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Abstract

Denoising is always a challenging problem in natural imaging and geophysical data
processing. In this paper we consider the denoising of texture images using a nonlin-
ear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet
shrinkage is used for regularization of the diffusion process to preserve important features
in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to
preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion
filter that lives on graphs and show convergence of the corresponding iteration process.
Experimental results and comparisons show very good performance of the proposed model
for texture-preserving denoising.

Key words. reaction-diffusion, second-generation curvelets, wave atoms, digital TV,
regularization, denoising

1 Introduction

Denoising is one important operation in image processing. Most denoising methods assume
that the image is piecewise smooth while the noise is a high-frequency oscillation. So
one tries to remove the oscillations using local or adaptive smoothing strategies. Such
methods involve anisotropic diffusion, see e.g. [12, 39, 45, 50], means algorithms, see e.g.
[7, 41], regularization techniques, see e.g. [15, 19, 24, 33, 42], or wavelet systems, see e.g.
[17, 28, 43], etc. But actually, this assumption is often not suitable for natural images,
e.g., many fine structures such as textures are as oscillatory as noise. The texture will
unfortunately be treated as being noisy and will be wiped away. For natural images, one
is almost unable to obtain satisfying results only using one method due to the complex
structures and irregular details of images.

In [15], Chan, Osher and Shen introduced a nonlinear digital TV filter that can be
interpreted as a translation of the classical analog TV restoration model invented by
Rudin, Osher and Fatemi [42] to the digital case. The digital TV filter is a data-dependent
filter, capable of denoising data without blurring jumps and edges for non-flat images.
Different from most statistical filters, it has a simple fixed filter structure and an exact
formula for the filter coefficients that intrinsically encode the edge information. It is
simple to understand by readers who do not have knowledge on PDE’s and numerical
approximations.
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In this paper, we propose a very general regularized reaction-diffusion model, that
aims to improve the reconstruction of images with oriented textures. In the spirit of the
digital TV-filter in [15], we introduce a discrete filter living on graphs associated to our
continuous model. Therefore the proposed regularized digital reaction-diffusion filter is
also useful for non-flat features.

We also present the analysis of the new digital filter and prove convergence for suitable
regularization parameters λ ≥ 0 balancing the diffusion and the reaction term.

In Section 2 we introduce the continuous reaction-diffusion model that applies a curvelet
shrinkage as a regularization of the diffusion process and a wave atom shrinkage in the
reaction part. We shall give detailed arguments for the special choice of that model and
a comprehensive survey of related work. The special choice of the operators in the regu-
larized diffusion and in the reaction term is the key for a successful separation of texture
and noise in images. In Section 3 we introduce the corresponding new discrete reaction-
diffusion filter on graphs. Section 4 is devoted to the study of the properties and the
convergence of the proposed discrete reaction-diffusion filter. Further, we show that the
limit of the iteration process indeed satisfies a digital analogue of certain Euler equations.
Hence the filter can also be derived from a regularization method. In Section 5 we show
the performance of the new filter in comparison with other denoising methods. Finally,
we draw a conclusion in Section 6.

We note that this paper is part II of the combination of curvelets and nonlinear diffu-
sion. In our part I [32], a projected TV diffusion is applied as a postprocessing to suppress
the pseudo-Gibbs and curvelet-like artifacts.

2 Reaction-diffusion model

Let u0(x) be the noise contaminated version of an image u(x), i.e.,

u0(x) = u(x) + n(x).

Here n(x) denotes random noise with mean 0 and variance σ2,

En(x) = 0, En2(x) = σ2.

Further, we suppose that the original image contains also texture parts which need to be
preserved during the denoising process.

We now propose a reaction-diffusion model of the form

∂u

∂t
= ∇ · (g(|∇u|)∇u) + γ (Su0 − u) (2.1)

or more generally

∂u

∂t
= ∇ · (g(|∇(Pσ u)|)∇u) + γ(Su0 − u) (2.2)

with the original noisy signal u0 as initial condition, and with homogeneous Neumann
boundary conditions. Here |∇u(x, y)| :=

√
ux(x, y)2 + uy(x, y)2 denotes the Euclidean

norm of the partial derivatives of u. The first term on the right-hand side is a diffusion term
as described in [12], using a certain regularization Pσu. Typically, g(|x|) is a non-negative
decreasing function with limx→∞ g(|x|) = 0. The diffusivity g controls the smoothing
process by admitting strong diffusion if the gradient ∇u is small (possibly caused by
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noise) and by slowing down (or even stop) the smoothing for large gradients. In this
paper, we restrict our attention to bounded diffusivities g. Without loss of generality let

0 < g(|x|) ≤ 1, x ∈ R.

This restriction is e.g. satisfied for the Perona-Malik diffusivity g(|x|) := (1 + x2/κ2)−1,
the Charbonnier diffusivity g(|x|) := (1 + x2/κ2)−1/2, and the truncated TV diffusivity
g(|x|) := min{1, 1

|x|}, [39, 48].
As regularization operator Pσ we suggest to take here the curvelet-shrinkage

Pσu = T−1θT (u),

where T denotes the curvelet transform and T−1 the inverse transform [8, 9, 10]. For a
short summary on the curvelet transform we refer to [32]. Further, θ can be taken as a
soft threshold function defined by a fixed threshold σ > 0,

θs(x) =


x− σ, x ≥ σ,

0, |x| < σ,
x+ σ x < −σ,

or a hard threshold function

θh(x) =
{
x, |x| ≥ σ,
0, |x| < σ.

As we will see in Section 4, the convergence of the proposed discretization of (2.2) is
based on the assumption that Pσ is a continuous operator. Therefore, instead of θh the
continuous garrote threshold

θg(x) :=
{
x− σ2

x , |x| ≥ σ,
0, |x| < σ.

may be a good choice, where large coefficients nearly remain unaltered.
The second term on the right-hand side of (2.1) resp. (2.2) is the reaction term for

enhancement of oriented textures, consisting of the difference of the processed noisy image
Su0 and u. Here the nonlinear operator S should preserve and enhance the important
features of the image. One may take here again a wavelet shrinkage or a curvelet shrinkage,
i.e.,

Su0 = T−1θh T (u0).

We especially propose to use a transform based on wave atoms (see [21]). In fact, the
reaction-diffusion model (2.2) with wave atoms has been applied in [31]. In this case, the
reaction term is of the form

(WA)−1θ (WA)(u0) − u

where WA denotes the transform of wave atoms (see [21]).

2.1 Why use the curvelets as a regularization of diffusion?

The well-known Perona-Malik model (obtained for γ = 0 in (2.1)) has many desirable prop-
erties, and different numerically stable schemes have been proposed for image denoising
based on this model [48, 49, 50]. However from analytical point of view the Perona-Malik
model [39] is a notoriously ill-posed problem [22, 23, 26]. Another drawback of the PM
diffusion is its sensitivity to noise. Noise often introduces very large oscillations of the
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gradient ∇u, therefore the gradient-based model possibly misjudges true edges and heavy
noise leading to undesirable diffusion in regions where there is no true edge. In [12], a
Gaussian regularization is proposed, i.e.,

Pσu(x) = (Kσ ∗ u)(x) =
∫

R
2
Kσ(x− y)u(y)dy, Kσ :=

1
2πσ2

exp
(
−|x|2

2σ2

)
.

Then, considering the model (2.2) with γ = 0, existence, uniqueness and regularity of a
solution has been established for σ > 0 in [12, 45]. However, Gaussian filtering blurs edges
and finer textures. This behavior seems somewhat against the purpose of the PM equation
(i.e. sharpen the edges). Recently, a wavelet regularization has been also considered [51].

But the conventional tensor-produced 2D wavelets have not good performance at rep-
resenting line singularities because they ignore the geometric properties of objects and do
not exploit the regularity of edge curves.

The curvelet transform [8, 9, 10] is a new geometric multiscale transform, which allows
an optimally sparse representation of objects with C2-singularities. The needle-shape el-
ements of this transform own very high directional sensitivity and anisotropy (see Fig. 1
(left)). For a smooth object f with discontinuities along smooth curves, the best m-term
approximation f̃m by curvelet threshold obeys ‖f − f̃m‖2

2 ≤ Cm−2 (logm)3, while for
wavelets the decay rate is only m−1. It has been shown that the new transform repre-
sents edges and singularities along curves much more efficiently than traditional wavelet
transforms, e.g. [29, 30, 43].

The motivation of our regularized model is to improve the ill-posed problem of diffusion
by using the second-generation curvelet transform instead of traditional Gaussian filtering.
The curvelet pre-processing can effectively remove the noise while preserving the edges
well, leading to better discontinuity-preserving diffusion. Since the curvelet shrinkage
works like a smoothing kernel applied to u, the ideas of Catté, Lions, Morel and Coll [12]
can be also applied to our model, and the proof of existence and uniqueness is not altered
by the additional reaction term. This fact has been stated already for the regularized
Nordström model in [12], p. 185.
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Figure 1: Elements of curvelets (left) and wave atoms (right) in spatial domain.

2.2 Why use wave atoms in the reaction term?

The motivation to use the reaction term Su0 − u is that the model can preserve even
enhance the wanted oriented textures.
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In [1], Acton et al. achieved an oriented texture completion by an AM-FM reaction-
diffusion method using Gabor filters as reaction term. Very recently, Demanet and Ying
[21] introduced so-called wave atoms, that can be seen as a variant of 2D wavelet packets
and obey the parabolic scaling of curvelets wavelength = (diameter)2 (see Fig. 1 (right)).
Oscillatory functions or oriented textures (e.g., fingerprint, seismic profile, engineering
surfaces) have a significantly sparser expansion in wave atoms than in other fixed standard
representations like Gabor filters, wavelets, and curvelets.

Wave atoms have the ability to adapt to arbitrary local directions of a pattern, and to
sparsely represent anisotropic patterns aligned with the axes. In comparison to curvelets,
wave atoms not only capture the coherence of the pattern along the oscillations, but also
the pattern across the oscillations.

It is therefore natural to apply the wave-atoms shrinkage as a reaction for enhancement
of the oriented textures.

2.3 Related work

The idea of using reaction diffusion equations, combining the diffusion for noise filtration
and the reaction to improve the contrast, can already be found in [1, 2, 5, 16, 18, 40].

The model in [18] is of the form

∂u

∂t
= σε2 ∇ · (Aε(u)∇u) + f(u) in Ω ⊂ R

2

with initial condition u(·, 0) = u0 in Ω and u = 0 on δΩ. The nonlinear operator Aε(u)
approximates the orthogonal projection of u onto the direction which is perpendicular to
the gradient of uε. Here the function uε coincides with u for x ∈ Ω and d(x, δΩ) > 2ε,
and uε = 0 on δΩ. The reaction term f ∈ C1 satisfies f(±1) = 0, x f(x) > 0 for
x ∈ (−1, 1) \ {0}. One problem occurring in the model of [18] is that the parameter ε
should be small such that uε well approximates u, but this leads to a small amount of
diffusion.

The reaction-diffusion model in [2] is based on the equation

∂u

∂t
= g(|G ∗ ∇u|)‖∇u‖∇ ·

( ∇u
‖∇u‖

)
+ f(u)

with the initial condition u(0, x) = u0(x). The diffusivity function g(x) is a nonnegative,
nonincreasing function with g(0) = 1, G is a convolution kernel, and f is a Lipschitz
function with a finite number of zeros. Compared with (2.2), the regularized diffusivity
function works here as a factor (as usual for implicit snakes) and is not directly incorpo-
rated in the diffusion term. The term ‖∇u‖∇·( ∇u

‖∇u‖ ) diffuses u in the orthogonal direction
to the gradient ∇u while the term g(|G ∗ ∇u|) controls the diffusion speed. The function
f determines the asymptotic state of the equation based on a Lloyd quantizer. In [16], a
similar model has been investigated, where f(u) is replaced by ∇g(∇(Gσ ∗ u)) · ∇u.

In [40] the simplified diffusion-reaction equation

∂u

∂t
= ∇ · (g(|∇u|)∇u) + γ(u0 − u)

with u(0, x) = u0(x) and homogeneous Neumann boundary conditions has been considered
and discretized on graphs. This equation coincides with (2.1) for S = Id. In spirit of
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the mechanism, various other reaction diffusion equations have been proposed for image
processing without rigorous proofs of existence and uniqueness of solutions [1, 5].

The considered reaction-diffusion model (2.1) is also closely related to the minimization
of energy functionals.

In [36], Nordström suggested to obtain a reconstruction u of a degraded image u0 by
minimizing the energy functional

E(u, ω) :=
∫

Ω
γ(u0 − u)2 + ω |∇u|2 + κ2(ω − lnω) (2.3)

where the parameters γ and κ are positive weights and ω = ωu : Ω → [0, 1] gives a
fuzzy edge representation. In regions with small variations of u the diffusivity function ω
approaches 1 while at edges ω it is close to 0. The first term of E punishes deviations of
u from u0, the second term detects unsmoothness of u and the last measures the extend
of edges. The corresponding Euler equations to this energy functional are given by

0 = γ(u0 − u) + ∇ · (ω∇u),
0 = κ2(1 − 1

ω
) + |∇u|2.

with homogeneous Neumann boundary conditions. The second equation leads to the
Perona-Malik diffusivity

ω =
(
1 +

|∇u|2
κ

)−1
,

and we obtain
∇ · (g(|∇u|)∇u) + γ(u0 − u) = 0

with g(|∇u|) = ω. This is the steady-state equation of (2.1) for Perona-Malik diffusivity
g and the operator S = Id. Observe that the energy functional E is nonconvex. There-
fore, it can possess numerous local minima. Indeed, Nordström was not able to establish
convergence of his discretized minimizing procedure for (2.3) for small γ.

In the original ROF model developed by Rudin, Osher and Fatemi [42], the wanted
denoising is obtained by minimizing the energy

E(u) := |u|BV + λ‖u0 − u‖2
L2(Ω),

where λ is an fitting parameter and |u|BV denotes the BV seminorm in the space BV (Ω)
of functions with bounded variation. For a rigorous definition of the BV-seminorm

|u|BV =
∫

Ω
|∇u| = sup

|g|≤1,g∈C1
c (Ω)

∫
Ω
u(∇ · g)

with |g| =
√
g2
1 + g2

2 we refer to [33].
The ROF model has been analyzed by several authors, see e.g. [13, 35]. One of its

drawbacks is the so-called staircasing effect [35].
Many regularization methods have been devised by designing Φ(|∇u|) instead of |∇u|

in the ROF model, see e.g. [6, 13, 14, 34, 19]. These techniques essentially take the local
smooth constraint or statistical behavior as a priori knowledge. Different improvements
of the ROF model aim to achieve better behavior especially with respect to oscillating
patterns by replacing the norm of the fidelity term ||u−u0‖L2(Ω) by a more suitable norm
[3, 20, 25, 27, 33, 37, 38, 46].
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The Euler equations that are related to the minimization problems can be regarded as
the steady state of suitable reaction-diffusion equations. In particular, for the ROF model
we obtain the Euler equations

∇ ·
( ∇u
|∇u|

)
+ λ(u0 − u) = 0,

where the expression ∇u/|∇u| needs to be defined suitably for |∇u| = 0. This can be
easily done, see [33]. The steepest descent marching gives

∂u

∂t
= ∇ ·

( ∇u
|∇u|

)
+ λ(u0 − u) (2.4)

with u(x, 0) = u0 and Neumann boundary conditions. In particular, replacing the term
(|∇u|)−1 by a more general diffusivity function g(|∇u|), we obtain (2.1) with S = Id.

For better characterization of texture, Meyer [33] suggested (in the special case Ω = R
2)

to replace the L2-norm of u0 − u in the functional E(u) by ‖f − u‖BV ∗ , where ‖ · ‖BV ∗

denotes the norm of a space that can be seen as a dual space of BV (Ω). His model is
based on the observation that a piecewise smooth image u belongs to the space BV (R2)
while a texture image v belongs to a different family of functions denoted by BV ∗(R2).
This notation implies the existence of g = (g1, g2)T with g1, g2 ∈ L∞(R2) such that
v(x, y) = ∇ · g(x, y) = ∂xg1(x, y) + ∂yg2(x, y) and the BV ∗ norm is then defined by

||v‖BV ∗ = ‖(|g1|2 + |g2|2)1/2‖∞.
An approximation of the Meyer model due to Vese and Osher [46] is of the form

F (u, g) =
(∫

Ω
λ(u0 − u−∇ · g)2 + |∇u|

)
+ µ

(∫
Ω
|g|p
)1/p

with p ≥ 1 and λ, µ > 0, thereby finding the separation f = u+ v. Other ideas to replace
the L2-norm of u0 − u can be found in [3, 4, 20, 27, 38].

In contrast with these approaches, we propose another way here by replacing ‖u0−u‖2
L2

by ‖Su0 − u‖2
L2 , where S already carries out a denoising based on harmonic analysis

methods. The shrinkage results by wave atoms are taken as a pseudo-observation in the
model. Another approach for texture separation that combines a sparse representation of
the image by special function systems (wavelets, Gabor frames, etc) with a regularization
method can be found in [44]. The core idea there is to choose two appropriate dictionaries,
one for representation of texture, and the other for the natural scene parts.

3 Discrete model on graphs

We want to discretize the model (2.2) as follows. For time discretization, we apply a semi-
implicit scheme with step size τ . Using tj := jτ, j ∈ N0 and uj(x) as an approximation of
u(x, tj), we obtain

uj+1 − uj

τ
= ∇ · (g(|∇Pσu

j |)∇uj
)

+ γ(Su0 − uj+1)

leading with λ := τγ to

uj+1 =
1

1 + λ

(
uj + λSu0 + τ∇ · (g(|∇Pσu

j |)∇uj)
)
. (3.1)
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Let us remark that the explicit time discretization of the model (2.2)

uj+1 = uj + λ(Su0 − uj) + τ∇ · (g(|∇Pσu
j |)∇uj)

does not lead to a stable scheme for large λ.
For spatial discretization consider noisy data living on graphs. See also [15, 24] and

references therein for similar graph models. For that purpose we need to introduce some
notations.

A digital domain is modeled by a graph [Ω, E] with a finite set Ω ⊂ R
N of D nodes

and an edge dictionary E. If α, β ∈ Ω are linked by an edge e, we write α ∼ β as well as
α ≺ e and β ≺ e. Throughout the paper, we suppose that the graph [Ω, E] is connected,
i.e., each node α ∈ Ω is endpoint of at least one edge.

Let a digital signal u be a function on Ω, u : Ω → R. We can assign a linear order to
all nodes of Ω, α1 < α2 < . . . < αD. The value at node α is denoted by uα. Then u is
completely characterized by the vector u = (u1, . . . , uD)T ∈ R

D. Let e = eα,β denote the
edge between α and β. Then the length of e is given by the Euclidean norm ‖e‖ := ‖α−β‖2.
We assume, the lengths of the edges in E are normalized in a way that mine∈E ‖e‖ = 1.
The edge derivative of u along e = eα,β at α is now given by

Deu =
∂u
∂e

|α :=
uβ − uα

‖eα,β‖ , |Deu| = |Dα,β| :=
|uα − uβ|
‖eα,β‖ .

Obviously, we have ∂u
∂e |α = −∂u

∂e |β.
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Figure 2: Typical partial graphs for rectangular image domains.

We start now with a given noisy signal u0 = (u0
α)α∈Ω and use v0 := Su0 as well as

ũj := Pσuj. Here, we assume that S and Pσ are suitable discrete approximations of the
corresponding operators on L2(Ω).

In particular, using an orthogonal or biorthogonal wavelet transform defining the op-
erator S : R

D → R
D, it can be written in matrix form

Su0 = v0 = M̃T Θh(Mu0)Mu0,

where M and M̃T are the corresponding transform matrices (see e.g. [11]) and Θh(Mu0)
is a diagonal matrix representing the hard threshold, i.e., the diagonal entries of Θh(Mu0)
are 1 or 0, depending on the size of the corresponding component in the vector Mu0. Also,
the discrete curvelet transform can be written in this form (see [10]), where the transform
matrices M and M̃ need not to be quadratic, but are of the same size. In [10], a numerical
procedure for the discrete curvelet transform is described based on the two-dimensional
fast Fourier transform and using O(D(logD)2) arithmetical operations. An algorithm
for the discrete periodic curvelet transform can also be found in [32]. The wave atom
transform will be shortly considered at the end of this section.
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For defining a discrete regularization Pσ : R
D → R

D we use the (matrix) soft threshold
function Θ = Θs or the garrote threshold Θ = Θg. Then Pσuj = ũj = M̃T Θ(Muj)Muj

depends continuously on uj , and we even have

‖Pσu− Pσv‖2 ≤ C‖u− v‖2

for all u,v ∈ R
D (see Section 4). This property will be an important assumption for

convergence of the digital reaction-diffusion process.

Now we obtain from (3.1) the following iterative filter Hλ : uj → uj+1, which is
nonlinear and data-dependent.

For any node α ∈ Ω let

uj+1
α = Hλ(uj) =

1
1 + λ

(
uj

α + λv0
α + τ

∑
β∼α

g(|Dα,β ũj|)
‖eα,β‖2

(uj
β − uj

α)
)

(3.2)

with
τ := ( max

α∈Ω

∑
β∼α

‖eα,β‖−2)−1. (3.3)

Alternatively, the step size τ can be taken as a smaller positive number. As in the con-
tinuous model, the diffusivity function g : R+ → (0, 1] used in the filter is assumed to be
a monotone decreasing function with 0 < g(|x|) ≤ 1.

Considering only nodes being directly connected with the node α by an edge in the
filter (3.2), we do not need to determine any boundary conditions. The complete algorithm
for the proposed denoising filter is now given as follows.

Algorithm

1. Assign a linear order to all nodes α1 < α2 < . . . < αD of Ω and initialize u0 = (u0
α)α∈Ω.

2. Compute the pseudo-observation v0 = (v0
α)α∈Ω = Su0 by wave atom shrinkage.

3. For j = 1, 2, . . .
Compute ũj = Pσuj by curvelet shrinkage;
For k = 1, . . . ,D

Compute the derivatives Dα,β ũj ;
Compute uj+1

αk = Hλ(uj);
End

End.

The filter Hλ contains the positive regularization parameter λ. As in the continuous
model, this parameter is responsible for balancing diffusion and reaction.

Remark. For the special case Pσ = Id in (3.1) leading to uj = ũj in (3.2), and
g(|x|) being a binary diffusion (i.e., g(|x|) = 1 if |x| < σ and g(|x|) = 0 if |x| ≥ σ for
a given threshold σ), equation (3.2) can for λ = 0 be reduced to the iterative nonlinear
scheme proposed in [41], where the authors have demonstrated equivalence between the
nonlinear scheme, adaptive smoothing, bilateral filtering, and translation-invariant Haar
wavelet shrinkage.
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Wave atom transform

In the following we shortly summarize the wave atom transform as recently suggested
in [21]. See also [47] for a very related approach.

We consider a one-dimensional family of wave packets ψj
m,n(x), j ≥ 0, m ≥ 0, n ∈ N,

centered in frequency around ±ωj,m = ±π2jm with c12j ≤ m ≤ c22j (where c1 < c2 are
suitable positive constants) and centered in space around xj,n = 2−jn. For that purpose,
let g be a real valued C∞ bump function with compact support in [−7π/6, 5π/6] such that
for |ω| ≤ π/3,

g(
π

2
− ω)2 + g(

π

2
+ ω)2 = 1, g(−π

2
− 2ω) = g(

π

2
+ ω).

Then the function ψ̂0
m is determined be the formula

ψ̂0
m(ω) := e−iω/2

[
eiαmg(εm(ω − π(m+

1
2
))) + e−iαmg(εm+1(ω + π(m+

1
2
)))
]
,

where εm = (−1)m and αm = π
2 (m+ 1

2). The properties of g have to ensure that

∞∑
m=0

|ψ̂0
m(ω)|2 = 1.

Then the translates {ψ0
m(· − n)} form an orthonormal basis of L2(R). Introducing the

basis functions
ψj

m,n(x) = ψj
m(x− 2−jn) = 2j/2ψ0

m(2jx− n),

the transform WA : L2(R) → l2(Z) maps a function u onto a sequence of wave atom
coefficients

cj,m,n =
∫ ∞

−∞
u(x)ψj

m,n(x)dx =
1
2π

∫ ∞

−∞
e−i2−jnωψ̂j

m(ω)û(ω)dω.

In the two-dimensional case let µ = (j,m,n) where m = (m1,m2) and n = (n1, n2). We
consider

ϕ+
µ (x1, x2) := ψj

m1,n1
(x1)ψj

m2,n2
(x2)

and the Hilbert transformed wavelet packets,

ϕ−
µ (x1, x2) := Hψj

m1,n1
(x1)Hψj

m2,n2
(x2),

where for a decomposition ψ̂m,n(ω) = ψ̂j
m,n,+(ω)+ iψ̂j

m,n,−(ω) with ψ̂j
m,n,−(ω) = ψ̂j

m,n,+(ω)
the Hilbert transform is defined by

Ĥψ
j

m,n(ω) = −iψ̂j
m,n,+(ω) + iψ̂j

m,n,−(ω).

(Note that the above decomposition of ψ̂m,n is possible since ψm,n is real-valued.) A
recombination

ϕ(1)
µ =

ϕ+
µ + ϕ−

µ

2
, ϕ(2)

µ =
ϕ−

µ + ϕ−
µ

2
provides basis functions with two bumps in the frequency plane being symmetric with
respect to the origin. Together, ϕ(1)

µ and ϕ(2)
µ form a wave atom frame, and the wave atom

coefficients c(1)µ , c
(2)
µ are the scalar products of u with ϕ(1)

µ and ϕ(2)
µ .
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In [21], a discretization of this transform is described for the one-dimensional case
as well as an extension to two dimensions. The algorithm is based on the fast Fourier
transform and a wrapping trick. For implementation software we refer to the homepage
http://www.waveatom.org/software.html due to Demanet and Ying.
The wave atom shrinkage can be formulated as uc =

∑
µ θh(c(1)µ (u))ϕ(1)

µ + θh(c(2)µ (u))ϕ(2)
µ ,

where θh(x) is the hard threshold function mentioned above.

4 Convergence of the discrete method

For showing some properties of the filtering process (3.2) we first derive a matrix-vector
representation of the iteration scheme.
Let uj = (uj

1, . . . , u
j
D)T , ũj = Pσuj = (ũj

1, . . . , ũ
j
D)T , j = 0, 1, 2, . . . and v0 = Su0 =

(v0
1 , . . . , v

0
D)T . Then the iteration (3.2) can be written in the form

uj+1 = 1
1+λ(uj + λv0 + τ Gj uj),

where Gj = G(ũj) = (Gj
α,β)Dα,β=1 is a sparse matrix depending on ũj and on the graph

given by

Gj
α,β :=


−∑γ∼α

g(|Dα,γ ũj |)
‖eα,γ‖2 for β = α,

g(|Dα,β ũj |)
‖eα,β‖2 for β ∼ α,

0 for β �∼ α.

(4.1)

Hence, for the graph on the right hand side of Figure 2, Gj has at most 9 entries per row.
Introducing the matrix

Aj = A(ũj) := I + τ Gj, (4.2)

where I denotes the identity matrix of size D, the iteration process reads

uj+1 = 1
1+λ(Aj uj + λv0). (4.3)

Before studying the convergence of this scheme, we need to consider the properties of the
iteration matrix Aj = A(ũj) more closely.

Lemma 4.1 Let the diffusivity function g satisfy 0 < g(|s|) ≤ 1 for s ∈ R. Then the
iteration matrix Aj given in (4.2) satisfies the following properties for all j = 0, 1, 2, . . ..

1. Aj is symmetric, i.e., Aj = (Aj)T .

2. With 1 := (1, 1, . . . , 1)T ∈ R
d we have Aj 1 = 1.

3. We have Aj ≥ 0, i.e., all entries of Aj are non-negative. Moreover for the row sum
norm and the spectral norm we have ‖Aj‖∞ = ‖Aj‖2 = 1.

Proof. Since α ∼ β implies β ∼ α, the matrix Gj and hence also Aj is symmetric,
i.e., Aj = (Aj)T . Further, by definition of Gj we have Gj 1 = 0 and hence Aj 1 = 1, i.e.,
1 is an eigenvalue of Aj . With τ given in (3.3), we find

τ
∑
γ∼α

g(|Dα,γ ũj |)
‖eα,γ‖2 ≤ τ

∑
γ∼α

1
‖eα,γ‖2 = 1

for all α ∈ Ω, such that the diagonal entries of Aj are non-negative, and hence Aj ≥ 0.
This together with Aj 1 = 1 implies for the row sum norm ‖Aj‖∞ = 1 and we conclude
that the spectral radius of Aj is 1. �
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Corollary 4.2 Let the diffusivity function g satisfy 0 < g(|s|) ≤ 1 for s ∈ R. Then the
vectors uj = (uj

α)α∈Ω obtained by the iteration scheme (3.2) (resp. (4.3)) satisfy

min
α∈Ω

{u0
α, v

0
α} ≤ uj

β ≤ max
α∈Ω

{u0
α, v

0
α} (4.4)

for all β ∈ Ω and all j = 1, 2, . . . as well as

‖uj‖2 = (
∑
α∈Ω

(uj
α)2)1/2 ≤ max{‖u0‖2, ‖v0‖2} ∀ j = 1, 2, . . . .

Further, assuming that the transform S is invariant with respect to the mean value µ of
u0, i.e., 1Tu0 = 1Tv0 = µD, we obtain

1
D

∑
α∈Ω

uj
α = µ,

i.e., the mean value of uj remains to be unchanged during the iteration process.

Proof. Since Aj ≥ 0 and ‖Aj‖∞ = 1, the application of Aj to uj is a smoothing pro-
cedure, where the elements of wj+1 = (wj+1

β )β∈Ω = Ajuj are convex linear combinations

of entries in uj . Hence minα∈Ω u
j
α ≤ wj+1

β ≤ maxα∈Ω u
j
α for all β ∈ Ω and the iteration

scheme (4.3) implies

1
1+λ (minα∈Ω u

j
α + λminα∈Ω v

0
α) ≤ uj+1

β ≤ 1
1+λ(maxα∈Ω u

j
α + λmaxα∈Ω v

0
α).

The assertion (4.4) follows now by induction. Further, by ‖Aj‖2 = 1 we also have

‖uj+1‖2 ≤ 1
1+λ(‖Ajuj‖2 + λ‖v0‖2) ≤ 1

1+λ(‖uj‖2 + λ‖v0‖2) ≤ max{‖u0‖, ‖v0‖}.

The conservation of the average value follows by an induction argument from

1Tuj+1 = 1
1+λ1T (Ajuj + λv0) = 1

1+λ(1T uj + λ1Tv0) = 1Tuj,

where we have used that 1TAj = 1T . �
Remarks. The assertion 1T u0 = 1T v0 = 1TSu0 in Lemma 4.1 is usually satisfied for

wavelet and curvelet shrinkage operators, assumed that the shrinkage procedure is only
applied to the high pass part of the wavelet filter bank resp. not to the low frequency part
of the curvelet transformed signal.
If the operator S in the reaction-diffusion model is a wavelet shrinkage operator based on an
orthogonal wavelet transform, then ‖Su0‖2 ≤ ‖u0‖2 since the application of the shrinkage
operator does not increase the norm of a vector. It simply follows that ‖v0‖2 ≤ ‖u0‖2 and
the assertions of Corollary 4.2 can be suitably simplified.
For the special case λ = 0 we especially find

min
α∈Ω

u0
α ≤ uj

β ≤ max
α∈Ω

u0
α ∀β ∈ Ω, j = 1, 2, . . . ,

and
‖uj‖2 ≤ ‖u0‖2, 1T uj = µD ∀j = 1, 2, . . . .
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Lemma 4.3 Let Aj , j ∈ {0, 1, 2, . . .}, be the iteration matrix given in (4.2). Further,
assume that the graph (Ω, E) has boundary elements, i.e., not all nodes α ∈ Ω are endpoints
of the same number of edges. Then, for diffusivities g which are decreasing with g(0) = 1
and satisfying 0 < g(|s|) ≤ 1, the eigenvalue 1 of Aj is simple and there exists an ε >
0 being independent of j such that all further eigenvalues of Aj lie inside the interval
(−1 + ε, 1 − ε).

The proof of this Lemma can be directly obtained from Lemma 3 in [40]. While in
[40], the iteration matrix is defined with a slightly different matrix Gj, all properties of
Aj remain to be satisfied, such that the result of Lemma 4.3 holds.

We are now ready to consider the convergence of the new discrete reaction-diffusion
scheme (3.2). First, we shall consider convergence of the iteration process (3.2) for λ = 0.

Theorem 4.4 Let (uj)j≥0 be the sequence of vectors obtained by the iteration process
(3.2) (resp. (4.3)) applied to a starting vector u0 for λ = 0. Then (uj)j≥0 converges to
the mean value µ1 with µ := 1

D

∑
α∈Ω u

0
α.

Proof. The proof is analogous to that of Theorem 4.4 in [40]. Let us consider rj :=
uj −µ1. Then we have by Corollary 4.2 and the corresponding remark rj+1 = Ajrj. Since
rj is orthogonal to the eigenvector 1 of Aj corresponding to the eigenvalue 1, it follows
for the Euclidean norm by Lemma 4.3 that

‖rj+1‖2 = ‖Ajrj‖2 ≤ (1 − ε)‖rj‖2.

Thus limj→∞ rj = 0 and the convergence limj→∞ uj = µ1 follows. �
Remark. Observe that the above convergence result does not depend on the regulariza-
tion operator Pσ. In fact this result is also true without regularization, i.e., for Pσ = Id,
see [40]. The convergence of the Perona-Malik process (λ = 0) in the discrete case has
been proved already by Weickert (see [48], pp. 97). In [41], a similar iteration process for
discrete diffusion has been considered with a special discontinuous diffusivity function g.
In this case convergence to a piecewise constant image has been shown.

Further, for sufficiently large λ we find

Theorem 4.5 Let (uj)j≥0 be the sequence of vectors obtained by the iteration process
(3.2) (resp. (4.3)) applied to a starting vector u0. Let A(ũ) = A(Pσu) denote the iteration
matrix as in (4.2) for the vector ũ = Pσu ∈ R

D. Further, let the Lipschitz condition

‖A(ũ) − A(ṽ)‖2 ≤ C‖u − v‖2

be satisfied for all u, v ∈ R
D with a constant C > 0. Then, the sequence (uj)j≥0 converges

for all λ > C(max{‖u0‖2, ‖v0‖2}).

Proof. As in [40] one can simply show that (uj)j≥0 is a Cauchy sequence in the ‖.‖2-
norm. �

Remarks. 1. Observe that a Lipschitz condition as in Theorem 4.5 is satisfied for con-
tinuous diffusivity functions g and a continuous operator Pσ. Indeed, most diffusivity
functions used in image processing are continuous as the Perona-Malik diffusivity and the
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Charbonnier diffusivity. The Gaussian regularization and the curvelet regularization with
soft threshold or garrote threshold also satisfy the assumption. In particular, using soft
threshold we find with the matrix representation of the discrete operator Pσ : R

D → R
D

the estimate

‖ũ − ṽ‖2 = ‖Pσu− Pσv‖
= ‖M̃T Θs(Mu)Mu − M̃TΘs(Mv)Mv‖2

≤ ‖M̃T ‖2

(
‖Θs(Mu)(Mu − Mv)‖2 + ‖Θs(Mu) − Θs(Mv)‖2 ‖Mv‖2

)
.

Here, M and M̃ are D̃ ×D matrices and ‖M‖2
2 := ‖MMT ‖2. With û = Mu ∈ R

D̃ and
v̂ = Mv ∈ R

D̃ we obtain

Θs(û) = diag

((
max{|ûk| − σ

|ûk| , 0}
)D̃

k=1

)

with the convention −σ
0 = −∞. Thus, ‖Θs(û)‖ < 1 and a simple case study yields

‖Θs(û) − Θs(v̂)‖2 = ‖ diag

((
max{|ûk| − σ

|ûk| , 0} − max{|v̂k| − σ

|v̂k| , 0}
)D̃

k=1

)
‖2

≤ ‖ diag

(( |ûk − v̂k|
σ

)D̃

k=1

)
‖2 ≤ 1

σ
max{|ûk − v̂k|, k = 1, . . . , D̃}

≤ 1
σ
‖û − v̂‖2 ≤ 1

σ
‖M‖2‖u − v‖2.

Hence, we obtain the final estimate

‖ũ − ṽ‖2 = ‖Pσu− Pσv‖2 ≤ ‖M̃T ‖2‖M‖2

(
1 +

1
σ
‖M‖2‖v‖2

)
‖u− v‖2.

2. The above result on the convergence of the iteration scheme (3.2) for sufficiently
large λ is in accordance with the results of Nordström for another discretization of the
Euler equations in [36].

As far as we know, there is no result in the literature up to now, showing the con-
vergence of a reaction-diffusion process like in (3.2) for small λ. The numerical results
suggest convergence of this scheme also for small λ > 0. Next we shall prove convergence
of the iteration scheme (3.2) in a generalized sense.

Theorem 4.6 Let (uj)j≥0 be the sequence of vectors obtained by the iteration process
(3.2) (resp. (4.3)) applied to a starting vector u0. Let A(ũ) = A(Pσu) denote the iteration
matrix as in (4.2) for the vector ũ = Pσu ∈ R

D. Further, let the Lipschitz condition

‖A(ũ) − A(ṽ)‖2 ≤ C‖u − v‖2

be satisfied for all u, v ∈ R
D with a constant C > 0. Assume that the sequence (uj)j≥0

has at most a finite number of accumulation points. Then, the sequence (uj)j≥0 is Cesàro-
convergent for all λ ≥ 0, i.e, the sequence ( 1

n

∑n−1
j=0 uj)n≥0 converges.
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Proof. By Corollary 4.2 the sequence (uj)j≥0 is bounded. Hence, there exists a
partial sequence (ujk)k≥0 that converges to a bounded limit. Then we find for every ε > 0
a constant Mε ∈ N such that

‖ujk − ujk+m‖2 < ε for all k ≥Mε, m ≥ 1.

We show now that the sequence (ujk+1)k≥0 is also a Cauchy sequence. Using Lemma 4.1,
Corollary 4.2 and the assumption of the theorem we have

‖ujk+1 − ujk+m+1‖2 =
1

1 + λ
‖Ajkujk − Ajk+mujk+m‖2

≤ 1
1 + λ

(‖Ajk(ujk − ujk+m)‖2 + ‖(Ajk − Ajk+m)ujk+m‖2

)
≤ 1

1 + λ

(‖ujk − ujk+m‖2 + C ‖ujk − ujk+m‖2 ‖ujk+m‖2

)
≤ 1 +CR

1 + λ
ε,

with R := max{‖u0‖2, ‖v0‖2}. Hence, the sequence (ujk+1)k≥0 also converges. This
argument can successively be applied. Let now ũn be the limit of (ujk+n)k≥0 for n =
0, 1, . . .. Hence there exist matrices Ãn with limk→∞ Ajk+n = Ãn and we find

ũn = lim
k→∞

ujk+n = lim
k→∞

1
λ+ 1

(Ajk+n−1ujk+n−1 + λv0)

=
1

λ+ 1
(Ãn−1ũn−1 + λv0)

for all n ∈ N, i.e., the accumulation points ũn also satisfy the iteration equation. Since
the number of accumulation points is finite, there exists a smallest number r ∈ N such
that for some s ∈ N with s < r the two sequences (ujk+s)k≥0 and (ujk+r)k≥0 have the
same limit ũs. Hence we find

lim
k→∞

ujk+r+1 = lim
k→∞

1
λ+ 1

(Ajk+rujk+r + λv0) =
1

λ+ 1
(Ãsũs + λv0) = ũs+1.

Repeating this argument, we obtain that there are only the pairwise different accumulation
points ũs, . . . , ũr−1. Hence s = 0 and (ukr+ν)ν≥0 converges for ν = 0, 1, . . . , r − 1. We
conclude that the new sequence

sk :=
1
r

r−1∑
ν=0

urk+ν

also converges. Finally, applying the Theorem of Stolz-Cesàro, the Cesàro convergence of
(uj)j≥0 follows from

lim
n→∞

1
n

n−1∑
ν=0

uν = lim
n→∞

 r

n


n/r�−1∑
k=1

sk +
1
n

n−1∑
ν=
n/r�r

uν


= lim

n→∞
r

n


n/r�−1∑
k=1

sk + lim
n→∞

1
n

n−1∑
ν=
n/r�r

uν

= lim
n→∞ s
n/r�−1 = lim

n→∞ sn.

15



In the special case that we find partial sequences (ujk)k≥0 and (ujk+1)k≥0 with the same
limit ũ, the above arguments lead to usual convergence of the complete sequence (uk)k≥0

to ũ. �
Finally, we remark that our digital diffusion-reaction type filter can be seen as digital

analogon of the Euler equations that are obtained as a steady state of (2.2).

Theorem 4.7 If the filtering sequence (uj)j≥0 given by the scheme (3.2) converges to a
limit vector u∗ ∈ R

D, then u∗ satisfies

τ

2

∑
e�α

∂

∂e
(−g(|Deũ∗|) ∂u

∗

∂e
|α+λ(v0

α − u∗α) = 0 ∀α ∈ Ω.

Here, again e � α means, that e is an edge with the endpoint α.

The proof of this assertion can be obtained in the same manner as in [40], Theorem
4.6. �

5 Numerical experiments

Now we display the good performance of our proposed method in comparison to some
existing methods. Fig. 3 (a) is a part of noisy Barbara image. Fig. 3 (b) is a denoised result
obtained by a tensor-product decimated Db6 wavelet shrinkage with 3-level decomposition.
Nonsmooth oscillations along the edges can be seen obviously due to the poor ability of
wavelets at presenting line singularities. Fig. 3 (c) and Fig. 3 (d) are obtained using
curvelet transform and wave atom transform, respectively. The hard threshold is hired for
these two transforms. Although the curvelet and wave transform are effective in recovering
edges and textures, they suffer from the pseudo-Gibbs and element-like artifacts yet. Fig. 3
(e) shows the result by classical TV diffusion (without reaction) with step size 0.002 and
25 iterations. Fig. 3 (f) shows the removed components by Fig. 3 (e). Fig. 3 (g) shows the
result by our proposed reaction-diffusion filter with Perona-Malik diffusivity (κ = 0.02),
fitting parameter λ = 0.2, step size 0.05, and 15 iterations, σ = 0.15 for wave atom hard
threshold and a scale-dependent threshold for curvelet shrinkage. Fig. 3 (h) shows the
removed components by Fig. 3 (g). It can be seen clearly that the classical TV diffusion
looses the textural details while our method keeps the textures and edges well in recovery
images when we remove the noise. The parameters that we used for each method have been
taken to optimize the SNR and visual quality of each method independently. Fig. 4 (a)
and Fig. 4 (b) display the rate of change of SNR for an increasing number of iterations for
above TV diffusion and the proposed reaction-diffusion filter, respectively. The horizontal
coordinate denotes the number of iterations, and the vertical coordinate denotes the SNR
value of recovery images. Our new method can achieve much higher SNR. The parameter
λ relates to the balance of diffusion and feedback of reaction. In Fig. 4 (b), we show the
SNR vs. iteration for various values of λ. The dashed line, real line, dot-dashed line, and
dotted line denote the λ = 0.1, 0.2, 0.3, 0.4 respectively. Normally, a large λ slows down
the smoothing process. For very large λ the iterated scheme yields a sequence of images
that approach Su0 such that the pseudo-Gibbs artifacts can not suppressed effectively.

Furthermore, Figure 5, we compare the proposed the method with existing digital TV
diffusion [15] and digital diffusion-reaction type filer [40]. Fig. 5 (left column) shows the
results by the digital TV diffusion with λ = 80, while Fig. 5 (right column) shows the
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results by the digital diffusion-reaction type filter with PM diffusivity κ = 0.02, λ = 0.2,
step size 0.05 and 15 iterations. The upper row displays the denoised results and the lower
row displays removed components. Both methods can not preserve the textures well when
one kicks out noise.

Fig. 6 shows the performance of our proposed method for images with heavy noise.
Textures can be preserved in this case by the method with parameter κ = 0.02, λ = 0.15,
σ = 0.55, and step size 0.1.

We also test our method for real images. Figure 7(a) is a measured engineering surface
image from industry. Fig. 7 (b) and (c) are denoised results by decimated Db6 wavelet
transform and our new reaction-diffusion method, respectively. The wavelet method de-
stroys the structures to some extent, while our method preserves the scratches well in
recovery surfaces.

Finally, it should be noted that the graph shown in Figure 2 (right) has been used for
spatial discretization of the Equation (2.2), and the practical codes in this paper were de-
veloped by MATLAB based on CurveLab package, which is available from www.curvlet.org.

6 Conclusion

In this paper, we proposed a digital reaction-diffusion filter for denoising of textural images
by combining new tools from harmonic analysis such as curvelets and wave atoms with a
nonlinear diffusion equation. The curvelet shrinkage is used as the regularization of the ill-
posed diffusion, and wave atom shrinkage is hired as the pseudo-observation reaction. The
convergence of the discrete scheme of the reaction-diffusion process is proved for arbitrary
regularization parameter λ ≥ 0. Numerical experiments show the good performance of
the proposed method in comparison to some recent techniques.

The general reaction-diffusion method is called image assimilation. It is an ensemble
of techniques combining the mathematical information provided by equations and the
physical information given by observations in an optimal way, in order to retrieve as best
as possible the state variables of a model. The next work is to analyse error influence and
the degree of influence of fitting parameter λ and threshold parameter σ in the model.
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Figure 3: Denoising using different methods. (a) noisy image (SNR=9.98 dB); (b) denois-
ing by wavelets (SNR=12.22 dB); (c) by curvelets (SNR=15.80 dB); (d) by wave atoms
(SNR=15.47 dB); (e) by TV diffusion (SNR=12.43 dB); (f) removed components by (e);
(g) by the proposed method (SNR=16.86 dB); (h) removed components by (g).
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Figure 3: (continued).
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Figure 4: Rate of change of SNR (vertical axis) vs. iteration number (horizontal axis) for
classic TV diffusion (a) and the proposed method (b). In (b), the dashed line, real line,
dot-dashed line, and dotted line denote for λ = 0.1, 0.2, 0.3, 0.4 respectively.
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Figure 5: Denoising by (a) digital TV diffusion [15] (SNR=12.35 dB) and (b) digital
diffusion-reaction type filter [40] (SNR=12.47 dB). (c) and (d) are removed components
by method (a) and (b).
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Figure 6: Application of the proposed method for image with heavy noise. (a) noisy
image (SNR=3.00 dB); (b) denoised image by the proposed method (SNR=11.11 dB); (c)
removed components.
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Figure 7: Denoising of a real measured engineering surface (a) by wavelets (b) and the
proposed method (c).
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[12] F. Catté, P. L. Lions, J. M. Morel, T. Coll, Image selective smoothing and edge
detection by nonlinear diffusion, SIAM J. Numer. Anal. 32 (1992), 1895-1909.

[13] A. Chambolle, P. L. Lions, Image recovery via total variation minimization and related
problems, Numer. Math. 76 (1997), 167-188.

[14] A. Chambolle, R. A. DeVore, N. Lee, B. J. Lucier, Nonlinear wavelet image process-
ing: variational problems, compression, and noise removal through wavelet shrinkage,
IEEE Trans. Image Process. 7 (3) (1998), 319-335.

[15] T. F. Chan, S. Osher, J. Shen, The digital TV filter and nonlinear denoising, IEEE
Trans. Image Process. 10 (2001), 231-241.

[16] Y. Chen, B. Vemuri, L. Wang, Image denoising and segmentation via nonlinear dif-
fusion, Comput. Math. Appl. 39 (2000), 131-149.

[17] R. Coifman, D. Donoho, Translation invariant denoising, In: A. Antoniadis and G.
Oppenheim (Eds.), Wavelets in Statistics, Springer, New York, 1995, 125-150.

[18] G. Cottet, L. Germain, Image processing through reaction combined with nonlinear
diffusion, Math. Comput. 61 (1993), 659-673.

[19] I. Daubechies, M. Defrise, C. De Mol, An iterative threshold algorithm for linear
inverse problems with a sparsity constraint, Comm. Pure Appl. Math. 57 (2004),
1413-1457.

[20] I. Daubechies, G. Teschke, Variational image restoration by means of wavelets simul-
taneous decomposition, deblurring, and denoising, Appl. Comput. Harmon. Anal. 19
(2005), 1-16.

[21] L. Demanet, L. Ying, Wave atoms and sparsity of oscillatory patterns, Appl. Comput.
Harmon. Anal., 23 (3) (2007), 368-387.

[22] S. Esedoglu, An analysis of the Perona-Malik scheme, Comm. Pure Appl. Math. 54
(2001), 1442-1487.

[23] S. Esedoglu, Stability properties of the Perona-Malik scheme, SIAM J. Numer. Anal.
44 (3) (2006), 1297-1313.

[24] G. Gilboa, S. Osher, Nonlocal Linear Image Regularization and Supervised Segmen-
tation, SIAM Multiscale Model. Simul. 6(2) (2007), 595–630.

[25] J. B. Garnett, T. M. Le, Y. Meyer, L. A. Vese, Image decompositions using bounded
variation and generalized homogeneous Besov spaces, Appl. Comput. Harmon. Anal.
23 (2007), 25-56.

[26] S. Kichenassamy, The Perona-Malik paradox, SIAM J. Appl. Math. 57 (5) (1997),
1328-1342.

[27] T. M. Le, L. A. Vese, Image Decomposition using total variation and div(BMO),
Multiscale Model. Simul. 4 (2) (2005), 390-423.

[28] W.-Q. Lim, Wavelets with composite dilations, Ph.D. Thesis, Washington University
in St. Louis, 2006.

22



[29] J. Ma, A. Antoniadis, F.-X. Le Dimet, Curvelet-based snake for multiscale detection
and tracking of geophysical fluids, IEEE Trans. Geosci. Remote Sensing 44 (12)
(2006), 3626-3638.

[30] J. Ma, Curvelets for surface characterization, Appl. Phys. Lett. 90 (2007), 054109:
1-3.

[31] J. Ma, Image assimilation by geometric wavelet based reaction-diffusion equation,
Proceeding of SPIE Wavelet XII, vol. 6701, San Diego, August 26-29, 2007.

[32] J. Ma, G. Plonka, Combined curvelet shrinkage and nonlinear anisotropic diffusion,
IEEE Trans. Image Process. 16 (9) (2007), 2198-2206.

[33] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations,
University Lecture Series, Vol. 22, Amer. Math. Soc., 2001.

[34] M. Mignotte, A segmentation-based regularization term for image deconvolution,
IEEE Trans. Image Process. 15 (2006), 1973-1984.

[35] M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM J. Appl.
Math. 61 (2000), 633-658.

[36] N. Nordström, Biased anisotropic diffusion - a unified regularization and diffusion
approach to edge detection, Image Vis. Comput. 8 (1990), 318-327.

[37] S. Osher, M. Burger, D. Goldfarb, J. Xu, W. Yin, An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul. 4 (2005), 460-
489.

[38] S. Osher, A. Sole, L. Vese, Image decomposition and restoration using total variation
minimization and H−1 norm, Multiscale Model. Simul. 1 (2003), 349-370.

[39] P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE
Trans. Pattern Anal. Machine Intell. 12 (1990), 629-639.

[40] G. Plonka, A digital diffusion-reaction type filter for nonlinear denoising, Results in
Mathematics (2008), to appear.

[41] G. Plonka, J. Ma, Convergence of an iterative nonlinear scheme for denoising of
piecewise constant images, Int. J. Wavelets, Multiresolution and Information Process.
5 (6) (2007), 975-995.

[42] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algo-
rithms, Phys. D 60 (1992), 259-268.

[43] J. L. Starck, E. J. Candès, D. L. Donoho, The curvelet transform for image denoising,
IEEE Trans. Image Process. 11 (2002), 670-684.

[44] J.L. Starck, M. Elad, D.L. Donoho, Image decomposition via the combination of
sparse representations and a variational approach, IEEE Trans. Image Process. 14(10)
(2005), 1570-1582.

[45] F. Torkamani-Azar, K. E. Tait, Image recovery using anisotropic diffusion equation,
IEEE Trans. Image Process. 5 (1996), 1573-1578.

[46] L. Vese, S. Osher, Modeling textures with total variation minimization and oscillating
patterns in image processing, J. Sci. Comput. 19 (2003), 553-572.

[47] L. Villemoes, Wavelet packets with uniform time-frequency localization, C. R. Acad.
Sci. Paris, Ser. I 335 (2002), 793-796.

[48] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, 1998.
[49] J. Weickert, B. M. ter Haar Romeny, M. A. Viergever, Efficient and reliable schemes

for nonlinear diffusion filtering, IEEE Trans. Image Process. 7(3) (1998), 398-410.
[50] M. Welk, G. Steidl, J. Weickert, A four–pixel scheme for singular differential equa-

tions. In R. Kimmel, N. Sochen, J. Weickert (Eds.), Scale-Space and PDE Methods
in Computer Vision. LNCS, Springer, Berlin, 610–621 (2005).

23



[51] J. Z. Wang, Wavelet oriented anisotropic diffusion in image enhancement, Technical
Report, 2004.

[52] S. Zhu, D. Mumford, Prior learning and Gibbs reaction-diffusion, IEEE Trans. Pat-
tern Anal. Machine Intell. 19 (11) (1997), 1236-1250.

24


