a fold apart version of
the octahedron on the plane with a one-dimensional indexing of all faces.

where ax+by+cz+d = 0 is the equation of the face of Π onto which the point (η1, η2, η3) ∈
S

2 projects. If the point (η1, η2, η3) ∈ S
2 projects onto an edge, then we may choose one

of the adjacent faces to express the function p−1. Considering the images Ui = p(Ti) of
the triangles Ti ∈ T j under the projection p, we say that U j = {Ui = p(Ti), Ti ∈ T j} is a
triangulation of the sphere S

2.

For L2-integrable functions on the sphere S
2, let the scalar product 〈·, ·〉∗ be defined

by
〈F, G〉∗ := 〈F ◦ p, G ◦ p〉Ω.

Again, one can show that the corresponding norm ‖ · ‖∗ = 〈·, ·〉1/2
∗ is equivalent to the

usual norm ‖ · ‖2 of L2(S2), see Roşca (2005b, 2009).
We shall apply the EPWT especially to piecewise constant functions on spherical

triangulations. For indexing the spherical triangles in U j, we use the same index set
J = Jj as for the triangulation T j of the polyhedron. Now, for a fixed spherical triangle
Ui ∈ U j, i ∈ J , we define the piecewise constant function χUi : S

2 → R,

χUi =
{

1, inside the triangleUi,
0, elsewhere.

Then we can consider the space V = span {χUi , i ∈ J} that consists of the piecewise
constant functions on the triangles of U j.

2.2 Definitions and Notations for the EPWT

In order to explain the idea of the EPWT, where we want to use the discrete one-
dimensional wavelet transform along path vectors through the data, we first need some
further definitions and notations.

Let us assume that we have given a fixed refined spherical triangulation U j with a
corresponding set of vertices p(V j). Further, let J be a one-dimensional index set for the
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spherical triangles in U j. We determine a neighborhood of an index ν ∈ J of the set of
spherical triangles by

N (ν) = {µ ∈ J \ {ν} : Tµ and Tν have a common edge}.

Hence each index ν ∈ J has exactly three neighbors. One may also use a bigger neighbor-
hood, e.g. N (ν) = {µ ∈ J \ {ν} : Tµ and Tν have a common edge or a common vertex},
in this case each index has 12 neighbors. We also need the definition of neighbor-
hood of subsets of an index set. We shall consider disjoint partitions of J of the form
{J1, J2, . . . , Jr}, where Jµ ∩ Jν = ∅ for µ 	= ν and

⋃r
ν=1 Jν = J . We then say that two

different subsets Jν and Jµ from the partition are neighbors, and we write Jν ∈ N (Jµ), if
there exist an index l ∈ Jν and an index l1 ∈ Jµ such that l ∈ N (l1).

We consider a piecewise constant function f ∈ V, i.e., we identify each spherical
triangle in U j with a function value of f . Hence f is uniquely determined by the data
vector (fν)ν∈J . We will look for path vectors through index subsets of J and apply a one-
dimensional wavelet transform along these path vectors. Any orthogonal or biorthogonal
one-dimensional wavelet transform can be used here.

We say that a vector of indices (lk, . . . , lk+n), 1 ≤ k < k + n ≤ #J , is connected, if we
have lν+1 ∈ N (lν) for ν = k, . . . , k + n − 1. Here, #J denotes the cardinality of J . Such
a connected index vector is called pathway. We are interested in a complete path through
the index set J . A complete path p through J is a vector containing all indices of J in a
certain order, i.e. p ∈ Z

#J is a permutation of (1, 2, . . . ,#J). This complete path should
be composed by a number of pathways, i.e. p = (p1; . . . ;pr), where pν , ν = 1, . . . , r, are
connected vectors of indices.

One simple example of such a complete path is to take just p = (1, 2, . . . ,#J). Using
the indexing as in Figure 1, this path has interruptions after indices 4, 16 and 28. It is also
possible to take a path without interruptions here, e.g. (1, 2, 3, 4, 15, 16, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 28, 27, 32, 31, 30, 29).

2.3 Description of the EPWT

In this subsection we rely on the detailed description of the EPWT in Plonka (2009), and
give a summary of the idea. We start with the decomposition of the real data (fν)ν∈J , and
we assume that N = #J is a multiple of 2L with L ∈ N. For the considered octahedron
we have N = 22j+3. Then we will be able to apply L levels of the EPWT.

Decomposition
First level

We first determine a complete path vector pL through the index set J = {1, 2, . . . , N}
and then apply a suitable discrete one-dimensional (periodic) wavelet transform to the
function values along this path pL.

We start with pL(1) = 1. In order to determine the second index pL(2), we seek the
minimum of absolute differences of the function values corresponding to the neighborhood
of the index 1, and put

pL(2) = argmin
k

{|fL(1) − fL(k)|, k ∈ N (1)}.
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We proceed in this manner, thereby determining a path vector through the index set
J that is locally adapted to the function f (easy path). With the procedure above we
obtain a pathway such that the absolute differences between neighboring function values
fL(l) along the path stay as small as possible. Generally, having given the index pL(l),
1 ≤ l ≤ N − 1, we determine the next value pL(l + 1) by

pL(l + 1) = argmin
k

{|fL(pL(l)) − fL(k)|, k ∈ N (pL(l)), k 	= pL(ν), ν = 1, . . . , l}.

It can happen that the choice of the next index value pL(l+ 1) is not unique, if the above
minimum is attained by more than one index. In this case, one may just fix favorite
directions in order to determine a unique pathway.

Another situation can occur during the procedure, namely that all indices in the neigh-
borhood of a considered index pL(l) have already been used in the path pL. In this case we
need to start with a new pathway, i.e., we have an interruption in the path vector. We need
to choose one index pL(l+1) from the remaining indices in J that have not yet been taken
in pL. There are different possibilities for starting the next pathway. One simple choice is
to take just the smallest index from J that has not been used so far. Another choice is to
look for a next index, such that again the absolute difference |fL(pL(l)) − fL(pL(l + 1))|
is minimal, i.e., we take in this case

pL(l + 1) = argmin
k

{|fL(pL(l)) − fL(k)|, k ∈ J, k 	= pL(ν), ν = 1, . . . , l}.

We proceed in this manner and obtain finally a complete path vector pL ∈ Z
N that is a

permutation of (1, 2, . . . , N).
After having constructed the path pL, we apply one level of the discrete one-dimen-

sional Haar wavelet transform or any other discrete orthogonal or biorthogonal periodic
wavelet transform to the vector of function values (fL(pL(l)))Nl=1 along the path pL. We
find the vector fL−1 ∈ R

N/2 containing the low-pass part and the vector of wavelet coef-
ficients gL−1 ∈ R

N/2. While the wavelet coefficients will be stored in gL−1, we proceed
further with the low-pass vector fL−1 at the second level.

Remark. For the numerical implementation, the method for choosing the start index
of a new pathway has essential consequences. The simple method to take the smallest
“free” index is also the cheapest with regard to the storing costs for the path, but for
each new pathway one may produce a big wavelet coefficient. The second method (pre-
ferred here), avoids big wavelet coefficients but leads to higher costs for storing the path
pL. Plonka (2009) has proposed an efficient method for index selections, that finds a
compromise between these issues.

Second level

Let us consider the index sets JL−1
l := {pL(2l − 1),pL(2l)}, l = 1, . . . , N/2, that

determine a partition of J . Now, each such index set JL−1
l corresponds to the function

value fL−1(l). We repeat the same procedure as in the first step, but replacing the single
indices with corresponding function values by the new index sets JL−1

l and the corre-
sponding smoothed function values fL−1(l). The new path vector pL−1 ∈ Z

N/2 should
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now be a permutation of (1, 2, . . . , N/2). We start again with the first index set JL−1
1 ,

i.e., pL−1(1) = 1. Having already found pL−1(l), 1 ≤ l ≤ N/2 − 1, we determine the next
value pL−1(l + 1) by

pL−1(l + 1) = argmin
k

{|fL−1(pL−1(l)) − fL−1(k)|, JL−1
k ∈ N (JL−1

pL−1(l)
),

k 	= pL−1(ν), ν = 1, . . . , l}.

If the new value pL−1(l+ 1) is not uniquely determined by the minimizing procedure, we
can just fix favorite directions in order to obtain a unique path. If for the set JL−1

pL−1(l)

there is no neighboring index set that has not been used yet in the path vector pL−1, then
we have to interrupt the path and to find a new good index set (that has been not used so
far) to start a new pathway. As in the first level, we try to keep the differences of function
values along the path small and may choose in this case

pL−1(l + 1) = argmin
k

{|fL−1(pL−1(l)) − fL−1(k)|, 1 ≤ k ≤ N/2,

k 	= pL−1(ν), ν = 1, . . . , l}.

After having completed the path vector pL−1, we apply again the chosen discrete (periodic)
wavelet transform to the vector (fL−1(pL−1(l)))N/2

l=1 along the path pL−1. Assuming that
N/4 ∈ N, i.e. L ≥ 2, we obtain the vector fL−2 ∈ R

N/4 containing the low-pass part and
the vector of wavelet coefficients gL−2 ∈ R

N/4. While the wavelet coefficients in gL−2 will
be stored, we proceed now again with the low-pass vector fL−2 in the next step.

Further levels

If N is of the form 2Ls with s ∈ N being greater than or equal to the lengths of low-
pass and high-pass filters in the chosen discrete wavelet transform, then we may apply the
procedure L times. For a given vector fL−j , 0 < j < L, we consider in the (j + 1)-th step
the index sets

JL−j
l = JL−j+1

pL−j+1(2l−1)
∪ JL−j+1

pL−j+1(2l)
, l = 1, . . . , N/2j ,

with the corresponding function values fL−j(l). Then we determine a path vector pL−j

of length N/2j as a permutation of (1, 2, . . . , N/2j), as before. Finally, we apply the (pe-
riodic) wavelet transform to the vector (fL−j(pL−j(l)))N/2j

l=1 along the path pL−j, thereby
obtaining the low-pass vector fL−j−1 ∈ R

N/2j+1
and the vector of wavelet coefficients

gL−j−1 ∈ R
N/2j+1

.

Output

As output of the complete procedure after L iterations we obtain the coefficient vector

g = (f0,g0,g1, . . . ,gL−1) ∈ R
N

and the vector determining the paths in each iteration step

p = (p1,p2, . . . ,pL) ∈ R
2N(1−1/2L).
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These two vectors contain the entire information about the original function f .
In order to find a sparse representation of f , we apply a shrinkage procedure to the

wavelet coefficients in the vectors gj , j = 0, . . . , L − 1, and obtain g̃j . Here one can use
the hard threshold function

Sσ(x) =
{
x, |x| ≥ σ,
0, |x| < σ.

Reconstruction

The reconstruction of (the approximation) f̃ resp. f̃L from g̃ and p is given as follows.

For j = 0 to L− 1 do
Apply the inverse discrete wavelet transform to the vector (f̃ j, g̃j) ∈ R

r2j

(with f̃0 := f0) in order to obtain f̃ j+1
p ∈ R

r2j+1
.

Apply the permutation

f̃ j+1(pj+1(k)) = f̃ j+1
p (k), k = 1, . . . , r2j+1.

end.

2.4 Example

We illustrate the idea of function decomposition with the EPWT on the sphere in the
following small example. Let a set of 32 function values be given on the sphere, where
each function value corresponds to a spherical triangle on the sphere that has been obtained
by radial projection of the triangulated octahedron in Figure 1 (left). The values are given
as a vector of length 32 corresponding to the one-dimensional indexing of the triangles in
Figure 1 (right),

f = (0.4492, 0.4219, 0.4258, 0.4375, 0.4141, 0.4531, 0.4180, 0.4258,
0.4375, 0.4292, 0.4219, 0.4219, 0.4219, 0.4258, 0.4023, 0.4141,
0.4219, 0.4219, 0.4297, 0.4375, 0.4141, 0.4023, 0.4258, 0.4219,
0.4258, 0.4180, 0.4531, 0.4141, 0.4375, 0.4258, 0.4219, 0.4492).

Starting with the index 1, we now determine the first path vector. Index 1 with the function
value 0.4492 has the neighbors 2, 4 and 6 with corresponding values 0.4219, 0.4375 and
0.4531, respectively (see Figure 2). Hence, the second index in the path is 6. Proceeding
further according to Section 2.3 we obtain

p5 = (1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 26, 25, 24, 31, 30, 21, 22, 23; 3, 2; 17, 18, 19, 20;
4, 15, 16, 5; 28, 27, 32, 29),

where the pathways are separated by semicolons. This path has four interruptions and is
illustrated by arrows in Figure 2 (left).
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Figure 2. Illustration of first path through the T 1 triangulation of the octahedron (left) and of
the low-pass part after the first level of EPWT with Haar wavelet transform (right). Index sets
at the second level are illustrated by different gray values, and path vectors are represented by
arrows.

An application of the Haar wavelet transform (with unnormalized filter coefficients
h0 = h1 = 1/2, g0 = 1/2, g1 = −1/2) along this path gives (with truncation after four
digits) the low-pass coefficients

f4 = (0.4512, 0.4219, 0.4334, 0.4219, 0.4238, 0.4219, 0.4219, 0.4200,
0.4140, 0.4238, 0.4219, 0.4336, 0.4199, 0.4141, 0.4336, 0.4434),

and the wavelet coefficients

g4 = (−0.0020,−0.0039,−0.0042, 0.,−0.0020,−0.0039, 0., 0.0058,
−0.0118, 0.0020, 0.,−0.0039, 0.0176, 0.,−0.0195, 0.0058).

We now proceed to the second level. For the smoothed vector of function values f4

corresponding to the 16 index sets that are illustrated by gray values in Figure 2 (right),
we obtain the next path

p4 = (1, 10, 4, 5, 6, 7, 8, 9, 3, 2, 12, 11, 14, 13; 15, 16),

illustrated by arrows in Figure 2 (right). The path p4 has one interruption. An application
of the Haar wavelet transform along p4 gives

f3 = (0.4375, 0.4229, 0.4219, 0.4170, 0.4276, 0.4278, 0.4170, 0.4385),
g3 = (0.0136,−0.0010, 0., 0.0030, 0.0057, 0.0058, 0.0029,−0.0049).

At the third level we start with the smoothed vector f3 corresponding to the 8 index sets
that are illustrated by gray values in Figure 3 (left). We find now the path

p3 = (1, 5, 6, 8, 3, 2, 4; 7),
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see Figure 3 (left). This leads to

f2 = (0.4326, 0.4331, 0.4224, 0.4170),
g2 = (0.0049,−0.0054, 0.0005, 0.).
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Figure 3. Illustration of the third path through the index sets of the octahedron (left) and of the
fourth path of the obtained index sets (right) for EPWT with Haar wavelet transform. Index sets
are illustrated by different gray values, and path vectors are represented by arrows.

In the fourth level we have only 4 index sets that correspond to the values in f2, see
Figure 3 (right). Hence we find p2 = (1, 2, 3, 4) and

f1 = (0.4328, 0.4197), g1 = (−0.0003, 0.0027).

Finally, with p1 = (1, 2) the last transform yields f0 = (0.4263) and g0 = (0.0066).

3 Adaptive Haar wavelet bases on the sphere

We want to study the question, how the EPWT introduced in Section 2 can be understood
in terms of a multiresolution analysis on the sphere. Let Nj := #J = 2L s with L, s ∈ N

be the number of triangles in the spherical triangulation U j of S
2. For the octahedron we

can take L = 2j + 3 and s = 1. We consider the space

V = VL = span {φL
i = χUi , Ui ∈ U j} = span {φL

i , i ∈ J}

of piecewise constant functions on the fixed spherical triangulation U j. Obviously, {φL
i :

i ∈ J} forms an orthonormal basis of VL with respect to the scalar product 〈· , · 〉∗ on
L2(S2), defined in Section 2.1. Further, let f ∈ VL be a given function of the form

f =
∑
µ∈J

aL
µ φ

L
µ .
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Let us also fix the Haar wavelet filter bank given by the analysis filters h, g with h(0) =
h(1) = 1/

√
2 and g(0) = −1/

√
2, g(1) = 1/

√
2. The synthesis filters for the orthonormal

Haar wavelet filter bank are given by h̃(0) = h̃(1) = 1/
√

2 and g̃(0) = −1/
√

2, g̃(1) =
1/
√

2.
As we have seen in Section 2.3, applying the first level of the EPWT with Haar filters,

we first need to determine a path pL, i.e., a permutation of (1, . . . , Nj), and then apply
the one-dimensional Haar wavelet transform to the vector (f(pL(µ))Nj

µ=1. This transform
can be interpreted by determining the new function spaces

VL−1 = span
{
φL−1

i :=
1√
2

(
φL
pL(2i−1) + φL

pL(2i)

)
, i = 1, . . . , Nj/2

}
and

WL−1 = span
{
ψL−1

i :=
1√
2

(
φL
pL(2i−1) − φL

pL(2i)

)
, i = 1, . . . , Nj/2

}
.

Obviously, VL−1 is generated by characteristic functions whose supports consist of two
(usually) neighboring spherical triangles along the path pL. We find VL−1 ⊂ VL and
WL−1 ⊂ VL, and moreover, we have

VL−1 + WL−1 = VL and VL−1 ⊥ WL−1,

where the orthogonality holds with respect to the scalar product 〈· , · 〉∗.
We can apply the EPWT transform at L levels, thereby adaptively defining scaling

spaces and wavelet spaces according to the path vectors pl, l = L, L− 1, . . . , 1 of lengths
2ls. We obtain as before for l = L,L− 1, . . . , 1,

V l−1 = span
{
φl−1

i :=
1√
2

(
φl
pl(2i−1) + φl

pl(2i)

)
, i = 1, . . . , 2l−1s

}
,

and

W l−1 = span
{
ψl−1

i :=
1√
2

(
φl
pl(2i−1) − φl

pl(2i)

)
, i = 1, . . . , 2l−1s

}
,

where again V l−1 + W l−1 = V l and V l−1 ⊥ W l−1 with respect to 〈·, ·〉∗. Observe that the
spaces V l and W l are adaptively dependent on the considered original function f ∈ VL.

With the Haar filters given above, we find the decomposition of f = fL ∈ VL,

fL = f0 +
L−1∑
l=0

gl,

with f0 ∈ V0 and gl ∈ W l for l = 0, . . . , L − 1. More precisely, with the notation
f l+1 ∈ V l+1 satisfying f l+1 = f l + gl and with

f l+1 =
2l+1r∑
µ=1

al+1
µ φl+1

µ , f l =
2lr∑
µ=1

al
µ φ

l
µ, gl =

2lr∑
µ=1

blµ ψ
l
µ,
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the decomposition algorithm reads

al
µ =

1√
2

(
al+1
pl+1(2µ−1)

+ al+1
pl+1(2µ)

)
, blµ =

1√
2

(
al+1
pl+1(2µ−1)

− al+1
pl+1(2µ)

)
, µ = 1, . . . , 2ls.

Vice versa, for l = 0, . . . , L− 1 the reconstruction algorithm is given by

al+1
pl+1(2µ−1)

=
1√
2

(
al

µ + blµ

)
, al+1

pl+1(2µ)
=

1√
2

(
al

µ − blµ

)
, µ = 1, . . . , 2ls.

4 Implementation issues

In order to implement the EPWT for real data sets, one is confronted with the following
issues.

1. Projection of the data set or the function on the spherical triangulation with a certain
fixed resolution 2−j , such that each triangle in T j (resp. U j) corresponds to one data
value.

2. Definition of a bijective mapping of the triangles in T j (resp. U j) to a one-dimensional
index set.

3. Determination of neighbors in the one-dimensional index set.

The first issue is not related to the EPWT but occurs for all applications of spherical
triangulations (see e.g. Roşca (2005b)). We want to study here the second and the third
issue.

4.1 Bijective mapping to a one-dimensional index set

Usually, we consider the subdivision process separately on each of the eight triangular
faces of the octahedron. Let these faces be numbered by d ∈ {1, 2, . . . , 8}, where the first
four triangles are consecutively ordered on the northern part of the octahedron (i.e., all
points of these triangles have a z-coordinate greater than or equal to zero), and the other
4 triangular faces, on the southern part of the octahedron, have numbers 5,6,7,8. Using
Figure 1, let T1 = [B,C,A], T2 = [C,D,A], T3 = [D,E,A], T4 = [E,B,A], as well as
T5 = [B,C,F ], T6 = [C,D,F ], T7 = [D,E,F ], T8 = [E,B,F ].

Let us consider for the moment only one of the faces of the octahedron. For representing
the triangles after j levels of the subdivision process, we use (two-dimensional) barycentric
coordinates. Let the vertices of the triangular face at hand have the coordinates (1, 0, 0),
(0, 1, 0), (0, 0, 1), where these coordinates correspond to the vertices of Td given above in
this order. For example, in T1 we have B = (1, 0, 0), C = (0, 1, 0) and A = (0, 0, 1) etc.
The triangles T in T j are uniquely determined by the face d and by their three vertices in
barycentric coordinates. Observe that the triangles T = [d;M1,M2,M3] in T j are either
of type 1 or of type 2 with the following coordinates,
Type 1 triangle:

T =
[
d; (p+1

2j ,
m
2j ,

k
2j ), ( p

2j ,
m+1
2j , k

2j ), ( p
2j ,

m
2j ,

k+1
2j )
]

p,m, k = 0 . . . , 2j − 1, (1)

12



Type 2 triangle:

T =
[
d; ( p

2j ,
m+1
2j , k+1

2j ), (p+1
2j ,

m
2j ,

k+1
2j ), (p+1

2j ,
m+1
2j , k

2j )
]

p,m, k = 0 . . . , 2j − 1, (2)

where in the first case p+m+ k = 2j − 1, and in the second case p+m+ k = 2j − 2.
For example, the gray triangle in Figure 4 is of type 2, and its two direct neighbors in the
row r = 3 are of type 1.

Let T j
d ⊂ T j be the triangulation of one triangular face Td. This triangulation T j

d
consists of 4j triangles. In order to define a bijective mapping of [d;M1,M2,M3] in T j to
a one-dimensional index set, we first consider a mapping of the triangles to rows r and
positions n in T j

d , i.e. a mapping [d;M1,M2,M3] �→ [d; r, n] as follows.
We say that a triangle [d;M1,M2,M3] is in the rth row of T j

d if the z-coordinates of M1,
M2 and M3 (in the barycentric system) are all either 1

2j (2j−r) or 1
2j (2j−r−1). Obviously,

we have 2j rows in the triangulation T j
d , and the rth row contains 2r − 1 triangles, see

Figure 4 for j = 2. Further, with n we denote the position of a triangle in the rth
row, starting with the maximal x-coordinate in the barycentric coordinate system. For
example, the gray triangle in Figure 4 is of type 2 and uniquely given by the coordinates
[d; (1/4, 1/2, 1/4), (1/4, 1/4, 1/2), (0, 1/2, 1/2)], or equivalently (with r = 3 and n = 4) by
[d; 3, 4].

Generally, we first determine the row and then the position of a triangle in the rth
row by considering its distance from the vertex (1, 0, 0). We observe that the triangle of
type 1 in (1) is mapped to the row r = 2j − k and the position n = 2(r − p) − 1, and the
triangle of type 2 in (2) is mapped to the row r = 2j −k and the position n = 2(r−p)−2.
Conversely, for a triangle T = [d; r, n] we find:
If n is odd, then T is of type 1 with

k = 2j − r, p = r − n+1
2 , m = 2j − 1 − k − p;

if n is even, then T is of type 2 with

k = 2j − r, p = r − n
2 − 1, m = 2j − 2 − k − p.

With this preliminaries we are ready to determine the invertible mapping of triangles
T = [d; M1,M2,M3] resp. T = (d; r, n) in T j to the one-dimensional index set indicated in
Figure 1. We restrict ourselves to the faces 1, 2, 3, 4 on the northern part of the octahedron,
the other part can be done simply by reflection arguments.

Obviously, the rth row through all four northern triangular faces contains 4(2r− 1) =
8r− 4 triangles (see e.g. Figure 1). Let now T = [d; M1,M2,M3] be an arbitrary triangle
in T j with d ∈ {1, 2, 3, 4}, and let (d; r, n) be the (face, row, position) coordinates of this
triangle. Then we determine the one-dimensional index l ∈ {1, . . . , 4j+1} of T as

l := 4(r − 1)2 + (d− 1)(2r − 1) + n. (3)

Here we have used the fact that 4(r − 1)2 triangles belong to the first r − 1 rows of the
triangulation T j, and (d − 1)(2r − 1) triangles belong to the rth row in previous faces.
So, starting at the North Pole, the one-dimensional index runs through the first row, then
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(1/2, 0, 1/2)

(1/4, 0, 3/4)

(3/4, 0, 1/4)

(0, 0, 1)

(0, 1, 0)(1/2, 1/2, 0)
(1, 0, 0)

r = 1

r = 2

r = 3

r = 4

Figure 4. Illustration of the triangulation T 2
d on one face Td of the octahedron with barycentric

coordinates. The grey triangle is the 4th triangle in the third row.

through the second row etc., and it ends at the South Pole (in the 2j+1th row, see Figure
1 (right)). Conversely, a triangle T indexed by l ∈ {1, . . . , 4j+1} in the one-dimensional
index set J is in the rth row if 4(r − 1)2 < l ≤ 4r2, i.e., we have

r :=

⌈√
l

2

⌉
,

where �x� denotes the smallest integer greater than x. Since each face has 2r−1 triangles
in the rth row, we find with n1 := l − 4(r − 1)2 the face d of the triangle as

d :=
⌈

n1

2r − 1

⌉
and finally the position n := n1 − (d− 1)(2r − 1).

On the southern hemisphere, the one-dimensional mapping is continued with l ∈
{4j+1 + 1, . . . , 22j+3} by using reflection arguments, i.e., instead of l in (3) we take
22j+3 − l + 1.

Let us remark that this mapping l = J([d;M1,M2,M3]) is only necessary as a prelim-
inary step in order to relate the data vector correctly with the one-dimensional index set,
and after finishing the EPWT, for correct projection of the obtained data onto the sphere.

4.2 Neighbors in the one-dimensional index set

During the transformation process using the EPWT, we work only with the one-dimensional
index set and the corresponding vector of data. For this purpose, we need to determine
the (one-dimensional) indices of the direct neighbors of a triangle Tl ∈ T j . We consider
only the neighborhood with three neighbors, as also determined in Section 2.2., and the
idea can be simply transferred to larger neighborhoods of Tl.

For l = 1, we find the neighborhood {2, 4, 6} (see also Figure 1 (right)), and analo-
gously, for the last index l = 22j+3 we obtain the neighborhood {22j+3−1, 22j+3−3, 22j+3−
5}. For 2 ≤ l ≤ 22j+3−1, two of the wanted neighbors are in the same row as l. If l ≤ 4j+1

and l 	= 4κ2 (or l > 4j+1 and l 	= 22j+3 − 4κ2) for some κ ∈ N, then the two neighbors are
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immediately provided by l−1 and l+1. If l = 4κ2 with 1 ≤ κ ≤ 2j , then the two neighbors
of l are l− 1 and 4(κ− 1)2 + 1. Similarly, on the southern hemisphere, for l = 22j+3 − 4κ2

with 1 ≤ κ ≤ 2j , we have the neighbors l − 1 and 22j+3 − 4(κ+ 1)2 + 1.
The remaining third neighbor of l can be either in the previous or in the next row,

depending on the type of the triangle Tl. We again use the (face, row, position) represen-
tation of the triangle Tl for determining this neighbor. We restrict ourselves to the case
l ≤ 4j+1. First we observe that Tl has the representation (d; r, n) with

r =
⌈
l

2

⌉
, n1 = l − 4(r − 1)2, d =

⌈
n1

2r − 1

⌉
, n := n1 − (d− 1)(2r − 1),

see Section 4.1. For odd n, the triangle Tl is of type 1 and its third neighbor is in the next
row. For r < 2j , this neighbor is determined by (d, r+1, n+1), i.e., by the one-dimensional
index

4r2 + (d− 1)(2r + 1) + n+ 1 = l + 8r + 2d− 5.

In the case r = 2j the third neighbor belongs to the southern hemisphere, and has the
index l+ 4(2j+1 − 1) since 4(2j+1 − 1) triangles are contained in the 2jth row and also in
the (2j + 1)th row of T j.

For even n, the triangle Tl is of type 2 and its neighbor is in the previous row. It is
determined by (d, r − 1, n − 1) i.e. by the one-dimensional index

4(r − 2)2 + (d− 1)(2r − 3) + n− 1 = l − 8r − 2d+ 13.

4.3 Numerical experiments

To illustrate the efficiency of our method, we took the data set topo, and we considered the
regular octahedron with triangulation T6, containing 32768 triangles. The approximation
f6 on U6 is represented in Figure 5 (left). Applying 4 levels of the EPWT, we obtain
2048 scaling coefficients and 30720 wavelet coefficients. We have used different thresholds
to the wavelet coefficients, see Table 1. Figure 5 (right) shows the reconstructed data f̃6

using only 2265 wavelet coefficients. For comparison of the reconstructed data f̃6 with the
original data f6, we measured the SNR given as

SNR = 20 · log10
‖f6 − mean(f6)‖2

‖f6 − f̃6‖2

.

The results are contained in Table 1, where the mean of f6 is −2329.

5 Conclusions

In this paper, we have proposed a new method for sparse representation of data on the
sphere using the concept of EPWT. This method is particularly efficient for compression
of data sets containing texture components, as e.g. topographical data. As in the two-
dimensional case, the efficiency of the EPWT depends strongly on the “cost of adaptivity”,
i.e. the cost for storing the path vectors pj at each level of the transform. In order to
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number of remaining percent of remaining
threshold wavelet coeff. wavelet coefficients SNR

1 27732 90.27 % 84.72
100 14185 46.17 % 38.59
500 5230 17.02 % 25.30
1000 3313 10.78 % 21.17
1500 2699 8.78 % 19.18
2000 2402 7.81 % 17.89
2500 2265 7.37 % 17.10

Table 1: Compression results for the data set topo.

Figure 5. Approximation f6 at level 6 of the original data set topo and the compressed version f̃6

with threshold 2500.

reduce these costs, we have proposed a so-called relaxed EPWT in Plonka (2009) using
the idea of “favorite directions”. This approach can be implemented on the sphere as well.

Furthermore, we want to emphasize that the EPWT can also be applied to planar
triangulations and to triangulations of parts of the sphere. We only need a one-dimensional
indexing of all triangles of the triangulation and a definition of neighborhood of each
triangle. The application of the EPWT on the sphere is not restricted to a triangular
grid. In a forthcoming paper, we will also consider the performance of the EPWT for other
grids like HEALPIX and present further numerical experiments showing the remarkable
efficiency of this approach.

Acknowledgement. This research in this paper is supported by the project 436 RUM
113/31/0-1 of the German Research Foundation (DFG). This is gratefully acknowledged.

References

Claypoole RL, Davis GM, Sweldens W, Baraniuk RG (2003) Nonlinear wavelet trans-
forms for image coding via lifting. IEEE Trans Image Process 12: 1449-1459

16



Cohen A, Matei B (2001) Compact representation of images by edge adapted multiscale
transforms. In Proc IEEE Int Conf on Image Proc (ICIP), Thessaloniki, 8-11

Dekel S, Leviatan D (2006) Adaptive multivariate approximation using binary space
partitions and geometric wavelets. SIAM J Numer Anal 43: 707-732

Ding W, Wu F, Wu X, Li S, Li H (2007) Adaptive directional lifting-based wavelet
transform for image coding. IEEE Trans Image Process 16: 416-427

Donoho DL (1999) Wedgelets: Nearly minimax estimation of edges. Ann Stat 27: 859-
897

Mallat S (2009) Geometrical grouplets. Appl Comput Harmon Anal 26: 161-180

Plonka G (2009) The easy path wavelet transform: A new adaptive wavelet transform for
sparse representation of two-dimensional data. Multiscale Model Simul 7: 1474-1496
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