
A New Hybrid Method for Image Approximation using
the Easy Path Wavelet Transform

Gerlind Plonka1, Stefanie Tenorth1 and Daniela Roşca2
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Abstract

The Easy Path Wavelet Transform (EPWT) has recently been proposed by one of
the authors as a tool for sparse representations of bivariate functions from discrete data, in
particular from image data. The EPWT is a locally adaptive wavelet transform. It works
along pathways through the array of function values and exploits the local correlations
of the given data in a simple appropriate manner. However, the EPWT suffers from its
adaptivity costs that arise from the storage of path vectors. In this paper, we propose a
new hybrid method for image compression that exploits the advantages of the usual tensor
product wavelet transform for the representation of smooth images and uses the EPWT
for an efficient representation of edges and texture. Numerical results show the efficiency
of this procedure.
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1 Introduction

Over the last years, wavelets have had a growing impact on signal and image processing.
In the one-dimensional case, wavelets provide optimal representations of piecewise smooth
functions. Unfortunately, in two dimensions, tensor product wavelet bases are suboptimal
for representing geometric structures as edges and texture, since their support is not
adapted to directional geometric properties. Only in case of globally smooth images, they
provide optimally sparse representations.

Many different approaches have been developed to design approximation schemes that
aim at a more efficient representation of two-dimensional data. Curvelets [3], shearlets [12],
and contourlets [9] are examples of non-adaptive highly redundant function frames with
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a strong anisotropic directional selectivity. However, while theoretical results show their
good performance for sparse representation of piecewise smooth images with discontinuities
along smooth curves [3, 11], these frames cannot be applied for image compression. On
the one hand, the known curvelet/shearlet algorithms do not get completely rid of the
redundancy of the underlying function systems, see e.g. [4]. On the other hand, the almost
optimal image representation can only be proven for images with edges along C2-curves,
and this result is not transferable to other image regularities.

Instead of choosing a priori a basis or a frame to approximate an image u, one can
rather adapt the approximation scheme to the image geometry. Different approaches
have been developed in this direction. Bandelets [15], wedgelets [10] geometric wavelets
[7], grouplets [17], tetrolets [14], and frame constructions with adaptive angular selectiv-
ity [13] are examples for adaptive image approximation. In [8], an image compression
scheme based on piecewise linear functions over an optimized triangulation has been con-
structed. Further, nonlinear edge adapted multiscale decompositions based on essentially
non-oscillatory (ENO) schemes have been extensively investigated [1, 6].

The idea of a nonlinear locally adaptive easy path wavelet transform (EPWT) has
been explored in [18] for sparse image representations. The main idea of this transform
is as follows. In a first step, one needs to determine a “path vector” through all indices
of a given (two-dimensional) index set, in such a way that there is a strong correlation
between the image values that correspond to adjacent pixels in the path vector. Then,
one level of a (one-dimensional) wavelet transform is applied to the image values along
the path vector. In the following levels, one needs to find path vectors through index sets
of a low-pass image and applies again the wavelet transform. The EPWT is very efficient
for sparse image representations [20] and can also be applied to other grids [19]. But it
suffers from high storage costs for the path vectors in each level. The so-called ’relaxed
EPWT’ is one way to reduce these adaptivity costs [18].

In this paper, we will exploit the advantages of the well-known tensor-product wavelet
transform for representation of smooth images and the ability of the adaptive EPWT to
represent edges and texture in images. For that purpose, we propose a new hybrid method
for image compression that (roughly) consists of the following steps.

For a given digital image u0 = (u0
i,j)

N1,N2
i=1,j=1, we first try to find a suitable separation

u0 = usm + ur, where usm is globally smooth, and the difference image ur contains the
remaining part of the image (i.e. edges and texture). The separation will be done by
a simple smoothing of u0 based on local smoothing filters that are derived from linear
diffusion. Then the usual tensor product wavelet transform is applied to the smooth
image usm. Here we exploit the fact that smooth functions can be optimally represented
by an M -term wavelet expansion usmM .

In the next step, the EPWT is applied to the (shrunken) difference image u0 − usmM .
Assuming that the original image u0 is piecewise smooth, the difference image u0 − usmM
contains a high number of components with very small absolute value. Therefore, we
consider a shrunken version ũr = S(u0 − usmM ) possessing a smaller number of nonzero
values. In our numerical experiments, we shrink the difference, such that ũr contains only
N1N2/4 nonzero values. The EPWT is now applied only to the nonzero values of ũr, and
the adaptivity costs can be strongly reduced compared with the EPWT for a full image.

Finally, we obtain a very good image approximation as a sum of the M -term wavelet
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expansion usmM of the smooth image part and the N -term EPWT wavelet expansion urN
of the difference image.

The outline of the paper is as follows. In Section 2, we study all steps of the new
hybrid algorithm separately. Compared with the above rough description, the algorithm,
summarized in Section 2.4, will be slightly refined. Section 3 is devoted to the EPWT
algorithm that we need to adapt for our purposes. Finally, in Section 4 we present some
numerical experiments and show the strong efficiency of the proposed hybrid method.

2 Hybrid-model for image compression

As already mentioned in the introduction, the basic idea of the new hybrid model is to
find a suitable partition of a given image u0 = (ui,j)

N1,N2
i=1,j=1 into a smooth part usm and a

remainder ur and to apply different wavelet transforms to these two image parts. While
the smooth image is known to be optimally representable by a suitable tensor product
wavelet transform, we will use the new EPWT for representation of the remainder ur that
contains textures and edges.

2.1 Separation of images

We are interested in a segmentation of our image u into a “smooth” part usm and a re-
mainder ur that contains information about edges and textures. Note that this separation
issue is different from image separation problems usually considered for image denoising,
where one aims to separate an image into a cartoon part, i.e. a piecewise smooth function
(smooth part together with edges of finite length), and a texture part, see e.g. [2, 5, 21]
and others.

We suppose that the main portion of the considered image is regular outside a set of
(piecewise) regular curves and that the image contains only a small amount of texture.
For the smoothing procedure, we want to apply local smoothing filters that are derived
from linear diffusion.

Let Ω ⊂ R2 be a suitable region, and let u0 = u0(x1, x2) ∈ L2(Ω) be a given continuous
model of the image. We consider the linear diffusion equation

∂u

∂t
=
∂2u

∂x2
1

+
∂2u

∂x2
2

(x1, x2) ∈ Ω, t ∈ [0, 1] (2.1)

with Neumann boundary conditions ∂u
∂n = 0 on ∂Ω and with u(x1, x2, 0) = u0(x1, x2) for

(x1, x2) ∈ Ω, where u0 is the given image. It is well-known that the linear diffusion process
leads to a smooth solution u(x, y, t). For Ω = R2 this solution is obtained by a convolution
of u0 with the two-dimensional Gaussian kernel

Kσ(x1, x2) :=
1

2πσ2
exp(−|x1|+ |x2|

2σ2
),

i.e.,

u(x1, x2, t) =


u0(x1, x2) t = 0,∫
R2

K√2π(x1 − y1, x2 − y2)u(y1, y2) dy1dy2 t > 0,
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see e.g. [22]. We are interested in a simple discretization of this diffusion process. For
Ω = [0, N1]× [0, N2], let u0 := (u0(i, j))N1,N2

i=1,j=1 be the given digital image. Using forward
and backward differences for approximation of the derivatives, a discretization of (2.1) by
the Euler scheme yields in the kth time step an approximation uk(i, j) of u(i, j, kτ) with

uk+1(i, j)− uk(i, j)
τ

= uk(i, j + 1) + uk(i, j − 1) + uk(i− 1, j) + uk(i+ 1, j)− 4uk(i, j),

where we have used the step size 1 in spatial domain. Hence,

uk+1(i, j) = uk(i, j)+τ
(
uk(i+ 1, j) + uk(i− 1, j) + uk(i, j − 1) + uk(i, j + 1)− 4uk(i, j)

)
for i = 1, . . . , N1, j = 1, . . . , N2. The Neumann boundary conditions are satisfied with the
following definitions,

uk(0, j) := uk(1, j), uk(N1 + 1, j) := uk(N1, j), j = 1, . . . , N2,
uk(i, 0) := uk(i, 1), uk(i,N2 + 1) := uk(i,N2), i = 1, . . . , N1.

(2.2)

The parameter τ controls the amount of smoothing in each step. Using this diffusion
process we obtain a smoothed image usm = (uL(i, j))N1,N2

i=1,j=1, where L is a fixed number of
iterations. In our experiments we have usually taken L = 5.

2.2 Tensor-product wavelet transform

Tensor-product wavelet bases are particularly efficient to approximate smooth images.
For given one-dimensional biorthogonal wavelet bases of L2(R) generated by the dual

pairs φ, ψ and φ̃, ψ̃ of scaling functions and wavelets, we consider the two-dimensional
wavelets

ψ1(x1, x2) = φ(x1)ψ(x2), ψ2(x1, x2) = ψ(x1)φ(x2), ψ3(x1, x2) = ψ(x1)ψ(x2),

and the dual wavelets

ψ̃1(x1, x2) = φ̃(x1)ψ̃(x2), ψ̃2(x1, x2) = ψ̃(x1)φ̃(x2), ψ̃3(x1, x2) = ψ̃(x1)ψ̃(x2).

Using the notation

ψkj,n(x1, x2) :=
1
2j
ψk
(
x1 − 2jn1

2j
,
x2 − 2jn2

2j

)
, j ∈ Z, n = (n1, n2) ∈ Z2, k = 1, 2, 3,

and an analogous notation for ψ̃kj,n, one can verify that {ψ1
j,n, ψ

2
j,n, ψ

3
j,n}(j,n)∈Z3 and

{ψ̃1
j,n, ψ̃

2
j,n, ψ̃

3
j,n}(j,n)∈Z3 are biorthogonal Riesz bases of L2(R2) (see e.g. [16]).

The fast wavelet transform is based on filter bank algorithms. Let a function f be
Hölder-continuous of order α in Ω and let the M -term separable wavelet approximation
fM be obtained by keeping only the M wavelet coefficients with the largest absolute value
in a wavelet basis representation of f . Then for a sufficiently smooth wavelet basis we
have

||f − fM ||22 < CM−α,
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where ||.||2 denotes the L2-norm. The decay exponent is optimal, i.e., tensor product
wavelet bases are optimal for sparse representation of smooth images. Therefore we apply
the tensor product wavelet transform to the smoothed digital image usm obtained after
linear diffusion (or to a slightly different image ũsm, see Section 2.4). Using only a fixed
number of M wavelet coefficients in the wavelet representation, we obtain an approxima-
tion usmM of usm after wavelet reconstruction. In our numerical experiments we use the
well-known 9/7 biorthogonal filter bank and D4 orthonormal Daubechies wavelets. The
image usmM is then obtained by using a decomposition algorithm, a shrinkage procedure
and a wavelet reconstruction.

2.3 The EPWT for sparse edge representation

Let u be the original digital image and ũsmM the M -term wavelet approximation of the
smoothed image ũsm obtained by a linear diffusion process (and a slight modification
based on shrinkage, see Section 2.4). Now we consider the difference image ur = u− ũsm
that mostly contains edges and texture. We want to apply a new locally adaptive wavelet
transform to this difference image, the easy path wavelet transform (EPWT). The EPWT
is a wavelet transform that works along path vectors through index subsets of the pixel
set defining the image ur. While the EPWT has been shown to be very efficient for
sparse image representation [18, 20], we have to keep in mind its adaptivity costs for the
storage of path vectors. In order to exploit the ability of the EPWT to sparsely represent
edges and texture and, at the same time, to keep adaptivity costs small, we suggest to
apply the EPWT not to the complete image ur, but only to the part with essential image
information.

Supposing that the original image u mainly contains piecewise regular segments, which
will be hardly changed by the diffusion process, the difference image ur = u−ũsm possesses
many very small image values. Therefore, we apply first a shrinkage procedure to ur and
obtain ũr = (ũr(i, j))N1,N2

i=1,j=1, i.e.

Sθu
r(i, j) = ũr(i, j) :=

{
ur(i, j) if |ur(i, j)| ≥ θ,
0 if |ur(i, j)| < θ.

The shrinkage parameter θ should be chosen dependently on the image at hand in such a
way that ũr contains exactly 2J nonzero image values, where 2J < N1N2. In our numerical
experiments, we have taken θ such that ũr has only 1

4N1N2 nonzero values; these values
are situated along the edges/texture of u. Now we apply the EPWT only along the
nonzero values of ũr while the vanishing values remain untouched. This procedure can be
transferred to the partial image ũr, where we only consider the image values corresponding
to the index set

IJ := {(i, j)| 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, |ur(i, j)| ≥ θ}

of size 2J .
In Section 3, we will give a short description of the (adapted) EPWT algorithm and

a suitable way to store the path vectors in order to minimize our adaptivity costs. The
original algorithm of the EPWT is described in detail in [18].
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In order to obtain a sparse representation of ũr, we apply a shrinkage procedure to the
EPWT-wavelet coefficients. In our experiments we use the hard threshold function

Sσ(x) =

{
x |x| ≥ σ,
0 |x| < σ.

By taking only a fixed number of N coefficients, after reconstruction we obtain an EPWT
approximation ũrN of the difference image ũr.

2.4 The algorithm

Let us summarize the procedure of the new hybrid algorithm for image compression.

Given: digital image u0 =
(
u0(i, j)

)N1,N2

i=1,j=1
.

1. Apply an iterative local smoothing filter for image separation: Fix τ > 0 and L ∈ N.

For k = 1, . . . , L do

uk(i, j) := uk−1(i, j) + τ(uk−1(i+ 1, j) + uk−1(i− 1, j)

+ uk−1(i, j − 1) + uk−1(i, j + 1)− 4uk−1(i, j))

using Neumann boundary conditions in (2.2).

Put usm :=
(
uL(i, j)

)N1,N2

i=1,j=1
.

2. Apply a shrinkage procedure to the difference image d = u0−usm by a hard threshold
procedure. Choose θ in such a way that

d̃(i, j) := Sθd(i, j) :=

{
d(i, j) if |d(i, j)| ≥ θ
0 if |d(i, j)| < θ

possesses exactly 2J nonzero image values, where 2J < N1N2.

Now compute a (slightly changed) smooth part of the original image u0, namely

ũsm := u0 − d̃ = u0 − Sθd.

3. Apply a wavelet shrinkage procedure to the smoothed image ũsm using an orthogonal
or biorthogonal two-dimensional wavelet transform.
Let ũsmM be the approximation of ũsm that is reconstructed using only M wavelet
coefficients.

4. Consider the difference image ur := u0− ũsmM that contains edges and texture. Apply
again a shrinkage procedure to ur obtaining ũr = Sθ̃u

r, where ũr possesses exactly
2J nonzero image values.

5. Apply the EPWT with shrinkage to the detail image ũr, where only the nonzero
coefficients of ũr are used. Let ũrN be the approximation of ũr using only N EPWT
wavelet coefficients.
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Result
Then ũ0 := ũsmM + ũrN is an approximation of u0 where we have used only M + N

wavelet coefficients.

For illustration of the above algorithm, we present an example, where the partial results
after each step of the algorithm are displayed.

The original image u0 in Figure 1(a) shows a 256×256-part of the image “sails”. After
the first step of our algorithm, we get a smoothed version usm, see Figure 1(b). Now we
apply the second step, i.e., we calculate a difference image, keep the 16384 components
with largest absolute values, and add the other values to usm. In this way we obtain
a slightly changed smooth image ũsm, see Figure 1(c). Compared with usm, it contains
slightly more details; the numbers on the sails are a bit less blurry now.

According to step 3 of the algorithm, we apply a wavelet shrinkage procedure with
a hard threshold to ũsm, and keep only 1200 coefficients; here we use 5 levels of the
biorthogonal 9/7-wavelet filter bank. We obtain ũsm1200, see Figure 1(d). The difference
image ur = u0 − ũsm1200 is presented in Figure 1(e). (The image shown here contains the
absolute values of the difference and is inverted, i.e., white stands for 0 and black for 255).
We apply again a shrinkage to this difference image keeping only 16384 = 256×256

4 nonzero
coefficients according to step 4 of the algorithm. Figure 1(f) shows an inverted version of
the obtained difference |ũr|.

We apply the EPWT, and a hard threshold to keep only 800 EPWT wavelet coefficients
of ũr. The reconstruction ũr800 is shown in Figure 1(g), again we present here the absolute
values of its components, where white stands for zero and black for 255. Finally, we add
the results of wavelet shrinkage ũsm1200 in Figure 1(d) and the result ũr800 of the EPWT
shrinkage in Figure 1(g) and obtain the result in Figure 1(h). For comparison, we show
in Figure 1(i) the wavelet approximation of the original image by the 9/7-transform using
2000 nonzero-coefficients.

3 Application of the EPWT

In this section we describe the EPWT algorithm that we need to adapt here to a partial
difference image. Let IJ ⊂ {(i, j) | i = 1, . . . , N1, j = 1, . . . , N2} with #IJ = 2J < N1N2

be the index set of nonzero image values in the thresholded difference image ũr.
We say that the nonzero value ũr(i, j) corresponds to the index (i, j) ∈ IJ . For sim-

plicity we use a one-dimensional representation of the index set IJ by taking the bijective
mapping

γ(i, j) := i+ (j − 1)N1 for i = 1, . . . , N1, j = 1, . . . , N2,

and with γ(IJ) we denote the set of one-dimensional indices. Since γ(IJ) ⊂ {1, . . . , N1N2},
we can order the indices in γ(IJ) by size.

Let ũJ be the vector of nonzero image values corresponding to the ordered set of indices
in γ(IJ), where we say that for l = γ(i, j) the value ũJ(l) := ũr(i, j) corresponds to l. We
define a neighborhood of an index (i, j) ∈ IJ (respectively l = γ (i, j) ∈ γ (IJ)) by

N(i, j) := {(i1, j1) ∈ IJ \ {(i, j)} | |i− i1| ≤ 1, |j − j1| ≤ 1}
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Illustration of the steps in Algorithm 2.4. (a) Original image, (b) smoothed image
usm, (c) smoothed image ũsm, (d) wavelet approximation ũsm

1200, (e) difference ur, absolute values,
inverted, (f) shrunken difference ũr, inverted, (g) EPWT approximation ũr

800, inverted, (h) Our
approximation ũsm

1200 + ũr
800 with 2000 coefficients, (i) Tensor product biorthogonal 9/7 wavelet

approximation with 2000 coefficients.
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and

N(l) :=


{l − 1, l +N1, l −N1, l +N1 − 1, l −N1 − 1} ∩ γ (IJ) if mod (l, N1) = 0,
{l + 1, l +N1, l −N1, l +N1 + 1, l −N1 + 1} ∩ γ (IJ) if mod (l − 1, N1) = 0,
{l + 1, l − 1, l +N1, l −N1, l +N1 + 1, l +N1 − 1,
l −N1 + 1, l −N1 − 1} ∩ γ (IJ) elsewise.

A vector of indices (lk, lk+1, . . . , lk+n) with 1 ≤ k < k+n ≤ 2J is called connected if we
have lr+1 ∈ N(lr) for r = k, . . . , k+n−1. A connected vector of indices is called pathway.

For application of the first level of the EPWT, we need to find a complete path vector
pJ through the index set γ(IJ) that consists of a number of pathways. This first path

vector pJ =
(
pJ(n)

)2J

n=1
is a permutation of all integers occurring in γ(IJ). It contains

the information on the position of the indices in γ(IJ), as well as information about the
order in which the image values of ũr have to be used in the first level of the EPWT. In
order to determine pJ , we want to adapt the idea of the relaxed EPWT which has been
introduced in [18] and use the following strategy.

Start with an arbitrary pixel l1 ∈ γ(IJ), e.g. with

l1 = min
l
{l ∈ IJ},

and put pJ(1) = l1. Now, for a given nth component of pJ , pJ(n) = l̃, we choose the path
vector’s next component pJ(n + 1) as follows. We consider the set of all pixels l in the
neighborhood of pJ(n) that are in γ(IJ) and have not been used yet in the path pJ , i.e.

Ñ(pJ(n)) := N(pJ(n)) ∩ γ(IJ) \ {pJ(1), . . . , pJ(n)}.

The indices in Ñ(pJ(n)) are called “admissible” indices for pJ(n). If pJ(n− 1) was in the
neighborhood of pJ(n), i.e. pJ(n) ∈ Ñ(pJ(n− 1)), then we try to keep the “direction” of
the path. More precisely, if

pJ(n) + (pJ(n)− pJ(n− 1)) = 2pJ(n)− pJ(n− 1) ∈ Ñ(pJ(n))

and if this pixel’s image value is “suitable”, i.e., if∣∣ũJ(pJ(n))− ũJ
(
2pJ(n)− pJ(n− 1)

)∣∣ < ϑ1, (3.3)

where ϑ1 is a predetermined bound, then we take

pJ(n+ 1) := 2pJ(n)− pJ(n− 1),

and the direction of the path is preserved. If 2pJ(n)−pJ(n−1) is not an admissible index
or if the inequality (3.3) is not satisfied, then we apply the following procedure. Sort all
admissible indices in Ñ(pJ(n)) clockwise starting with the favorite direction index or the
first admissible index in clockwise order. Check analogously to (3.3) the bound condition
for every element of the obtained vector of indices and take the first index l ∈ Ñ∗(pJ(n))
(here Ñ∗(pJ(n)) denotes the ordered index set Ñ(pJ(n))) with∣∣ũJ(pJ(n))− ũJ(l)

∣∣ < ϑ1 (3.4)
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as the next component of pJ . If there is no index l ∈ Ñ(pJ(n)) satisfying the bounding
condition (3.4), then we take pJ(n+ 1) = l with

l = argmin
l̃∈Ñ∗(pJ (n))

∣∣∣ũJ(pJ(n))− ũJ(l̃)
∣∣∣ .

If the set of admissible neighbors Ñ(pJ(n)) is empty, we have to start a new pathway. For
example, one can take the smallest “free” index in γ(IJ) that has not been used yet in the
path vector pJ . One might also pick a set N7 of 7 equally distributed generally admissible
(i.e., in γ(IJ) and not already chosen) indices, and take that index as a successor of pJ(n),
whose corresponding image value has the smallest absolute difference to the image value
of pJ(n). That means, we consider, in a way similar to our choice above,

l = argmin
l̃∈N7

∣∣∣ũJ(pJ(n))− ũJ(l̃)
∣∣∣ .

Indeed, the strategy above ensures that pJ can be cheaply coded since keeping of path
direction is preferred, and the bounding condition for the image values of neighbored
indices in pJ ensures mostly small differences of function values along the path and hence
a small amount of significant wavelet coefficients.

We proceed in this manner and determine a complete path vector pJ ∈ Z2J
that con-

tains all indices of γ(IJ) as components. In Figure 2(c), we show a model of a thresholded
difference image and the corresponding path vector for the first level of EPWT. We con-
sider the difference between the original image in Figure 2(a) and the smoothed image
in Figure 2(b), and apply a shrinkage keeping only 64 nonzero coefficients. In the model
of the difference image in Figure 2(c), gray corresponds to zero values, the darker pixels
correspond to negative values and the brighter entries to positive values of the difference
image.
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16

(a) (b) (c)

Figure 2: (a) Original image 16 × 16, (b) Smoothed image, (c) Illustration of the shrunken
difference with 64 nonzero values and of the first path of the EPWT.

Now we apply one level of a discrete one-dimensional orthogonal or biorthogonal
wavelet transform to the vector of function values

(
ũJ(pJ(n))

)2J

n=1
. We obtain a vec-

tor ũJ−1 ∈ R2J−1
containing the low pass part and a vector of wavelet coefficients gJ−1 ∈

R2J−1
. Then we proceed further with the low pass vector ũJ−1 at the second level.
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The procedure for all further levels is now analogous as described in [18]. We may
apply J − s levels of the EPWT, supposing that the length of the used wavelet filters is
smaller than or equal to 2s. In the second level we define the index sets

LJ−1
n := pJ(2n− 1) ∪ pJ(2n) n = 1, . . . , 2J−1,

and we say that LJ−1
n corresponds to the low-pass value ũJ−1(n). Observe that, since

adjacent indices in the path are usually connected, LJ−1
n is (usually) a set of two adjacent

pixels. Again we are looking for a path pJ−1 ∈ ZJ−1 through the index sets LJ−1
n , where

the components pJ−1(n) form now a permutation of the set {1, . . . , 2J−1}. As before, this
path vector should be cheap to store and the difference of function values of neighbored
index sets in the path vector should be small in order to avoid large wavelet coefficients.

Generally, for a given low pass vector ũJ−j , 1 < j < J − s, we consider the index sets

LJ−jn := LJ−j+1
pJ−j+1(2n−1)

∪ LJ−j+1
pJ−j+1(2n)

n = 1, . . . , 2J−j ,

such that the low-pass value ũJ−j(n) corresponds to LJ−jn .
If in the (j + 1)th level of the EPWT a path vector pJ−j ∈ Z2J−j

through the index
sets LJ−jn has been determined, then the wavelet transform is applied to the vector of
function values

(
ũJ−j(pJ−j(n))

)2J−j

n=1
along the path vector and we obtain the low pass

values ũJ−j−1 ∈ R2J−j−1
and the wavelet vector gJ−j−1 ∈ R2J−j−1.

For determining a path pJ−j ∈ Z2J−j
we fix again a starting index set, e.g. pJ−j(1) = 1

(corresponding to LJ−j1 ). Then for given pJ−j(n) we choose the next index set as follows.
First we determine all neighbor index sets of LJ−j

pJ−j(n)
, where we say that LJ−jn and

LJ−jm are neighbors if there exist indices k1 ∈ LJ−jn and k2 ∈ LJ−jm with k1 ∈ N(k2). Then
these neighbor index sets are ordered by “strength” of neighborhood, i.e. by the number
of indices that are directly neighbors of a pixel in LJ−j

pJ−j(n)
. Finally, we also use a bound,

analogously to (3.4) in the first level, in order to define pJ−j(n+ 1). Further strategies for
determining path vectors that can be coded efficiently, are described in Section 4.

As output of the EPWT algorithm after L iterations (L ≤ J) we obtain a vector((
g0
)T
,
(
g1
)T
, . . . ,

(
gL−1

)T)T ∈ R2J−2J−L

of EPWT-wavelet coefficients and a vector of scaling coefficients f0 ∈ R2J−L
as well as the

path vectors determining the paths in each iteration step

p =
((
p1
)T
,
(
p2
)T
, . . . ,

(
pL
)T)T

with pk ∈ N2J−L+k

0 k = 1, . . . , L.

For EPWT reconstruction the inverse wavelet transform along the path vectors is used.

4 Numerical Results

In this section we want to give some numerical examples of our proposed hybrid method.
We apply the algorithm to different images and especially compare the results with the
compression results of the 9/7 tensor product wavelet transform. We consider several

11



images of size 256× 256 (i.e. 65536 coefficients), namely cameraman, clock, lena, pepper
and 256× 256-details of the barbara, goldhill and sails image, respectively.

The PSNR (peak-signal-to-noise-ratio) is determined by

PSNR = 20 log2

m∥∥∥f − f̃∥∥∥
2

,

where m is the maximum possible pixel value of the image, ‖.‖2 is the L2-norm and f
and f̃ are the original data and the reconstructed sparse image, respectively. The entropy
of the path vector p (i.e. a concatenation of path vectors in all levels) for the EPWT is
calculated by

entropy := −
n∑
j=0

hj
N1N2

log2(
hj
l

), (4.5)

where l denotes the length of the path vector, n is the number of different values that
appear in the path vector and h1,. . . ,hn denote the frequencies of their occurrence.

In a first experiment we compute a sparse representation of the image using only
500 wavelet coefficients. In the first step of Algorithm 2.4, we apply 5 iterations of the
smoothing filter with time step τ = 0.17. The threshold parameters θ and θ̃ in step 2
and in step 4 of Algorithm 2.4 are chosen in such a way that 16384 nonzero coefficients
are kept in ũsm and ũr, respectively. We approximate the smooth part of the image (step
3 of the algorithm) using 5 levels of the 9/7-biorthogonal tensor product filter bank and
applying a shrinkage procedure to keep only 300 coefficients. Further, we apply the EPWT
with 11 iterations of the one-dimensional 9/7-filter bank to the texture part ũr and keep
200 coefficients in step 5. Table 1 shows the total number of nonzero coefficients (nzc,
second column) and the PSNR-values for the hybrid methods “Hybrid”, “Center Hybrid”,
and “Simple Hybrid” that differ only by the choice of the EPWT path vectors in the
further levels (levels 2, . . . , 11), see further explanations below. Further, the adaptivity
costs (according to formula 4.5) for the path vectors of the EPWT for the hybrid methods
are given. For comparison, the PSNR obtained using a tensor product wavelet shrinkage
with 9/7-filter and with 500 kept nonzero wavelet coefficients is given in the third column
of Table 1.

In a second experiment, we apply the hybrid algorithms (with same parameters) to
the example images, but keep 1200 coefficients for the approximation of the smooth image
and 800 EPWT coefficients for approximating the difference image, see Table 1.

We present in Figures 3 and 4 the images corresponding to the method “Hybrid”, where
we keep only 500 nonzero coefficients out of 65536. The original images are presented in the
first column, whereas in the second and third column, we show the approximation results
using 9/7-tensor product wavelet transform and the proposed hybrid method, respectively.

Let us give some remarks about the entropy of the path vector for the EPWT. Taking
only a partial image ũr in step 5 of Algorithm 2.4, we also have to store the positions of
the pixels with nonzero image values in the difference image. Using the EPWT, this can
easily be done by a suitable coding of the first path vector pL. In order to minimize the
entropy of the path vector, we bound the number n of different values in the stored path.
In fact, the path is coded using only the values 0, . . . , 7 that correspond to the different
possible directions of index neighbors.
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9/7 Hybrid Center Hybrid Simple Hybrid
image nzc PSNR PSNR entropy PSNR entropy PSNR entropy

barbara 500 23.33 27.34 1.0497 27.28 1.0070 24.42 0.4010
cameraman 500 22.54 27.61 1.0714 27.49 0.9893 23.79 0.3794

clock 500 24.61 31.06 1.0163 30.87 0.8742 26.69 0.3014
goldhill 500 24.18 28.18 0.9918 28.19 0.8408 25.98 0.3300

lena 500 23.21 28.02 1.0343 27.91 0.9022 24.66 0.3313
pepper 500 23.41 28.07 1.0286 28.03 0.8795 24.89 0.3143

sails 500 21.32 25.52 1.0179 25.42 0.9190 22.95 0.3664
barbara 2000 26.07 30.50 1.1097 30.50 1.0950 28.12 0.4411

cameraman 2000 27.17 31.46 1.1033 31.35 1.0472 28.36 0.4153
clock 2000 29.93 35.48 1.0416 35.55 0.9329 32.49 0.3266

goldhill 2000 27.82 31.41 0.9860 31.37 0.8986 29.90 0.3556
lena 2000 28.16 32.66 1.0715 32.52 0.9699 29.97 0.3790

pepper 2000 28.84 32.97 1.0488 33.01 0.9385 30.62 0.3632
sails 2000 24.57 28.30 1.0195 28.26 0.9666 26.77 0.3916

Table 1: Comparison of 9/7-transform and our hybrid method for several images.

Recall that we determine the path vector for the first EPWT iteration by looking for
a certain “well-suited” successor of a certain pixel l1. Now, we do not store the position
l2 ∈ γ (IJ) of the selected successor, but its position in the ordered neighborhood Ñ∗(l1).
Since we ordered the neighborhood in such a way that the first pixel maintains the direction
of the path, we store a zero if we walk into the same direction as before (which happens
often when we walk along edges). If the neighborhood is empty, then we consider 7 equally
distributed pixels in the set of remaining admissible pixels in γ(IJ) as possible successors
(starting from the first “admissible” pixel in γ(IJ)), and again code the choice of the next
pixel in the path by a value from {0, . . . , 7}. From this easy-to-store-version of p we can
later reconstruct the original pixel indices of the path.

In the following levels of the EPWT, one may apply different strategies for efficient
coding of the path vectors. In the method “Hybrid”, we apply simply the so-called rigorous
EPWT in the second level and in all further levels, see [18]. That means, for determining
a next component in the path vector, we just look at all neighbored index sets that
have not been used in the path so far and choose the index set, where the difference of
the corresponding (low-pass) image values is minimal. A more efficient method, called
“Center Hybrid”, is to compute the centers of index sets and to order neighbor index sets
by the Euclidean distance of their centers to the center of Ln. Then, not necessarily the
neighbor index set with the most similar image value is taken but the first neighbor index
set, for which the difference of corresponding image values is smaller than a certain bound
(here ϑ1 = 13 in the first two experiments). In the path vector, we only store the position
of the chosen index set in the ordered set of neighbor index sets.

However, in our application, where the EPWT is only applied along edges and texture,
one may expect already good approximation results if all levels of the EPWT use the same
path vector pL, obtained in the first level of the procedure (see columns 8 and 9 of Table
1). This method is called “Simple Hybrid”. In this case, only pJ has to be stored.
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Figure 3: (Left) Original image; (middle) tensor product wavelet transform with 9/7
filter, keeping only 500 nonzero coefficients (nzc); (right) our hybrid method with 9/7
filter, keeping only 500 nzc.
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Figure 4: (Left) Original image; (middle) tensor product wavelet transform with 9/7
filter, keeping only 500 nonzero coefficients (nzc); (right) our hybrid method with 9/7
filter, keeping only 500 nzc.

15



Hybrid Center Hybrid Simple Hybrid
smooth differ PSNR entropy PSNR entropy PSNR entropy
D4 D4 27.23 1.0274 27.05 0.8921 24.41 0.3262
D4 7-9 26.86 1.0295 26.92 0.8929 24.13 0.3262
D4 9/7 27.23 1.0248 27.18 0.8909 24.36 0.3262
7-9 D4 26.82 1.0200 26.76 0.8806 24.02 0.3175
7-9 7-9 26.65 1.0132 26.62 0.8820 24.16 0.3175
7-9 9/7 26.90 1.0125 26.86 0.8735 24.30 0.3175
9/7 D4 28.01 1.0273 27.92 0.8772 24.96 0.3143
9/7 7-9 27.67 1.0253 27.65 0.8824 24.68 0.3143
9/7 9/7 28.07 1.0286 28.03 0.8795 24.89 0.3143
Tensor product PSNR

D4 22.51
7-9 22.15
9/7 23.41

Table 2: Different wavelet transforms used for approximation of the pepper image.

In Tables 2 and 3 we present some results that are obtained using different wavelet
filter banks for approximation of the smooth image and the difference image. In this
experiment we also use τ = 0.17, five iterations of the diffusion process, and we apply 5
iterations of a tensor-product wavelet transform to approximate the smoothed image. As
bound for the first level of EPWT we have chosen ϑ1 = 13. For further levels, simply
the neighbored index set with the most similar value is taken, i.e. no bound is applied
(see “Hybrid” in columns 3 and 4); the “Center Hybrid” strategy with bound 13 is used
(columns 5 and 6); and in columns 7 and 8 the results of the ”Simple Hybrid” strategy are
shown. The one-dimensional wavelet transform used for EPWT (11 iterations) is given in
the second column. For comparison, we also mention the PSNR-values that are obtained
by applying a D4-, 7−9- and 9/7-tensor-product wavelet transform to the original image.
In all cases we have used a hard threshold in order to keep only 500 nonzero-coefficients;
the original images pepper and lena are each of size 256× 256.

The Tables 4 and 5 illustrate the dependence of the results from the choice of the
parameter τ and from the number of iterations in the diffusion process. Here the clock
image of size 256 × 256 is used. In Table 4, five iterations of the diffusion filter are
applied but with different time step τ . All other parameters are the same as for the first
experiment, where 500 nonzero coefficients are kept. For comparison, the PSNR-value
obtained by applying a 9/7 tensor product wavelet transform to the original image is 24.61
dB. We see that the results only slightly depend on τ (if τ stays in a certain range). Table
5 presents the PSNR- and entropy-values that result from the fixed time step τ = 0.17, but
different numbers of iterations of the diffusion process (the other parameters are chosen
as above).

Our numerical results suggest that we can take five iterations of the smoothing filter
with a fixed τ = 0.17 to obtain satisfying results for all considered images.

Finally, in Table 6 we illustrate the influence of the bound ϑ1 (used for finding the first
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Hybrid Center Hybrid Simple Hybrid
smooth differ PSNR entropy PSNR entropy PSNR entropy
D4 D4 26.60 1.0097 26.47 0.8775 23.74 0.3216
D4 7-9 26.34 1.0044 26.42 0.8851 23.75 0.3216
D4 9/7 26.70 1.0051 26.57 0.8768 23.97 0.3216
7-9 D4 26.51 1.0016 26.47 0.8771 23.94 0.3191
7-9 7-9 26.33 1.0081 26.31 0.8779 23.88 0.3191
7-9 9/7 26.63 1.0137 26.55 0.8742 23.99 0.3191
9/7 D4 27.90 1.0318 27.75 0.9043 24.66 0.3313
9/7 7-9 27.62 1.0307 27.54 0.9067 24.57 0.3313
9/7 9/7 28.02 1.0343 27.91 0.9022 24.66 0.3313
Tensor product PSNR

D4 22.13
7-9 22.02
9/7 23.21

Table 3: Different wavelet transforms used for approximation of the lena image.

Hybrid Center Hybrid Simple Hybrid
τ PSNR entropy PSNR entropy PSNR entropy

0.04 30.95 1.0203 30.81 0.8656 26.65 0.3008
0.08 30.94 1.0209 30.95 0.8738 26.66 0.3047
0.12 30.89 1.0156 30.77 0.8650 26.58 0.2988
0.14 30.90 1.0224 30.67 0.8688 26.68 0.2958
0.18 30.93 1.0186 30.92 0.8744 26.62 0.2978
0.20 30.91 1.0197 31.03 0.8820 26.67 0.3016
0.22 31.09 1.0256 31.14 0.8841 26.74 0.3041
0.24 31.02 1.0235 30.98 0.8798 26.46 0.2982

Table 4: PSNR- and entropy results for different values of τ .

Hybrid Center Hybrid Simple Hybrid
Iterations PSNR entropy PSNR entropy PSNR entropy

1 30.81 1.0186 30.84 0.8688 26.56 0.3072
3 30.92 1.0221 30.80 0.8691 26.67 0.3033
5 31.06 1.0163 30.87 0.8742 26.69 0.3014
8 31.02 1.0321 30.99 0.8784 26.42 0.3008

12 30.86 1.0297 31.25 0.8795 26.43 0.2939
20 31.03 1.0269 31.09 0.8871 26.15 0.2912
24 31.17 1.0318 31.02 0.8878 26.19 0.2883
28 30.94 1.0298 31.03 0.8891 26.04 0.2929

Table 5: PSNR- and entropy results for different numbers of iterations of the diffusion
process.
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Hybrid Center Hybrid Simple Hybrid
bound PSNR entropy PSNR entropy PSNR entropy

0 31.04 1.2176 31.04 1.2138 25.65 0.5342
1 31.05 1.2048 31.19 1.1966 25.59 0.5193
3 30.94 1.1678 30.88 1.1437 25.65 0.4704
6 31.11 1.0936 31.02 1.0390 25.73 0.3817
9 31.10 1.0670 31.14 0.9676 26.17 0.3335

12 31.25 1.0407 31.05 0.9017 25.96 0.2992
13 31.06 1.0163 31.03 0.8891 26.04 0.2929
15 31.17 1.0140 31.05 0.8483 26.12 0.2736
18 31.05 0.9956 30.84 0.7953 26.05 0.2901
21 31.06 0.9944 30.87 0.7678 26.42 0.2376
30 30.97 0.9644 30.72 0.6849 26.13 0.2029
90 29.79 0.8796 28.28 0.3910 24.25 0.0360

Table 6: Different bounds.

path vector for the EPWT) for the clock image. All other parameters are again chosen
as in the first experiment. Taking a higher bound ϑ1, the entropy of the path decreases.
Interestingly, the PSNR increases with the bound up to ϑ1 = 12, and decreases afterwards.
It seems that the “best choice” for a particular pixel (i.e., the neighbor pixel with most
similar value) might often be only locally the best solution but not the best for the whole
image. The bound used for “Center Hybrid” in the further levels is the same bound that
is used for the first level.

5 Conclusion

In this paper, we have introduced a first hybrid method that uses the tensor-product
wavelet transform for smooth images on the one hand and the EPWT for a sparse rep-
resentation of the edges and textures of the image on the other hand. Similarly as most
known adaptive transforms for image approximation, the EPWT provides very good com-
pression results but produces a non-negligible amount of extra costs due to the adaptivity
of the method. Incorporating these “adaptivity costs”, adaptive methods only slightly
outperform the non-adaptive methods but with essentially higher computational costs.
One way to obtain a real improvement for image approximation may be to study hybrid
methods as we did in the paper. Also here, the remaining adaptivity costs are not neg-
ligible but considerably smaller than for the “pure” EPWT for image approximation. In
particular, a further improvement of pathway determination and path coding may lead to
a compression algorithm that is truly interesting for practical purposes.
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