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Abstract

In this paper, we consider approximation properties of a finite set of functions
¢y, (v=0,...,r—1) which are not necessarily compactly supported, but have
a suitable decay rate. Assuming that the function vector ¢ = ((by)z;é is refin-
able, we sketch a new way, how to derive necessary and sufficient conditions
for the refinement mask in Fourier domain.

1. Introduction

For applications of multi-wavelets in finite element methods, the problem occurs,
how to construct refinable vectors ¢ = (#,)/Zy (r € N) of functions with short
support, such that algebraic polynomials of degree < m (m € N) can be exactly
reproduced by a linear combination of integer translates of ¢, (¥ =0,...,r —1).
In Heil, Strang and Strela [9] and in Plonka [13], the approximation properties of
refinable function vectors ¢ := (¢,)'_i were studied in some detail. In particular,
new necessary and sufficient conditions for the refinement mask of ¢ could be de-
rived. In [13], it could even be shown that the function vector ¢ can only provide
approximation order m if its refinement mask factorizes in a certain manner. For
finding these results, [9] as well as [13] strongly used properties of doubly infinite
matrices determined by the matrix coefficients occuring in the refinement equation
(in time domain).

Now we want to sketch a way, how the necessary and sufficient conditions for the
refinement mask of ¢ can completely be derived in the Fourier domain.



As in [13], the functions ¢, are allowed to have a noncompact support if they have
a suitable decay rate. The main tool of our new approach is the so called superfunc-
tion, which is contained in the span of the integer translates of ¢, (v =0,...,r —1)
and already provides the same approximation order as ¢. The results are applied to
some multi—scaling functions ¢g, ¢; first considered by Donovan, Geronimo, Hardin
and Massopust [6, 7].

2. Notations

Let us introduce some notations. Consider the Hilbert space L? = L*(R) of all
square integrable functions on R. The Fourier transform of f € L*(R) is defined by
f= 2 flx)e™ da.

The function vector ¢ with elements in L?(R) is refinable, if ¢ satisfies a refinement
equation of the form

¢=) Pip(2--1) (P eR™),
leZ

or equivalently, if ¢ satisfies the Fourier transformed refinement equation

¢ = P(-/2)$(-/2) (1)
with ¢ := (qu)z;é and with the refinement mask (two—scale symbol)

P=P,:= %Z Pt (2)

Note that P is an (r x r)-matrix of 2r—periodic functions. The components ¢, of
a refinable function vector ¢ are called multi-scaling functions.

Let BV(R) be the set of all functions which are of bounded variation over R and
normalized by

lim f(2) =0, f(x)= L lm(f(e+h)+ (e —h) (~o0 <z < oo).

|z|—co
If f € LY(R)N BV(R), then the Poisson summation formula
Yo fe™ =" flu+2r))
leZ JEZ

is satisfied (cf. Butzer and Nessel [3]). By C(R), we denote the set of continuous
functions on R. For a measurable function f on R and m € N let

Wl = ( / T de)'e,

o0

| flmp = [ID™ fll, [ fllmp := Z HDkap-
k=0
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Here and in the following, D denotes the differential operator with respect to =
D := d/dz. Let W"(R) be the usual Sobolev space with the norm || - ||, . The

[P—norm of a sequence ¢ := {c;}iez is defined by |[lc||ir := (3¢5 |cl|p)1/p.
For m € N, let E,,(R) be the space of all functions f € C'(R) with the decay property

i}elgﬂf(x)l (1+[z)) "} <00 (e>0).

Let 12, :={c:=(cx): > e (L+|E|>)7™ |ck]* < oo} be a weighted sequence with
the corresponding norm

o 1/2
lelle,, = (Z L+ |01|2> :

l=—00

Considering the functions ¢, € E, (R

) (v =0,...,7 — 1), we call the set B(¢) :
{$(-—=1): 1 €Zyv=0,....r —1} L?

IA I

. —stable if there exist constants 0 < A
B < oo with
r—1 r—1 r—1
AY el <Y - =Dli <BY ez
v=0 v=0 [€Z v=0
for any sequences ¢, = {¢, ez € 12, (v =0,...,r —1). Here L%, denotes the

weighted Hilbert space L2 = {f: [fllrz = 1(1+] 2)=™/2 f||, < oo}. Note that,
if the functions ¢, are compactly supported, then the (algebraic) linear independence
of the integer translates of ¢, (v = 0,...,7 — 1) yields the L? —stability of B(¢).
For m = 0, we obtain the well-known L*-stability (Riesz stability).
For ¢, € E,n(R) (v =0,...,r — 1), we say that ¢ provides controlled LP—approxi-
mation order m (1 < p < o0), if the following three conditions are satisfied:
For each f € W' (R) there are sequences ch = {Cﬁ,l}lez (v=0,...,r—1;h > 0)
such that for a constant ¢ independent of h we have:

r—1
(1) 1f = b= 38 3 el b/ = Dlly < ch™ | Fluny.

v=01[cZ
(2) Furthermore,

el < el flls (v =0,....r = 1),

(3) There is a constant ¢ independent of h such that for [ € Z

dist (lh,supp f) > 6 = cfil:() (rv=0,...,r=1).
This notation of controlled LP—approximation order, first introduced in Jia and Lei
[11], is a generalization of the well-known definition of approximation order for
compactly supported functions. In [11], the strong connection of controlled approx-
imation order provided by ¢ and the Strang—Fix conditions for ¢ was shown. Note



that, instead of using the definition of Jia and Lei [11], we also could take the defi-
nition of local approximation order by Halton and Light [8]. For our considerations
the equivalence to the Strang—Fix conditions is important.

The theory of closed shift-invariant subspaces of L?(R), spanned by integer trans-
lates of a finite set of functions has been extensively studied (cf. e.g. de Boor, DeVore
and Ron [1, 2]; Jia [10]). In particular, it has been shown that the approximation
order provided by a vector ¢ can already be realized by a finite linear combination

= z_: Y aud,(-—1). (a1 €R).

v=0 [€Z

We call f superfunction of ¢.

3. Approximation by refinable function vectors

In this section we shall give a new approach to necessary and sufficient conditions for
the refinement mask of a refinable vector ¢ ensuring controlled LP—approximation
order m. In particular, we show, how a superfunction f of ¢ (providing the same
approximation order as ¢) can be constructed by the coefficients which occur in the
linear combinations of ¢, reproducing the monomials.

In the following, let r € N and m € N be fixed. First we want to recall the re-
sult in [13] dealing with the connection between controlled LP-approximation order,
reproduction of polynomials and Strang—Fix conditions.

Theorem 1 (cf.[13]) Let ¢ = (¢,)/ 5 be a vector of functions ¢, € E,,(R)NBV (R).
Further, let B(¢@) be L%, —stable. Then the following conditions are equivalent:

(a) The function vector ¢ provides controlled approximation order m (m € N).

(b) Algebraic polynomials of degree < m can be exactly reproduced by integer trans-
lates of ¢, ,i.e., there are vectors y € R” (I € Zyn = 0,...,m — 1) such that the
series ¥ ,co(y7)T d(- — 1) are absolutely and uniformly convergent on any compact
interval of R and

Z(y?)T(ﬁ(x—l):x” (reRn=0,...,m—1).

lEZ

(c¢) The function vector ¢ satisfies the Strang—Fix conditions of order m, i.e., there
is a finitely supported sequence of vectors {a;}iez, such that

F=>al ¢(-—1)
leZ

satisfies

N

F0)£0, D' ferl)=0 (leZ\{0};n=0,....m—1).



The equivalence of (a) and (c) is already shown in Jia and Lei [11], Theorem 1.1.
Further, (b) follows from (c¢) by [11], Corollary 2.3. For showing that (b) yields (c),
in [13] the function

m—1
=) aio(-+k) (3)
k=0
is introduced. Here, the coefficient vectors a; are determined by
(ao, cee 7am—1) = (ygv A ygn_l) v

with the Vandermonde matrix V := (k”)m_l Hence we have

kn=0"
m—1
yS:Zk”ak (n=0,....,m—1). (4)
k=0

By Fourier transform of (3) we obtain

fu) = A(w)" p(u)
with

Au) = z_: ai ™", (5)

That means, A(u) is an (r x r)-matrix of trigonometric polynomials. Observe that

by (4)
m—1
(D"A)(0) =) (k) ar=i"y; (n=0,...,m— 1),
k=0
Using the Poisson summation formula it can be shown that f satisfies the conditions

(DMJE)(QWZ) =d0100, ([ E€Zyp=0,...,m—1)

and hence the Strang-Fix conditions of order m (cf. [13]). Observe that f in (3) is
a superfunction of ¢.
In the new proof for the following theorem, this superfunction will be the main tool.

Theorem 2 Let ¢ = (¢,) i be a refinable vector of functions ¢, € E,,(R)NBV (R).
Further, let B(¢) be L%, —stable. Then the function vector ¢ provides LP—controlled
approximation order m if and only if the refinement mask P of ¢ in (2) salisfies
the following conditions:

There are vectors yi € R"; y3 #0 (k=10,...,m—1) such that forn =0,...,m—1
we have

n

> ()b o ey = 2, )

> ()b o Py = o, 1)

k=0

where O denotes the zero vector.



Proof: Note that the conditions (6)—(7) can also be written in the form

D"[AT(2u) P(u)]|u=xr = 07 (n=0,...,m—1), (9)

D*[A”(2u) P(w)]Juco = (D"A)T(0) (n=0,...,m—1), (3)

where A, defined in (5), is the symbol of a superfunction f of ¢ in (3). From
Theorem 1 we know that ¢ provides controlled approximation order m if and only
if f satisfies the Strang—Fix conditions of order m. Hence we only have to prove:
The relations (8)—(9) are satisfied if and only if f satisfies the Strang—Fix conditions
of order m, i.e.,

(D" f)(2nl) = cp b0y (n=0,....m—1) (10)

with constants ¢, € R and ¢y # 0.
1. We show that the relations (8)—(9) are satisfied if we have (10).
Note that by (1)

f(2u) = AT (20) $(2u) = AT (2u) P(u)b(u).

Taking the derivatives, it follows on the one hand

N

")) = DA () dlu)]
= Y () A o)

and on the other hand

2" (D" f)(2u) = D"[AT(2u) P(u) $(u)]
= 2 (§) piaTe Pl )

k=0

2. Let us first show that the conditions (9) are satisfied. For all [ € Z we find by
(10) that

0= faml +27) = AT(4nl + 27) P27l + 7) p(27l + 7) = AT(0) P(7) (27 + 7).

Hence, linear independence of the sequences {(23”(7'[' +2nl) ez for v =0,...,r =1
gives

AT (0)P(r) = 0".
Note that the linear independence of the sequences {(,%y(u + 2ml) }iez for all u € R
and for v = 0,...,r — 1 is satisfied if and only if the integer translates of ¢, form a

L*-stable basis of their closed span (cf. Jia and Micchelli [12]). This was the first
step of the induction proof.



Let now D*[AT(2u) P(u)]|u=r = 0T be satisfied for p = 0,...,n — 1 (n < m), and

N

observe that by assumption (10) (D" f)(4wl + 27) = 0 for all [ € Z. Then, by the
linear independence of {@, (7 + 27l) }1ez for v =0,...,r — 1 and by

0 = 2" (D”f)(47rl +27) = Z <Z> D*[AT (2u) P(u)]|u=r (D”—k(%)(w + 27l)
— DA (20) P(a)]lumr bl + 2)
it follows that
D"[AT(2u) P(u)]|u=r = O”.

Thus, the relations (9) are satisfied.
3. Now we show that (10) yields (8). Let u = 2nl (I € Z). Then we have on the one
hand by the Strang-Fix conditions

farl) = AT(0) P(0) (27]) = ¢ b0,
and on the other hand
ferl) = AT(0) ¢(2rl) = o doy.
By linear independence of {¢,(271)}iez for v = 0,...,7 — 1 we obtain
AT (0) P(0) = AT(0).

Again, we proceed by induction. Let now D*[AT(2u) P(u)]|u=0 = (D“AAT)(O) be
satisfied for ¢ = 0,...,n—1 (n < m) and observe that by assumption (D" f)(27]) =
¢n b0y (I € Zy co #0). Then we find for all [ € Z

n

2 fint) = 3 () DIACWT Pluloa (0™ G210

n—1

= X (}) wrano o))

k=0

+D"[AT(2u) P(u)]|uzo p(271) = ¢, b0,

On the other hand, for [ € Z

n

o feet) = 3 () 0FATI0) () eel) =

k=0

Hence, a comparison yields

D"[A” (2u) P(u)]].z0 (27) = (D"A")(0) $(271)



By linear independence of {(,ESU(ZWZ)}IGZ for v =0,...,r — 1 we obtain
D"[A" (2u) P(u)]]u=0 = (D" A")(0).

Now the proof by induction is complete.

4. We are going to prove the reverse direction. Assume that the relations (8)—(9) are
satisfied. We show that then the conditions (D”f)(Zwl) =cpoy (n=0,....,m—1)
hold, where ¢y # 0.

For the p-th derivative of f we find

2 fiart) = 3 (1) DA Pl (D))

Z() (D" A4)(0) (D) (2r)
= (D*f)(2nl)

and

24 (D f)(4rl + 27) = Z (:) D*[A”(2u) P(w)]]uer (D*F)(27] + 7)

Thus, we indeed obtain (D”f)(Zwl) = ¢, dp,. It only remains to show that ¢y # 0.
By Poisson summation formula and using the L?-stability of ¢ we have

A~

$(0) = AT(0)$(0) = (y0)" (0) = (y))" >_d(-—1) #0

lEZ

Hence f satisfies the Strang—Fix conditions of order m. [

Remark 3 For proving the second direction in Theorem 2 we do not need any sta-
bility condition if we assume that (y3)* (,25(0) # 0. Since y5 and (,25(0) are a left and a
right eigenvector of P(0), respectively, this assumption is satisfied if the eigenvalue
1 of P(0) is simple.

4. The GHM-multi—scaling functions

We consider the example of a vector of two multi-scaling functions ¢ := (¢o,, ¢1)7
treated in Donovan, Geronimo, Hardin and Massopust ([6, 7]). In the special case
s =89 =81 (with s € [=1, 1]) of their construction, the refinement equation of ¢ is
given by

¢(x) = Podp(22) + P1p(2x — 1) + Py (20 — 2) + P35 (22 — 3), (11)

8



where

) ! “ony 0
Po =1 st seer |0 PUS {0 seoneinesy )
4(s5+2)2 2 (s+2) 4 (s+2)?
0 0 0 0
P, := (=) (s+1)(s2=543)  3s24s—1 | » 3= 1 3(s=1)(s41)(s2=35-1) 0 |-
1(5+2)2 2(5+2) 1(5+2)2

For the refinement mask P we have

1 . . .

P(U) = 5 (PO + P1 e + P2 6_2“‘ + P3 6_32u).
Applying the result of Theorem 2 we can show that ¢ provides the controlled LP—
approximation order m = 2:

Observing that

—52(-|—4s;|—3 1 52(—45—)3 0

2(s+2 2 . 4(s+2

P(0) = ( =3(s=1)%(s+1) 35242541 ) , (DP)(0) =4 ( 9(s—1)%(s+1) —(32+2s+1) ) )
2(s+2)2 2(s+2) 4(s+2)? 2(s+2)

and

0 (e
P(r) = o 3= - (DP)(m) = 3(52—1)(5—52+45+3) -3(s>=1) | >

4(s+2)? 2(s+2)

e (). ()

(wo)" P(0) = (y5)". (y0)" P(m)=0"

we find with

the relations

and

(20)7" ()" (DP)(0) + (y)" P(0) = 27" (y))",
(20)"" (yo)" (DP)(7) + (y3)" P(m) = 0.

Hence, (8)—(9) are satisfied for m = 2. Knowing y§ and yg, we can construct a

superfunction f of ¢ (as defined in (3)) by

flx) = (yo —yb)" () + (yo)" &z +1)

obtaining
3(1 — s%)

flz) = m( () + ¢o(x + 1)) + ¢1(x + 1)



Application of the refinement equation (11) on the right hand side yields

flz) = ———(o(22) + ¢o(2z + 1)) +

9(1 — s?) 3(1 — s%)
4(s 4 2) 4(s 4 2)

(120 +2) 4 61(20)) + (20 + 1)

(P0(2z — 1) + o[22 + 2))

= S0 1)+ f20) 4 S f(2 1),

That means, f itself satisfies the refinement equation of the hat—function h(x) :=

max{(1 — |z|), 0}. Hence, taking a proper normalization constant, the superfunc-
tion f coincides with the hat function h. Indeed, in [6] the approximation order 2

provided by ¢ was derived by showing that the hat—function A lies in the span of
the integer translates of ¢q, ¢;.

References

1]

2]

7]

3]

[9]

[10]

[11]

de Boor, C., DeVore, R. A., Ron, A.: Approximation from shift-invariant sub-
spaces of Ly(R?). Trans. Amer. Math. Soc. 341 (1994) 787-806.

de Boor, C., DeVore, R. A., Ron, A.: The structure of finitely generated shift—
invariant spaces in Lo(R?). J. Funct. Anal. 119(1) (1994) 37-78.

Butzer, P. L., Nessel, R. J.: Fourier Analysis and Approximation. Basel:
Birkhauser Verlag, 1971.

Chui, C. K.: An Introduction to Wavelets. Boston: Academic Press, 1992.
Daubechies, I.: Ten Lectures on Wavelets. Philadelphia: STAM, 1992.

Donovan G., Geronimo, J. 5., Hardin, D. P., Massopust, P. R.: Construction
of orthogonal wavelets using fractal interpolation functions, preprint 1994.

Geronimo, J. S., Hardin, D. P., Massopust, P. R.: Fractal functions and wavelet
expansions based on several scaling functions, J. Approx. Theory 78, 373 — 401.

Halton, E. J., Light, W. A.: On local and controlled approximation order. J.
Approx. Theory 72 (1993) 268-277.

Heil, C., Strang, G., Strela, V.: Approximation by translates of refinable func-
tions. Numer. Math. (to appear).

Jia, R. Q.: Shift-Invariant spaces on the real line, Proc. Amer. Math. Soc. (to
appear).

Jia, R. Q., Lei, J. J.: Approximation by multiinteger translates of functions
having global support. J. Approx. Theory 72 (1993) 2-23 .

10



[12] Jia, R. Q., Micchelli, C. A.: Using the refinement equations for the construction
of pre—wavelets II: Powers of two, Curves and Surfaces (P.J. Laurent, A. Le

Méhauté, L.L. Schumaker, eds.), pp. 209-246.

[13] Plonka, G.: Approximation order provided by refinable function vectors. Con-
structive Approx. (to appear).

[14] Strang, G., Strela, V.: Short wavelets and matrix dilation equations. IEEE
Trans. on SP, vol. 43, 1995.

11



