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Abstract1

We consider a modification of Prony’s method to solve the problem of best approx-2

imation of a given data vector by a vector of equidistant samples of an exponential3

sum in the 2-norm. We survey the derivation of the corresponding non-convex min-4

imization problem that needs to be solved and give its interpretation as a maximum5

likelihood method. We investigate numerical iteration schemes to solve this problem6

and give a summary of different numerical approaches. With the help of an explicitly7

derived Jacobian matrix, we review the Levenberg-Marquardt algorithm which is a8

regularized Gauss-Newton method and a new iterated gradient method (IGRA). We9

compare this approach with the Iterative Quadratic Maximum Likelihood (IQML).10

We propose two further iteration schemes based on simultaneous minimization (SIMI)11

approach. While being derived from a different model, the scheme SIMI-I appears to12

be equivalent to the Gradient Condition Reweighted Algorithm (GRA) by Osborne13

and Smyth. The second scheme SIMI-2 is more stable with regard to the choice of the14

initial vector. For parameter identification, we recommend a pre-filtering method to15

reduce the noise variance. We show that all considered iteration methods converge in16

numerical experiments.17

Key words. Prony method, nonlinear eigenvalue problem, nonconvex optimization,18

structured matrices, nonlinear structured least squares problem19
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1 Introduction21

In this paper, we are interested in the following problem. For a given vector of data22

y = (yk)
L
k=0 with L ≥ 2M we want to compute all parameters dj , zj ∈ C such that23

∥∥∥y − ( M∑
j=1

djz
k
j

)L
k=0

∥∥∥
2

(1.1)
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is minimized. Problem (1.1) occurs in two different scenarios. For parameter estimation24

problems, we assume that the given data are of the form yk = f(kh) + εk, where the25

signal f(x) is an exponential sum26

f(x) =
M∑
j=1

dj e
Tjx (1.2)

with unknown dj ∈ C \ {0}, zj := eTjh, and Tj ∈ C, ImTj ∈ [−π/h, π/h), j =27

1, . . . ,M . Further, we assume that εk are i.i.d. random variables with mean value28

zero and variance σ2. In this case a statistical interpretation as a maximum likelihood29

method is possible. In the second scenario for sparse signal approximation problems, we30

want to approximate the vector y by a new vector whose components are exponential31

sums such that the error is minimized in the Euclidean norm.32

One reason for the strong interest in signal approximation by exponential sums is33

the wide field of applications. Examples are synchrophasor estimation [36], estimation34

of mean curve lightning impulses [13], parameter estimation in electrical power systems35

[23], the localization of particles in inverse scattering [15] and sparse deconvolution36

methods in ultrasonic nondestructive testing [8]. The great importance of the topic37

can also be observed from the many reconstruction approaches related to the subject,38

as e.g. the reconstruction of signals with finite rate of innovation [12]. For a survey39

on relations of exponential analysis to annihilating filters, rational approximation and40

linear prediction we refer to our paper [30]. A further important application is the use41

of exponential sums in quadrature formulas for higher-dimensional integrals, see [9].42

If f(x) indeed possesses the exact structure in (1.2), then the parameters dj , zj can43

be computed by a Prony-like method from equidistant samples f(kh), k = 0, . . . , 2M−44

1. However, the classical Prony method is not numerically stable. Therefore, different45

numerical methods have been (partially independently) developed to recover the pa-46

rameters in model (1), see e.g. multiple signal classification (MUSIC) by Schmidt [35],47

estimation of signal parameters via rotational invariance techniques (ESPRIT) by Roy48

and Kailath [34], the matrix pencil method by Hua and Sakar [16] and the approximate49

Prony method (APM) by Potts and Tasche [32]. The paper [33] contains a summary50

of all these algorithms and also studies their close relations.51

However, these numerical schemes do not solve the minimization problem (1.1) but52

assume that the given data are exactly of the form yk = f(kh) with f in (1.2). In the53

noisy case, these methods are not consistent for L→∞, see [18].54

Contributions of the paper and related work55

In this paper, we will employ a direct approach to tackle problem (1.1) based on56

former ideas on maximum likelihood modifications of Prony’s method, see [10, 24, 25,57

26]. First, we derive an equivalent formulation of (1.1) as a non-convex minimization58

problem, similarly as in [10, 24]. For that purpose we use variable projection in a59

first step in order to transfer (1.1) to a minimization problem with regard to the60

parameter vector z = (z1, . . . , zM )T . In a second step, we rewrite the problem as a61

minimization problem with regard to p, where p = (p0, . . . , pM )T is related to z by62 ∏M
j=1(z − zj) =

∑M
k=0 pkz

k, see also [10, 24].63

In Section 3, we survey some numerical algorithms to solve the obtained minimiza-64

tion problem. For this purpose, we derive an explicit form of the Jacobian matrix and65

of the gradient of the functional. These observations lead to simple presentations of66
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Gauß-Newton and Levenberg-Marquardt iteration schemes on the one hand and al-67

gorithms for the representation as a nonlinear eigenvalue problem on the other hand.68

Using the necessary condition for the gradient of the functional, we propose an iterative69

algorithm IGRA that is close in nature (but not equivalent) to the Gradient Condi-70

tion Reweighting Algorithms (GRA) by Osborne and Smyth [26]. We also review the71

iterative quadratic maximum likelihood (IQML) algorithm in [10, 20, 11].72

In Section 4, we derive a new iteration functional based on the minimization prob-73

lem considered in Section 2. We can show that the desired solution vector is a fixed74

point of the obtained iteration scheme and that the corresponding iteration functional75

value always converges. The corresponding necessary condition for the gradient of the76

functional leads to the iteration scheme SIMI-1 which appears to be exactly equivalent77

to GRA for the so-called recurrence model in [25, 26]. We refer to [25, 26] for further78

results on asymptotic stability and local convergence of this iteration under special con-79

ditions. The second iteration scheme SIMI-2 uses a slightly different approximation,80

which results in the problem of finding an eigenvector to the smallest eigenvalue of a81

positive definite matrix at each iteration. We finally give a factorization of the matrices82

that are involved in the iteration schemes in order to ensure efficient calculation of the83

iteration matrices using the fast Fourier transform.84

Our numerical experiments in Section 5 show for different examples that all com-85

pared iteration methods converge very fast and provide similar errors, while the found86

parameter vectors can be quite different. For parameter estimation, our numerical87

experiments show that the pre-filtering step is crucial for higher noise levels in order to88

obtain good parameter estimates. Furthermore, the pre-filtering step strongly reduces89

the computational effort for all considered iteration methods.90

Finally, we would like to mention some further related work. For the special case91

when dj ∈ R and |zj | = 1 for j = 1, . . . ,M , iterative approaches have been proposed to92

solve (1.1) that try to improve the estimate of zj directly at each iteration step, [4, 7].93

For an approach where in (1.1) the 2-norm is replaced by the 1-norm we refer to [37].94

The considered problem (1.1) can also be rewritten as a nonlinear structured least95

squares problem (NSLRA), [21, 39], see our remarks at the end of Section 2.96

Further, (1.1) is related to the problem of low-rank approximation of Hankel matri-97

ces. Taking fk =
∑M

j=1 djz
k
j for k = 0, . . . , L, one may consider instead of ‖y− f‖2 the98

spectral norm ‖Hy −Hf‖, where Hy and Hf are Hankel matrices generated by y and99

f . The special structure of f then implies that Hf has only rank M . Thus we arrive100

at the problem of best low-rank approximation with Hankel structure, see [17, 3] and101

references therein. Several papers considered the connection between low-rank approx-102

imation of Hankel matrices and AAK theory [1] being related with the approximation103

by exponential sums, see [5, 6, 2, 29]. However, we emphasize that these methods do104

not exactly solve the problem (1.1) but only a related approximation problem.105

2 Maximum likelihood modification of Prony’s method106

Let y = (yk)
L
k=0 ∈ CL+1 be a given sequence. Our goal is to approximate y by a107

sequence f = (fk)
L
k=0 ∈ CL+1 generated by an exponential sum with M ≤ L

2 terms of108

the form109

fk =
M∑
j=1

djz
k
j , k = 0, . . . , L, (2.1)
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with dj , zj ∈ C, j = 1, . . . ,M , such that

‖y − f‖22 =
L∑
k=0

|yk − fk|2

is minimal. With d := (d1, . . . , dM )T , z := (z1, . . . , zM )T , and the Vandermonde matrix110

Vz :=


1 1 . . . 1
z1 z2 . . . zM
z2

1 z2
2 . . . z2

M
...

...
...

zL1 zL2 . . . zLM

 ∈ C(L+1)×M , (2.2)

we can write111

f = Vz d. (2.3)

Thus, the problem can be formulated as follows. For given y ∈ CL+1 we want to solve112

the nonlinear least squares problem113

argmin
z,d∈CM

‖y −Vzd‖22 = argmin
z,d∈CM

L∑
k=0

|yk −
M∑
j=1

djz
k
j |2. (2.4)

Throughout the paper we will assume that Vz has full rank M , i.e., we assume that zj114

are pairwise distinct, and y cannot be exactly recovered by an exponential sum with115

less than M terms. In particular, we assume that all coefficients dj are nonzero. If some116

further a priori knowledge is known about z and d as e.g. |zj | < 1 or dj ∈ R, we can117

restrict the range CM for the parameter vectors to suitable subsets in the minimization118

process.119

Following the arguments in [10, 24, 25, 26], we observe that for given z, the mini-
mization problem turns into a linear least squares problem

argmin
d∈CM

‖y −Vzd‖22

with the solution120

d = V+
z y = [V∗zVz]−1V∗zy, (2.5)

where V+
z denotes the Moore-Penrose inverse of Vz with full rank M . We introduce

the projection matrix
Pz := Vz V+

z

satisfying the properties

Pz = P∗z, P2
z = Pz, PzVz = Vz.

Then (2.4) can be rewritten as121

argmin
z∈CM

‖y −VzV
+
z y‖22 = argmin

z∈CM

‖(I−Pz) y‖22

= argmin
z∈CM

y∗(I−Pz)∗(I−Pz)y

= argmin
z∈CM

(y∗y − y∗Pzy).
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Thus, we need to solve122

z̃ := argmax
z∈CM

(y∗Pzy) (2.6)

in order to find the optimal parameter vector z̃. Afterwards, we can compute d simply123

by (2.5).124

We want to rephrase this nonlinear least squares problem for z = (z1, . . . , zM )T by125

means of the coefficients of the Prony polynomial p(z) = c
∏M
j=1(z − zj) =

∑M
k=0 pkz

k,126

where the constant c is chosen such that the arising vector p := (p0, . . . , pM )T of127

coefficients satisfies ‖p‖2 = 1. For this purpose we introduce the two matrices Xp ∈128

C(L+1)×(L−M+1) and Hy ∈ C(L−M+1)×(M+1) of the form129

Xp :=



p0

p1 p0
... p1

. . .
... p0

pM p1

pM
...

. . .

pM


, Hy :=


y0 y1 . . . yM
y1 y2 . . . yM+1
...

...
...

yL−M yL−M+1 . . . yL

 . (2.7)

Then we have130

Hyp = XT
py ∈ CL−M+1. (2.8)

Moreover, let
Pp := XpX

+
p = Xp[XT

pXp]−1XT
p

be the corresponding projection matrix.131

132

Theorem 2.1 For given data y = (y0, . . . , yL)T the parameter vectors z̃ and d̃ mini-
mizing the nonlinear least squares problem

min
z,d∈CM

‖y −Vzd‖22 = min
z,d∈CM

L∑
k=0

|yk −
M∑
j=1

djz
k
j |2

can be obtained by the following procedure:133

134

1. Solve135

p̃ = argmin
p∈CM+1

‖p‖2=1

y∗Ppy = argmin
p∈CM+1

‖p‖2=1

p∗H∗y[XT
pXp]−1Hyp. (2.9)

2. Compute the vector of zeros z̃ = (z̃1, . . . , z̃M )T of the polynomial p(z) =
M∑
k=0

p̃kz
k

136

obtained from p̃ = (p̃0, . . . , p̃M )T .137

3. Compute
d̃ = V+

z̃ y = [V∗z̃Vz̃]−1V∗z̃y.
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Proof: We follow the ideas in [10, 24, 25, 26] and give a short proof for the convenience
of the reader. For a given vector z = (z1, . . . , zM ) ∈ CM of pairwise distinct knots let
p = (p0, . . . , pM )T be the coefficient vector of the corresponding Prony polynomial

p(z) = c
∏M
j=1(z − zj) =

M∑
k=0

pkz
k where c is taken such that ‖p‖2 = 1. Now, we

observe that the matrices Xp in (2.7) and Vz in (2.2) satisfy

XT
p Vz = 0

and thus PpPz = 0. Note that rank(Xp) = rank(Pp) = L + 1 −M and rank(Vz) =138

rank(Pz) = M . Thus, we conclude139

Pz = (I−Pp) (2.10)

i.e., solving the maximization problem in (2.6) is equivalent with solving the minimiza-
tion problem

p̃ := argmin
p∈CM+1

‖p‖2=1

y∗Ppy,

and extracting the vector z̃ of zeros of
∑M

k=0 p̃kz
k. The second representation in (2.9)140

is due to XT
py = Hyp. The remaining computation of d̃ is the same as in (2.5).141

In many applications, particularly for parameter identification, it is assumed that142

the given data satisfy the model (2.1), and the measurements yk are noisy, i.e., yk = fk+143

εk, k = 0, . . . , L. Let us assume that εk are i.i.d. random variables with εk ∈ N(0, σ2)144

and L is large. If we have L+ 1 = (2M + 1)K measurement values yk, where K > 1 is145

an integer, then we can apply a local low-pass filter to y in a preprocessing step and146

obtain a filtered signal ỹ with a measurement error ε̃ possessing zero expectation and147

smaller variance. Taking e.g.148

ỹk :=
1

K

K(k+1)−1∑
r=Kk

yr =
1

K

K(k+1)−1∑
r=Kk

fr +
1

K

K(k+1)−1∑
r=Kk

εr = f̃k + ε̃k, k = 0, . . . , 2M, (2.11)

the new variables ε̃k are linearly independent with mean value zero, and the noise
variance is reduced to σ2/K. The filtered sequence (f̃k)

2M
k=0 still satisfies the exponential

model (2.1) , but this time with the parameters zKj instead of zj , j = 1, . . . ,M , since

f̃k =
1

K

K(k+1)−1∑
r=Kk

fr =
1

K

K−1∑
r=0

M∑
j=1

djz
r+Kk
j =

M∑
j=1

dj

(
1− zKj
1− zj

)
zKkj =

M∑
j=1

d̃j(z
K
j )k,

where in the last computation we have assumed that zj 6= 1. We need to ensure
here that zj is not a power of e2πi/K and that the values zKj , j = 1, . . . ,M , are still

pairwise distinct. Moreover, ambiguities occur if we want to recover zj from zKj . In
practice, these ambiguities are resolved using a priori knowledge on the phase range of
zj . Instead of the filter (2.11), we can also use the following filter to find ỹ of length
2M + 1, with

ỹk =
1

K

K−1∑
r=0

fk+(2M+1)r +
1

K

K−1∑
r=0

εk+(2M+1)r = f̃k + ε̃k, k = 0, . . . , 2M,

6



where the new noise variables ε̃k also possess the reduced variance σ2/K. Here, the
filtered sequence (f̃k)

2M
k=0 satisfies the exponential model (2.1) with the same parameters

zj , j = 1, . . . ,M , since

f̃k =
1

K

K−1∑
r=0

fk+(2M+1)r =
1

K

K−1∑
r=0

M∑
j=1

djz
k+(2M+1)r
j =

M∑
j=1

(
dj
K

K−1∑
r=0

z
(2M+1)r
j

)
zkj .

To ensure that d̃j =
dj(1−z(2M+1)K

j )

K(1−z(2M+1)
j )

does not vanish, we assume that z
(2M+1)K
j 6= 1 for149

j = 1, . . . ,M . Then, we can use ỹ instead of y to evaluate the parameter vector z,150

while still applying (2.5) to compute the parameter vector d in a second step.151

152

Remarks 2.2153

1. If the given data y can be exactly represented by a sum of exponentials, i.e., y = f in154

(2.1), or if the errors εk = yk − fk have very small modulus, then a Prony-like method155

can be employed to identify the parameter vectors z and d. In the exact data case156

it can be shown that the Hankel matrix Hy in (2.7) has rank M and that the vector157

of coefficients p = (p0, . . . , pM )T of the Prony polynomial p(z) = c
∏M
j=1(z − zj) =158 ∑M

k=0 pkz
k is the eigenvector of Hy to the eigenvalue 0. To construct the parameter159

vectors z and d we need to solve the eigenvector problem Hyp = 0 to find p, extract160

the zeros zj of the obtained Prony polynomial p(z) and find d by (2.5). However, this161

procedure is not numerically stable. Already for small inaccuracies in the data, Hy has162

full rank M + 1. A first simple idea for stabilization is to solve163

p̃ := argmin
p∈CM+1

‖p‖2=1

p∗H∗yHyp. (2.12)

This approach is also known as the Pisarenko method [28]. To improve the numerical164

stability of Prony’s method, one can e.g. employ ESPRIT [34] or the approximate Prony165

method (AMP), see [32]. For a survey on Prony methods we refer to [30].166

2. Compared to the Pisarenko method in (2.12), the minimization problem in (2.9)167

contains the further term [XT
pXp]−1 that makes it non-convex. Theorem 2.1 shows that168

similarly as for the Prony-like methods, the determination of the parameter vectors z169

and d is separated. Formula (2.9) can be understood as the variable projection formula-170

tion of the Hankel structured low-rank approximation, see e.g. [14, 21]. We emphasize171

that Theorem 2.1 can be applied to an arbitrary vector y. In many applications, one172

assumes that yk = fk+εk with fk in (1.2) with some prior knowledge on the distribution173

of the error εk.174

3. Similar ideas for fitting exponential models have been also given by Kumaresan et175

al. [19] and by Hua and Sakar [16], where it has been called whitened TLS-LP method.176

4. We note that the normalization of p in (2.9) does not effect the objective function
in (2.9), see e.g. [24]. Indeed we have Xcp = cXp and therefore

Pcp = Xcp[XT
cpXcp]−1XT

cp = Xp[XT
pXp]−1XT

p = Pp

for all c 6= 0. The classical Prony method often uses the normalization pM = 1 instead177

of ‖p‖2 = 1.178
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5. The minimization problem in (2.4) can also be written as the NSLRA problem

min
ŷ,V(z)

‖y − ŷ‖2 subject to ŷ = V(z)d and rank V(z) = M

with y, ŷ ∈ CL+1 and V(z) in (2.2), or with the parameter vector p instead of z, as

min
ŷ,Xp

‖y − ŷ‖22 subject to XT
p ŷ = 0 and rank Xp = L+ 1−M

with Xp in (2.7), see e.g. [39].179

6. While the procedure derived in Theorem 2.1 works for arbitrary data y, it can be
interpreted also statistically, see [18]. Assume that yk = fk+εk where εk ∈ N(0, σ2) are
i.i.d. Gaussian random variables. Introducing the residual vector r := Hyp = XT

p y,
where p is the (unknown) vector of the exact Prony polynomial coefficients satisfying
Hfp = XT

p f = 0, we observe that

r = (rk)
L−M
k=0 = XT

py = XT
p f + XT

pε = XT
p ε,

where ε = (εk)
L
k=0. Thus, while the components rk of r have still mean value zero, we180

obtain for the covariance matrix of r,181

E(rr∗) = E(XT
pyy∗Xp) = E(XT

pε ε
∗Xp) = XT

pE(ε ε∗)Xp = σ2XT
pXp, (2.13)

i.e., the errors rk are not longer independent. Therefore, we employ the reweighted
residual vector

r̃ := [XT
pXp]−1/2 r

such that E(r̃r̃∗) = σ2I. Minimization of

‖r̃‖22 = r∗[XT
pXp]−1r = y∗Xp[XT

pXp]−1XT
py = y∗Ppy

leads to the Prony modification that we derived in (2.9).182

7. Using the method of Lagrangian multipliers, the model in (2.9) has been derived
in [11] from the following reformulated problem: For given noisy data y, solve

min
s∈CL+1,p∈RM

‖y − s‖22 subject to Hsp = 0 and ‖p‖22 = 1.

3 Numerical algorithms for the ML-Prony method183

In this section we will survey some numerical approaches to solve the nonlinear mini-184

mization problem in (2.9). We start with deriving a new representation of the necessary185

condition for the vector p̃ in (2.9). Similar conditions have been also found in differ-186

ent forms in earlier papers in the case of real data y ∈ RL+1, see e.g. [24, 25, 26],187

without giving direct matrix representations of the Jacobian and the gradient. Let for188

p ∈ CM+1 with ‖p‖2 = 1,189

G(p) := y∗Ppy = y∗Xp[XT
pXp]−1XT

py = ‖r(p)‖22 (3.1)

with r(p) := Ppy, where Pp = (X+
p )TXT

p = XpX
+
p ∈ C(L+1)×(L+1). Then (2.9) takes190

the form min
p∈CM+1,‖p‖2=1

G(p). We can derive now the Jacobian of r(p) as follows.191
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Theorem 3.1 Let p = a + ib with a, b ∈ RM+1, and let for p̆ = (aT ,bT )T ∈ R2M+2

J(p̆) = J(a,b) :=

((∂rj(p)

∂ak

)L,M
j=0,k=0

,
(∂rj(p)

∂bk

)L,M
j=0,k=0

)
∈ C(L+1)×2(M+1)

be the Jacobian of the vector r(p) = (rj(p))Lj=0 = (X+
p )TXT

py. Then we have

J(a,b) = (IL+1 −Pp)Xv(p) (IM+1, −iIM+1) + (X+
p )THy−r(p) (IM+1, iIM+1) ,

where IL+1 and IM+1 denote the identity matrices of given size, v(p) := X
+
py ∈192

CL−M+1 and Hy−r(p) = Hy −Hr(p) with Hr(p) being the Hankel matrix of size (L +193

1−M)× (M + 1) generated by r(p). The gradient of G(p̆) := G(p) in (3.1) reads194

∇G(p̆) = 2 J(a,b)∗r(p) = 2

(
IM+1

−iIM+1

)
H∗y−r(p)[X

T
pXp]−1Hyp. (3.2)

Further, we obtain195

J(p̆)∗J(p̆) =

(
IM+1

iIM+1

)
X∗v(p)(IL+1 −Pp)Xv(p) (IM+1, −iIM+1)

+

(
IM+1

−iIM+1

)
H∗y−r(p)[X

T
pXp]−1Hy−r(p) (IM+1, iIM+1) . (3.3)

Proof: First, we observe that
∂Xp

∂ak
= Xk for k = 0, . . . ,M , where the matrix Xk ∈

C(L+1)×(L−M+1) is of the form

Xk :=



0 . . . 0
...
1

. . .

1
...

0 · · · 0


=

 0k×(L−M+1)

I(L−M+1)×(L−M+1)

0(M−k)×(L−M+1)

 ,

and where 0 and I denote zero matrices and the identity matrix of given size. With196

v(p) = X
+
py we obtain197

∂

∂ak
r(p) =

∂

∂ak
(Xp[XT

pXp]−1XT
py)

= Xk[X
T
pXp]−1XT

py + Xp[−XT
pXp]−1(XT

kXp + XT
pXk)[X

T
pXp]−1XT

py

+Xp[XT
pXp]−1XT

k y

= Xkv(p)− (X+
p )TXT

k r(p)− (X+
p )TXT

pXkv(p) + (X+
p )TXT

k y

= Xv(p)ek − (X+
p )THr(p)ek − (X+

p )TXT
pXv(p)ek + (X+

p )THyek

= (I− (X+
p )TXT

p)Xv(p)ek + (X+
p )THy−r(p)ek,

where ek denotes the k-th unit vector of length M + 1 for k = 0, 1, ...,M , i.e.,198

ek := (δj,k)
M
j=0. Here we have used that Xkv(p) = Xv(p)ek for v(p) ∈ CL+1−M

199
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and XT
k r(p) = Hr(p)ek as well as XT

k y = Hyek for the two vectors r(p) and y of200

length L + 1. The partial derivatives with respect to bk are obtained similarly using201

∂Xp

∂bk
= iXk. Taking these derivatives for all k = 0, . . . ,M we arrive at J(p̆). For the202

gradient it now follows by X
+
pXpX

+
p = X

+
p that203

∇G(p̆) = 2 J(p̆)∗r(p)

= 2

((
I

iI

)
X∗v(p)(I−Xp[XT

pXp]−1XT
p) +

(
I

−iI

)
H∗y−r(p)X

+
p

)
XpX

+
py

= 2

(
I

−iI

)
H∗y−r(p)X

+
py = 2

(
I

−iI

)
H∗y−r(p)[X

T
pXp]−1Hyp.

The representation for J(p̆)∗J(p̆) follows similarly.204

Corollary 3.2 A normalized vector p ∈ CM+1 that minimizes G(p) in (3.1) neces-205

sarily satisfies the eigenvector equation206

H∗y−r(p)[X
T
pXp]−1Hyp =

(
H∗y[XT

pXp]−1Hy −H∗r(p)[X
T
pXp]−1Hr(p)

)
p = 0. (3.4)

Proof: If p with ‖p‖2 = 1 minimizes G(p), then ∇G(p) = 0. The assertion directly
follows from (3.2) and Hr(p)p = XT

pr(p) since we observe that

H∗r(p)[X
T
pXp]−1Hr(p)p = H∗r(p)[X

T
pXp]−1XT

pr(p) = H∗r(p)[X
T
pXp]−1XT

py.

207

Let us now review the algorithms to solve min
p∈CM+1,‖p‖2=1

G(p) with G(p) = ‖r(p‖2208

in (3.1). All considered algorithms are iterative and aim at successive improvement of209

the coefficient vector p. As a suitable initial vector one can use210

p0 := argmin
p∈CM+1

‖p‖2=1

p∗H∗yHyp. (3.5)

Obviously, p0 is the eigenvector corresponding to the smallest eigenvalue of the positive211

semidefinite Hermitian matrix H∗yHy obtained by the Pisarenko method (2.12). Since212

y is noisy, the obtained smallest singular value is usually nonzero.213

All iteration algorithms that we investigate in this section and in the next section214

can also be applied using the pre-smoothed data vector ỹ ∈ C2M+1 in (2.11) instead215

of y.216

3.1 Gauß-Newton and Levenberg-Marquardt iteration217

We approximate r(p + δ) with r(p) = Ppy in (3.1) by using its first order Taylor218

expansion. Here again we map p = a+ib to p̆ := (aT ,bT )T ∈ R2(M+1) and δ = δ1+iδ2219

to δ̆ := (δT1 ,δ
T
2 )T ∈ R2(M+1). Then r(p̆) + J(p̆)δ̆ is the first order approximation of220

r(p̆ + δ̆), where J(p̆) = J(a,b) and r(p̆) = r(p). We compute221

G(p̆ + δ̆) ≈ (r(p̆) + J(p̆)δ̆)∗(r(p̆) + J(p̆)δ̆).
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Minimization of this expression with regard to the vector δ̆ gives

2Re (J(p̆)∗r(p̆)) + 2J(p̆)∗J(p̆)δ̆ = 0.

The corresponding Gauss-Newton iteration leads in our case at the jth step to the
system

J(p̆j)
∗J(p̆j)δ̆j = −Re (J(p̆j)

∗r(p̆j))

to get the improved vector p̆j+1 = p̆j + δ̆j , where the needed expressions can be taken222

from Theorem 3.1. However, while the coefficient matrix J(p̆j)
∗J(p̆j) is obviously223

positive semidefinite, it is not always positive definite. Particularly, if pj is a real224

vector, i.e. p̆j = (pTj ,0
T )T , then with v(pj) = X

+
pj

y = X+
pj

y, we have from (3.3)225

J(p̆j)
∗J(p̆j)p̆j = J(pj ,0)TJ(pj ,0)p̆j

=

((
IM+1

i IM+1

)
X∗v(pj)(IL+1 −Ppj )Xv(pj)

+

(
IM+1

−i IM+1

)
H∗y−r(pj)[X

T
pj

Xpj ]
−1Hy−r(pj)

)
pj = 0 (3.6)

since
X∗v(pj)(IL+1 −Ppj )Xv(pj)pj = X∗v(pj)(IL+1 −Ppj )Xpjv(pj) = 0

and similarly H∗y−r(pj)(X
T
pj

Xpj )
−1Hy−r(pj)pj = 0.226

Levenberg-Marquardt iteration. The Levenberg-Marquardt algorithm introduces a227

regularization changing the coefficient matrix at each iteration step to J(p̆j)
∗J(p̆j)+λjI228

which is always positive definite for λj > 0. The iteration then reads229

(J(p̆j)
∗J(p̆j) + λjI) δ̆j = −Re (J(p̆j)

∗r(p̆j)) ,

p̆j+1 = p̆j + δ̆j .

In this algorithm, we need to fix the parameter λj which is usually taken very small.230

If we arrive at a (local) minimum of G(p), then the right-hand side in the Levenberg-231

Marquardt iteration vanishes, and we obtain δ̆j = 0.232

The optimization algorithm is very fast and tends to converge to the next local233

minimum. Therefore, the solution strongly depends on the initial vector p̆0 that we234

take as given in (3.5). For existing software packages to implement this method we235

refer to [22].236

3.2 Algorithms for the nonlinear eigenvector problem237

We consider the necessary condition (3.4) of the form

H∗y−r(p)[X
T
pXp]−1Hyp = 0

as a nonlinear eigenvalue problem.238

Iterative Gradient Algorithm (IGRA). We denote

Cp := H∗y−r(p)[X
T
pXp]−1Hy = H∗y[XT

pXp]−1Hy −H∗r(p)[X
T
pXp]−1Hr(p),
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then (3.4) can be written as Cpp = 0. Using this new representation of the gradient239

∇G(p) in (3.2) we propose the iteration scheme240 (
Cpj − µjI

)
pj+1 =

(
H∗y−r(pj)[X

T
pj

Xpj ]
−1Hy − µjI

)
pj+1 = 0,

p∗j+1pj+1 = 1.
(3.7)

Here, at each iteration step the matrix Cp is approximated by Cpj , where the vector241

pj is found from the previous iteration. An initial vector p0 can be taken as in (3.5).242

At the j-th step, inverse iteration is applied to compute the eigenvector pj+1 of Cpj243

corresponding to the smallest eigenvalue by modulus µj . The algorithm stops if µj is244

small enough compared to ‖Cpj‖. The complete algorithm reads as follows.245

Algorithm 3.3 (IGRA)246

Input: M , yk, k = 0, . . . , L, with L ≥ 2M .247

1. Initialization248

• Optional: Compute ỹ in (2.11) and replace in all further steps y by ỹ.249

• Compute p0 in (3.5).250

2. Iteration: For j = 0 . . . till convergence251

• Compute pj+1 according to (3.7), i.e., compute the eigenvector pj+1 of Cpj252

corresponding to its smallest eigenvalue by modulus.253

3. Denote by p the vector obtained by that iteration.254

4. Compute the vector z of zeros zj, j = 1, . . . ,M , of the Prony polynomial p(z) =255 ∑M
k=0 pkz

k by solving an eigenvalue problem for the corresponding companion256

matrix.257

5. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

Vzd = y.

Output: Parameter vectors z, d.258

Remark 3.4 1. It can be simply observed that the desired solution vector p̃ in (2.9)259

is a fixed point of the iteration (3.7), i.e., from pj = p̃ if follows pj+1 = p̃, where in260

particular µj = 0 by (3.4).261

2. In the scheme (3.7), Cpj is the difference of the two Hermitian positive defi-262

nite matrices H∗y[XT
pj

Xpj ]
−1Hy and H∗r(pj)[X

T
pj

Xpj ]
−1Hr(pj). The eigenvalues of this263

matrix difference are all real and lie in an interval bounded by min‖x‖2=1 x∗Cpjx and264

max‖x‖2=1 x∗Cpjx. This interval always contains the value 0 since we have265

p∗jH
∗
r(pj)[X

T
pj

Xpj ]
−1Hr(pj)pj = r(pj)

∗Xpj [X
T
pj

Xpj ]
−1XT

pj
r(pj)

= r(pj)
∗Ppjr(pj) = y∗Ppjy = p∗jH

∗
y[XT

pj
Xpj ]

−1Hypj ,

and thus p∗jCpjpj = 0.266

3. Osborne and Smyth [24, 25, 26] considered a similar algorithm called Gradient267

Condition Reweighting Algorithm (GRA) for real data. They employed the assumption268

12



that the given data are of the form yk = fk + εk, where the errors εk are independent269

and with mean zero and variance σ2. The algorithm considered in [24] for exponential270

data is close to the algorithm above in spirit but slightly differs with regard to the second271

matrix H∗r(pj)[X
T
pj

Xpj ]
−1Hr(pj). Instead, for GRA the second matrix is of the form272

XT
vj

Xvj with vj = X
+
pj

y, see also Algorithm SIMI-1 in the next section.273

Iterative Quadratic Maximum Likelihood (IQML). Further, we present the it-274

erative quadratic maximum likelihood (IQML) algorithm in [10, 11] and the algorithm275

ORA (Objective function Reweighting Algorithm) in [18]. In both methods the itera-276

tion277

pj+1 = argmin
p∈CM+1

‖p‖=1

p∗H∗y[XT
pj

Xpj ]
−1Hyp, (3.8)

is proposed. Compared to the representation of the gradient in Theorem 3.1 and to278

the IGRA iteration in (3.7) the IQML iteration just does not take the second term279

H∗r(p)[X
T
pXp]−1Hyp into account.280

This iteration works well in practice, see Algorithm 3.5. However, it is not obvious281

whether the solution vector pj is indeed a fixed point of the IQML iteration. We can282

apply this scheme also to the filtered data ỹ.283

Algorithm 3.5 (IQML)284

Input: M , yk, k = 0, . . . , L, with L ≥ 2M .285

1. Initialization286

• Optional: Compute ỹ in (2.11) and replace in all further steps y by ỹ.287

• Compute p0 in (3.5).288

2. Iteration: For j = 0 . . . till convergence289

• Compute pj+1 according to (3.8), i.e., compute the right-singular vector pj+1290

of [XT
pj

Xpj ]
−1/2Hy corresponding to its smallest singular value.291

3. Denote by p the vector obtained by that iteration and compute the vector z of292

zeros zj, j = 1, . . . ,M , of the Prony polynomial p(z) =
∑M

k=0 pkz
k by solving an293

eigenvalue problem for the corresponding companion matrix.294

4. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

Vzd = y.

Output: Parameter vectors z, d.295

4 New iteration schemes based on simultaneous mini-296

mization297

Based on the ideas of Osborne and Smyth, we want to consider an extended iteration
scheme in order to relax the problem of getting stuck at the next local minimum. For
two normalized vectors p and q in CM+1 we introduce the matrix

A(p,q) := Xp[XT
qXq]−1XT

p .
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Then, (2.9) can be written as p̃ = argmin
p∈CM+1

‖p‖2=1

y∗A(p,p)y. Our goal is now to improve p298

during an iteration by simultaneously minimizing y∗A(pj ,p)y and y∗A(p,pj)y with299

respect to p to obtain pj+1. Therefore, we consider the new iteration scheme300

pj+1 := argmin
p∈CM+1

‖p‖2=1

(y∗A(pj ,p)y + y∗A(p,pj)y) , (4.1)

and denote by301

F (pj+1,pj) := y∗A(pj ,pj+1)y + y∗A(pj+1,pj)y (4.2)

= (pj)
∗H∗y[XT

pj+1
Xpj+1 ]−1Hypj + (pj+1)∗H∗y[XT

pj
Xpj ]

−1Hypj+1

the obtained functional value. The iteration schemes based on (4.1) will be shortly302

called simultaneous minimization schemes (SIMI). We start with the following Theorem303

that gives us a necessary condition for the sequence of vectors (pj)
∞
j=0 similarly as in304

Corollary 3.2.305

Theorem 4.1 Let y = (yk)
L
k=0 be given with 2M ≤ L. Then, the vector pj+1 com-306

puted in (4.1) necessarily satisfies the eigenvector equation307 (
H∗y[XT

pj
Xpj ]

−1Hy −XT
wj

Xwj

)
pj+1 = 0, (4.3)

where Xwj is generated as in (2.7) with wj, where wj := [XT
pj+1

Xpj+1 ]−1XT
pj

y.308

Proof: The proof is similar to that of Theorem 3.1 and Corollary 3.2. With p =
a+ib = (ak)

M
k=0+i(bk)

M
k=0 and p̆ = (aT ,bT )T ∈ R2M+2 it follows from (4.1) necessarily

that ∇p̆F (p,pj) = 0 for p = pj+1. As before, we employ the conditions

∂F (p,pj)

∂ak
= 0 and

∂F (p,pj)

∂bk
= 0, k = 0, . . . ,M.

With w := [XT
pXp]−1XT

pj
y, Xky = Hyek, and Xkw = Xwek, where ek ∈ CM+1

309

denotes again the kth unit vector for k = 0, . . . ,M , we obtain310

∂F (p,pj)

∂ak
=

∂

∂ak

[
p∗jH

∗
y[XT

pXp]−1Hypj + p∗H∗y[XT
pj

Xpj ]
−1Hyp

]
=

∂

∂ak

[
y∗Xpj [X

T
pXp]−1XT

pj
y + y∗Xp[XT

pj
Xpj ]

−1XT
py
]

= −y∗Xpj [X
T
pXp]−1[XT

kXp + XT
pXk][X

T
pXp]−1XT

pj
y

+y∗Xk[X
T
pj

Xpj ]
−1XT

py + y∗Xp[XT
pj

Xpj ]
−1XT

k y

= −w∗XT
kXpw −w∗XT

pXkw

+eTkH∗y[XT
pj

Xpj ]
−1Hyp + p∗H∗y[XT

pj
Xpj ]

−1Hyek

= 2Re
(
−eTkXT

wXwp + eTkH∗y[XT
pj

Xpj ]
−1Hyp

)
.

Similar results are obtained for the imaginary part. We conclude that pj+1 necessarily
satisfies the eigenvector equation

H∗y[XT
pj

Xpj ]
−1Hypj+1 −XT

wj
Xwjpj+1 = 0.

Thus the assertion follows.311

312
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Remark 4.2 Observe that the eigenvector equation in (4.3) is still an implicit equation313

since wj contains pj+1 in its definition. In particular, (4.3) implies by multiplication314

with (pj+1)∗ that315

p∗j+1H
∗
y[XT

pj
Xpj ]

−1Hypj+1 = p∗j+1X
T
wj

Xwjpj+1 = ‖Xwjpj+1‖22
= w∗jX

T
pj+1

Xpj+1wj

= y∗Xpj [X
T
pj+1

Xpj+1 ]−1XT
pj

y

= p∗jH
∗
y[XT

pj+1
Xpj+1 ]−1Hypj

and thus316

y∗A(pj+1,pj)y = y∗A(pj ,pj+1)y. (4.4)

This result is remarkable since A(pj+1,pj) is similar to the pseudo inverse of317

A(pj ,pj+1).318

Let us now study the convergence of the iteration (4.3).319

Theorem 4.3 Let y = (yk)
L
k=0 be given with 2M ≤ L. Suppose that the normalized320

vector pj+1 obtained by the iteration (4.1) or by the condition (4.3) respectively, is al-321

ways uniquely defined. Then the sequence (F (pj ,pj+1))∞j=0 obtained by (4.2) converges322

to a limit F ∗. Moreover, the desired vector323

p̃ = argmin
p∈CM+1

‖p‖2=1

y∗Xp[XT
pXp]−1XT

p y (4.5)

is a fixed point of the iteration (4.1).324

Proof: 1. First we observe that A(pj ,pj+1) and A(pj+1,pj) are Hermitian and
positive semidefinite, therefore F (pj ,pj+1) is for all j ∈ N bounded from below by 0.
By definition of the functional in (4.2) we have

F (pj ,pj+1) ≤ F (pj ,pj) = 2y∗Xpj [X
T
pj

Xpj ]
−1XT

pj
y = 2y∗Ppjy ≤ 2‖y‖22.

Thus, the sequence (F (pj ,pj+1))∞j=0 is bounded from above. Further, the sequence is
monotonically decreasing since by (4.1)

F (pj ,pj+1) ≤ F (pj ,pj−1) = F (pj−1,pj).

Therefore, this sequence converges to a limit F ∗ = limj→∞ F (pj ,pj+1).325

2. We show now that p̃ in (4.5) is indeed a fixed point of the iteration (4.1). By
definition, p̃ satisfies the necessary condition (3.4) that takes here the form(

H∗y[XT
p̃Xp̃]−1Hy −XT

w̃Xw̃

)
p̃ = 0

with w̃ = v(p̃) = X
+
p̃y, since326

H∗r(p̃)[X
T
p̃Xp̃]−1Hr(p̃)p̃ = H∗r(p̃)[X

T
p̃Xp̃]−1XT

p̃ r(p̃) = H∗r(p̃)X
+
p̃ Xp̃ X

+
p̃ y

= H∗r(p̃) X
+
p̃ y = H∗r(p̃) w̃ = XT

w̃ r(p̃) = XT
w̃ Xp̃ X+

p̃ y

= XT
w̃ Xp̃ w̃ = XT

w̃ Xw̃ p̃. (4.6)
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Thus, for pj = p̃ in (4.3), it follows that pj+1 = p̃, i.e., ∇pF (p, p̃) = 0 for p = p̃.327

In the following we want to propose two different iteration schemes that both ap-328

proximate the iteration (4.1) to solve the nonlinear problem (2.9), where we successively329

update the vector p. We start with the initial vector p0 in (3.5).330

First iteration scheme (SIMI-1 or GRA).
Employing the necessary condition in (4.3) we define for a fixed normalized vector pj
the matrix

Bpj := Hy[XT
pj

Xpj ]
−1Hy −XT

vj
Xvj

with vj := X
+
pj

y = [XT
pj

Xpj ]
−1XT

pj
y and propose the scheme331 (

Bpj − µjI
)
pj+1 = 0,

p∗j+1pj+1 = 1.
(4.7)

This iteration scheme is obtained from (4.3), when we approximate [XT
pj+1

Xpj+1 ]−1Xpj332

by [XT
pj

Xpj ]
−1Xpj . The iteration scheme (4.7) is slightly different from the IGRA-333

iteration in (3.7). We observe that Bpj is again a difference of two positive defi-334

nite matrices. While the first matrix Hy[XT
pj

Xpj ]
−1Hy coincides with the first ma-335

trix in the IGRA iteration, the second matrix X∗vj
Xvj is different from the matrix336

H∗r(pj)[X
T
pj

Xpj ]
−1Hr(pj) in IGRA. However, when applied to the fixed point p̃, the337

two matrices give the same result, see (4.6).338

Remark 4.4 It appears that SIMI-1 is equivalent to the GRA-algorithm proposed in339

[24] despite being derived in a different way. In [25, 26], a similar method is considered,340

which is called difference version. The GRA algorithm in [25, 26] does not search for341

the vector p but for a different vector γ of parameters that is obtained by using a342

modification of Prony’s algorithm based on the difference operator instead of the shift343

operator. This is possible since the exponential functions zxj are eigenfunctions of344

the shift operator as well as of the difference operator, see also [27]. There exists an345

invertible linear map that transfers γ to p, [25]. A detailed study of the matrix Bγ in346

[25, 26] led to some remarkable asymptotic results. In particular, Osborne and Smyth347

showed that for a fixed point γ̂ of the iteration (4.7), the matrix 1
1+LBγ̂ has a positive348

semidefinite limit for L → ∞ and that with probability one, the zero eigenvalue of349

Bγ̂ is asymptotically isolated, see [26], Section 9. Their considerations about the local350

convergence of the iteration scheme employ the strong assumption that the functional351

F with γj+1 = F (γj) has a Frechet derivative with spectral radius smaller than 1, and352

that the fixed point of the iteration (4.7) is unique. The uniqueness of the fixed point353

can however be only shown asymptotically.354

Second iteration scheme (SIMI-2).355

We recall that356

y∗A(pj ,p)y = p∗j H∗y[XT
pXp]−1 Hypj

= p∗j H∗y[XT
pXp]−1 [XT

pXp] [XT
pXp]−1 Hypj . (4.8)

Approximating [XT
pXp]−1 by [XT

pj
Xpj ]

−1 in (4.8), we obtain357

y∗Ã(pj ,p)y = p∗jH
∗
y[XT

pj
Xpj ]

−1 [XT
pXp] [XT

pj
Xpj ]

−1 Hypj

= v∗j [X
T
p Xp]vj
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with vj := [XT
pj

Xpj ]
−1 Hypj = X

+
pj

y. Using this approximation we arrive at the358

second iteration scheme359

pj+1 := argmin
p∈CM+1

‖p‖2=1

(
y∗A(p,pj)y + y∗Ã(pj ,p)y

)
= argmin

p∈CM+1

‖p‖2=1

(
p∗H∗y [XT

pj
Xpj ]

−1 Hy p + v∗j [X
T
p Xp] vj

)
,

= argmin
p∈CM+1

‖p‖2=1

(
p∗H∗y [XT

pj
Xpj ]

−1 Hy p + p∗[XT
vj

Xvj ] p
)
. (4.9)

In the last equation, we have used that v∗j [X
T
p Xp] vj = v∗j [X

T
p Xp] vj and Xpvj =360

Xvjp hold. Now each iteration step breaks down to finding the eigenvector to the361

smallest eigenvalue of the positive semidefinite matrix H∗y [XT
pj

Xpj ]
−1 Hy + XT

vj
Xvj .362

We summarize the procedure with one of the two iteration schemes in Algorithm 4.5.363

Algorithm 4.5 (SIMI)364

Input: M , x0, h, yk, k = 0, . . . , L, with L+ 1 = (2M + 1)K.365

1. Initialization366

• (Optional): Compute ỹ in (2.11) and replace in all further steps y by ỹ.367

• Compute p0 in (3.5).368

2. Iteration: For j = 0 . . . till convergence369

• Compute pj+1 according to (4.7) or (4.9).370

3. Denote by p̃ the vector obtained by that iteration and compute the vector z of371

zeros zj, j = 1, . . . ,M , of the Prony polynomial p̃(z) =
∑M

k=0 p̃kz
k by solving an372

eigenvalue problem for the corresponding companion matrix.373

4. Compute the coefficients dj, j = 1, . . . ,M by solving the least squares problem

Vzd = y.

Output: Parameter vectors z, d.374

In Algorithm 4.5, convergence is achieved if ‖pj − pj+1‖2 < ε for some predefined375

positive value ε. In our numerical results, we have employed ε = 10−8. Concerning376

the convergence properties of the proposed iteration scheme SIMI-2 we observe the377

following. Similarly as in the proof of Theorem 4.3 the achieved functional values378

in the iteration scheme are bounded from below and from above. Therefore the se-379

quence of functional values possesses accumulation points. Since the functional values380

continuously depend on the iteration vectors, there can be only finitely many accumu-381

lation points and the Česaro mean of the sequence of functional values as well as the382

corresponding mean of the iteration vectors always converges.383

Finally we study the question, how to compute the inverse matrix [XT
pXp]−1 as384

well as the Moore-Penrose X
+
p for given p ∈ CM+1 in an efficient way. For that385

purpose, let FL+1 := (ωjkL+1)Lj,k=0 be the Fourier matrix of size (L + 1) × (L + 1),386

where ωL+1 := e−2πi/(L+1). Observe that the Fouriermatrix is almost unitary with387

F−1
L+1 = 1

L+1FL+1.388
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Lemma 4.6 For a given vector p = (pk)
M
k=0 ∈ CM+1 the matrix Xp in (2.7) can be389

factorized as390

Xp =
1

L+ 1
FL+1 Dp FL+1,L−M+1 (4.10)

where Dp denotes the diagonal matrix Dp := diag(p(ωkL+1))Lk=0 with

(p(ωkL+1)Lk=0 = (
M∑
j=0

pj ω
jk
L+1)Lk=0 = FL+1,M+1p,

and where FL+1,L−M+1 and FL+1,M+1 denote truncated Fourier matrices containing
only the first L−M + 1 and M + 1 columns, respectively. Further, we have

[XT
pXp]−1 =

1

L+ 1
FT
L+1,L−M+1[DpDp]+FL+1,L−M+1.

If the vector FL+1,M+1p only has nonzero components, then we also have

X+
p =

1

L+ 1
F∗L+1,L−M+1D

−1
p FL+1.

Proof: We consider the circulant matrix X̃p that is obtained by extension of Xp in
(2.7) to a square matrix of size (L+ 1)× (L+ 1). Then X̃p can be diagonalized by the
Fourier matrix, i.e.,

X̃p = F−1
L+1 Dp FL+1

with the diagonal matrix Dp, as defined in Lemma 4.6, see e.g. [31], Section 3.3. Now,391

the factorization (4.10) is obtained by suitable truncation of the last Fourier matrix392

in the factorization of X̃p. The formula for [XT
pXp]−1 directly follows from (4.10)393

using that F+
L+1,L−M+1 = 1

L+1F∗L+1,L−M+1. If moreover Dp is invertible, then the394

factorization of X+ directly follows.395

5 Numerical results396

We want to compare the different iteration methods and show that they all converge397

in practice. We will consider the results of the least squares Prony method (Pisarenko398

method) (PM), the approximate Prony method (APM) in [32], the SIMI-1 iteration399

(GRA) in (4.7), the IQML iteration in Algorithm 3.5, the VARPRO method based on400

Levenberg-Marquardt iteration using the software package of [22], and the two new401

iterations SIMI-2 in (4.9) and IGRA in Algorithm 3.3. For all algorithms we will also402

employ the smoothed data ỹ in (2.11) alongside the original data vector y. Besides403

achieving a much smaller error variance in the smoothed data ỹ, a further advantage is404

that the obtained Hermitian Toeplitz matrix XT
pj

Xpj is only of size (M + 1)× (M + 1)405

at each iteration step in IGRA, IQML and SIMI-iterations.406

In all examples, we want to recover the parameters Tj = 1
h log(zj) and dj of the

signal f(x) =
∑M

j=1 dje
Tjx from noisy measurements yk = f(kh) + εk. With the

previous notation we have zj = eTjh where h is some fixed step size. The recovered

signal is denoted by f̂(x) =
∑M

j=1 d̂je
T̂jx. The recovery of dj is done in the same way

for all algorithms, therefore we present only the results for Tj . For the first and second
example we employ the right singular vector to the smallest singular value of Hy or of
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Hỹ as initial vector, respectively. In Example 5.1 we particularly test the dependence
of the results from the number of measurements L for fixed noise level. In Example
5.2 we consider different noise distributions and noise levels. In the third example we
test different initial vectors for different levels of Gaussian noise. The last example
contains complex parameters zj and Tj , respectively. We will study the number of the
iterations (NoI), the relative error e(f) given by

e(f) =

max
k=0,...,L

|f(kh)− f̂(kh)|

max
k=0,...L

|f(kh)|
,

and the normalized 2-error

1

L+ 1

( L∑
k=0

|yk − f̂(kh)|2
)1/2

that measures the distance of the recovered signal to the measured signal y.407

In the first, the second and the last example, we present the mean values T̂j the408

mean relative error e(f) and the mean 2-error obtained from 100 simulated data sets.409

In the third example, we have considered single data vectors y.410

411

Example 5.1 In this example from [18] we use h = 1/L and consider the data

yk = exp(−4k/L) + εk, k = 0, 1, . . . , L,

where εk ∼ N(0, 0.01), i.e. the deviation is σ = 0.1. We use either the full data vector y412

with L = 11, 32, 128, 512 or the filtered data ỹ ∈ R3 in (2.11). The bound for the highest413

number of iterations is set to 10. We compare the results for each algorithm in Table 1.414

The mean values of the normalized 2-error 1
L+1

(∑L
k=0 |f(k/L)− yk)|2

)1/2
achieved by415

the exact parameters are 0.0291 (L = 11), 0.0174 (L = 32), 0.0088 (L = 128), 0.0062416

(L = 254) and 0.0044 (L = 512).417

We observe in Table 1 that the direct methods PM and APM do not profit from418

a higher number L of samples. Particularly PM obtains even worse results. These419

results verify that the non-iterative Prony methods are not consistent, [18]. All iterative420

methods achieve with their estimated parameters mean errors in the same range as the421

optimal parameters, and the errors decreases for growing L. For filtered data, all422

methods work equivalently well. For larger L, we have a stronger reduction of noise423

variance in ỹ, see the remarks below (2.11).424

425

Example 5.2 We consider the example in [26] with M = 2 and h = 1/L of the form

yk = 2 exp(−4k/L)− 1.5 exp(−7k/L) + εk, k = 0, 1, . . . , L.

Here, we are interested in the performance of the algorithms for εk ∈ N(0, σ2) with dif-426

ferent deviations, σ ∈ {0.001, 0.01, 0.05}. We show the results in Table 2 for a fixed L =427

49. In addition to normal distribution, we show the results for εk ∼ Lognormal(0, σ2)428
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with different deviations σ and L = 254 in Table 3. Again we compare the 2-errors pro-429

vided by the algorithms to the errors obtained by taking the exact parameters T1 = −4430

and T2 = −7. The mean values of the normed 2-error for the measured samples with431

normal distribution noise are 1.39e − 04 (σ = 0.001), 0.0014 (σ = 0.01) and 0.0071432

(σ = 0.05). Those with Lognormal distribution are 6.29e − 05 (σ = 0.001), 0.0006433

(σ = 0.01) and 0.0022 (σ = 0.005). For smaller noise levels, all iterative methods work434

well and achieve even better 2-errors than the correct parameter vector. However, for435

σ = 0.05 completely different parameters are provided, while the obtained errors are436

very small. This shows, that many different parameter vectors allow an approximation437

of the given data with a similar 2-error.438

The results of Table 3 show that the iterative methods can also cope with different439

noise distributions. For σ = 0.05, the methods IQML, VARPRO, as well as the new440

iterations SIMI-2 and IGRA find parameter vectors which are quite away from the441

original parameter vector T = (−4,−7) but achieve a much smaller error of about442

3.4e− 04 instead of 0.0022. SIMI-1 (GRA) does not work as well in this case. These443

results show however the strong ill-posedness of the parameter estimation problem, while444

very good approximation results are achieved.445

Example 5.3 Now we investigate a three-term model with h = 5/L of the form

yk = exp(0.95 kh) + exp(0.5 kh) + exp(0.2 kh) + εk, k = 0, 1, . . . , L,

where εk ∼ N(0, σ2) with σ ∈ {0.0001, 0.001, 0.01}. Observe that in this case the446

exponentials exp(0.95), exp(0.5) and exp(0.2) are larger than 1 such that the sequence447

exponentially increases. Again, the filtered data ỹk, k = 0, . . . , 6, is also considered.448

We employed a fixed number of L = 69 samples. We have computed here only the the449

parameters of one noisy measured vector y (without any averaging of results). With the450

correct parameters, we obtain the normed 2-error for the measured samples 1.3371e−05,451

1.0789e− 04 and 0.0013 for σ = 0.0001, 0.001 and 0.01, respectively.452

In this example we have investigated the influence of the initial vector p0 and re-453

placed it by the singular vectors of H∗yHy (and H∗ỹHỹ, respectively) to the second or454

third smallest singular value. The bound for the highest number of iterations has been455

set to 20. The results are given in Table 4. As one can see, the SIMI-1 (GRA) itera-456

tion depends more strongly on the starting vector than the other iterative algorithms.457

Further, for strong noise all algorithms provide in the last part of the table parameters458

for the frequencies Tj that are completely different from the original parameter vector459

(0.95, 0.5, 0.2)T . But the 2-error shows that the found parameters indeed admit an ap-460

proximation of the noisy data vector by a three-term exponential sum being equally good461

as the original parameter vector. Thus, from approximation point of view all algorithms462

work well.463

Example 5.4 At last, a frequency estimation example in [18] will be studied,

yk = cos(0.1k + 1) + εk =
ei

2
eik/10 +

e−i

2
e−ik/10 + εk k = 0, 1, . . . , L,

where εk ∼ N(0, 0.01). We use either the full data vector y with L = 14, 49, 254, 514,464

or the filtered data ỹ in (2.11). The bound for the highest number of iterations is set to465
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10. We compare the results for these two data sets for each algorithm in Table 5. The466

mean values of the normalized 2-error for the measured samples are 0.0255 (L = 14),467

0.0139 (L = 49), 0.0063 (L = 254) and 0.0044 (L = 514). Convergence results can468

be obtained from the iteration algorithms with the full data. However, for the filtered469

data we suffer from aliasing effects caused by periodicity of eix. Here, we reconstruct470

zK1 and zK2 = z−K1 instead of z1 = ei/10 and z2 = e−i/10. For L = 254 we have K = 51471

and for L = 514 we have K = 103, see (2.11). While zK1 and zK2 can be still well472

reconstructed, we cannot extract T1 and T2 = −T1 uniquely by restricting the phase to473

[−π, π], since KT1 = K/10 and KT2 = −K/10 are not longer in [−π, π].474

6 Conclusion475

In this paper, we have surveyed different numerical methods to solve the problem of476

optimal recovery of signal vectors by vectors constructed with short exponential sums.477

This problem appears in many applications, where one needs to estimate exponential478

decays or requires a sparse approximation of the data using exponential sums. If the479

exponential function model is known beforehand and the measurements contain i.i.d480

random noise, then the considered model is consistent for L → ∞, while the non-481

iterative methods PM and APM are not consistent, see [18]. Usually, the results of482

non-iterative methods can be strongly improved by employing a filtering in a pre-483

processing step. Pre-filtering may however cause aliasing effects.484

One main goal was to present a uniform framework to solve the nonlinear mini-485

mization problem and to recover optimal parameters with respect to the 2-norm error.486

In particular, we are interested in iteration algorithms that are robust with regard to487

the choice of initial vectors and converge quickly. Using an explicit representation of488

the Jacobian matrix, we proposed the algorithm IGRA in Section 3, which is close in489

nature but not equivalent to the GRA algorithm by Osborne and Smyth [26]. Further,490

we proposed a new iteration scheme based on simultaneous minimization in Section 4.491

This approach leads to two schemes SIMI-1 and SIMI-2. SIMI-1 appears to be equiv-492

alent to GRA for the recurrence case in [25, 26]. The numerical experiments show493

that the two new schemes IGRA and SIMI-2 converge fast and are more robust with494

regard to the choice of starting vectors than VARPRO, see Example 5.3 and Table 4.495

Moreover, it can be seen from the numerical examples that the problem of parameter496

identification is ill-posed. We are able to find very good approximations of the given497

measurements using exponential sums with different parameter vectors.498
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PM APM SIMI-I
(GRA)

IQML VARPRO SIMI-2
(4.9)

IGRA

L = 11 NoI \ \ 6 5 4 5 7

T̂ -4.6939 -4.1239 -4.0941 -3.3699 -4.0068 -4.0089 -4.2321

rel. error 0.0955 0.0844 0.0742 0.0733 0.0815 0.0729 0.0850

2-error 0.0266 0.0259 0.0249 0.0249 0.0262 0.0249 0.0251

with filter NoI \ \ 7 6 3 4 7

T̂ -3.9933 -3.9765 -4.0136 -4.2473 -3.9966 -4.0324 -3.9905

rel. error 0.0914 0.0918 0.0900 0.0899 0.0929 0.0897 0.0921

2-error 0.0262 0.0228 0.0262 0.0262 0.0277 0.0262 0.0265

L = 32 NoI \ \ 6 5 3 4 6

T̂ -6.0656 -3.915 -3.9702 -3.939 -4.0797 -3.9164 -4.4257

rel. error 0.1773 0.0760 0.0532 0.0533 0.0611 0.0534 0.0564

2-error 0.0216 0.0175 0.0168 0.0168 0.0168 0.0168 0.0175

with filter NoI \ \ 7 6 2 4 6

T̂ -4 -3.9931 -4.004 -4.0386 -4.0838 -4.0113 -4.0147

rel. error 0.0676 0.0677 0.0670 0.0670 0.0762 0.0670 0.0690

2-error 0.0171 0.0180 0.0171 0.0171 0.0172 0.0171 0.0179

L = 128 NoI \ \ 6 5 3 5 6

T̂ -13.5582 -3.8959 -4.0196 -4.0052 -4.0018 -4.0013 -4.0456

rel. error 0.4828 0.0818 0.0347 0.0347 0.0296 0.0348 0.0296

2-error 0.0190 0.0092 0.0087 0.0087 0.0088 0.0087 0.0086

with filter NoI \ \ 5 5 2 4 5

T̂ -3.9893 -3.9871 -3.9887 -4.0123 -3.9948 -3.991 -3.9848

rel. error 0.0438 0.0439 0.0424 0.0424 0.0329 0.0423 0.0376

2-error 0.0088 0.0087 0.0088 0.0088 0.0088 0.0088 0.0087

L = 254 NoI \ \ 5 4 2 4 5

T̂ -22.8268 -3.8254 -4.0040 -4.0082 -4.0172 -3.9944 -3.9959

rel.error 0.6387 0.0903 0.0207 0.0207 0.0219 0.0207 0.0207

2-error 0.0167 0.0067 0.0062 0.0062 0.0062 0.0062 0.0062

with filter NoI \ \ 5 5 2 4 5

T̂ -3.9918 -3.9908 -3.9964 -4.0261 -4.0165 -3.9975 4.0555

rel.error 0.0239 0.0239 0.0243 0.0243 0.0245 0.0243 0.0243

2-error 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062

L = 512 NoI \ \ 5 4 4 4 5

T̂ -43.3615 -3.9179 -3.9989 -4.0031 -3.9880 -3.9937 -4.0396

rel. error 0.7641 0.0764 0.0150 0.0150 0.0152 0.0150 0.0150

2-error 0.0138 0.0046 0.0044 0.0044 0.0044 0.0044 0.0044

with filter NoI \ \ 4 4 2 3 4

T̂ -3.9958 -3.9952 -4.0006 -4.0339 -3.9755 -4.0013 -4.0075

rel. error 0.0178 0.0178 0.0172 0.0172 0.0178 0.0172 0.0172

2-error 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044 0.0044

Table 1:

Simulation results for perturbed signal values yk = exp(−4xk) + εk, εk ∼ N(0, 0.01),
k = 0, 1, . . . , L, and the low-pass filtered data ỹk, k = 0, 1, 2, in Example 5.1.
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PM APM SIMI-1
(GRA)

IQML VARPRO SIMI-2
(4.9)

IGRA

σ = 0.001 NoI \ \ 4 3 2 4 4

T̂ -3.5124
-8.2330

-4.0558
-6.8757

-3.9984
-7.0059

-3.9860
-7.0394

-3.9990
-7.0036

-3.9989
-7.0044

-3.9939
-7.0011

rel. error 0.0132 0.0051 0.0011 0.0011 0.0012 0.0011 0.0011

2-error 7.66e-04 3.19e-04 1.36e-04 1.36e-04 1.34e-04 1.36e-04 1.36e-04

with filter NoI \ \ 4 3 4 3 4

T̂ -3.9949
-7.0203

-3.9951
-7.0195

-3.9963
-7.0148

-3.9997
-6.9967

-4.0180
-6.9335

-3.9962
-7.0152

-3.9906
-7.0420

rel. error 0.0027 0.0027 0.0025 0.0025 0.0025 0.0025 0.0025

2-error 1.52e-04 1.52e-04 1.50e-04 1.50e-04 1.46e-04 1.50e-04 1.50e-04

σ = 0.01 NoI \ \ 9 5 5 7 8

T̂ -1.5070
-84.6605

-3.9369
-7.0896

-3.9919
-7.0168

-4.0374
-6.9200

-4.0048
-6.9828

-4.0424
-6.8672

-3.9857
-7.2087

rel. error 0.1713 0.0667 0.0118 0.0118 0.0121 0.0118 0.0118

2-error 0.0110 0.0037 0.0013 0.0013 0.0014 0.0013 0.0013

with filter NoI \ \ 6 5 5 5 5

T̂ -4.0232
-6.8825

-4.0496
-6.7948

-4.0561
-6.7756

-4.4972
-5.7285

-4.1783
-6.4773

-4.0453
-6.8130

-3.9047
-7.2656

rel. error 0.0250 0.0252 0.0248 0.0249 0.0219 0.0249 0.0249

2-error 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

σ = 0.05 NoI \ \ 10 8 10 10 10

T̂ -1.6878
-39+154i

-1.5845
-75.7982

-2.2097
75.4581

-4.8846
-5.2294

-2.7758
-19.0629

-4.4405
±1.6933i

-2.6548
-21.1387

rel. error 0.2068 0.3399 0.6233 0.0611 0.0859 0.0669 0.0801

2-error 0.0119 0.0184 0.0285 0.0069 0.0071 0.0070 0.0071

with filter NoI \ \ 9 7 6 7 9

T̂ -3.5519
-10.0998

-3.7656
-8.2865

-3.7250
-8.7870

-1.5973
±1.5356i

-3.353
±2.14i

-3.5876
-9.9987

-3.4144
-12.1183

rel. error 0.1467 0.1449 0.1394 0.1408 0.1362 0.1446 0.1394

2-error 0.0081 0.0080 0.0079 0.0079 0.0076 0.0080 0.0079

Table 2:

Simulation results for perturbed signal values yk = 2 exp(−4xk)− exp(−7xk) + εk, εk ∼ N(0, σ2),
k = 0, 1, . . . , L, with L = 49 and the low-pass filtered data ỹk, k = 0, 1, 2, 3, 4, in Example 5.2.
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PM APM SIMI-1
(GRA)

IQML VARPRO SIMI-2
(4.9)

IGRA

σ = 0.001 NoI \ \ 3 3 2 3 3

T̂ -3.9683
-7.0417

-3.9684
-7.0415

-3.9449
-7.1083

-3.9449
-7.1082

-3.9449
-7.1083

-3.9449
-7.1082

-3.9449
-7.1083

rel.error 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019

2-error 1.07e-05 1.07e-05 6.4e-06 6.43e-06 6.43e-06 6.43e-06 6.43e-06

with filter NoI \ \ 3 3 1 3 3

T̂ -3.9261
-7.1888

-3.9262
-7.1888

-3.9224
-7.2052

-3.9224
-7.2052

-3.9258
-7.1903

-3.9224
-7.2052

-3.9224
-7.2050

rel.error 0.0025 0.0025 0.0026 0.0026 0.0025 0.0026 0.0026

2-error 1.44e-05 1.44e-05 1.68e-05 1.68e-05 1.46e-05 1.68e-05 1.68e-05

σ = 0.01 NoI \ \ 5 4 2 4 5

T̂ -3.1808
-9.0047

-3.7189
-7.3791

-3.5649
-7.9637

-3.5667
-7.9546

-3.5649
-7.9634

-3.5685
-7.9452

-3.5643
-7.9663

rel.error 0.0339 0.0193 0.0187 0.0187 0.0187 0.0187 0.0187

2-error 4.47e-04 1.21e-04 6.39e-05 6.39e-05 6.38e-05 6.40e-05 6.40e-05

with filter NoI \ \ 4 4 2 4 4

T̂ -3.4646
-8.8142

-3.4655
-8.8064

-3.4475
-8.9900

-3.4473
-8.9919

-3.4605
-8.8554

-3.4471
-8.9939

-3.4498
-8.9622

rel.error 0.0259 0.0258 0.0275 0.0275 0.0262 0.0275 0.0275

2-error 1.58e-04 1.57e-04 1.85e-04 1.85e-04 1.64e-04 1.86e-04 1.85e-04

σ = 0.05 NoI \ \ 10 7 4 10 8

T̂ -1.0785
-956.9269

-3.15
-7.7842

35.1825
-1.9647

-2.7327
-10.5473

-2.7190
-10.8301

-2.7570
-10.2465

-2.7134
-10.8505

rel.error 0.2812 0.1352 0.9260 0.0936 0.0934 0.0937 0.0934

2-error 0.0059 0.0020 0.0211 3.40e-04 3.38e-04 3.46e-04 3.39e-04

with filter NoI \ \ 8 6 9 6 8

T̂ -2.5766
-20.7+15.7i

-2.5821
-22.6+15.6i

-2.5596
-17.0+15.6i

-2.5594
-17.0+15.6i

-2.5671
18.9 +15.6i

-2.5564
-16.5+15.6i

-2.5691
-18.2+15.6i

rel.error 0.2486 0.2448 0.2662 0.2678 0.2554 0.2695 0.2663

2-error 0.0021 0.0021 0.0020 0.0020 0.0020 0.0020 0.0020

Table 3:

Simulation results for perturbed signal values yk = 2 exp(−4xk)− exp(−7xk) + εk,
εk ∼ Lognormal(0, σ2), k = 0, 1, . . . , L, with L = 254 and the low-pass filtered data ỹk,

k = 0, 1, 2, 3, 4, in Example 5.2.
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APM SIMI-1
(GRA)

IQML VARPRO SIMI-2
(4.9)

IGRA

σ = 0.0001 NoI \ 20 3 5 20 20

p0 is last
singular
vector

T̂ 0.9487
0.4779
0.1910

0.9490
0.4755
0.1765

0.9502
0.5040
0.2031

0.9501
0.5017
0.2012

0.9505
0.5127
0.2095

0.9505
0.5126
0.2095

rel. error 1.20e-05 1.27e-06 3.10e-07 3.99e-07 6.36e-07 6.32e-07

2-error 7.49e-05 1.26e-05 1.02e-05 1.03e-05 1.04e-05 1.04e-05

with filter NoI \ 20 3 1 20 20

T̂ 0.9498
0.4943
0.1947

0.9497
0.4928
0.1942

0.9497
0.4928
0.1942

0.9506
0.5148
0.2109

0.9497
0.4928
0.1942

0.9497
0.4928
0.1942

rel. error 8.36e-07 7.17e-07 7.17e-07 7.49e-07 7.16.e-07 7.17e-07

2-error 1.07e-05 1.09e-05 1.09e-05 1.09e-05 1.09e-05 1.09e-05

σ = 0.001 NoI \ 20 6 18 20 20

p0 is
third last
singular
vector

T̂ -2.4+43.4i
0.9409
0.3438

0.9507
0.5143
0.2095

0.9510
0.5215
0.2143

0.9475
0.4433
0.1345

0.9511
0.5226
0.2150

0.9512
0.5261
0.2172

rel. error 1.08e-04 2.99e-06 2.94e-06 3.28e-06 2.95e-06 2.97e-06

2-error 8.64e-04 1.14e-04 1.14e-04 1.40e-04 1.14e-04 1.14e-04

with filter NoI \ 12 5 20 20 4

T̂ 0.9503
0.5113
0.2118

0.8412
-0.12+3.6i
-0.12-3.6i

0.9511
0.5223
0.2146

0.9510
0.5220
0.2146

0.9511
0.5225
0.2148

0.9511
0.5220
0.2145

rel. error 3.82e-06 0.0158 2.89e-06 2.44e-06 2.90e-06 2.88e-06

2-error 1.16e-04 0.1008 1.14e-04 1.41e-04 1.14e-04 1.14e-04

σ = 0.01 NoI \ 20 12 20 20 20

p0 is sec-
ond last
singular
vector

T̂ 12.1346
1.0153
0.5318

0.9566
0.5658
0.2143

0.9389
0.4+43.4i
0.3378

0.9389
0.8+43.4i
0.3379

0.9528
0.4998
0.1648

0.9566
0.5650
0.2139

rel. error 0.7328 3.11e-05 1.02e-04 1.09e-04 3.06e-05 3.11e-05

2-error 4.6464 0.0013 0.0014 0.0014 0.0013 0.0013

with filter NoI \ 20 5 8 20 18

T̂ 0.9431
0.3681
-0.3735

0.9372
0.3325
0.1+4.3i

0.9443
0.3733
-0.4417

0.9443
0.3738
-0.4324

0.9442
0.3728
-0.4516

0.9372
0.3325
0.1+4.3i

rel. error 4.84e-05 1.88e-04 3.41e-05 3.38e-05 3.43e-05 1.88e-04

2-error 0.0013 0.0015 0.0013 0.0013 0.0013 0.0015

Table 4:

Simulation results for perturbed signal values yk = exp(0.95xk) + exp(0.5xk)+ exp(0.2xk) + εk,
k = 0, 1, . . . , L, with L = 69 and the low-pass filtered data ỹk, k = 0, . . . , 6, in Example 5.3.
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PM APM SIMI-1
(GRA)

IQML VARPRO SIMI-2
(4.9)

IGRA

L = 14 NoI \ \ 9 6 5 7 8

T 0.0002
-3.2774

1e-3-0.10i
1e-3+0.10i

-4e-3-0.08i
-4e-3+0.08i

-6e4-0.09i
-6e4+0.09i

5e-4-0.11i
5e-4+0.11i

3e-3-0.12i
3e-3+0.12i

0.01-0.12i
0.01+0.12i

rel.error 0.8597 0.3567 0.1447 0.1344 0.1346 0.1351 0.1346

2-error 0.0926 0.0386 0.0223 0.0216 0.0216 0.0217 0.0216

with filter NoI \ \ 7 5 5 7 7

T̂ -0.01-0.12i
-0.01+0.12i

-5e-4-0.10i
-5e-4+0.10i

2e-3-0.1i
2e-3+0.1i

0.3143
-1.1243

0.0165
-0.0492

6e-4-0.11i
6e-4+0.11i

0.02-0.11i
0.02+0.11i

rel.error 0.1876 0.1659 0.1539 0.1546 0.1653 0.1553 0.1539

2-error 0.0249 0.0234 0.0227 0.0227 0.0240 0.0227 0.0226

L = 49 NoI \ \ 6 4 3 5 5

T -1.92+3.14i
-0.0064

9e-4-0.10i
9e-4+0.10i

2e-4-0.10i
2e-4+0.10i

4e-4-0.10i
4e-4+0.10i

2e-4-0.10i
2e-4+0.10i

1e-4-0.10i
1e-4+0.10i

-8e-3-0.10i
-8e-3+0.10i

rel.error 1.1464 0.6742 0.0494 0.0494 0.0494 0.0493 0.0494

2-error 0.0850 0.0498 0.0134 0.0134 0.0134 0.0134 0.0134

with filter NoI \ \ 5 4 3 4 5

T̂ -2e-5-0.10i
-2e-5+0.10i

2e-4-0.10i
2e-4+0.10i

9e-5-0.10i
9e-5+0.10i

4e-4-0.10i
4e-4+0.10i

-7e-4-0.10i
-7e-4+0.10i

9e-5-0.10i
9e-5+0.10i

1e-3-0.10i
1e-3+0.10i

rel.error 0.0546 0.0548 0.0549 0.0549 0.0519 0.0550 0.0549

2-error 0.0135 0.0135 0.0135 0.0135 0.0136 0.0135 0.0135

L = 254 NoI \ \ 5 4 3 5 6

T -1.70+3.14i
-0.02

-3e-3-0.10i
-3e-3+0.10i

-4e-6-0.1i
-4e-6+0.1i

-1e-5-0.1i
-1e-5+0.1i

-4e-6-0.1i
-4e-6+0.1i

-4e-6-0.10i
-4e-6+0.10i

-6e-4-0.10i
-6e-4+0.10i

rel.error 1.1014 0.7395 0.0259 0.0259 0.0259 0.0259 0.0259

2-error 0.0441 0.0242 0.0062 0.0062 0.0062 0.0062 0.0062

with filter NoI \ \ 6 5 4 6 6

T̂ -1e-4-0.02i
-1e-4+0.02i

2e-6-0.02i
2e-6+0.02i

-3e-5-0.02i
-3e-5+0.02i

2e-4-0.02i
2e-4+0.02i

3e-4-0.02i
3e-4+0.02i

-3e-5-0.02i
-3e-5+0.02i

5e-4-0.02i
5e-4+0.02i

rel.error 1.0373 1.0386 1.0384 1.0384 1.0412 1.0384 1.0384

2-error 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445

L = 514 NoI \ \ 5 4 3 5 5

T -1.64+3.14i
-0.02

4e-4-0.10i
4e-4+0.10i

4e-6-0.1i
4e-6+0.1i

8e-6-0.10i
8e-6+0.10i

4e-6-0.1i
4e-6+0.1i

4e-6-0.10i
4e-6+0.10i

-2e-5-0.10i
-2e-5+0.10i

rel.error 1.1026 0.8710 0.0188 0.0189 0.0188 0.0189 0.0188

2-error 0.0311 0.0202 0.0044 0.0044 0.0044 0.0044 0.0044

with filter NoI \ \ 5 4 4 5 5

T̂ -8e-5-0.02i
-8e-5+0.02i

-1e-5-0.02i
-1e-5+0.02i

-2e-5-0.02i
-2e-5+0.02i

-3e-5-0.02i
-3e-5+0.02i

-2e-8-0.02i
-2e-8+0.02i

-2e-5-0.02i
-2e-5+0.02i

-1e-4-0.02i
-1e-4+0.02i

rel.error 1.0438 1.0431 1.0431 1.0431 1.0423 1.0431 1.0431

2-error 0.0312 0.0312 0.0312 0.0312 0.0312 0.0312 0.0312

Table 5:

Simulation results for perturbed signal values yk = cos(0.1xk + 1) + εk, εk ∼ N(0, 0.01),
k = 0, 1, . . . , L, and the low-pass filtered data ỹk, k = 0, 1, 2, 3, 4, in Example 5.4.
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