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Abstract. We propose a new digital diffusion-reaction filter for de-
noising of digital images and data living on graphs. The construction
of this filter is motivated by the regularization and diffusion approach
to edge detection by Nordström. Properties and convergence of the
iteration scheme are studied and numerical results are given.

§1. Introduction

Image denoising is a field where one is typically interested in remov-
ing noise, which may be introduced by the image information process,
image recording, image transmission, etc. In a wide variety of applica-
tions, the images are discontinuous, and the challenge is to smooth them
while preserving their edges and important structures.

Different nonlinear methods have been proposed to tackle this prob-
lem including global stochastic methods, adaptive smoothing, wavelet
techniques, anisotropic diffusion and variational methods (see e.g. [1,2,4,8,
9,12,15,16]).

Recently, close connections, similarities and relations between these
method classes have been examined. New hybrid methods have been pro-
posed which aim to connect the advantageous properties of the different
denoising techniques (see e.g. [3,7,10,13,14]).

In this paper, we propose a new nonlinear data-dependent denoising
filter, called digital diffusion-reaction filter. It can be seen as an adaption
of the digital total variation filter introduced by Chan, Osher and Shen
[4]. The TV-filter in [4] can be interpreted as a precise translation of
the classical analog TV restoration model invented by Rudin, Osher and
Fatemi [12] to the digital case.

Our model can be understood as a digital variant of a diffusion-
reaction type equation suggested by Nordström [8]. The Euler equations
associated with the energy functional of Nordström are equivalent with
the steady state of a certain nonlinear diffusion-reaction equation. Our
digitized formulation of the variational and PDE method in [8] leads to
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nonlinear algebraic equations instead of PDE’s and the analysis and ap-
plication of the digital method needs no knowledge on numerical approx-
imation of PDE’s.
The new digital filter has the following characteristics.
1. It has a simple fixed filter structure, where the filter coefficients encode
the edge information.
2. The digital diffusion-reaction type filter applies to data living on a graph
and is therefore useful also for non-flat image features.

The paper is organized as follows. In Section 2 we shortly survey
the continuous diffusion-reaction model by Nordström. In Section 3 we
introduce our new digital nonlinear filter on a graph adapting some ideas
in [4]. The properties and convergence of the new iteration method is
considered in Section 4. Finally, we compare the denoising properties of
our filter with different image denoising methods in the literature by a
numerical example.

§2. The diffusion-reaction filter of Nordström

In this section, we shortly describe the continuous diffusion-reaction
filter of Nordström. It can be seen as origin of our digital filter, which will
be introduced in the next section.

Let f : Ω → IR be the noise contaminated version of a signal u : Ω →
IR, i.e.,

f(x) = u(x) + n(x) x ∈ Ω,

where n denotes random noise with mean value 0 and variance σ2,
∫
Ω n(x) dx = 0,

∫
Ω n(x)2 dx = σ2.

Usually, Ω denotes a rectangle in IR2, i.e., Ω = [0, N1] × [0, N2]. In order
to find an approximation of u, an energy functional minimization prob-
lem is considered. Given the noisy f , Nordström suggests to minimize a
functional of the form

F (ωu, u) =
∫

Ω

κΦ(ωu(x)) + β(u(x) − f(x))2 + ωu(x)‖∇u(x)‖2dx,

where u : Ω → IR is the reconstructed image function, and where the
control function ωu : Ω → (0, 1] is supposed to be a fuzzy edge repre-
sentation which approaches 1 for smooth regions of u and is close to 0
at edges. The purpose of the edge cost κ

∫
Ω Φ(ωu(x))dx is to impose an

explicit penalty of the presence of edges. We suppose that the edge cost
coefficient κ is a constant and that the the edge cost density function Φ
is twice differentiable. The deviation cost β

∫
Ω(u(x) − f(x))2dx ensures,

that u remains to be a faithful approximation of f . Finally the stabilizing
cost

∫
Ω

ωu(x)‖∇u(x)‖2dx is responsible for smoothing of u.
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Setting the first variation of F to zero yields the Euler equations

β(u(x) − f(x)) −∇ · (ωu(x)∇u(x)) = 0 ∀x ∈ Ω,

κ Φ′(ωu(x)) + ‖∇u(x)‖2 = 0 ∀x ∈ Ω, (1)

ωu(x) ∂u(x)
∂en

= 0 ∀x ∈ ∂Ω,

where ∇· denotes the divergence operator and ∂u
∂en

is the directional deriva-
tive in the direction of the outward normal.

We assume that Φ′|(0,1] → IR− is bijective, and that Φ′|(1,∞]) ⊂ IR+.
Further, let Φ′′ be strictly positive on (0, 1) and Φ′′(1) ≥ 0.

If Φ satisfies the above restrictions we obtain the equations

β(f(x) − u(x)) + ∇ · (ωu(x)∇u(x)) = 0 ∀x ∈ Ω, (2)
ωu(x) = g(‖∇u(x)‖) ∀x ∈ Ω,
∂u(x)
∂en

= 0 ∀x ∈ ∂Ω,

where the diffusivity function g : IR+ → (0, 1] is given by

g(s) = (Φ′|(0,1])−1(− s2

κ ) s ≥ 0.

Hence, g is a strictly positive decreasing differentiable bijection with g(0) =
1 and lims→∞ g(s) = 0. For example, for Φ(s) = s− ln s it takes the form

g(s) = (1 +
s2

κ
)−1, s ≥ 0. (3)

The diffusivity function in (3) can be easily recognized as the Perona-
Malik diffusivity, see [9]. Equation (2) can also be regarded as the steady
state equation of

∂tu = ∇ · (g(‖∇u‖)∇u) + β(f − u).

One motivation to consider the Nordström model is to free the user from
the difficulty of finding an appropriate stopping time for the Perona- Malik
process. Instead, for a given fixed diffusivity g one has to determine the
parameter β. Nordström’s method may suffer from the same ill-posedness
problems as the Perona-Malik equation obtained for β = 0 (see e.g. [15]).
In fact the functional F (ω, u) is not convex for Perona-Malik diffusivity
and may possess numerous local minima.
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§3. Digital filters on graphs

We follow the ideas of Chan, Osher and Shen [4] and consider noisy
data living on a graph. We want to restore these data.

A digital domain is modeled by a graph [Ω, E] with a finite set Ω ⊂
IRN of D nodes and an edge dictionary E. If α, β ∈ Ω are linked by an
edge e, we write α ∼ β as well as α ≺ e and β ≺ e. Throughout the paper,
we suppose that the graph [Ω, E] is connected, i.e., each node α ∈ Ω is
endpoint of at least one edge.

Let a digital signal u be a function on Ω, u : Ω → IR. We can assign
a linear order to all nodes of Ω, α1 < α2 < . . . < αD. The value at node
α is denoted by uα. Then u is completely characterized by the vector
u = (u1, . . . , uD)T ∈ IRD. Let e = eα,β denote the edge between α and
β. Then the length of e is given by the Euclidean norm ‖e‖ := ‖α − β‖2.
We assume, the lengths of the edges in E are normalized in a way that
mine∈E ‖e‖ = 1. The edge derivative of u along e = eα,β at α is now given
by

∂u
∂e

∣∣
α

:= uβ−uα

‖eα,β‖ .

Obviously, we have ∂u
∂e

∣∣
α

= −∂u
∂e

∣∣
β
. Further, let

|∇eu| = |∇α,β u| := |uα−uβ |
‖eα,β‖

(see [4] for a different definition).
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Fig. 1. Typical partial graphs for rectangular image domains.

Starting with a given noisy signal u0 = (u0
α)α∈Ω, we propose the

following iterative filter Hλ : uj → uj+1, which is nonlinear and data-
dependent. For any node α ∈ Ω let

uj+1
α = Hλ(uj) =

1
1 + λ

(
uj

α + λu0
α + τ

∑
β∼α

g(|∇α,β uj |)
‖eα,β‖2

(uj
β − uj

α)
)

(4)

with
τ =

(
max
α∈Ω

∑
β∼α

‖eα,β‖−2
)−1

.

The diffusivity function g : IR+ → (0, 1] used in the filter is assumed to
be a monotone decreasing function with g(0) = 1 and lims→∞ g(s) = 0.
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Usual candidates for g are the Perona-Malik diffusivity g(s) = (1+s2/κ)−1

or the Charbonnier diffusivity g(s) = (1 + s2/κ)−1/2. Considering only
nodes being directly connected with the node α by an edge in the filter
(4), we do not need to determine any boundary conditions. The complete
algorithm for the proposed denoising filter is now given as follows.

1. Assign a linear order to all nodes α1 < α2 < . . . < αD of Ω and
initialize u0 = (u0

α)α∈Ω.
2. For j = 1, 2, . . .

For k = 1, . . . , D compute uj+1
αk

= Hλ(uj)
end

end.

The filter Hλ contains a positive parameter λ, called the fitting pa-
rameter. The fitting parameter is responsible for balancing smoothing
and data fitting. As we will see, this is analogous to the the continuous
regularization method.

§4. Properties and Convergence of the Method

For showing the convergence of the above filtering process we first
derive a matrix-vector representation of the iteration scheme. Let uj =
(uj

1, . . . , u
j
D)T , j = 0, 1, 2, . . .. Then the iteration (4) can be written in the

form
uj+1 = 1

1+λ (uj + λu0 + τ Gj uj),

where Gj = G(uj) = (Gj
α,β)D

α,β=1 is a sparse matrix depending on uj and
on the graph given by

Gj
α,β :=




−∑
γ∼α

g(|∇α,γuj |)
‖eα,γ‖2 for β = α,

g(|∇α,βuj |)
‖eα,β‖2 for β ∼ α,

0 for β 
∼ α.

(5)

Hence, for the graph on the right hand side of Figure 1, Gj has at most 9
entries per row. Introducing the matrix

Aj = A(uj) := I + τ Gj , (6)

where I denotes the identity matrix of size D, the iteration process reads

uj+1 = 1
1+λ (Aj uj + λu0). (7)

Let us now consider the properties of the iteration matrix Aj = A(uj)
more closely.
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Lemma 1. Let the diffusivity function g satisfy 0 < g(|s|) ≤ 1 for s ∈ IR.
Then the iteration matrix Aj given in (6) satisfies the following properties
for all j = 0, 1, 2, . . ..

1. Aj is symmetric, i.e., Aj = (Aj)T .
2. With 1 := (1, 1, . . . 1)T ∈ IRd we have Aj 1 = 1.
3. We have Aj ≥ 0, i.e., all entries of Aj are non-negative. Moreover for

the row sum norm and the spectral norm we have ‖Aj‖1 = ‖Aj‖2 = 1.

Proof: Since α ∼ β implies β ∼ α, the matrix Gj and hence also Aj

is symmetric, i.e., Aj = (Aj)T . Further, by definition of Gj we have
Gj 1 = 0 and hence Aj 1 = 1, i.e., 1 is an eigenvalue of Aj . By

τ
∑

γ∼α

g(|∇α,γuj |)
‖eα,γ‖2 ≤ τ

∑
γ∼α

1
‖eα,γ‖2 ≤ 1

for all α ∈ Ω it is ensured that the diagonal entries of Aj are non-negative,
and hence Aj ≥ 0. This together with Aj 1 = 1 implies for the row sum
norm ‖Aj‖∞ = 1 and we conclude that the spectral radius of Aj is 1.

Corollary 2. Let the diffusivity function g satisfy 0 < g(|s|) ≤ 1 for
s ∈ IR, and let µ be the average value of u0, i.e.,

∑
α∈Ω u0

α = µD. Then
the vectors uj = (uj

α)α∈Ω obtained by the iteration scheme (4) (resp. (7))
satisfy ∑

α∈Ω

uj
α = µD.

Further, we have
min
α∈Ω

u0
α ≤ uj

β ≤ max
α∈Ω

u0
α (8)

for all β ∈ Ω and all j = 1, 2, . . . as well as

‖uj‖2 = (
∑
α∈Ω

(uj
α)2)1/2 < ‖u0‖2 ∀ j = 1, 2, . . . .

Proof: The conservation of the average value follows by an induction
argument from

1T uj+1 = 1
1+λ1T (Ajuj + λu0) = 1

1+λ(1T uj + λ1T u0) = 1T uj

where we have used that 1T Aj = 1T .
Since Aj ≥ 0 and ‖Aj‖∞ = 1, the application of Aj to uj is a

smoothing procedure, where the elements of vj+1 = Ajuj are convex lin-
ear combinations of entries in uj . Hence minα∈Ω uj

α ≤ vj+1
β ≤ maxα∈Ω uj

α

for all β ∈ Ω and the iteration scheme (4) implies

1
1+λ(minα∈Ω uj

α+λminα∈Ω u0
α) ≤ uj+1

β ≤ 1
1+λ(maxα∈Ω uj

α+λmaxα∈Ω u0
α).
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The assertion (8) follows now by induction. Finally, by ‖Aj‖2 = 1 we also
have

‖uj+1‖2 ≤ 1
1+λ(‖Ajuj‖2 + λ‖u0‖2) ≤ 1

1+λ (‖uj‖2 + λ‖u0‖2) ≤ ‖u0‖.
Lemma 3. Let Aj , j ∈ {0, 1, 2, . . .}, be the iteration matrix given in
(6). Further, assume that the graph (Ω, E) has boundary elements, i.e.,
not all nodes α ∈ Ω are endpoint of the same number of edges. Then,
for diffusivities g which are decreasing with g(0) = 1 and satisfying 0 <
g(|s|) ≤ 1, the eigenvalue 1 of Aj is simple and there exists an ε > 0
being independent of j such that all further eigenvalues of Aj lie inside
the interval (−1 + ε, 1 − ε).

Proof: Let us consider the matrix G = (Gα,β)D
α,β=1 with

Gα,β =




−∑
γ∼α

1
‖eα,γ‖2 β = α,

1
‖eα,β‖2 β ∼ α,

0 elsewhere.

Then the eigenvalue 0 of G is simple, since G is by definition weakly diag-
onal dominant and irreducible since (Ω, E) is assumed to be a connected
graph. Hence, deleting the last row and the last column of G, we obtain
a weakly diagonal dominant (D − 1) × (D − 1)- matrix, where the condi-
tion of strong diagonal dominance holds at least in one row. Thus G has
rank D − 1 (see e.g [6], p. 356). Further, G is negative semidefinite, since
the Theorem of Geršgorin (see e.g. [6], p. 344) implies that all nonzero
eigenvalues of G lie in the interval [−2/τ, 0). From the assumption, that
Ω possesses boundary elements, it follows that −2/τ is not an eigenvalue
of G (see [6], p. 344).

Now choose

dj
min := min{Gj

α,β : Gj
α,β 
= 0, α 
= β},

dj
max := max{Gj

α,β : Gj
α,β 
= 0, α 
= β} ≤ 1,

i.e, dj
min is the smallest non-zero off-diagonal entry of Gj in (5) and dj

max is
the greatest off-diagonal entry of Gj . Observe that there exists a constant
c > 0 depending on the diffusivity function g, the graph (Ω, E) and the
initial vector u0 but being independent of j, such that dj

min > c > 0 for
all j ≥ 0, since the arguments of g in the entries of Gj are bounded (see
Corollary 2). Let us now consider the matrices

Aj
min := I + τdj

min G, Aj
max := I + τdj

max G.

We denote the eigenvalues of Aj
min and Aj

max in increasing order by
λk(Aj

min) and λk(Aj
max) for k = 1, 2, . . . , D. By c < dj

min ≤ dj
max ≤ 1

it follows from the considerations above, that there exists an ε > 0 with

|λk(Aj
min)| ≤ 1 − ε, |λk(Aj

max)| ≤ 1 − ε
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for k = 1, . . . , D − 1 and λD(Aj
min) = λD(Aj

max) = 1. Now the matrix
Aj −Aj

min = τ(Gj −dj
minG) is symmetric and negative semidefinite. This

follows again directly from the Theorem of Geršgorin, keeping in mind
that all off diagonal entries of Aj −Aj

min are nonnegative, and that (Aj −
Aj

min)1 = 0. Analogously, we observe that Aj − Aj
max = τ(Gj − dj

maxG)
is symmetric and positive semidefinite. Finally, denoting the eigenvalues
of Aj , Aj − Aj

min and Aj − Aj
max in increasing order and applying the

Theorem of Weyl (see e.g. [6], p. 181), we find for k = 1, . . . , D − 1

−1 + ε ≤ λ1(Aj − Aj
max) + λk(Aj

max) ≤ λk(Aj)

and
λk(Aj) ≤ λD(Aj − Aj

min) + λk(Aj
min) ≤ 1 − ε.

We are now ready to prove convergence of the Perona-Malik iteration
process (4) for λ = 0.

Theorem 4. Let (uj)j≥0 be the sequence of vectors obtained by the
iteration process (4) (resp. (7)) applied to a starting vector u0 for λ = 0.
Then (uj)j≥0 converges to the average value µ1 with µD =

∑
α∈Ω u0

α.

Proof: Let us consider rj = uj − µ1. Then we have by Corollary 2

1T rj = 1T uj − µ1T 1 = µD − µD = 0.

Hence, it follows

µ1 + rj+1 =: uj+1 = Aj uj = Aj(µ1 + rj)

= µAj1 + Ajrj = µ1 + Ajrj ,

i.e., rj+1 = Ajrj . Since rj is orthogonal to the eigenvector 1 of Aj

corresponding to the eigenvalue 1, it follows for the Euclidean norm by
Lemma 3 that

‖rj+1‖2 = ‖Ajrj‖2 ≤ (1 − ε)‖rj‖2.

Thus limj→∞ rj = 0 and the convergence limj→∞ uj = µ1 follows.

Remark. The convergence of the Perona-Malik process (λ = 0) in the
discrete case has been claimed already by Weickert (see [15], pp. 97).
Observe, that in our proof, we do not need that the matrices Aj = A(uj)
have continuous arguments, and that we do not need the positivity of
the diagonal entries of Aj . In [9], a similar iteration process has been
considered with a special discontinuous diffusivity function g. In this case
convergence to a piecewise constant image has been shown.

Further, assuming that the diffusivity function g is Lipschitz contin-
uous we can show
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Theorem 5. Let (uj)j≥0 be the sequence of vectors obtained by the
iteration process (4) (resp. (7)) applied to a starting vector u0. Further,
let the Lipschitz condition

‖A(u) − A(v)‖1 ≤ C‖u − v‖1

be satisfied for all u, v ∈ IRD with ‖u‖2 ≤ ‖u0‖2, ‖v‖2 ≤ ‖u0‖2 and
1T u = 1T v = 1T u0. Then, the sequence (uj)j≥0 converges for all λ >
C‖u0‖1.

Proof: Since the vectors uj are bounded (see Corollary 2), there exists
at least a converging partial sequence of (uj)j≥0. We show convergence
by observing that (uj)j≥0 is a Cauchy sequence in ‖.‖1-norm. For j > 0
we find

‖uj+1 − uj‖1 = 1
1+λ‖Ajuj − Aj−1uj−1‖1

≤ 1
1+λ(‖Aj(uj − uj−1)‖1 + ‖(Aj − Aj−1)uj−1‖1)

≤ 1
1+λ(‖uj − uj−1‖1 + C ‖uj−1‖1 ‖uj − uj−1‖1)

= 1+C‖u0‖1
1+λ ‖uj − uj−1‖1,

where we have used the Lipschitz condition for the iteration matrices.

Remark. Observe that a Lipschitz condition as in Theorem 5 is satisfied
for smooth diffusivity functions g. In particular, it is satisfied for Perona-
Malik diffusivity and the Charbonnier diffusivity. The above result on
the convergence of the iteration scheme (4) for sufficiently large λ is in
accordance with the results of Nordström for another discretization of
the Euler equations (2) in [8]. However, the numerical results suggest
convergence of his scheme also for small λ > 0. The same conclusion
can be drawn from the numerical results for our scheme. However the
theoretical proof for convergence of (4) for small λ remains to be open.

Finally, we show that our digital diffusion-reaction type filter can be
seen as digital analogon of the continuous Euler equations in (2).

Theorem 6. If the filtering sequence (uj)j≥0 given by the scheme (4)

converges to a limit vector u∗ ∈ IRD, then u∗ satisfies

τ

2

∑
e
α

∂

∂e
(−g(|∇u∗|) ∂u∗

∂e

∣∣
α
+λ(u0

α − u∗
α) = 0 ∀α ∈ Ω.

Here, again e � α means, that α is a node of e.

Proof: Let u∗ = (u∗
α)α∈Ω be the limit of the iteration process (4), i.e.

u∗
α = 1

1+λ

(
u∗

α + λu0
α + τ

∑
β∼α

g(‖∇α,βu‖)
‖eα,β‖2 (u∗

β − u∗
α)

)
.
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Hence,
τ

∑
β∼α

g(|∇α,βu∗|)
‖eα,β‖2 (u∗

β − u∗
α) + λ(u0

α − u∗
α) = 0.

The assertion of the theorem now follows, if we can show that∑
β∼α

g(|∇α,βu∗|)
‖eα,β‖2 (u∗

β − u∗
α) = 1

2

∑
e
α

∂
∂e(−g(|∇u∗|) ∂u∗

∂e

∣∣
α
.

Suppose that e is the edge linking α and β. Then the definition of the
edge derivative implies

∂
∂e (−g(|∇eu

∗|) ∂u∗
∂e

∣∣
α

= 1
‖eα,β‖

[
(−g(|∇eu

∗|)∂u∗
∂e )

∣∣
β
− (−g(|∇eu

∗|)∂u∗
∂e )

∣∣
α

]
= 1

‖eα,β‖2

[ − g(|∇α,βu∗|)(u∗
α − u∗

β) − (−g(|∇α,βu∗|))(u∗
β − u∗

α)
]

= 2
‖eα,β‖2 g(|∇α,βu∗|)(u∗

β − u∗
α).

§5. Numerical Results

In this section, we want to show the performance of our method for
denoising of images and compare it to other methods. In particular we
consider the digital total variation filter by Chan, Osher and Shen [4] and
the four-pixel scheme of Welk, Steidl and Weickert [16].

In the test we consider the performance of the proposed methods for
the pepper image (see Figure 2(a)). We added zero-mean Gaussian noise,
such that the ratio ρ between standard deviation of the image and the
noise is one. Here, the signal-to-noise ratio (SNR) is defined by SNR =

20 log10
‖f−f‖2
‖n‖2

with f standing for the ideal image with mean f and n

representing the noise. Thus the SNR of the noisy image is approximately
zero.

Figure 2(b) shows the image contaminated with heavy noise and Fig-
ure 2(c) a cut through the image, comparing the noisy image with the
original in Figure in 2(a). We applied the above mentioned denoising
methods, where everytimes we tried to optimize the parameters in order
to get an optimal result for each method. The experiments show that our
filter works similarly well as existing methods. We present the denoised
image and a cut through the image (below) for the three methods to be
compared.

Figure 3(a) is obtained using 15 iterations of the digital TV-filter
with optimized fitting parameter λ = 12 (see [4]). Figure 3(b) shows
the result of the four-pixel scheme with a time step τ = 0.01 and 18
iterations. Observe, that this scheme is extremely sensitive with respect
to the stopping time. For 30 iteration only an SNR of 10.53 is achieved.
Figure 3(c) shows the result of our algorithm using 15 iterations of the
scheme (4) with Charbonnier diffusivity g(s) = (1 + 400s2)−1/2 and with
λ = 0.045.
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Fig. 2. Original image, noisy image and a cut through the noisy image.
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Fig. 3. Denoised images with digital TV filter (left), four-pixel scheme (mid-
dle) and digital diffusion-reaction filter (right) and corresponding cuts
through the denoised images compared with the original (dashed).
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