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Abstract:

In this paper we consider the Easy Path Wavelet Transform
(EPWT) on spherical triangulations. The EPWT has been
introduced in [7] in order to obtain sparse image represen-
tations. It is a locally adaptive transform that works along
pathways through the array of function values and exploits
the local correlations of the data in a simple appropriate
manner. In our approach the usual one-dimensional dis-
crete wavelet transform (DWT), orthogonal or biorthogo-
nal, can be applied.

1. Introduction

One important problem in data analysis is to construct ef-
ficient low-level representations using only a very small
part of the original data. However, these sparse approxi-
mations should provide a precise characterization of rel-
evant features of the data like discontinuities (edges) and
texture components.
It is well-known that wavelets can represent piecewise
smooth signals efficiently. However, higher-dimensional
structures may not be represented suitably by sparse
wavelet decompositions based on tensor product wavelets,
because directional geometrical properties of the data can-
not be adapted.
The last years have seen many attempts to construct lo-
cally adaptive wavelet-based schemes that take into ac-
count the special geometry of the data. In particular, for
sparse representation of images, different ideas, that try to
exploit the local correlations of the data, have been devel-
oped (see e.g. [1, 2, 3, 4, 5, 6, 7, 10]).
We will focus on the EPWT recently introduced in [7]
for sparse image representation. In this paper, we want
to adapt the EPWT to triangulations of the sphere.
For this purpose, we apply the idea used by Roşca [8, 9]
to obtain a suitable spherical triangulation. We employ a
polyhedral subdivision domain. The triangular faces of the
polyhedron are successively subdivided into four smaller
triangles. Each triangle can be transported radially to the
sphere. This approach has been used in [8, 9] for the con-
struction of Haar wavelets and of locally supported ratio-
nal spline wavelets on the sphere.

The idea of the EPWT on spherical triangulations is very
simple. First we fix a certain neighborhood of a triangle,
e.g. the three triangles that have common edges with the

reference triangle. Next, we use a one-dimensional index-
ing of all triangles of the fixed triangulation and assume
that each function value of a given data vector is associ-
ated to one triangle, or rather to its corresponding (one-
dimensional) index.

In the first step we select a path through the complete in-
dex set in such a way that data points associated to neigh-
bor indices in the path are strongly correlated. For this
purpose, for each index we choose “the best” neighbor in-
dex that has not been used in the path yet, such that the
absolute difference between neighboring data values is the
smallest. The complete path vector can be seen as a per-
mutation of the original index vector. Then we apply a
suitable (one-dimensional) discrete wavelet transform to
the data vector along the path, and the choice of the path
will ensure that most wavelet coefficients remain small.
The same procedure can be successively applied to the
down-sampled data. After a suitable number of iterations,
we apply a shrinkage procedure to all wavelet coefficients
in order to find a sparse digital representation of the func-
tion. For reconstruction one needs the path vector at each
level in order to apply the inverse wavelet transform.

2. Spatial and spherical triangulations

Consider the sphere S
2 = {x ∈ R3, ‖x‖2 = 1} and let

Π be a convex polyhedron with triangular faces, contain-
ing O inside. For example we can take an icosahedron,
a cube with triangulated faces, an octahedron, etc. The
boundary of the polyhedron will be denoted by Ω. We de-
note by T 0 = {T1, . . . , TM} the set of faces of Π. For
each triangle T ∈ T 0 we take the mid-points of its edges
and construct four triangles of equal area, as in Figure 1.
All these small triangles will form a refined triangulation
of T 0, denoted T 1. Continuing the refinement process in
the same manner, we obtain a triangulation T j of Ω, for
j ∈ N. For application of the EPWT we will stop the
refinement process at a suitable sufficiently high (fixed)
level j depending on the data set in the application. For
application of the EPWT we will need a one-dimensional
index set J = J j for the triangles in T j . Using the octahe-
dron, this one-dimensional index set J can be as in Figure
1 (right). Observe that for the octahedron the number of
triangles at the jth level is given by #J = #T j = 22j+3.

In order to obtain a spherical triangulation, for the given
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Figure 1: Illustration of the octahedron with triangulation T 1

(left) and a fold apart version of the octahedron on the plane,
with a one-dimensional indexing of all triangles.

polyhedron Π we define the radial projection p : Ω → S
2,

p(x, y, z) = (x2+y2+z2)−1/2 ·(x, y, z), (x, y, z) ∈ Ω.

The set U j = {U = p(T ), T ∈ T j} will be a triangula-
tion of the sphere S

2. For indexing the spherical triangles
in U j , we use the same index set J as for the triangulation
T j of the polyhedron.

3. Definitions and Notations for the EPWT

In order to explain the idea of the EPWT, where we want to
use the discrete one-dimensional wavelet transform along
path vectors through the data, we need some definitions
and notations.
Let us assume that a fixed refined spherical triangulation
Uj is given.Let J be a one-dimensional index set for the
spherical triangles in U j .
We define a neighborhood of an index ν ∈ J as

N (ν) = {µ ∈ J\{ν} : Tµ and Tν have a common edge}.

Hence, each index ν ∈ J has exactly three neighbors. One
may also use a bigger neighborhood, e.g. N (ν) = {µ ∈
J \ {ν} : Tµ and Tν have a common edge or a common
vertex }, in which case each index has 12 neighbors.
We also need a definition of neighborhood of subsets of
an index set. We shall consider disjoint partitions of J of
the form {J1, J2, . . . , Jr}, where Jµ ∩ Jν = ∅ for µ �= ν
and

⋃r
ν=1 Jν = J . We then say that two different subsets

Jν and Jµ from the partition are neighbors, and we write
Jν ∈ N (Jµ), if there exist the indices l ∈ Jν and l1 ∈
Jµ such that l ∈ N (l1). We consider a function f being
piecewise constant on the triangles of U j , i.e., we identify
each spherical triangle in U j with a value of f . Hence, f
is uniquely determined by the data vector (fν)ν∈J .
We will look for path vectors through index subsets of J
and we apply a one-dimensional wavelet transform along
these path vectors. Any orthogonal or biorthogonal one-
dimensional wavelet transform can be used here.

4. Description of the EPWT

In this section we give a summary of the idea of the EPWT,
described in more details in [7]. We start with the de-
composition of the real data (fν)ν∈J , and we assume that
N = #J is a multiple of 2L with L ∈ N. Then we will
be able to apply L levels of the EPWT. For the considered
octahedron we have N = 22j+3.

Decomposition

First level

We first determine a complete path vector pL through the
index set J = {1, 2, . . . , N} and then apply a suitable
discrete one-dimensional (periodic) wavelet transform to
the function values fL = (fL(j))j∈J along the path pL.
We start with pL(1) := 1. Next, for pL(2) we take

pL(2) := argmin
k

{|fL(1) − fL(k)|, k ∈ N (1)}.

We proceed in this manner, thereby determining a path
vector through the index set J , that is locally adapted to
the function f (easy path). With the procedure described
above, we obtain a pathway such that the absolute dif-
ferences between neighboring function values f L(l) along
the path are as small as possible. In general, for a given
the index pL(l), 1 ≤ l ≤ N − 1, the next value pL(l + 1)
is defined by

pL(l + 1) := argmin
k

{|fL(pL(l)) − fL(k)|,

k ∈ N (pL(l)) \ {pL(ν), ν = 1, . . . , l}}.

It can happen that the choice of the next index value
pL(l + 1) is not unique, if the above minimum is attained
for more than one index. In this case, one may fix favorite
directions in order to determine a unique pathway.
Another situation which can occur during the procedure is
that all indices in the neighborhood of an index pL(l) have
already been used in the path pL. In this case we have an
interruption in the path vector. We need to choose one in-
dex pL(l+1) from the remaining indices in J , which have
not been taken yet in pL. There are different possibilities
for finding a suitable next index. One simple choice is to
take the smallest index from J that has not been used so
far. Another choice is to look for a next index, such that
again the absolute difference |f L(pL(l))− fL(pL(l+1))|
is minimal, i.e., we take in this case

pL(l + 1) = argmin
k

{|fL(pL(l)) − fL(k)|,

k ∈ J \ {pL(ν), ν = 1, . . . , l}}.

By proceeding in this manner, we finally obtain a path vec-
tor pL ∈ Z

N , which is a permutation of (1, 2, . . . , N).
After having constructed the path pL, we apply one
level of the 1-D Haar DWT (or any other orthogonal or
biorthogonal periodic DWT) to the vector of function val-
ues (fL(pL(l)))N

l=1 along the path pL. We obtain the vec-
tor fL−1 ∈ R

N/2, containing the low-pass part, and the
vector of wavelet coefficients gL−1 ∈ R

N/2. While the
wavelet coefficients will be stored in gL−1, we further pro-
ceed with the low-pass vector f L−1 at the second level.

Further levels

If N = 2Lr with r ∈ N being greater than or equal to
the lengths of low-pass and high-pass filters in the chosen
DWT, then we may apply the procedure L times. For a
given vector fL−j , 0 < j < L, at the (j + 1)-th level we
consider the index sets

JL−j
l := JL−j+1

pL−j+1(2l−1)
∪ JL−j+1

pL−j+1(2l)
, l = 1, . . . , N/2j,



with the corresponding function values (f L−j(l))N/2j

l=1 . In
particular, the index sets at the second level are J L−1

l :=
{pL(2l−1),pL(2l)}, l = 1, . . . , N/2, determining a par-
tition of J .
We repeat the procedure described in the first step, but
replacing the single indices with the new index sets J L−j

l ,
and the corresponding function values with the smoothed
function values fL−j(l).
The new path vector pL−j ∈ Z

N/2j

should now be a per-
mutation of (1, 2, . . . , N/2j). We start again with the first
index set JL−j

1 , i.e., pL−j(1) = 1. Having already found
pL−j(l), 1 ≤ l ≤ N/2j − 1, we determine the next value
pL−j(l + 1) as

pL−j(l + 1) = argmin
k

{|fL−j(pL−j(l)) − fL−j(k)|,

JL−j
k ∈ N (JL−j

pL−j(l)
) \ {pL−j(ν), ν = 1, . . . , l}}.

If the new value pL−j(l+1) is not uniquely determined by
the minimizing procedure, we can fix favorite directions in
order to obtain a unique path. If for the set J L−j

pL−j(l)
there

is no neighboring index set that has not been used yet in
the path vector pL−j , then we have to interrupt the path
and to find a new good index set (that has been not used
so far) to continue the path. As at the first level, we try to
keep the differences of function values along the path as
small as possible.
Finally, we apply the (periodic) wavelet transform to the

vector (fL−j(pL−j(l)))N/2j

l=1 along the path pL−j , thereby

obtaining the low-pass vector f L−j−1 ∈ R
N/2j+1

and the
vector of wavelet coefficients gL−j−1 ∈ R

N/2j+1
.

Output
As output of the complete procedure after L iterations we
obtain the coefficient vector

g = (f0,g0,g1, . . . ,gL−1) ∈ R
N

and the vector determining the paths at each iteration step

p = (p1,p2, . . . ,pL) ∈ R
2N(1−1/2L).

These two vectors contain the entire information about the
original function f .

In order to find a sparse representation of f , we apply a
shrinkage procedure to the wavelet coefficients in the vec-
tors gj , j = 0, . . . , L − 1 and obtain the vectors g̃j .

Reconstruction

The reconstruction of f L from g̃ = (f0, g̃0, g̃1, . . . , g̃L−1)
and p is given as follows.

f̃0 = f0;
For j = 0 to L − 1

- Apply the inverse DWT to the vector ( f̃ j , g̃j) ∈ R
r2j

in order to obtain f̃ j+1
p ∈ R

r2j+1
.

- Apply the permutation f̃ j+1(pj+1(k)) = f̃ j+1
p (k), for

k = 1, . . . , r2j+1.

5. Example

We illustrate the simple idea of function decomposition
with the EPWT on the sphere in the following small ex-
ample. Let a set of 32 function values be given on the
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Figure 2. Illustration of first path through the triangulation T 1

of the octahedron (left) and of the low-pass part after the first
level of EPWT with Haar DWT (right). Index sets at the second
level are illustrated by different gray values, and path vectors are
represented by arrows.

sphere, where each function value corresponds to a spher-
ical triangle that has been obtained by radial projection of
the triangulated octahedron in Figure 1 (left). The values
are given as a vector f = f 5 of length 32, corresponding
to the one-dimensional indexing of the triangles in Figure
1 (right),

f = (0.4492, 0.4219, 0.4258, 0.4375, 0.4141, 0.4531,

0.4180, 0.4258, 0.4375, 0.4292, 0.4219, 0.4219,
0.4219, 0.4258, 0.4023, 0.4141, 0.4219, 0.4219,
0.4297, 0.4375, 0.4141, 0.4023, 0.4258, 0.4219,
0.4258, 0.4180, 0.4531, 0.4141, 0.4375, 0.4258,
0.4219, 0.4492).

Starting with the index 1, with the function value 0.4492,
we determine the first path vector. This index has the
three neighbors 2, 4, and 6, with the corresponding val-
ues 0.4219, 0.4375 and 0.4531, respectively (see Figure
2). Hence, the second index in the path is 6. Proceeding
further according to Section 4 we obtain

p5 =(1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 26, 25, 24, 31, 30, 21,
22, 23; 3, 2, 17, 18, 19, 20; 4, 15, 16, 5; 28, 27, 32, 29),

where the interruptions in the path are indicated by semi-
colons. This path has four interruptions and is illustrated
by arrows in Figure 2 (left). An application of the Haar
DWT (with unnormalized filter coefficients h0 = h1 =
1/2, g0 = 1/2, g1 = −1/2) along this path gives (with
truncation after four digits) the low-pass coefficients

f4 = (0.4512, 0.4219, 0.4334, 0.4219, 0.4238, 0.4219,

0.4219, 0.4200, 0.4140, 0.4238, 0.4219, 0.4336, 0.4199,

0.4141, 0.4336, 0.4434),

and the wavelet coefficients

g4 = (−0.0020,−0.0039,−0.0042, 0.,−0.0020,

−0.0039, 0., 0.0058,−0.0118, 0.0020, 0.,−0.0039,

0.0176, 0.,−0.0195, 0.0058).

We now proceed to the second level. For the smoothed
vector of function values f 4 corresponding to the 16 index
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Figure 3. Illustration of the third and fourth paths.

sets that are illustrated by gray values in Figure 2 (right),
we obtain the next path

p4 = (1, 10, 4, 5, 6, 7, 8, 9, 3, 2, 12, 11, 14, 13; 15, 16),

illustrated by arrows in Figure 2 (right). An application of
the Haar DWT along p4 gives

f3 = (0.4375, 0.4229, 0.4219, 0.4170, 0.4276, 0.4278,

0.4170, 0.4385),
g3 = (0.0136,−0.0010, 0., 0.0030, 0.0057, 0.0058,

0.0029,−0.0049).

At the third level we start with the smoothed vector f 3

corresponding to the 8 index sets that are illustrated by
gray values in Figure 3 (left). We find now the path p3 =
(1, 5, 6, 8, 3, 2, 4; 7), see Figure 3 (left). This leads to

f2 = (0.4326, 0.4331, 0.4224, 0.4170),
g2 = (0.0049,−0.0054, 0.0005, 0.).

At the fourth level we have only 4 index sets that corre-
spond to the values in f 2, see Figure 3 (right). Hence we
find p2 = (1, 2, 3, 4) and

f1 = (0.4328, 0.4197), g1 = (−0.0003, 0.0027).

Finally, with p1 = (1, 2), the last transform yields f 0 =
(0.4263) and g0 = (0.0066).

6. Numerical experiments

To illustrate the efficiency of our method, we took the
dataset topo and we considered the regular octahedron
with triangulation T6, containing 32768 triangles. The ap-
proximation f 6 at level 6 is represented in Figure 4. We
applied the EPWT with different thresholds, obtaining the
compressed vector f̃6, and we measured the SNR given as

SNR = 20 · log10

‖f6 − mean(f6)‖2

‖f6 − f̃6‖2

.

number of remaining l2-norm
threshold wavelet coeff. of error SNR

1 27732 26.4031 84.72
100 14185 5.34e+03 38.59
500 5230 2.47e+04 25.30
1000 3313 3.97e+04 21.17
1500 2699 5.00e+04 19.18
2000 2402 5.79e+04 17.89
2500 2265 6.35e+04 17.10

Table 1: Compression results for the dataset topo.

Figure 4. Approximation f6 at level 6 of the original dataset topo
and the compressed version ef6 with threshold 2500.

The results are contained in Table 1, where the mean of f 6

is −2329.
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