Reversible integer DCT algorithms

GERLIND PLONKA AND MANFRED TASCHE

Affiliations:

Gerlind Plonka

Institute of Mathematics
Gerhard-Mercator-University of Duisburg
D — 47048 Duisburg

Germany

Manfred Tasche
Department of Mathematics
University of Rostock

D — 18051 Rostock

Germany

FE—mail addresses:
plonka@math.uni-duisburg.de
manfred.tasche@mathematik.uni-rostock. de

Proposed running head: Reversible integer DCT algorithms

Author for correspondence:

Gerlind Plonka

Institute of Mathematics
Gerhard-Mercator-University of Duisburg
D — 47048 Duisburg

Germany

Email: plonka@math.uni-duisburg.de
Telephone: 49 203 379 2677

Fax: 49 203 379 2689

Abstract

Integer DCT's have important applications in lossless coding. An integer DCT of radix—2
length n is a nonlinear, left-invertible mapping which acts on Z" and approximates the
classical discrete cosine transform (DCT) of length n. In image compression, the DCT
of type II (DCT-II) is of special interest. In this paper we present two new approaches
to construct reversible integer DCT-II. Our methods are based on a factorization of the
cosine matrix of type II into a product of sparse, orthogonal matrices. Up to some
permutations, each matrix factor is a block—diagonal matrix, where every block is an
orthogonal matrix of order 2. Hence one has to construct only integer transforms of
length 2. The first approach uses expansion factors and rounding—off for the construction
of integer transforms of length 2. The second approach works with lifting steps and
rounding—off. This allows the construction of new (one— and two—dimensional) integer
DCT-ITI algorithms. For simplicity, the most interesting case n = 8 is considered in
detail. Further, uniform bounds of the truncation errors are given for all integer DCT-II
algorithms proposed in this paper.

Mathematics Subject Classification 2000. 65150, 65G50, 15A23, 94A08.

Key words. Discrete cosine transform, lossless coding, data compression, factorization
of cosine matrix, expansion factors, lifting steps, rounding—off, integer DCT, reversible
integer DCT, truncation error, error estimate.

1 Introduction

The discrete cosine transform of type II (DCT-II) has found a wide range of applications
in signal and image processing (see [11, 13]), especially in image compression. It has
become the heart of international standards in image compression such as JPEG and
MPEG (see [1]). In some applications, the input data consist of integer vectors or integer
matrices. Then the output of DCT-II algorithm consists no longer of integers. For lossless
coding it would be of great interest to be able to characterize the output completely again
with integers. Lossless coding schemes are hardly based on integer DCT's which have been
studied in recent years (see [3, 6, 9, 14, 16]). Especially, integer DCTs of length 8 and 16
(see [9]) and integer wavelets (see [2]) have been proposed.

A reversible integer DCT-II of length n is a nonlinear, left-invertible mapping which acts
on Z" and approximates the classical DCT-II of length n. Integer DCT—II possesses some
features of the classical DCT-II, whereas its computational cost is not higher than in the
classical case.

One method for developing an integer DCT algorithm is based on the idea to approxi-
mate the components of the cosine matrix C'!Z by dyadic rationals (see e.g. [14]), paying
attention that the symmetry relations are kept. This method destroys the orthonormality
of the cosine matrix and the challenge is to find an invertible approximation C, of ci
such that its inverse CN'n_l again only consists of dyadic rationals. For this reason, suitable
approximations of the cosine matrix have only been given for special lengths n = 8 and
n = 16.

In [16] a factorization of the transform matrix into products of so—called lifting matrices
and simple matrices is applied. Here a lifting matrix is a matrix whose diagonal elements
are 1, and only one nondiagonal element is nonzero. Simple matrices are permutation
matrices or sparse matrices whose nonzero entries are only integers or half integers. Then
the noninteger entries of the lifting matrices are rounded to dyadic rationals, and the
inverse matrix factors are easy to determine. This method has the advantage that it
works for arbitrary radix—2 lengths.

Due to the rounding of matrix entries, the methods in [14, 16] can lead to high errors,
if one compares the integer DCT output with the classical DCT result, especially if the
range for the components of the input vector is large. Explicit error estimates for these
algorithms have not been considered.

In this paper, we present two new approaches that lead to reversible integer DCTs. The
two approaches are independent of each other. Note that in both cases we are not building
integer DCTs in integer arithmetic. Thus the computations are still done with floating
point numbers, but the result is guaranteed to be an integer and the invertibility is
preserved. In software applications, this should not affect speed, as in many of today’s
microprocessors floating point and integer computations are virtually equally fast.

Our algorithms are based on a factorization of C'!! into sparse orthogonal matrices of
simple structure. By suitable permutations, each matrix factor can be transferred to a
block—diagonal matrix, where every block is an orthogonal matrix of order 2. Now the
idea for construction of integer DCTs of radix—2 length n is very simple. For each block
R of order 2 and for arbitrary x € Z*, find a suitable integer approximation of Ryx such
that this process is reversible.

Using the factorizations of the corresponding cosine matrices in [10], the applied methods

can easily be transferred to the DCT-IV and the DCT-I.

The paper is organized as follows. In Section 2 we introduce cosine matrices of type
IT and IV and we sketch some recent results [10] on the recursive factorization of these
matrices into products of sparse, orthogonal matrices. In Section 3, we present two
different approaches to integer transforms of length 2. The first approach (see Subsection
3.1) is inspired by the construction of integer wavelet transforms due to [2]. The main
result in Theorem 3.4 presents new error estimates for this expansion factor method. A
second approach to integer transforms of length 2 is taken in Subsection 3.2. Applying the
lifting technique (see [2, 4, 6, 16]) and rounding—off, we construct an integer approximation
of Rox for arbitrary x € Z* and estimate the truncation error (see Theorem 3.8).

The results of Section 2 and Section 3 are applied to integer DCT-II of length 8 (in Section
4) and to two—dimensional integer DCT—II of size 8 x 8 (in Section 5). While we consider
the most interesting case n = 8 in detail (cf. [7, 5]), our results are directly applicable to
reversible integer DCT-II of arbitrary radix—2 length. We propose several algorithms for
the integer DCT-II and its inverse, which possess low complexity. Further, we estimate
the truncation errors of these integer DCT-II algorithms by uniform bounds. Finally,
in Section 6 we consider the numerical behaviour of the integer DCT-II. Note that in
the JPEG-2000 proposal [8], the use of the integer DCT-II for lossless image coding is
recommended.

2 Factorization of cosine matrices

Let n > 2 be a given integer. In the following, we consider cosine matrices of type Il and

IV with order n which are defined by

. n—1
o= \/%<cn(]) Ccos w> (2.1)

. 9
J,k=0

o= ﬂ(cosi(%—'_l)ﬁ“lh)n_l (2.2)

. 9
J,k=0

where ¢,(0) := v/2/2 and ¢,(j) := 1 for j € {1,...,n — 1}. In our notation a subscript of
a matrix denotes the corresponding order, while a superscript signifies the “type” of the
matrix. Observe that these matrices are orthogonal (see e.g. [11], pp. 13 — 14, [12, 13]).
The discrete cosine transforms of type II (DCT-II) and of type IV (DCT-IV) are linear
mappings of R” onto R”, which are generated by C!! and CIV, respectively. In [10],
simple split-radix algorithms are proposed for these transforms of radix—2 length, which
are based on factorizations of C'!Z and C'!V into products of sparse, orthogonal matrices. In
this paper, we want to use these factorizations in order to derive reversible integer DCTs,
which are very close to the original DCT and map integer vectors to integer vectors.
Naturally, these integer transforms are not longer linear mappings.

Let us recall the factorizations for C'!1 and CIV from [10]. First, we introduce some
notations. Let [, denote the identity matrix and J, = (6(j + k — n + 1));;;) the
counteridentity matrix, where § means the Kronecker symbol. Blanks in a matrix indicate
zeros or blocks of zeros. The direct sum of two matrices A, B is defined to be a block
diagonal matrix A @ B := diag (A, B). Let ¥, := diag ((—1)")7Z, be the diagonal sign
matrix.

For even n > 4, P, denotes the even—odd permutation matriz (or 2—stride permutation

matriz) defined by

L T
PnX = ($0,$2, ey lp_2,T1,T3,... ,l’n_l) 5

x = ()75

Note that P! = PT is the n;-stride permutation matrix with n; := n/2. Further, let

Qn =
QnX = (X0, T2y« oy T2y Ty 1y Tz, . - -

Theorem 2.1 Let n > 4 be an even integer.
(i) The matriz CI can be factorized in the form

CH = pT(C1 g C1V)T,(0)

Iy
—Ju)

with the orthogonal matrix

I,
n@:%<h

(ii) The matriz CIV can be factorized in the form

O = PLA(C & G (1),
where
V2
I _ I, _
_ ni-1 mt
An(l) G} [nl—l —[n1_1

V2

is @ modified addition matriz and T, (1) :=

matrix
COS(S—)
cos(g—Z)
(1) cos((n;)w) sm((ngi)w)
" — sin((n;;)w) cos((n;;)w)
— sm(g—;r)
— sin(%)

The two matrices A, (1) and T,(1) are orthogonal.

For a proof of these factorizations we refer to [10]. Note that

Tn(O) = (1 nl Qn (@ RQ %) n7
L) = (& %.,)Q (néa B2)QT
A =

7x1)T-

(I, & J,,) Py be a modified even—odd permutation matriz with

([nl @ an Jnl)

sin(g-)

37
8n

Cos(

3
_/

Qvn Zn (IZ @ @ RZ(%)) @Z ([nl @ an Jnl)?

(2.3)

(2.4)

(L, ®X,,) T/ (1) with the cross—shaped twiddle

(2.5)

(2.6)

with the rotation matrix

Ra(w) ::< oS w sinw>7 (2.8)

—sSiNWw COoSsw

and with @n := (I, ® Vy,) P,, where V,, is the shift matrix determined by
VnX = ($1, Xoyeoo s Tp—1, l’o)T.

Hence, up to convenient permutations and changes of sign, the matrices (2.5) — (2.7) can
be represented as block—diagonal matrices, where each block is a rotation matrix of order
2. The following constructions of integer DCT-II are based on this essential fact.

3 Integer transforms of length 2

Let now n = 2" and n; := 277, 7 =0,...,¢t—1. If the formulas (2.3) and (2.4) are applied
recursively, then we obtain factorizations of the cosine matrices C'!1 and CIV, where all
matrix factors are orthogonal block matrices with blocks being permutation matrices or
matrices of the form I, A, (1), T,,(0) and T,,(1) (see [10]). In particular, all matrix
factors are sparse, i.e., they possess two nonzero entries at most in each row and each
column. Hence, by suitable permutations, the matrix factors can be transferred to block—

diagonal matrices, where each block is an orthogonal matrix of order 2 (see (2.5) — (2.7)).

The main idea to obtain an integer DCT is now as follows. For a given invertible (2 x 2)-
matrix H, and for arbitrary x € Z?, find a suitable integer approximation of Hyx such
that this process is reversible. The simple structure of the matrix factors of C'IZ implies
that we need to find a suitable solution only for orthogonal matrices Hy = Rz(w). In
the following we want to present two different approaches to that problem. These two
approaches are related to the two approaches given in [2] in order to find invertible wavelet
transforms that map integers to integers.

3.1 Integer transforms with expansion factors

We use the following notations. For a € R let |a] := max{z < a; 2 € Z}, [a] :=
min{z > a; ¢ € Z}, and {a} := a — |a] € [0,1). Then {a} is the noninteger part of
a. Further let rda := [a 4+ 1/2] be the integer next to a. We apply these operations
to vectors a = (ag, a;)? € R? componentwisely, i.e. |a] = (|ao], |a:])T € Z*, [a] :=
([ao], [ar])T € Z*, rd a := (rd ag, rd ay)t € Z*, and {a} := ({ao}, {a:})T € [0,1)%

Let H, € R?**? be an invertible matrix of order 2 and x = (2o, :1;1)T € 7Z*. We look for a
vector y = (yo, y1)? € Z* such that y is a good approximation of Hyx and

x=[H;" (y = 31)] (3.1)

with 1 = (1,1)7 is satisfied. If H5 is an expanding matrix then x will be close to H; 'y. We
denote by H3([0,1)?) := {Har; r € [0,1)?} the image of [0, 1) under the linear mapping
generated by H,.

Lemma 3.1 Let Hy € R*? be an invertible matriz satisfying the expansion condition

0, 1)” < |J (Ha([0, 1)) + k). (3.2)

keZ?

Then for all x € Z* there exists a vector y € Z* approximating ¥ := Hyx with property
(3.1). Such a vector y € Z* has the form

y = rd (Hyx) + K°,

if {Hyx + 31} € [0, 1)2 0 (Hy([0, 1)) + k%) for some k° = (ko, k)T € Z*. Further, the

error estimates

F=yle < G+ kD2 + G+ a2,
$=yleo < max{}+lkol, L+ hal}

hold.
Proof. For a fixed x € Z* we choose y = | Hox + %lj + kY such that
{HQX + %1} = HQI' + kO

with k® € Z? and some r € [0, 1)2. The existence of k® and r is ensured by the expansion
condition (3.2). Then we obtain

y = [Hyx+ 31| +k°=[Hyx+ 11|+ {Hyx 4+ 11} — Hor
= HQX + %1 — HQI'

and hence
x=H;'(y—1i1)+r.

Since x € Z* and r € [0, 1)2, it follows that

By {Hax + 31} € [0, 1)? we can estimate

|y = yll2 = [[Hox — rd (Hyx) — k%2 < \/(% + [kol)2 4 (§ + [k1])?

and

Y = ¥lloo < max{3 + [kol, 5 + [ku]}.

For special matrices Hy, these simple error estimates can be improved. g.e.d.
If an invertible matrix Hy does not satisfy the expansion condition (3.2), then we apply an
expansion factor o > 0 such that o Hy (instead of Hs) satisfies the expansion condition

(3.2). Since Hs([0, 1)?) is a quadrangle with the area |det Hy|, we can find a suitable
expansion factor for each invertible matrix H,.

Example 3.2 The butterfly matrix

1 1
m= (1 1)

satisfies the expansion condition (3.2), but the matriz Ry(%) = %HQ does not satisfy
(3.2) (see Figure 1).

1 1

N R2([0,1)%)

Hy([0,1)?)

Figure 1. Expansion condition for Hy = (_11 1) (left) and Ry = % (_11 1) (right)
We want to apply the above method to the matrix factors in Theorem 2.1. Let us
consider rotation matrices Ry(w) (see (2.8)) which appear in T,(1) with w = (Zk;:)w,
E'=0,...,n/2 =1 (see (2.6)). Further, the matrices 7T,,(0) and A,(1) consist of the
matrices Ry(7) (see (2.5) — (2.7)).

The rotation matrices Ry(w) are orthogonal, and Ry(w)([0, 1)?) is a square with area 1,
namely the square [0, 1) rotated by the angle —w around the origin (0, 0)7. Hence, the

expansion condition (3.2) is not satisfied for w € (0

, 7] and we need to look for suitable

expansion factors. We are especially interested in small expansion factors for Ry(w). This
is due to the demand that for arbitrary x € Z", we want to get an integer approximation
of a Cl'x with a constant a as small as possible.

Theorem 3.3 Let Ry(w) with w € [0, %] be a rotation matrix of the form (2.8). Then
Hy := (cosw + sinw) Ry(w)

satisfies the condition (3.2), i.e., all factors a > (cosw + sinw) can serve as expansion
factors for Ry(w). Further, o = (cosw + sinw) is the smallest possible expansion factor

for Ry(w).
Proof. We show that (3.2) is satisfied for Hy = (cosw + sinw) Ry(w). For this, we only
need to prove that for all z = (2o, 21)T € [0, 1)? there exists a vector k € Z* such that
r = ;' (z—k) is contained in [0, 1)2. We consider the following pairwise disjoint polygons
S1(w), S2(w), S5(w) (see Figure 2):
Si(w) == {z2€]0,1)*: 20> z tanw},

(w) = {z2€][0,1)*: 25 < 2z tanw, z; < | — 2o tanw}, (3.3)

(w) = {z2€][0,1)*: 25 < z; tanw, | — 2 tanw < 2 }.

8

(tanw,)T

Sg(w)
Sg(w)

(1,1 —tanw)?
w S1(w)

1

Figure 2. Polygonal partition of [0, 1)? with tanw = 0.6

Then we have Sj(w) U Sy(w) U S3(w) = [0, 1)? such that Si(w), Sa(w), S3(w) form a
partition of [0, 1)2. Observe that H;' = (cosw + sinw)™ ! Ry(w)T. For z € S;(w), choose
k; = (0,0)T. Then

r—= HQ_I(Z - kl) = Cosw—ll—sinw (
is contained in [0, 1)2. For z € Sy(w), choose ky = (—1,0)T. Then we obtain

I':Hz_l(z—kz): 1 (zo cosw — 21 sinw—l—cosw) e [0, 1)2‘

cos w+sin w 20 sinw 4+ Z1 Cosw + sin w

Zp COSW — 21 Sinw
Zp Slnw + 27 cosw

Finally, for z € S3(w), we choose k3 = (0,1)7 and find

ol _ 1 Zp COSW — zg sinw + sinw 9

r=Hy (2= k) = coswsinw (Zo sinw + 21 cosw — cosw) €0, 1)%
If the expansion factor « is chosen to be smaller than cosw + sinw and if H} := o H,,
then the point (1,1)7 is not contained in the closure of H}([0, 1)?) and the three squares
HA([0, 1)?), H([—1, 0) x [0, 1)) and H}([0, 1) x [1, 2)) do not completely cover [0,1)? (see
Figure 3). In this case, the expansion condition (3.2) is not satisfied. q.c.d.

H,([0,1)?)

Figure 3. Expansion condition for Hy = (cosw + sinw)Re(w) with tanw = 0.6

Note that cosw 4 sinw < /2 for all w € (0, 7/4]. Applying Theorem 3.3 to the “subma-
trices” Ro((2k 4 1)w/(8n)) of T, (1) (see (2.6)) we can use the uniform expansion factor
V2 forall k=0,...,ny — 1.

Theorem 3.4 Let Hy = \/532(@) with w € (0, §) be a scaled rotation matriz and let
k1 — (O,O)T, k2 — (—1,0)T, k3 — (0, 1)T
Then for arbitrary x € Z*, a suitable integer approzimationy € Z* of ¥ 1= HyX is

y= (i) +k i {Hx+ e s, Geflash, (34)
where S;(w) are given in (3.3). This procedure is reversible for all x € Z*, i.e. (3.1) is
valid, and the error estimates
g I +sin(2w) <1, (3.5)
% (1 +sin(2w)) <1

S’_y,‘z

<
1y =yl <

hold.

Proof. By Theorem 3.3, the matrix Hy = /2 Ry(w) satisfies the expansion condition (3.2).
Since {Hyx + 1} € [0, 1)?, there exists a unique index j € {1, 2, 3} with {Hyx+ 11} €
Si(w). Therefore, y is uniquely defined by (3.4). Applying Lemma 3.1, it follows that
(3.1) holds for all x € Z*.

For {II;x + $1} € S;(w), we can estimate

y—vll2 = ||Hox— [Hyx+ 1] —kj|lo = [{Hox + §1} — 11 — k||,
< sup HZ—%]_—k]‘HQ.
z€85; (w)

Let p denote the intersection point of the lines zp = (tanw)z; and z; = 1 — (tanw) 2o
(see Figure 2). We find that p = (sin(2w), 1 + cos(2w))” and hence

sup |lz—11—kll; = sup |lz—11], =2
z€S1 (w) z€S1(w)
1 R]

sup flz—31=kol; = sup Jz+5{ | Jl=lp+3{ |)l
7€ S (w) z€S3(w)

= ? 1 + sin(2w),

1

o o= t1—tale = sw a4})l
7€ S (w) z€S3(w)

= {1 (0 e (23) e

= max{g\/i’) —sin(2w) — 2 cos(2w), V2y,

2

Since for w € (0,7/4] we have 1 + sin(2w) > 3 — sin(2w) — 2 cos(2w), it follows that

1§ = yll2 < /T +sin(2w).

Analogously we find

Y=Vl < sup |lz—31—kjl«
z€5;(w)
< max{%, %(1 + sin(2w)), 1 — %cos(Zw)} = %(1 + sin(2w)).

This completes the proof. g.e.d.

10

o7 37
87167 16

Remark 3.5 The special values for the errors ||y —y |2 and ||[§—y||o withy = /2 Ry(w)x
via the expansion factor method for w € { } follow by inserting into formulas (3.5).
In particular we obtain

0.923879 forw = %, 0.853553 forw = %,

v —y|l2 < ¢ 0831470 forw = =, V= V]|loo << 0.691342 for w = =,
16 16

0.980785 forw = ?—g, 0.961940 for w = ?—g.

Note that \/5]%2(2) is the butterfly matriz such that y =y = ﬂRQ(%)X. The butterfly

operation is left—invertible on Z*.

Enlarging the expansion factors we can avoid a case study as in Theorem 3.4.

Theorem 3.6 Let Hy := 2 Ry(w) with w € (0,) be a scaled rotation matriz and let
k2 - (—1, O)T
Then for arbitrary x € Z*, a suitable integer approzimationy € Z* of ¥ 1= HyX is

y = rd (Hax) + ko. (3.6)
This procedure is reversible for all x € Z*, i.e., (3.1) is valid, and the error estimates

y=yll<y/5 I -ylle<3

hold.

Proof. By Theorem 3.3, the matrix H; satisfies the expansion condition (3.2). Further
we have [0, 1)* C (ky + H([0, 1)?). Using Lemma 3.1, it follows that (3.1) is true for all
x € Z*.

By
¥ =vylle = [[Hx— [Hx+ 31] — ko2 = [{Hox + 31} — 31 — ko2
1
< sup Hz+§<_1>uzg\/§
z€[0,1)2

and

. 1

y=vle= o ()l = 2

z€[0,1)2

we obtain the error estimates. g.e.d.

Remark 3.7 1. An integer transform for “submatrices” of \/2T,(0) (see (2.5)) is very
simple, since /2 Ry(w) contains only £1 as entries. The same is true for the most
“submatrices” of \/§An(1) (see (2.7)).

2. In the special case that a “submatriz” is of the form \/2 I (occurring in v/2 A, (1)),
we can choose

y:LﬂX—I—%lJZI’d(\/ﬁX), x € 7

and this process can be reversed by

Indeed,
[(Vax 1) — 2] = [(VEx — {(VEx + 1] = [x— S{Ex+ 11} = x.

For y := \/2x, we obtain the error estimates

S’_YHOO S %

3. Note that 2 Ry(T) is a scaled butterfly matriz. Then for § := 2 Ry(5)x and y :=rdy
we obtain the same error estimates as above. This procedure is left—invertible in Z*, since
for arbitrary x € Z* from

7= (_1 Dx y = rd(v22)

it follows that z = [Lz (y —

=1 (1)=t (0)t

3.2 Integer transforms via lifting

1)] and hence

1
2

Let s € R with s # 0 be given. Then matrices of the form

b1 ()

are called lifting matrices of order 2 (see [4, 6]). Note that the inverse of a lifting matrix

is again a lifting matrix:
1o\ /1 0
s 1 S \-s 1)

(b 1) =G 7))

Every rotation matrix Ry(w) of order 2 can be represented as a product of three lifting
matrices:

cosw sinw 1 tan¥ 1 0 1 tan¥
_ _ 2 2
Falw) = (—sinw cosw) o (0 1) (—sinw 1) (0 1) (3.7)

Note that the above factorization of Ry(w) consists of nonorthogonal matrix factors. This
factorization (see [4]) can be used for construction of integer DCT as follows.

A lifting step of the form
. (1 s
Y=\o 1)~

with x = (29, ;)T € Z* can be approximated by y = (yo, y1)? € Z* with

yozxo—l—Lsxl—l—%J = 20 + rd (sxy), Yy = 1.

12

This transform is invertible and its inverse reads as follows
To = Yo — L8y1—|-%J = yo — rd (sy1), T1 =Y.
Indeed, we have that
yo— s+ 3]l =zo+ [sar+ 1] — [ser+ 5] = 0.
We obtain

Theorem 3.8 Let H, := Ry(w) with w € (0, 7] be a rotation matriz.
Then for arbitraryx = (o, x1)" € Z*, a suitable integer approximationy = (yo,y1)" € Z*
of v := Hyx is given by yo = 2z, Y1 = 21, where

zo = wxo+1d(zy tan 5),
z1 = a1 +rd(—z sinw),
7y = zo+1d(z tan ¥).

The procedure is left-invertible and its left-inverse reads xo = wq, x; = wy, where

wy = yo—rd (y1 tan %)7
wy = y; —rd(—wp sinw),
wy = wo —rd (w; tan %).
Further, the error estimates
Iy =yl < %(3—|—4sinw—|—2¢osw—|—(tan %)2)1/2, (3.8)
V=Vl < 3(1+tan¥+ cosw)

hold.

Proof. The formulas for yo, y; and x, x; (after left-inverse transform) directly follow by
applying the lifting steps to the three matrices in (3.7).
We prove the error estimates (3.8).

1. First we represent the components 3o — yo and g, — y; of ¥ — y in a convenient way.
Let
o = {xpsinw}

denote the noninteger part of z¢ sinw, and similarly
er:={xy tan £ 4+ 1}, do = {fo} = {wo cosw + xy sinw}, 0y := {x; cosw}.
Hence
{1} = {z1 cosw — z¢ sinw} = {5 — ¢ }.
Using (tan %) sinw = 1 — cosw, it follows that

x1 (1 —cosw) + %sinw = (21 tan & + %)sinw = (|1 tan & + %J + €1) sinw

13

such that

yi = z1 = [(—sinw)([o tan % + 3] + x0) + 3] + 23
= |—z1(1 —cosw) + (e — 3)sinw — xg sinw + 3] + 2

= |1 cosw — g sinw + % + (1 — %)sinwj = |g1 + % + (€1 — %) sinw].
Thus we obtain
Jr—yi =01~ +3+(a—3)sinw] = (01 —) — [6 —eo+ 5 + (e — 3)sinw]. (3.9)
Observing that

1 = ||zicosw| 40 — |zosinw| — e + % + (1 — %)sinwj

= |y cosw]| — |xg sinw]| + |1 — €0 + % + (€1 — %) sinw |

and that by (cosw) tan % = sinw — tan %,

([z1 cosw| — [z sinw]) tan & = (z; cosw — x¢ sinw — d; + ¢p) tan

= 2y (sinw —tan %) — xo (1 — cosw) + (g — dy) tan %,
we find

Yo = z2= |y tan¥ + 2| + (2 tan ¥ + | + xg
= |21 (sinw —tan &) — xo (1 — cosw)
—|—(60—51—|—L(Sl—eo—l—%—l—(q—%)sinwj)tan%—l—%J—l— E tan%—l—%J—l—xo
|21 sinw + Cosw—l—l—cl—l—(eo—51—|—L(Sl—eo—l—%—l—(cl—%)sinwj)tan%J
= Lyfo—l—l—cl—l—(eo—csl—l—L(Sl—eo—l—%—l—(cl—%)sinwj)tanﬂj.

2

Hence we get

A

Jo—Yo = Go— o+l —ea+(co—0 4 [0 —eco+ 4 (e — 3)sinw]) tan £
= 50—L50-|-1—61-|-(60—51-|-L51—60—|-%—|-(61—%)sinwj)tanﬂj. (3.10)

[}

[}

2. Now we can estimate the truncation error in the following way. Putting
o = &1 —co—l—%—l—(q — %)sinw, =00+ 1—e + (€0 — 01 + [po]) tan ¥,

the formulas (3.9) and (3.10) imply

Y —vl3 = (61 — co — Lpo])* + (00 — [p1])? (3.11)

and

Y = ¥lleo = max {[d1 — eo — | o], |60 — [p1]]}- (3.12)

Since €, €1, and d; are contained in [0,1), it follows that puy € (—1,2), i.e. |uo] €
{=1, 0,1}. Then from

max{ | o] — % — (e — %) sinw, =1} <& — e < (|po] +1) — % — (e — %) sin w

14

it follows that

_% — (61 — %) Sinw S 51 — €y — U’LOJ < % — (61 — %)sinw (313)

and especially for [po| = —1 even

0<6 —e— |po] < % — (&1 — %)sinw. (3.14)

Using (3.13), we obtain the estimate for p,
Sotl—e+(—3+ (e —1)sinw) tan® <y <f+1—¢e + (34 (e — 3) sinw) tan £
and equivalently

do+3—ttan¥ + (3 —e)cosw <y <o+ 1+ Stan% + (3 —€)cosw. (3.15)

Since dg, €1 € [0,1), we only need to consider the cases |u1] € {—1,0,1,2}.
3. We estimate the truncation errors (3.11) and (3.12). For |p1] = 0 we find with (3.11)
and (3.13) the error estimates

y—vyl3 < max{(—% — (e — %) sinw)?, (% — (&1 — %) sinw)?} + 63 < i(l +sinw)* 41

and
[y = yllee < 1.
For |[u1] =1 we find similarly

Iy —vyl5 < i(l +sinw)? 4 (6 — 1)* < i(l +sinw)? + 1
and

[y = yllee < 1.

For |u1] = 2 it follows by (3.15) that g > 2 — % — %tan g — (% —

€1) cosw and we find
(14 sinw)? + (6o — 2)?

(14 sinw)? + (% + %tan e+ (% —€1) cosw)?

(1 +sinw)? + (1 + tan £ 4 cos w)?)

3 1 L fan @)2
T+ sinw 4 5 cosw + 4(tan 2)

vy -yl

IA A A
L Ll N LN o

and
|V — ¥l < (14 tan % + cosw)

Finally, for [p| = —1 it follows by (3.15) that dy < —% + 2tan % — (3 — ¢;) cosw and

hence
(14 sinw)? + (5 + 1)?
(14 sinw)? + (% + %tan g — (% —¢) cosw)?

3 1 1(tan @2
S+ sinw + S cosw + 4(tan 2)

Iy — vl

N

<
<
<
as before and again
1Y — ¥lleo < 3(1 4 tan % + cosw).
For w € (0, 7] we have
I+ (1 +sinw)? <2 +sinw+ L cosw + F(tan ¥)?

such that the assertions (3.8) are proved. q.c.d.

15

Remark 3.9 Let ¥ := Ry(w)x with arbitrary x € Z* and y its integer approximation.
The special values for the errors ||y — y|l2 and ||y — yl||s via the lifting procedure for
we{L, L, L, 22} follow by inserting into formulas (3.8). In particular, we obtain

1.060660 for w =
1.061396 for w =
1.039638 forw =

1.067408 for w =

1.361453 for w =
1.266694 for w =
1.199128 forw =
1.320723 forw =

Iy = yll2 < V=¥l <

S ERCIERNE

SIF Gl o i

—
o2}

Comparing with the expansion factor method, the lifting method produces truncation errors
which are slightly greater than those found in Theorem 3.4.

The above procedure can easily be applied to the orthogonal “submatrices” of T, (1) (and
of course also to that of T,,(0) and A, (1), see (2.5) — (2.7)) such that we obtain an integer
approximation of Hyx for x € Z*. Moreover, in this procedure, no expansion factor for

the matrices Hs are needed.

4 Integer DCT-II of length 8§

Using the methods of Section 2 and Section 3, we want to derive different algorithms for

the integer DCT-II of length 8.
An orthogonal factorization of the cosine matrix C{! looks as follows (see [10]):

oo
) Cv T4(0)
7 _ 4 2 4
=") of (MO) B
11
2
with the bit reversal matrix By := PL(Py @& Py),
V2 Cos 1g sin 75
am=5 ! L no)= Oy S ,
2 1 -1 —sin ?—g COS ?—g
V2 sin 1”—6 — COS 1”—6
1 J.) J.
1 (12 2 _ a1 (14 4
T4(0) - 2 ([2 —J2>) TS(O) V2 ([4 —J4> ’
and with

I 1 1 1 v cos g sin g cos g sin g
02 = ﬁ ’ 02 = ‘AT s = 22 h T s :
1 -1 sinz —cosZ —sing cos g

8 8

Let us denote the five orthogonal matrix factors of C{? in (4.1) in this order by
Ci = Bs As(0,1) 15(0,1,0,0) T5(0,1) Tx(0). (4.2)

We want to apply the results of Section 3. Note that the factorization (4.2) implies a fast
algorithm for computing the DCT-II of length 8 with 11 multiplications and 29 additions.
This algorithm is very similar to that of C. Loeffler et al. [7].

16

4.1 Algorithms based on the expansion factor method

Let us start with the application of Theorem 3.4. For that we consider instead of (4.2)
the factorization

4CH = By (V2 As(0,1)) (V2 Tx(0,1,0,0)) (V2 Ts(0,1)) (V2 Ts(0)).

Using the subsets S;(w), Sz(w), S3(w) defined in Theorem 3.3, and k; = (0,0)7, k, =
(—1,0)T, ks = (0,1)7, we obtain the following algorithm for integer DCT-II of length 8,

namely an integer approximation for y := 4 C{’x with given x € Z:
Algorithm 4.1 [Integer DCT-II algorithm A]
Input: x € Z°.

1. Compute x(V) := /2 Tx(0) x.

(
2. Compute x(?) := /2 T5(0, 1) x{
For 5 = 0 1 2,3 put :1;(2) : :7;(2)

]‘ .

1 ({3 + 3 {=2 + 47 € Si(E), (1 =1,2,3), then put
(2, =) 1= (rd (37),rd (=207)" + K
I (&) + 43 {28+ 1)7T € Si(3), (1 = 1,2,3), then put
(28, 2T = (rd (30, 0d (30))" + ki,

3. Compute X := /2T5(0,1,0,0)x?),
For]—() 1,4, 5 6 7putx()::§;(3).
Si(

If ({z° +23.{- #94 Hr e]g), (Il =1,2,3), then put
(a8, —af")" 1= (rd (37), vd (=257))" + K
4. Compute % \/_Ag(())x (),
Put x4 := rd X(
5. Compute y := Bsx¥.
Output: y € Z® integer approximation of y = 4 C{’x.
Algorithm 4.1 requires 18 multiplications, 32 additions, 12 rounding operations (rounding

to the next integer), 6 comparisons and (possibly) 3 additions of 1. Expressions of the
form {x + 1} = |+ — rd x| can be obtained by one substraction. Observe further, that 6

multiplications (with v/2) are due to the multiplication with v/2 Ag(0,1) in step 4. Hence,
the arithmetical complexity can be improved by taking different expansion factors for the
matrices. The factorization

4V2 CH = By (1 vV214) As(0,1)) (V2 T5(0,1,0,0)) (2V21s & V21,) Ts(0, 1)) (V2 T5(0)).

yields an algorithm with only 14 multiplications and 4 shifts. Unfortunately, the overall
expansion factor 4 is enlarged to 4/2.
The inverse integer DCT-IT of length 8 is very simple. Let here 1 := (1,1,1,1,1,1,1,1)%.

17

Algorithm 4.2 [Inverse integer DCT-II algorithm A]
Input: y € Z® (integer approximation of 4 C{Ix computed by Algorithm 4.1).

1. Compute y(V) := Bgy.

2. Compute y? := [% Ag(0,)T (y™ — L11)7.

3. Compute y®) := [% T5(0,1,0,0)7 (y? — 11)7].
4. Compute y¥ := [% Ts(0,)7 (y® — 1)1

5. Compute x := [% Ts(0) (y™ — 1)1

Output: x € Z® original vector of Algorithm 4.1.

Enlarging the expansion factors due to Theorem 3.6, we can use the following factorization
V2O = By (V2A4(0,1)) (214 © V21,)T5(0,1,0,0) (V2I, & 21,)Ts(0, 1) (V2T5(0)).
In this case we need to replace the steps 2 and 3 of Algorithm 4.1 suitably and obtain:

Algorithm 4.3 [Integer DCT-II algorithm B]
Input: x € Z°.

1. Compute x(V) := \/§T8(0) X.

2. Compute x(?) := (\/5]4 & 214) T5(0, 1) x(1),
For 7 =0,1,2,3 put :L'EZ) = 5;;2). Further, put

(22T = (1d (217) = 1,0d (DT, 2,207 = (1d (2P — 1,0d (317))7.

3. Compute X% := (214 & v21,) T5(0,1,0,0) x?.
For y =4,5,6,7 put 1}53) = 5;;3).
Put

(@ N = (rd (@), rd ()T, @8 2$NT = (rd (28)) — 1,0d (35))T

4. Compute x4 := /2 Ag(0,1)x® and put x* := rdx¥.
5. Compute y := Bsx¥.
Output: y € Z® integer approximation of y = 4v/2 C{'x.

This algorithm needs 20 multiplications, 26 additions, 14 rounding operations and three
subtractions of 1. Again the 6 multiplications in step 4 can be partially avoided by taking
a slightly changed factorization (and enlarging the overall expansion factor to 8). The
inverse integer DCT-II algorithm for Algorithm 4.3 is very similar to Algorithm 4.2, one
only needs to replace the inverse factorization matrices suitably. Let us consider the
truncation errors of these algorithms in the worst case. We obtain

18

Theorem 4.4 Let x € Z8 be an arbitrary vector. Using the integer DCT-11 Algorithm
4.1, we obtain an integer approzimation'y € Z° of y = 4 CHx satisfying

< 31+ L+ /3~ 504443,

IV = Ve < 3.306564.

Using the integer DCT-11 Algorithm 4.3, we obtain an integer approzimationy € Z° of
Vv = 42 Clx satisfying

< 2V10 4+ V7 + /2 = 10.195052
< 6.

Proof. 1. We consider Algorithm 4.1. Let us denote the preliminary results of the exact
DCT-II of length 8 by

M VITH(0)x,
@ = V215(0,1) %M
®3) (
(4)

V2 T5(0,1,0 0))
x = \/EAS())
We estimate the truncation error

<& _ X(4)H2-

1 = ¥l = [Bs(x® — x|, =

Let e(®) := x(*) —%(*) denote the truncation error of a single step s € {1, 2, 3, 4}, where the
preliminary results x(*) and %) are defined in Algorithm 4.1, and in particular X = x(1).
Then we see that e) = 0. By Theorem 3.4 we obtain

le®]l, < \/5(2 tsinIsin2) = /Trsms, [le®|, < L\ /TTsmer.

By Remark 3.7 we can estimate He(4)H2 < \/g Note that X = x(). Then it follows that

£ —x@|l; < [IK® - %),
< V2 |Ts(0,)|z][N = xWly + [[eP]|2 = ||e@]]2,
13— x@, < %@ = x|, + 5@ — x|,
< V2|T5(0,1,0,0)[» [[K® = x|l + [[e@]l < V2 [e@] + [P
and finally
HX<4) _ X(4)H2 < }2(4) o }2(4) . (4)H2
< V214500,)|z |5 = x®||; + [[e@)][
< 2@y + V3 e+ e < 31/1+ L + /3

(s)

2. Now we estimate the truncation error of Algorithm 4.1 componentwisely. By 27" and

:J?;;S) we denote the components of x(*) and %), respectively. Step 1 of Algorithm 4.1

19

(1)

yields @37 = i’;l) (=0, 7). After step 2 we obtain 2 = 3 (j=0,...,3) and by
Remark 3.5

max {|z{7 — &0, [P — 2P|} < 0.691342,

max {2 — 2], 2P — 2P} < 0.961940.

After step 3 we get 1}53) = JA};S) (j =0, 1) and by Remark 3.5 it follows that

max {|z — 27], 129 — 2P} < 0.853553.
FPurther we estimate

e — P 4 [- 21|

<
< 0.691342 + 0.961940 = 1.653282

and analogously |:1;;3) — £;3)| < 1.653282 (5 = 5, 6, 7). Finally, step 4 yields by Remark
3.7 that |x§4) — i;;4)| <0.5(7=0,1). For j =2, 3 we get that

i =) < e = V2P VR - a)
< 0.5+ V2 - 0.853553 ~ 1.707106.

For j =4, 7 we obtain analogously
o{ — 209 < 0.5+ V2 - 1.653282 & 2.838094.
For 5 =5, 6 we estimate
2 —) < 2 2| 4 2 — 21| < 3.306564.

x® — x®)||, < 3.306564.

Thus we obtain ||y — ¥|le =

3. For Algorithm 4.3, we estimate the truncation error in like manner. With

}A((l) = \/§Tg(0) X, }A((z) = (\/5[4 D 2[4) Tg(o, 1) }A((l),
O = (20,8 V21,) Ts(0,1,0,0) %@, %W = /2 A4(0,1) %)

we find by Theorem 3.6 and Remark 3.7 that
V=0, [e®< V5 e < /5 @Ik < /3
and hence
0 XD, < VI, + o) + e < 2010+ VT + /2

Using componentwise estimation of the truncation error, we obtain by Theorem 3.6 and

Remark 3.7 that

— % x]... <6.

This completes the proof. g.e.d.

20

4.2 Algorithms based on the lifting method

We propose two further algorithms using integer transforms via lifting, and estimate the
truncation errors in the worst case.

Using the factorization (4.2) of C{!, we give an algorithm, where lifting is applied to all
orthogonal matrix factors of C in (4.2):

Algorithm 4.5 [Integer DCT-II algorithm C]
Input: x € Z°.

1. Put w© := (2o, 2y, 29, 23)7, wV) 1= (27, 26, x5, 24)7. Compute
z® = rd((tan Z)w)) + wl®),
2V = rd (((—sin 2)z) + w(V),
z? = rd((tan)z + 2.

2. Put w® := (:1;81) :1;(11) :1;511),:1;(51))T, wil) = (l’gl) :1;(21) :1;(71),:1;&1))? Compute

2 = rd(((tan Z) I, @ tan & & tan Z)w) 4 w®),
z = 1d (((—sin =)[2 & (—sin E) & (—sin ?—g))z(o)) + W(l),
z(2) .= rd(((tan) 1y @ tan g3 @ tan g—g)z()) + 70,

Put x() = (22D 0 0 @) @ (0 1)y

=% %71 TRy TR R sR3 ,R3 5 TRy

3. Put wl® := (:1;82) :1;(22) :1;512) :L'éZ))T, wil) = (:1;(12) :L'gZ) :1;(52),:1;(72))T. Compute

Y Y Y Y

2 = rd((tan T @tan & © (tan I) L)w) + w®),
200 = 1 (s §)® (s E) & (- s §) 1) 20) + w0,
z? = rd((tanZ @ tan Z & (tan T) L) z1)) + 2.

Put x) = (22, 200 0)) & _ (7

0 2 TR0 sR1 s TR »Rg TR s R3 TR
4. For 3 =0,....4 put x§4) = 1}53) and l’gl) = :1;(73). Compute
zo = rd(x; ®) tan z)+ :1;(5), :1;(74) = —rd (=2 sin §) — :1;(73),
:1;(54) = 1rd(—x;) {an =)—I—Zo
5. Compute y := Bsx¥.
Output: y € Z® integer approximation of y = C{’x.

The arithmetical complexity of Algorithm 4.5 is very high, we need 39 multiplications, 39
additions and 39 rounding operations. This high arithmetical complexity is due to the fact
that matrix factors containing the rotation matrices Ry(7) (as e.g. T5(0)) are computed
by more expensive lifting steps. The inverse integer DCT algorithm for Algorithm 4.5
simply follows by going backward and taking the inverse lifting procedure of Theorem

21

3.8. Since integer transform via lifting does not need expansion factors of matrices, we
are able to give an integer approximation of C{x (instead of o C{'x) in Algorithm 4.5.
The truncation error of this algorithm can be estimated by

v = yllz = 1% = xDl < [leW]l2 + [e®]2 +]2 + [|e!V]|2 & 9385895,
where
e, < 24/h(F) = 2.722905,
le® 2 < /20() +h(E) +h(%) ~ 2624752,
€@y < /3R(Z) T h(Z) ~ 2.676784,
e, < /A(Z) ~ 1.361453,

and h(t) := % + sint + %cost + i(tan %)2 Here the notations are defined analogously as
in Theorem 4.4. Using Remark 3.9, we obtain by componentwise error estimation that

¥ — oo = KXW — x|, < 7.386088.

This truncation error is comparable with that of the Algorithm 4.3. An alternative for
integer DCT-II of length 8 with reasonably small expansion factor and small truncation
error may be a mixed version of the two methods. Finally we propose an algorithm,
where the expansion factor method as well as the lifting method are used. Based on the
factorization

20 = Bg As(0,1) (14 & V2 1) Ts(0,1,0,0) (V2 Iy & 1) Ts(0, 1) V2 T5(0)

we apply lifting to the submatrix Ty(1) of Tx(0,1), to the submatrix CH @ CIV of
T5(0,1,0,0) and to As(0,1). For the other matrices we use the expansion method.

Algorithm 4.6 [Integer DCT-II algorithm D]
Input: x € Z°.
1. Compute x(V) := \/§T8(0) X.

2. Put w(® := (xél)7x(11)7x(21)7xgl))T7 wil) = (xgll)vxél))Tv w?) = (xgl)vxél))T‘
Compute z := \/§T4(O)W(O) and

z® = rd((tan Z & tan Z)w@) + wlb),
z1) = rd (((—sin 17r—6) & (—sin ?—g))z(o)) +W(2),
z®) = rd((tan £ @ tan £Z)z()) 4 2.

Put x(?) .= (2T, Zéz),zf),zg), —Z(()l))T.

3. Put W(O) = (x82)7x(22))T7 W(l) = (‘r(lz)vx?))Tv W(z) = (1?512)71}(52),xé2),x(72))T.

Compute z := (\/50211 &) \/§CQII)W and

z®) = rd((tanZ @ tan Z)wV) + wl®,
z1) = rd(((—sin%) & (—sin g))z(o)) —I—W(l),
z? = rd((tan % & tan Z)zV) + z(0).

(4) (3) (4)

4. For j=0,...,4put ;7 :=a;" and x¢ := :1;(73). Compute

2 = rd (:1;(73) tan §) + :1;(53), :1;(74) = —rd (—zpsin) — :1;(73),
(4) (4)

xy’ = rd(—z; tan) + zo.

5. Compute y := Bsx¥.
Output: y € Z® integer approximation of y = 2 C{’x.

Algorithm 4.6 needs only 15 multiplications, 31 additions and 15 rounding operations,
where the overall expansion factor is 2. Hence, its arithmetical complexity is nearly
optimal, keeping in mind that best DCT-II algorithms for n = 8 need 11 multiplications
and 29 additions without counting the scaling by 2v/2 (see [7]). For the truncation
error produced by Algorithm 4.6 we find in the same manner as before with h(t) =
% +sint + %COSZL + i(tan %)2

e = o, He@)]bg(h(f“—6)—|-h(?—g))1/2z1.783877,
le@lz < (h(5)+h(5))? ~ 1.859588, |lel]|; < h(5)"? ~ 1.361453,

and

X0 = xV, < V2 [l + [le] + [|e]]; = 5.743824.

Yy—Yl2=

Using Remark 3.9, we obtain by componentwise error estimation that

¥ — ¥l = [IXW — x| < 4.040473.

These worst case error estimates are comparable with that of Algorithm 4.1.

5 Two—dimensional integer DCT—II of size 8 x §

The two—dimensional (2-d) DCT-II has important applications in image compression
(JPEG, MPEG). Therefore we extend our results of Section 4 to the 2—d integer DCT-II.
Let X € Z**® be given. Then the 2-d DCT-II of size 8 x8 of X is defined by CE{IAX (CinT,

Let V = 4CH X (4CIHT. The simple row-column method for computing of Y is based
on the observation

Y =@cll xyuohT = z@aciht =@clt 20T

with Z := 4 CH X. Now we compute integer approximations of Z and Y by Algorithm
4.1.

Algorithm 5.1 [2-d integer DCT-II algorithm]

Input: X = (xo, ..., X7) € Z%*%.
1. For k =0, ..., 7 compute the integer approximation z; of z; := 4 C{’x;, by Algo-
rithm 4.1.

2. Set Z :=(zg, ..., z7) and (ug, ..., us) := 27,

23

3. For k =0, ..., 7 compute the integer approximation vy, of v, := 4 C{u,;, by Algo-
rithm 4.1.

4. Form Y := (vg, ..., v7)T.
Output: Y € Z¥*® integer approximation of ¥ = 16 CHX (CIHT.
The inverse 2—d integer—DCT-II of size 8 x 8 follows now immediately:

Algorithm 5.2 [Inverse 2-d integer DCT-II algorithm]
Input: Y € Z¥® (integer approximation of 16 C{/X (CINT computed by Algorithm
5.1).

1. Form (vo, ..., v7) := YT,

2. For k=0, ..., 7 compute the vector u, € Z* via Algorithm 4.2 such that vy is the
integer approximation of 4 C{fu; by Algorithm 4.1.

3. Set Z :=(ug, ..., u;)" and (zo, ..., z7) := 7.

4. For k=0, ..., 7 compute the vector x; € Z° via Algorithm 4.2 such that z; is the
integer approximation of 4 C{x; by Algorithm 4.1.

Output: X := (xo, ..., X7) € Z>*® original matrix of Algorithm 5.1.

Let us consider the (worst case) truncation error of Algorithm 5.1 estimated in the Frobe-
nius norm.

Theorem 5.3 Let X € Z%*® be an arbitrary matriz. Using Algorithm 5.1, the resulting
integer approzimation' Y € Z¥*® of Y =16 O X (CINT satisfies the error estimate

IV = Y[r <302+ V2 + 103 ~ 72.753280.

Proof. By Theorem 4.4, we know that the computed vectors z, (kK =10, ..., 7) in step 1
of Algorithm 5.1 satisfy the estimate

2
HZk—ikH%< (3\/1%-?—%\/%) .

Summing up, this yields

. - .
12 = Z1E = ko 122 — 2

2
2<8 (31/1+§+\/§>

with the matrix 7 := (Zo, ..., z7). Hence,

17— Z|lr < 6V2+V2+2V3.

Set (g, ..., G7)T = Z7 and vy = 4CHG, (k=0,...,7). Further let v (k=0, ..., 7)
be the computed vectors in step 3 of Algorithm 5.1. Applying again Theorem 4.4, we get

2
HVk—\N/ng < (3\/14‘?‘%\/%)

24

and hence .
Y = Y|lFr <6vV2+V2+2V3

with Y := (vo, ..., vi)T and Y := (¥q, ..., v7)T = Z (4 CIT. Since the Frobenius norm
is unitarily invariant, we have ||Y —Y||r = 4||Z — Z||r. The Frobenius norm is consistent
such that we can estimate

IV = Yr <Y =Y[r+ |V = Y|Fr <302 +V2+ 103
This completes the proof. g.e.d.

Remark 5.4 Instead of Algorithm 4.1, we also can use another integer DCT-II algorithm
in the row-column method. Considering for example Y := 2CH)Y X 2CIHT for a given
integer matriz X € Z2°%, we can use Algorithm 4.6 to find an integer approximation Y
of Y. In the worst case, we even obtain the error estimate

|V — Y||F < 48.737963

by the same method as in the proof of Theorem 5.3. This much better error estimate is
especially due to the smaller expansion factor in Algorithm 4.6.

6 Numerical results

We want to apply the four algorithms proposed in Section 4 and compare them regarding
their truncation errors and their arithmetical complexity. The following examples already
show the different behaviour of the Algorithms 4.1 (A), 4.3 (B), 4.5 (C'), and 4.6 (D) in
Section 4.

Let x € Z® be a given integer vector. Let y, denote the result of the integer DCT-II
algorithm o with o € {A, B,C, D}. Further,let y4 = 4 Cl'x, y5 = 42 Cl'x, yo = Ci'x,
yp = 2CiIx be the exact vectors after applying (scaled) DCT-II of length 8. In the
following tables we give the components of exact vectors y, (rounded to 3 decimal places)
and the components of y, for 3 examples of x.

1. Let x := (100,100,100, 100,0,0,0,0)7.

Va | 565.685 | 512.583 | 0.000 | —179.995 | 0.000 | 120.269 | 0.000 | —101.959
Vi 566 512 0 —180 0 120 0 —102
vs | 800.000 | 724.902 | 0.000 | —254.551 | 0.000 | 170.086 | 0.000 | —144.192
VB 800 721 —1 —254 0 170 0 —144
Vo | 141.421 | 128.146 | 0.000 | —44.999 | 0.000 | 30.067 | 0.000 | —25.490
Yo 141 130 0 —45 0 30 0 —26
Vo | 282.843 | 256.292 | 0.00 | —89.998 | 0.000 | 60.134 | 0.000 | —50.980
Yo 283 256 0 —-90 0 61 0 -5l

For the Fuklidian errors we obtain

Va—yalls = 0.716236,
S’c—}’c”z = 1.969911,

VB — ya|. = 4.071106,
Vo — ypll2 = 0.926969.

The absolute errors in the components can be seen from the table.

25

2. Let x:=(1,2,3,4,5,6,7,8)T.

Va4 | 50.912 | —25.769 | 0.000 | —2.694 | 0.000 | —0.804 | 0.000 | —0.203

VA 51 —28 0 -3 0 —1 0 —1

vB | 72.000 | —36.443 | 0.000 | —3.810 | 0.000 | —1.136 | 0.000 | —0.287

VB 72 —40 —1 —4 0 0 0 0

Vo | 12,728 | —6.442 | 0.000 | —0.673 | 0.000 | —0.201 | 0.000 | —0.051

Yo 11 —7 0 —1 0 —1 0 0

Vp | 25.456 | —12.885 | 0.000 | —1.347 | 0.000 | —0.402 | 0.000 | —0.101

YD 25 —13 0 —1 0 —1 0 0
For the Fuklidian errors we find

Va—Yyalz = 2.398267, VB —yall2 = 3.880764,
Ve —ycl|: = 2.011088, Vo — y¥p|l2 = 0.842357.
3. Let x := (=30, —94, —112,60, 26, —79,27,38)T.
Va |—231.931 [—358.004 |—49.220 |—38.915 [497.803 |205.456 |—288.821 |—13.655
va |—232 —358 —49 -39 498 205 —288 —14
VB |—328.000 [—506.294 |—69.607 |—55.034 [704.000 [290.559 |—408.454 |—19.311
vy |—328 —509 —71 —55 704 291 —409 —18
Vo |—57.983 [—89.501 |—12.305 |—9.729 [124.451 [51.364 |—72.205 |—3.414
yo |—5H8 —-90 —13 -9 125 52 —72 —4
vp |—115.966 [—179.002 |—24.610 |—19.457 |248.902 [102.728 |—144.410 |—6.827
yp |—116 —179 —24 —20 249 103 —144 —7
For the Fuklidian errors we obtain
Ya—yalls ~ 1.048921, V5 — yBl|l2 &~ 3.387218,
lyc —yellz2 ~ 1.534718, l¥yp — ypll2 = 0.974273.

We consider the behaviour of the errors ||y, — ¥oll2 and ||¥s — ¥o||co generated by the
four algorithms o € {A, B, C, D} in more detail . As input vectors we use 1000 random
vectors in Z® with entries in the range [—1023, 1024]. We compute the r—th—quantiles

for

7

— i
10°

g =1,...,10 for each algorithm. After sorting the errors of 1000 resulting

vectors, the r—th—quantile is the smallest value that separates the errors into two parts;

1000r of the sorted errors are less than the quantile value, the other 1000 (1 — r) errors
are greater than the quantile. The 1-th—quantile is the maximal error occurring. In the
following tables the r-th quantiles are rounded to three decimal places.

Alg. | r=0.1 | r=0.2 | r=0.3 | r=0.4 | r=0.5 | r=0.6 | r=0.7 | r=0.8 | r=0.9 | r=1.0
A | 1184 | 1.398 | 1.584 | 1.733 | 1.949 | 2.189 | 2.379 | 2.578 | 2.821 | 4.006
B | 2726 | 3.026 | 3.194 | 3.366 | 3.517 | 3.688 | 3.837 | 4.029 | 4.237 | 5.004
C | 1.220 | 1.413 | 1.534 | 1.652 | 1.771 | 1.876 | 2.003 | 2.125 | 2.296 | 3.097
D | 0.888 | 1.012 | 1.110 | 1.191 | 1.276 | 1.353 | 1.426 | 1.521 | 1.656 | 2.438

Table 1. r-th quantiles for the error ||y, — yo||2 with o € {A, B,C, D}

26

r=0.1 | r=0.2 | r=0.3 | r=0.4 | r=0.5 | r=0.6 | r=0.7 | r=0.8 | r=0.9 | r=1.0
0.764 | 0.930 | 1.061 | 1.211 | 1.360 | 1.503 | 1.657 | 1.858 | 2.119 | 3.735
1.998 | 2.268 | 2.452 | 2.672 | 2.848 | 3.010 | 3.180 | 3.409 | 3.677 | 4.534
0.744 | 0.883 | 0.958 | 1.039 | 1.108 | 1.194 | 1.278 | 1.397 | 1.576 | 2.345
0.535 | 0.631 | 0.697 | 0.759 | 0.822 | 0.894 | 0.966 | 1.070 | 1.245 | 2.270

Table 2. r-th quantiles for the error ||y, — Yo||co with o € {A, B,C, D}

S| Qw2

The numerical results show that Algorithm 4.6 (D) is most favourable and outperforms
the other algorithms. Algorithm 4.6 possesses very small worst case truncation errors and
provides suitable integer approximations for the DCT—II of length 8, as seen in the numer-
ical tests. The average Euclidian error of this algorithm is less than 1.3 and the average
maximum error is even smaller than 1. That means, in most cases algorithm D provides
in each component one of the two nearest integers to the exact DCT component value.
Taking the arithmetical complexity into account, Algorithm 4.6 is most recommended.

Finally, let us look at the 2-d DCT-II applying Algorithm 5.1 in one example. Now by A
we denote Algorithm 5.1, where Algorithm 4.1 (A) is used. By D we denote the modified
Algorithm 5.1, where we apply Algorithm 4.6 (D) instead of Algorithm 4.1. Let X be
an input matrix of order 8, Y, resp. Yp are the 2—d integer DCT-II of X computed by
method A resp. D, and YA, Vp are the corresponding exact 2—d DCT-II of X, where each
entry is rounded to the next integer. For

11 16 21 25 27 27 27 27
16 23 25 28 31 28 28 28
22 27 32 35 30 28 28 28
31 33 34 32 32 31 31 31
31 32 33 34 34 27 27 27
33 33 33 33 32 29 29 29
34 34 33 35 34 29 29 29
34 34 33 33 35 30 30 30

we obtain that
3770 —17-193 —-83 34 -27-43 21

—361 —280-100-51-46 -1 7-19

—175-148 =25 24 3-15 -9 -1

V= —-113 -31 4 23 14 -1 -1 5
—-10 =13 24 25 —-2-11 10 20 |’

28 =3 26 -5-12 24 17-16

-21 -6 -5-23 -8 28 17-12

—-42 25 -60-30 30 19 -9 -7

3772 —18-194-82 35-24-44 21

—378 =272 -105-53-44 -3 8-13

—175-157 =25 23 0-13-11 -6

Y, = —112 -28 4 24 16 0 0 6
—-13 =13 23 27 -1 -9 10 20 |’

27 =3 27 -8-16 24 18-17

-21 -6 -—-7-23 -7 27 17-10

-33 20 -58-28 30 20-11-11

27

and

943 —4-48-21 9-7-11 5
-90-70-25-13-11 0 2-5
—44-37 -6 6 1-4 -2 0
¥, = -28 -8 1 6 4 0 0 1
-2 -3 6 6 0-3 2 5]’
T -1 6 -1 -3 6 4-4
-5 -1 -1 -6 =2 7 4-3
-10 6-15 =7 7 5 —=2-2
942 —-5-49-19 9-8-12 6
-92-70-26-13-10 2 2-5
—43-37 -8 5 1-3 =2 0
Yp = -32 -4 -1 5 5 0 0 2
-2 -6 5 6 0-2 3 6
4 -3 6 0 -2 4 3-3
-3 -1 -2 -5 -2 7 5-3
-12 6-14 -7 8 4 —1-2
We get the truncation errors
Vs — Yal[r ~27.211073, ||[Yp — Yp||r =~ 10.240275.

The above example is taken from [15]. Further examples show that Algorithm 5.1 together
with Algorithm 4.6 (D) is considerably better.

Acknowledgement. The authors would like to thank S. Dekel for very instructive
remarks improving the paper.

References

[1] V. Bhaskaran and K. Konstantinides, Images and Video Compression Standards:
Algorithms and Architectures, Kluwer, Boston, 1997.

[2] A.R. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, Wavelet transforms
that map integers to integers, Appl. Comput. Harmon. Anal. 5 (1998), 332 — 369.

[3] W.K. Cham and P.C. Yip, Integer sinusoidal transforms for image processing, Inter-
nat. J. Electron. 70 (1991), 1015 — 1030.

[4] 1. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, J.

Fourier Anal. Appl. 4 (1998), 247 — 269.

[5] E. Feig and S. Winograd, Fast algorithms for the discrete cosine transform, IEEE
Trans. Signal Process. 40 (1992), 2174 — 2193.

[6] J. Liang and T.D. Tran, Fast multiplierless approximations of the DCT: the lifting
scheme, IEEE Trans. Signal Process. 49 (2001), 3032 — 3044.

[7] C. Loefller, A. Lightenberg, and G. Moschytz, Practical fast 1-d DCT algorithms
with 11 multiplications, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process.,
vol. 2 (1989), 988 — 991.

[8] M.W. Marcellin, M.J. Gormish, A. Bilgin, and M.P. Boliek, An overview of JPEG-
2000, Proc. Data Compression Conf., 2000, pp. 523 — 541.

28

[9] W. Philps, Lossless DCT for combined lossy /lossless image coding, Proc. IEEE In-
ternat. Conf. Image Process., vol. 3, 1998, pp. 871 — 875.

[10] G. Plonka and M. Tasche, Split-radix algorithms for discrete trigonometric trans-
forms, Preprint, Gerhard—Mercator—Univ. Duisburg, 2002.

[11] K.R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applica-
tions, Academic Press, Boston, 1990.

[12] U. Schreiber, Fast and numerically stable trigonometric transforms (in German),

Thesis, Univ. of Rostock, 1999.
[13] G. Strang, The discrete cosine transform, STAM Rev. 41 (1999), 135 — 147.

[14] T. D. Tran, The BinDCT: Fast multiplierless approximation of the DCT, IEEE Signal
Process. Lett. 7 (2000), 141 — 144.

[15] G.K. Wallace, The JPEG still picture compression standard, Comm. ACM 34 (1991),
32-44.

[16] Y. Zeng, L. Cheng, G. Bi, and A.C. Kot, Integer DCTs and fast algorithms, IEEE
Trans. Signal Process. 49 (2001), 2774 — 2782.

29

