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Introduction: Interpolation versus decorrelating transforms
for image compression

Idea 1 Interpolation/Inpainting:
Store only a subset of given image points and reconstruct the
image via interpolation.

Idea 2 Decorrelation:
Apply a transform to achieve data decorrelation (sparse data
representation) and store the significant coefficients.
Apply the inverse transform for reconstruction.

a) Apply a non-adaptive transform (DCT, wavelet transform)

b) Apply an adaptive transform (SVD, adaptive wavelet transform)
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Decorrelating transforms

KLT The Karhunen-Loéve transform (KLT) is the SVD of the
image as a matrix. The low-rank approximation using only the
largest singular values gives an optimal compression result.

Drawbacks: basis of singular vectors is data dependent, expensive

Idea: Find non-adaptive transforms that work well for many images:

Discrete cosine transform (heart of lossy compression in JPEG)

Â = C8ACT
8 A ∈ C8×8

Discrete tensor product wavelet transform

Â = WNAWT
M A ∈ CN×M
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JPEG
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Discrete wavelet transform

multiscale transform: Â = W1
NWNAWT
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Generalization: Directional wavelet frames

Many wavelet (frame) constructions for image analysis

1) steerable wavelets [Freeman and Adelson ’91]

2) curvelets [Candes, Donoho ’03]

3) shearlets [Labate, Lim, Kutyniok, Weiss ’05]

4) contourlets [Do, Vetterli ’05]

5) Gabor wavelets [Lee ’08]

6) α-molecules [Grohs, Keiper, Kutyniok, Schäfer ’14]

7) . . .
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Wanted properties of a new directional wavelet system

• Good space-frequency localization

• “Simple structure” of the wavelet system {ψλ}λ∈Λ

• Orthonormal basis or Parseval frame of L2(R2), i.e.,

f =
∑
λ∈Λ

〈f, ψλ〉ψλ

and ∑
λ∈Λ

|〈f, ψλ〉|2 = ‖f‖2
L2(R2)

for all f ∈ L2(R2)

• Good approximation properties: If f is in a certain smoothness
class, then f can be well approximated by a sparse wavelet frame
expansion, such that e.g.

‖f − fN‖22 ≤ C N−β

for (piecewise) Hölder smooth functions of order β.

However: Not suitable for image compression because of red-
undancy!
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Adaptive wavelet transforms

Idea Design adaptive approximation schemes respecting the local
geometric regularity of two-dimensional functions

Basic adaptive wavelet approaches

a) Apply a generalized lifting scheme to the data using (nonlinear)
data-dependent prediction and update operators

b) Adaptive approximation schemes using geometric image informati-
on, usually with extra adaptivity costs
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Basic adaptive wavelet approaches

a) Apply a generalized lifting scheme to the data using (nonlinear)
data-dependent prediction and update operators

Literature (incomplete)

• discrete MRA and generalized wavelets (Harten ’93)

• second generation wavelets (Sweldens ’97)

• edge adapted multiscale transform (Cohen & Matei ’01)

• Nonlinear wavelet transforms (Claypoole et al. ’03)

• adaptive lifting schemes (Heijmans et al. ’06)

• adaptive directional lifting based wavelet transf. (Ding et al. ’06)

• edge-adapted nonlinear MRA (ENO-EA) (Arandiga et al. ’08)

• meshless multiscale decompositions (Baraniuk et al. ’08)

• nonlinear locally adaptive filter banks (Plonka & Tenorth ’09)
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How does it work?

The general lifting scheme consists of three steps.

1. Split Split the given data a = (a(i, j))N−1
i,j=0 into two sets

ae and ao

2. Predict Find a good approximation ão of ao of the form

ão = P1a
o + P2a

e

Put
do := ão − ao.

Assume that (ae, ao) 7→ (ae, do) is invertible, i.e., I − P1 is invertible.

3. Update Find a “smoothed” approximation of ae

(a low-pass filtered subsampled version of a)

ãe := U1(do) + U2(ae)

Assume that (ae, do) 7→ (ãe, do) is invertible, i.e., that U2 is invertible.
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How to choose the prediction and update operators?

Prediction operator local approximation of ao by an adaptively
weighted average of “neighboring” data

Example 1.

• Fix a stencil at a neighborhood of ao(i, j) (adaptively)

• Compute a polynomial p by interpolating/approximating the data
on the stencil

• Choose p(i, j) to approximate ao(i, j).

Example 2. Use nonlinear diffusion filters to determine the prediction
operator

Update operator usually linear, non-adaptive
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Basic adaptive wavelet approaches

wedgelets (Donoho ’99)

approximation of images using an adaptively chosen domain decom-
position

bandelets (Le Pennec & Mallat ’05)

wavelet filter bank followed by adaptive geometric orthogonal filters

geometric wavelets (Dekel & Leviatan ’05)

binary space partition and polynomial approximations in subdo-
mains

geometrical grouplets (Mallat ’09)

association fields that group points, generalized Haar wavelets

EPWT (Plonka et al. 09)

tetrolets (Krommweh ’10)

generalized Haar wavelets on adaptively chosen tetrolet partitions
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Comparison of basic adaptive wavelet approaches

a) Generalized lifting scheme with nonlinear prediction

Advantages invertible transform, no side information necessary
usually a justifiable computational effort

Drawbacks bad stability of the reconstruction scheme
only slightly better approximation results compared with
linear (nonadaptive) transforms

b) Adaptive wavelet approximation using geometric image informa-
tion

Advantages very good approximation results

Drawbacks adaptivity costs for encoding
usually high computational effort
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Description of the EPWT

Problem Given a matrix of data points (image values), how to com-
press the data by a wavelet transform thereby exploiting
the local correlations efficiently?

Idea

1. Find a (one-dimensional) path through all data points such that
there is a strong correlation between neighboring data points.

2. Apply a one-dimensional wavelet transform along the path.

3. Apply the idea repeatedly to the low-pass filtered array of data.
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Toy Example

f =


115 108 109 112
106 116 107 109
112 110 108 108
108 109 103 106

 array of data.
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p4 = ((0, 5, 8, 9, 13, 12), (1, 6, 11, 10, 7, 2, 3), (4), (15, 14)),

f3 = (115.5, 111, 108.5, 107.5, 108, 109, 109, 104.5),

p3 = ((0, 1, 6, 5, 4, 3), (2, 7)), p2 = (0, 1, 2, 3).
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The relaxed EPWT

Idea: Change the direction of the path only if the difference of data
values is greater than a predetermined value θ.

rigorous EPWT (θ = 0)

Entropy 2.08 bit per pixel

relaxed EPWT (θ = 0.14)

Entropy 0.39 bit per pixel
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Numerical results

Test: door lock image (128× 128)

θ1 levels nonzero PSNR entropy
WT coeff of p̃14

tensor prod. Haar - 7 512 22.16 -
tensor prod Daub. - 6 512 22.94 -
tensor prod 7-9 - 4 512 22.49 -
EPWT Haar 0.00 14 512 28.04 2.22
EPWT Haar 0.05 14 512 28.37 1.11
EPWT Haar 0.10 14 512 27.74 0.55
EPWT Daub. 0.00 12 512 28.63 2.22
EPWT Daub. 0.05 12 512 29.23 1.11
EPWT Daub. 0.10 12 512 28.67 0.55
EPWT Daub. 0.15 12 512 27.65 0.32
EPWT 7-9 0.00 10 512 28.35 2.22
EPWT 7-9 0.05 10 512 28.99 1.11
EPWT 7-9 0.10 10 512 28.38 0.55
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Results for N-term approximation

Theorem 1 (Plonka, Tenorth, Iske (2011))

The EPWT (with the Haar wavelet transform) leads for suitable path
vectors to an N -term approximation of the form

‖f − fN‖22 ≤ C N−α

for piecewise Hölder continuous functions of order α (with 0 < α ≤ 1)
possessing discontinuities along curves of finite length.

Theorem 2 (Plonka, Iske, Tenorth (2013))

The application of the EPWT leads for suitably chosen path vectors
to an N -term approximation of the form

‖f − fN‖22 ≤ C N−α

for piecewise Hölder smooth functions of order α > 0 possessing dis-
continuities along curves of finite length.
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Wavelet transforms for image inpainting

Known approaches

1. Apply a direction wavelet transform for regularization:

x∗ = arg min
x
‖Φx‖1 subject to PKx = PKx0.

see e.g. King et al. (2013)
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Wavelet transforms for image inpainting

Figure 3. (Upper Left) Original image (Upper Right) 32 ⇥ 32 missing blocks (Lower Left) Curvelets+Local cosine
(26.22 dB) [ESQD05] (Lower Right) Shearlets (27.82 dB)

[GO], implementation [Get]), and shearlet-based iterative thresholding. The first three methods were applied
directly to the color image, while the shearlet-based inpainting was performed channel by channel. Even
though the shearlet method involves inpainting the image three times (one for each channel), the correspond-
ing run time was faster than the other methods. Further, the SNR is the best. Visually, the image inpainted
with shearlets also looks the best, with the main problem area being the chin, but none of the inpainting
methods successfully inpainted the chin.

32⇥32 blocks are also masked out in Figure 6, but these blocks, while they have approximately the same
density as the masked-out blocks in Figure 5, occur at random positions. The same inpainting methods as
above (exemplar-based, non-local means, TV, and shearlet) are compared. This is the only example in the
paper for which using the shearlet-based inpainting method does not outperform the other methods. The
reason that the shearlet-inpainted image appears so washed out is that values much larger than 255 occurred
in the “inpainted” version (the greenish spots). In order to display the image, it had to be normalized,
which caused the non-problematic pixels to appear faint. What is additionally interesting is that the green
spots appear in parts of the image that were not masked out. However, the run time is still shorter than
the TV and non-local means approaches, so perhaps changing the exit criteria of the code will improve the
performance.

Figure 7 contains seismic data taken from [Sei] which has been masked vertically, replicating missing
acquisition sensors. Apparent memory leaks in both the implementation of exemplar inpainting and TV
inpainting prevented a comparison of these methods on this image. Note that although the shearlet-based
inpainting has a better SNR than the non-local means inpainting, it took about 3 times longer to run.

7

upper left: original image; upper right: missing blocks
lower left: reconstruction with curvelets and local cosine,
lower right: reconstruction with shearlets (King et al. (2013))
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Wavelet transforms for image inpainting

2. Reconstruction of missing or damaged wavelet coefficients

model 1 (noiseless case)

Minimize TV (uβ) where uβ(x) has the wavelet transform

uβ(x) =
∑
j,k

βj,kψj,k(x), β = (βjk), j ∈ Z, k ∈ Z2

subject to βj,k = αj,k (j, k) ∈ I
model 2 (noisy case)

Minimize
TV (uβ(x)) +

∑
(j,k)

λj,k(βj,k − αj,k)2

where λj,k = 0 if (j, k) 6∈ I
see e.g. Chan et al. (2006); Zhang & Chan (2010)
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Wavelet transforms for image inpainting

Abbildung 21: Ergebnisse der Bildrekonstruktion beim zufälligen 40%-en Verlust von
Wavelet-Koe�zienten mittels Algorithmus 1 und Algorithmus 2 im Vergleich.

Abbildung 22: Entwicklung des PSNR-Wertes im Laufe der Iterationen des primal-
dualen Algorithmus beim zufälligen 40%-en Verlust von Wavelet-Koe�zienten.

67

upper line: original image; mask of lost coefficients, reconstruction
lower line: reconstruction using TV, NLTV, Primal-dual algorithm
(Pototskaia, Master thesis (2013)
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Summary

• Decorrelating non-adaptive transforms (cosine transform, tensor-
product wavelet transform) are still the industrial standard for
image compression.

• Adaptive transforms can perform better, but need higher computa-
tional effort, are less stable, or produce extra adaptivity costs.

• There is no inpainting method for image compression available that
is comparable to the current compression standard performance.

• New approaches connection computational harmonic analysis tools
may be:

• the application of a multiscale approach for discrete Green’s
functions of diffusion operators

• the application of “interpolatory” wavelets that can be inter-
preted (locally) in spatial domain
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