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 Interpolation versus decorrelating transforms for image
compression

e Non-adaptive transforms
* Tensor-product wavelet transforms
* Directional frames
e Adaptive wavelet transforms
* Generalized lifting schemes
e (Geometric approaches with adaptivity costs
* Description of the EPWT algorithm

* Wavelet transforms for inpainting



Introduction: Interpolation versus decorrelating transforms
for image compression

Idea 1 Interpolation/Inpainting;:
Store only a subset of given image points and reconstruct the
image via interpolation.

Idea 2 Decorrelation:
Apply a transform to achieve data decorrelation (sparse data
representation) and store the significant coefficients.
Apply the inverse transform for reconstruction.

a) Apply a non-adaptive transform (DCT, wavelet transform)

b) Apply an adaptive transform (SVD, adaptive wavelet transform)



Decorrelating transforms

KLT The Karhunen-Loéve transform (KLT) is the SVD of the

image as a matrix. The low-rank approximation using only the
largest singular values gives an optimal compression result.

Drawbacks: basis of singular vectors is data dependent, expensive

Idea: Find non-adaptive transforms that work well for many images:

Discrete cosine transform (heart of lossy compression in JPEG)

A = CsACE A e C¥®

Discrete tensor product wavelet transform

A =WyAWT A eCcVM
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Discrete wavelet transform

multiscale transform:
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(Generalization: Directional wavelet frames

Many wavelet (frame) constructions for image analysis

1) steerable wavelets [Freeman and Adelson 91|

2) curvelets [Candes, Donoho ’03]

3) shearlets |Labate, Lim, Kutyniok, Weiss '05]

4) contourlets [Do, Vetterli 05

5) Gabor wavelets |Lee "08]

6) a-molecules |Grohs, Keiper, Kutyniok, Schafer '14]
) -
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Wanted properties of a new directional wavelet system

* Good space-frequency localization
e “Simple structure” of the wavelet system {1y }rea

e Orthonormal basis or Parseval frame of L?(R?), i.e.,

f=) (fan

ANEA
and

D NN = 11 oge, forall f € L*(R?)

AEA

e Good approximation properties: If f is in a certain smoothness
class, then f can be well approximated by a sparse wavelet frame
expansion, such that e.g.

|f = fnllE < ONTP
for (piecewise) Holder smooth functions of order /.

However: Not suitable for image compression because of red-
undancy!



Adaptive wavelet transforms

Idea Design adaptive approximation schemes respecting the local
geometric regularity of two-dimensional functions

Basic adaptive wavelet approaches

a) Apply a generalized lifting scheme to the data using (nonlinear)
data-dependent prediction and update operators

b) Adaptive approximation schemes using geometric image informati-
on, usually with extra adaptivity costs



Basic adaptive wavelet approaches

a)

Apply a generalized lifting scheme to the data using (nonlinear)
data-dependent prediction and update operators

Literature (incomplete)

discrete MRA and generalized wavelets (Harten '93)

second generation wavelets (Sweldens ’97)

edge adapted multiscale transform (Cohen & Matei '01)
Nonlinear wavelet transforms (Claypoole et al. '03)

adaptive lifting schemes (Heijmans et al. '06)

adaptive directional lifting based wavelet transf. (Ding et al. ’06)
edge-adapted nonlinear MRA (ENO-EA) (Arandiga et al. ’08)
meshless multiscale decompositions (Baraniuk et al. '08)

nonlinear locally adaptive filter banks (Plonka & Tenorth '09)



How does it work?

The general lifting scheme consists of three steps.

1. Split Split the given data a = (a(s, ])) y 10 into two sets
a® and a”

2. Predict Find a good apprommatlon % of a° of the form
= Pia’ + Pa“

Put
d° = 5° — 5°

Assume that (a¢ a°) — (a® d°) is invertible, i.e., I — P; is invertible.

3. Update Find a “smoothed” approximation of a®
(a low-pass filtered subsampled version of a)

= Ul(do) -+ UQ(ae)

Assume that (a®, d°) — (a° d?) is invertible, i.e., that Us is invertible.
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How to choose the prediction and update operators?

Prediction operator local approximation of a® by an adaptively
weighted average of “neighboring” data

Example 1.
e Fix a stencil at a neighborhood of a°(, j) (adaptively)

e Compute a polynomial p by interpolating/approximating the data
on the stencil

e Choose p(i,j) to approximate a°(i, 7).

Example 2. Use nonlinear diffusion filters to determine the prediction
operator

Update operator usually linear, non-adaptive
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Basic adaptive wavelet approaches

wedgelets (Donoho '99)

approximation of images using an adaptively chosen domain decom-
position

bandelets (Le Pennec & Mallat "05)
wavelet filter bank followed by adaptive geometric orthogonal filters
geometric wavelets (Dekel & Leviatan ’05)

binary space partition and polynomial approximations in subdo-
mains

geometrical grouplets (Mallat '09)

association fields that group points, generalized Haar wavelets
EPWT (Plonka et al. 09)

tetrolets (Krommweh 10)

generalized Haar wavelets on adaptively chosen tetrolet partitions
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Comparison of basic adaptive wavelet approaches

a) Generalized lifting scheme with nonlinear prediction

Advantages invertible transform, no side information necessary
usually a justifiable computational effort

Drawbacks bad stability of the reconstruction scheme
only slightly better approximation results compared with
linear (nonadaptive) transforms

b) Adaptive wavelet approximation using geometric image informa-
tion

Advantages very good approximation results

Drawbacks adaptivity costs for encoding
usually high computational effort
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Description of the EPWT

Problem Given a matrix of data points (image values), how to com-
press the data by a wavelet transform thereby exploiting
the local correlations efficiently?

Idea

1. Find a (one-dimensional) path through all data points such that
there is a strong correlation between neighboring data points.

2. Apply a one-dimensional wavelet transform along the path.

3. Apply the idea repeatedly to the low-pass filtered array of data.

14



Toy Example

115 108 109 1127
106 116 107 109
E=1112 110 108 108 array of data.
108 109 103 106
0 1 2 3
—»e
4 t
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p* = ((0,5,8,9,13,12), (1,6,11,10, 7,2, 3), (4), (15, 14)),
f3 = (115.5,111,108.5,107.5, 108,109, 109, 104.5),
p° = ((0,1,6,5,4,3),(2,7)), p° =(0,1,2,3).



The relaxed EPWT

Idea: Change the direction of the path only if the difference of data
values is greater than a predetermined value 6.

rigorous EPWT (6§ =0) relaxed EPW'T (6 = 0.14)
Entropy 2.08 bit per pixel Entropy 0.39 bit per pixel
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Numerical results

Test: door lock image (128 x 128)

61 |levels | nonzero | PSNR |entropy
WT coeft of p*
tensor prod. Haar - 7 512 | 22.16 -
tensor prod Daub. - 6 512 | 22.94 -
tensor prod 7-9 - 4 512 | 22.49 -
EPWT Haar 0.00 14 512 | 28.04 2.22
EPWT Haar 0.05 14 512 | 28.37 1.11
EPWT Haar 0.10 14 b12 | 27.74 0.55
EPWT Daub. 0.00 12 512 | 28.63 2.22
EPWT Daub. 0.05 12 512 | 29.23 1.11
EPWT Daub. 0.10 12 512 | 28.67 0.55
EPWT Daub. 0.15 12 512 | 27.65 0.32
EPWT  7-9 0.00 10 512 | 28.35 2.22
EPWT  7-9 0.05 10 512 | 28.99 1.11
EPWT  7-9 0.10 10 512 | 28.38 0.55
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Results for N-term approximation

Theorem 1 (Plonka, Tenorth, Iske (2011))

The EPWT (with the Haar wavelet transform) leads for suitable path
vectors to an N-term approximation of the form

|f = fnllz < ONT®

for piecewise Holder continuous functions of order @ (with 0 < o < 1)
possessing discontinuities along curves of finite length.

Theorem 2 (Plonka, Iske, Tenorth (2013))

The application of the EPWT leads for suitably chosen path vectors
to an /N-term approximation of the form

If = fnllz<CON®

for piecewise Holder smooth functions of order o« > 0 possessing dis-
continuities along curves of finite length.
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Wavelet transforms for image inpainting

Known approaches

1. Apply a direction wavelet transform for regularization:

x" = arg min || Px|| subject to Prx = Prx’.

see e.g. King et al. (2013)
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Wavelet transforms for image inpainting

upper left: original image; upper right: missing blocks
lower left: reconstruction with curvelets and local cosine,
lower right: reconstruction with shearlets (King et al. (2013))
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Wavelet transforms for image inpainting

2. Reconstruction of missing or damaged wavelet coefficients
model 1 (noiseless case)

Minimize TV (ug) where ug(x) has the wavelet transform

ug(x) = Zﬁj,k%,k(ﬂ?)a 8= (Bjk), j €L,k €L
ik

subject to Bik = o (7,k) el
model 2 (noisy case)
Minimize
TV (ug(z)) + Z Nik(Bik — k)’
(4:k)

where A\;, = 0if (j,k) &€ 1
see e.g. Chan et al. (2006); Zhang & Chan (2010)
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Wavelet transforms for image inpainting

erlustmaske

upper line: original image; mask of lost coefficients, reconstruction

lower line: reconstruction using TV, NLTV, Primal-dual algorithm
(Pototskaia, Master thesis (2013)
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Summary

e Decorrelating non-adaptive transforms (cosine transform, tensor-
product wavelet transform) are still the industrial standard for
1mage CoOmpression.

e Adaptive transforms can perform better, but need higher computa-
tional effort, are less stable, or produce extra adaptivity costs.

e There is no inpainting method for image compression available that
is comparable to the current compression standard performance.

e New approaches connection computational harmonic analysis tools
may be:

e the application of a multiscale approach for discrete Green’s
functions of diffusion operators

e the application of “interpolatory” wavelets that can be inter-
preted (locally) in spatial domain
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