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Abstract

In this paper we establish the new notion of persistence distance for discrete signals and
study its main properties. The idea of persistence distance is based on recent developments
in topological persistence for assessment and simplification of topological features of data sets.
Particularly, we establish a close relationship between persistence distance and discrete total
variation for finite signals. This relationship allows us to propose a new adaptive denoising
method based on persistence that can also be regarded as a nonlinear weighted ROF model.
Numerical experiments illustrate the ability of the new persistence based denoising method to
preserve significant extrema of the original signal.
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1 Introduction

Motivated by recent developments in topological persistence for assessment of the importance
of features in data sets, we study the ideas of persistence homology for one-dimensional digital
signals and its application in signal denoising. The notions of persistence homology and persis-
tence pairs were introduced in [11] for measuring the topological complexity of point sets in R3.
Persistence pairs and corresponding persistence diagrams are well suited to quantify the topo-
logical significance of data structures and to develop a formalism for topological simplification
[4, 7, 8, 9, 17]. In case of one-dimensional digital signals the idea of topological persistence
boils down to the problem of pairing suitable local minima and maxima of the signal. Con-
sidering the persistence pairs and the corresponding persistences not only for the signal f but
also for −f , we propose the new notion of persistence distance of f . Transferring from f to
−f switches the roles of the sets of local minima and local maxima of f . A comparison of the
persistence pairs found for f and for −f already provides us with an important categorization
tool. Persistence pairs occurring for both, f and −f , are less significant than those occurring
only once, for f or for −f .

We show that the persistence distance has a lot of favorable properties. Particularly, we
show that the persistence distance is very closely related to the discrete total variation of f .
This relation motivates us to employ the new notion of persistence distance for signal denoising.

Let u be a finite digital signal that is corrupted with white noise, i.e., we have given the
data

f(xj) = u(xj) + n(xj), j = 0, . . . , N
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for a partition a = x0 < x1 < . . . < xN = b, where n has zero mean and (unknown) deviation
σ. Using the celebrated discrete ROF-model, a reconstruction of u can be obtained as the
minimizer of the functional

J(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
`=0

|u(x`+1)− u(x`)|,

where the second term denotes the discrete total variation of u. We propose now to replace
this second term using the persistence distance of u that inherits the topological properties of
the signal u. We will show that the obtained new functional can be also regarded as a weighted
ROF-functional of the form

Jw(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
`=0

w`(u) |u(x`+1)− u(x`)|,

where the weights w`(u) depend on local chains of persistence pairs. In particular, the weights
are taken in a way such that the denoised signal obtained by minimization of Jw(u) preserves
the essential peaks (discontinuities) of u well and yields good denoising performance at smooth
subregions of u.

Related literature. Topological persistence and its application to extract important
topological features from data has been extensively studied within the last years, see e.g.
[4, 7, 8, 9, 11, 17] and references therein. In [8], it has been shown that persistence diagrams
of real-valued functions are stable with regard to noise, i.e., for two functions f and g with
corresponding persistence diagrams D(f) and D(g) one finds

dB(D(f), D(g)) ≤ ‖f − g‖∞,

where dB denotes the bottleneck distance and ‖ · ‖∞ the L∞-norm. In [7], the p-norm of the
persistence diagram and its changes under diffusion of f using a convolution with a Gaussian
kernel with enlarging parameter is studied.

Though, for application of persistence in signal denoising we are only aware of the results
in [2], where topological denoising methods have been proposed employing a persistence-based
simplification and a so-called filling-based simplification of the signal. The latter method
mimics the construction of cancelation of persistence pairs, where instead of the filling level
the filling volume is increased, thereby taking into account both, the distance between points
in one persistence pair and the distance of corresponding function values. This last approach
is slightly related to the watershed transform, a frequently used tool in image segmentation,
see e.g. [3, 13] and references therein.

Regarding weighted TV-minimization for signal and image denoising we refer to [1, 10, 12,
15, 16] etc. In the continuous setting, the adaptive TV denoising approaches usually consider
the minimization functionals of the form

1

2

∫
Ω

|u(x)− f(x)|2dx+

∫
Ω

α(x)|Du(x)|dx

over u ∈ BV (Ω), the space of functions of bounded variation, where
∫

Ω
|Du(x)|dx denotes

the total variation of u. The parameter α(x) is adaptively chosen depending on geometric
properties of signal features [15, 16], and can be further improved using noise statistics and
robust adjustment [10].

The rest of the paper is organized as follows. In Section II.A we summarize the properties of
the discrete total variation. In Section II.B we introduce the new notion of persistence distance
and study its main properties. Section II.C is devoted to the close relation between the discrete
total variation and the persistence distance. In Section III we attempt to apply the new notion
of persistence distance to signal denoising. We propose a new weighted functional, where the
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regularization term is based on the persistence of the signal. We show that this functional can
also be regarded as a weighted ROF functional. In Subsection III.B, we present a numerical
algorithm for the proposed weighted TV minimization based on persistence. Finally, we provide
some numerical results to show the performance of our algorithm and give a short conclusion.

2 Discrete total variation and persistence distance

In this section, we consider the discrete setting of total variation and introduce the new notion
of persistence distance. We investigate the properties of the persistence distance and par-
ticularly establish a close connection between the persistence distance and the discrete total
variation.

2.1 Discrete total variation

Let X be a partition of the form a = x0 < x1 < · · · < xN = b of the interval [a, b]. Further,
let us consider a sequence y = {yj}Nj=0 that corresponds to the partition X. Then (xj , yj),
j = 0, . . . , N , uniquely define a linear spline function f : [a, b]→ R with f(xj) = yj . We denote
the space of linear splines with respect to the partition X by S1(X). With these assumption,
the discrete total variation of f (resp. y) is defined as the absolute sum of all changes of
function values, i.e.,

TV (f) :=

N−1∑
j=0

|f(xj+1)− f(xj)| (2.1)

resp. TV (y) :=
∑N−1
j=0 |yj+1 − yj |. Let us shortly summarize some well-known properties of

TV (f) = TV (y), for a proof, we refer e.g. to [5].

Proposition 2.1 Let TV (y) with y = (f(xj))
N
j=0 ∈ RN+1 be the discrete total variation of

f ∈ S1(X). Then we have:
(i) TV (y) is nonnegative and TV (y) = 0 if and only if y = c1 with 1 := (1, . . . , 1)T ∈ RN+1

and c ∈ R.
(ii) TV (y) is positively homogeneous, i.e., TV (λy) = λTV (y) for any λ ≥ 0.
(iii) TV (y) is invariant by addition of a constant, i.e., TV (y + c1) = TV (y).
(iv) TV (y) : RN+1 → R is a continuous functional.
(v) TV (y) is submodular, i.e., for any two functions f, g ∈ S1(X) with y = (f(xj))

N
j=0 and

z = (g(xj))
N
j=0, we have

TV (y) + TV (z) ≥ TV (max(y, z)) + TV (min(y, z)),

where max(y, z) := (max{yj , zj})Nj=0 and min(y, z) := (min{yj , zj})Nj=0.

(vi) The discrete total variation is a semi-norm, i.e., for y, z ∈ RN+1,

TV (y + z) ≤ TV (y) + TV (z).

2.2 Persistence distance

The notion of persistence homology originates from algebraic topology. It is usually introduced
for simplicial complexes being filtered by a scalar function. However, for the one-dimensional
signal y = (f(xj))

N
j=0 on the partition X = {x0, . . . , xN}, we aim to define persistence pairs

and the persistence distance without using the background on the construction of homology
groups. For this purpose we first need the following definitions.
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Definition 2.2 A knot xl ∈ X \ {x0, xN} is called (left-sided) local minimum knot of y =
(f(xj))

N
j=0 on X with the local minimum value yl = f(xl), if yl−1 = f(xl−1) > f(xl), and if

there exists a ν ∈ N0 such that l + ν + 1 ≤ N and

f(xl) = f(xl+1) = · · · = f(xl+ν) < f(xl+ν+1).

Analogously, a knot xl ∈ X \ {x0, xN} is called (left-sided) local maximum knot of y =
(f(xj))

N
j=0 on X with the local maximum value yl = f(xl), if yl−1 = f(xl−1) < f(xl), and

if there exists a ν ∈ N0 such that l + ν + 1 ≤ N and

f(xl) = f(xl+1) = · · · = f(xl+ν) > f(xl+ν+1).

The boundary knot x0 ∈ X is called (left-sided) local minimum (resp. maximum) knot of
y = (f(xj))

N
j=0 on X with the local minimum (resp. maximum) value y0 = f(x0), if there

exists a ν ∈ N0 with ν ≤ N − 1 such that

f(x0) = f(x1) = · · · = f(xν) < f(xν+1)

(resp. f(x0) = f(x1) = · · · = f(xν) > f(xν+1)). The boundary knot xN ∈ X is called
local minimum (resp. maximum) knot of y = (f(xj))

N
j=0 on X with the local minimum (resp.

maximum) value yN = f(xN ), if f(xN−1) > f(xN ) (resp. f(xN−1) < f(xN )) holds.

We now consider the subsets of {yj : j = 0, . . . , N},

Ym := {yk = f(xk) : yk is a local minimum value of y},

Y m := {yk = f(xk) : yk is a local maximum value of y},

as well as the corresponding subsets of the partition X,

Xm := {xk : f(xk) ∈ Ym},

Xm := {xk : f(xk) ∈ Y m}.

Further, let xmax := max{Xm, X
m} be the extremum knot with highest index occurring in the

set Xm ∪Xm. Observe that xmax not coincides with xN if f(xν) = . . . = f(xN−1) = f(xN )
for some ν < N . For the number of elements in Ym and Y m we obviously have the relation

#Ym −#Y m ∈ {−1, 0, 1},

since after ordering the knots xk ∈ Xm∪Xm by size, a local minimum (maximum) knot always
possesses a local maximum (minimum) as its neighbor.

Definition 2.3 The knot xl ∈ Xm is called global minimum knot of y = (f(xj))
N
j=0 on X with

the global minimum value f(xl) if xl = argmin
x∈Xm

f(x). The knot xl ∈ Xm is called global maxi-

mum knot of y = (f(xj))
N
j=0 on X with the global maximum value f(xl) if xl = argmax

x∈Xm

f(x).

If the global maximum (or minimum) knot is not uniquely determined by Definition 2.3
then we take the knot xl with smallest index l. We now construct persistence pairs (xk, xl) of
y = (f(xj))

N
j=0 over the partition X by the following algorithm.

With the above procedure, we obtain at least #Y m − 2 persistence pairs, since each local
maximum knot of f (resp. y) that is not at the boundary (i.e. not in {x0, xmax}) is paired
with one local minimum knot by the above algorithm. Observe that in this way also each local
minimum knot being not the global minimum knot, is contained in exactly one persistence
pair while the global minimum knot is not paired. A boundary knot (i.e., x0 or xmax) occurs
as a knot in a persistence pair if it is a local but not the global minimum knot, and it is not
contained in any persistence pair if it is a local maximum knot or the global minimum knot.
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Input: Ym, Y m, Xm, Xm for y = (f(xk))Nk=0.

1) Let r := #Y m, P1 := ∅ and Xm,0 := Xm.

Fix the ordered set K0 := {f(xk1) ≤ f(xk2) ≤ · · · ≤ f(xkr )}
of all local maximum values in Y m using the convention that for

f(xk) = f(xl) ∈ Y m we take f(xk) first if xk < xl.

2) For l = 1, . . . , r do

Consider the l-th entry f(xkl) in the ordered set K0.

If xkl /∈ {x0, xmax} then find the two spatial neighbors x̃1, x̃2 ∈
Xm,l−1 of xkl .

Put x̃ := argminx∈{x̃1,x̃2} | f(xkl)− f(x) | , where in case of

| f(xkl)− f(x̃1) |=| f(xkl)− f(x̃2) | we take x̃ = max{x̃1, x̃2}.
Then (x̃, xkl) resp. (xkl , x̃) is a persistence pair of f , and we set

P1 = P1 ∪ {(x̃, xkl)} and Xm,l := Xm,l−1 \ {x̃}.
Here we apply the convention that the knots in the persistence pairs

are ordered by size, i.e. we write (x̃, xkl) if x̃ < xkl and (xkl , x̃) if

x̃ > xkl .

Output: P1 containing all persistence pairs of y (resp. f).

Table 1: Algorithm I: Computation of persistence pairs.

Example 2.4 Let us consider the vector y = (0, 2, 1, 3, 1, 4,−1, 0, 1) on the equidistant parti-
tion X = {xj}Nj=0 with xj = j, j = 0, . . . , N , where N = 8.

According to the definition, we find the sets Y m = {2, 3, 4, 1}, Ym = {0, 1, 1,−1}, Xm =
{x1, x3, x5, x8}, Xm = {x0, x2, x4, x6}. Algorithm 1 provides now with K0 = {1, 2, 3, 4} =
{f(x8), f(x1), f(x3), f(x5)} the set of persistence pairs P1 = {(x1, x2), (x3, x4), (x0, x5)}. The
global minimum knot x6 and the local maximum knot x8 at the boundary do not occur in any
persistence pair.

Remark 2.5 In computational topology, the persistence pairs are usually visualized by barcodes
[4] or by a persistence diagram, see e.g. [8, 17]. Each persistence pair (xk, xl) corresponds to the
point (f(xk), f(xl)) in the persistence diagram, and the distance of this point to the line y = x,
i.e. the distance |f(xk) − f(xl)| gives us some information about the ”topological relevance”
of these two local extrema of f . Important features correspond to points being further away
from the diagonal, i.e., to persistence pairs (xk, xl) with significant distances |f(xl) − f(xk)|,
see Figure 1 (right).

Now, we want to construct a second set of persistence pairs for f (resp. for y) on X. For

that purpose, we apply Algorithm 1 also to the sequence {−f(xj)}Nj=0 = {−yj}Nj=0, and obtain
a set P2 of persistence pairs.

Obviously, the transfer from {f(xj)}Nj=0 to {−f(xj)}Nj=0 switches the roles of the sets Ym
and Y m (and of Xm and Xm), i.e., using the notations Ym(−f), Y m(−f), Xm(−f), Xm(−f)

for the sets of extremal values of {−f(xj)}Nj=0 and their corresponding knots {xj}Nj=0, we have

f(xj) ∈ Ym ⇐⇒ −f(xj) ∈ Y m(−f),

f(xj) ∈ Y m ⇐⇒ −f(xj) ∈ Ym(−f),

and Xm(−f) = Xm, Xm(−f) = Xm.
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Figure 1: Spline function f in Example 2.4 (left), corresponding persistence diagram (right).

Considering again the Example 2.4, we then obtain a second set of persistence pairs

P2 = {(x1, x2), (x3, x4), (x6, x8)}.

In particular, we observe that the global maximum knot x5 of Xm does not occur in any
persistence pair of P2.

Note that the persistence pairs found in P1 and P2 partially coincide, but usually P1 and
P2 are not equal. Further, the boundary extremum knots x0 and xmax are included in at most
one persistence pair, either in one from P1 or in one from P2, since they are not regarded when
being a local maximum knot. Indeed, x0 (resp. xmax) will not occur in any persistence pair,
i.e., neither in P1 nor in P2, if it is a global extremum knot. We are now ready for the following
new definition.

Definition 2.6 (Persistence distance)

For a given function f ∈ S1(X) respective the vector y = (f(xj))xj∈X , we define the persis-

tence distance by

‖f‖per = ‖y‖per = ‖y|X‖per :=∑
(xk,xl)∈P1

|f(xl)− f(xk)|+
∑

(xk,xl)∈P2

|f(xl)− f(xk)|,

i.e., as the sum over all distances of function values for the persistence pairs in P1 and P2.

Observe that for persistence pairs that occur twice, i.e., are contained in P1 ∩ P2, the
corresponding absolute difference of function values is added twice.

Remark 2.7 As far as we know, the persistence distance as given in Definition 2.6 has not
been regarded before in the homology literature. The idea to consider a so-called p-norm of
the persistence diagram of a function ft : R2 → R that is obtained by convolving the original
function f : Ω→ R with the isotropic Gaussian kernel with scale t > 0 (in the two-dimensional
case), can be found already in [7]. This p-norm takes the p-th root of the sum of the p-th
powers of all persistences. In contrast to the p-norm definition of the persistence diagram, we
consider the persistence pairs for a function on a bounded interval and have to treat extremal
values at the boundary with special care. Further, we consider the persistences for f and for
−f .

Let us derive some properties of the persistence distance ‖f‖per = ‖y‖per.

Theorem 2.8 Let f ∈ S1(X) be a spline function with y = (f(xj))
N
j=0 on the partition

X = {x0, . . . , xN} of [a, b]. Then the persistence distance ‖f‖per = ‖y|X‖per = ‖y‖per satisfies
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the following properties.
(i) ‖y‖per ≥ 0. We have ‖y‖per = 0 if and only if y = (yj)

N
j=0 is monotone.

(ii) For each c ∈ R, we have ‖cy‖per = |c| · ‖y‖per.
(iii) The persistence distance is invariant under addition of a constant function,

‖y + c1‖per = ‖y‖per,

where 1 = (1, . . . , 1)T ∈ RN+1 and c ∈ R. In particular, ‖c1‖per = 0.

(iv) The persistence distance ‖y‖per : RN+1 → R is a continuous functional.

(v) The persistence distance ‖y‖per is submodular, i.e., for f, g ∈ S1(X) with y = (f(xj))
N
j=0

and z = (g(xj))
N
j=0 we have

‖y‖per + ‖z‖per ≥ ‖max(y, z)‖per + ‖min(y, z)‖per,

where max(y, z) := (max{yj , zj})Nj=0 and min(y, z) := (max{yj , zj})Nj=0.

(vi) There exist y, z ∈ RN+1 such that the persistence distance ‖y‖per does not satisfy the
triangle inequality, i.e.,

‖y + z‖per ≤ ‖y‖per + ‖z‖per.

Hence, ‖y‖per is not convex.

Proof. (i) The property ‖y‖per ≥ 0 is obvious by definition, where ‖y‖per = 0 can only occur if
there are no persistence pairs, neither for f nor for−f , i.e., P1∪P2 = ∅. According to Algorithm
1, we have P1 = ∅, if and only if the set Y m is a subset of {f(x0), f(xmax)}, i.e., there are local
maxima only at the boundary. Analogously, P2 = ∅, if and only if Ym ⊂ {f(x0), f(xmax)},
i.e., there are local minima only at the boundary. Hence, P1 ∪ P2 = ∅ is true if and only if y
is monotone.

(ii) Property (ii) is obvious, where for c < 0 the roles of Xm and Xm and hence of P1 and
P2 are exchanged.

(iii) All persistence pairs and hence the persistence distance are invariant under addition
of a constant.

(iv) Since f is a tame function, this assertion is a direct consequence of the stability of
persistence diagrams, see e.g. [8]. In the special case considered here, we can also derive this
property directly. Assume first, that the vector y = (f(xj))

N
j=0 does not contain constant

parts, i.e. that yj 6= yj+1 for j = 0, . . . , N − 1. Then, there exists an ε > 0 such that for each
ỹ with ‖y − ỹ‖∞ < ε the sets of minimum and maximum knots for y and ỹ coincide, i.e.,
Xm = X̃m and Xm = X̃m, and such that the order of maximum and minimum values (i.e.,
the order of the values f(xk1), . . . , f(xkr ) in the set K0 in Algorithm 1) does not change, and
hence all persistence pairs (xk, xl) remain the same for y and ỹ. Hence

|‖y‖per − ‖ỹ‖per| ≤
∑

(xk,xl)∈P1

|(|yl − yk| − |ỹl − ỹk|)|

+
∑

(xk,xl)∈P2

|(|yl − yk| − |ỹl − ỹk|)|

≤
∑

(xk,xl)∈P1

|(yl−ỹl)− (ỹk − yk)|+
∑

(xk,xl)∈P2

|(yl − ỹl)− (ỹk − yk)|

≤ 2Nε.

The last inequality follows from the fact that #P1 ≤ #Y m and #P2 ≤ #Ym, where Y m resp.
Ym contain the maximum resp. minimum values of y.

In the case of equal neighboring function values in y, the sets P̃1 and P̃2 may enlarge for
the perturbed vector ỹ. However, for each pair (xk, xl) ∈ P1∪P2 there exists a persistence pair
(xk′ , xl′) ∈ P̃1 ∪ P̃2, with yk − yk′ = 0, yl − yl′ = 0 and yk − ỹk′ < ε, yl − ỹl′ < ε. Further, the
new sets P̃1 and P̃2 of ỹ may contain new persistence pairs, but these are due to components
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in ỹ that correspond to equal neighboring values in y and hence have a distance of at most 2ε.
Thus the same estimate as in the first case applies also here.

(v) The proof of submodularity is postponed to Remark 2.13.
(vi) We give a counterexample, where the triangle inequality is not satisfied. Choose

X = (x0, x1, x2, x3) with xj = j, and let y and z be determined by the vectors y = (0, 1,−1, 0)T

and z = (0.6, 1.2, 1.8, 2.4)T . For y we find the sets of persistence pairs P1 = {(x0, x1)},
P2 = {(x2, x3)} and hence ‖y‖per = |y1 − y0| + |y3 − y2| = 2. Since z is monotone, we find

P1 = ∅ and P2 = ∅ and hence ‖z‖per = 0. Finally, for the sum y + z = (0.6, 2.2, 0.8, 2.4)T

we obtain P1 = {(x1, x2)}, P2 = {(x1, x2)} yielding ‖y + z‖per = 2.8. Hence, y and z do not
satisfy the triangle inequality.

2.3 Relation between discrete total variation and persistence dis-
tance

While being not a semi-norm, the persistence distance (together with the sets of persistence
pairs) contains a lot of information about the structure of a function f ∈ S1(X).

In this subsection, we show the following close relation to the discrete total variation TV (f).

Theorem 2.9 Let X be a partition of the form a = x0 < x1 < · · ·xN = b. Then, for each
function f ∈ S1(X) we have

‖f‖per + max
x,y∈X

|f(x)− f(y)| = TV (f),

where TV (f) is defined in (2.1). Analogously, for each sequence y ∈ RN+1, we have

‖y‖per + max
j,k∈{0,1,··· ,N}

|yj − yk| = TV (y).

The proof of Theorem 2.9 is based on an iterative topological simplification technique as
used e.g. in [2]. Before we can prove this Theorem 2.9, we need the following Lemmata. In the
first lemma we show a nesting principle for persistence pairs.

Lemma 2.10 Let P1 and P2 be the two sets of persistence pairs of f ∈ S1(X). Let (xk, xl)
be a persistence pair in P1 ∩ P2. Then, for all x ∈ Xm ∪ Xm with xk < x < xl, there exists
a further knot x̃ ∈ Xm ∪Xm with xk < x̃ < xl such that (x, x̃) or (x̃, x) is also contained in
P1 ∩ P2.

Proof. The above assertion is in fact a direct conclusion from Algorithm 1. Let (xk, xl) be a
persistence pair in P1 with xk < xl, and let us assume without loss of generality, that xk ∈ Xm,
and xl ∈ Xm, i.e., xk is a local minimum knot and xl is a local maximum knot of f . Recalling
Algorithm 1 it follows that in the iteration step ν, where f(xl) ∈ Y m is considered, the knot
xk is a direct neighbor of xl, i.e., there is no other minimum knot x ∈ Xm,ν left in the interval
between xk and xl. Hence, if there exists a local maximum knot x ∈ Xm with xk < x < xl,
then it had been paired with a minimum knot contained in (xk, xl) and pulled out already in
an earlier step of the iteration. In particular, it hence corresponds to a local maximum value
smaller than (or equal to) f(xl).

Analogously, since (xk, xl) ∈ P2, the arguments can be repeated for −f(xk) ∈ Ỹm and
−f(xl) ∈ Ỹ m. Hence, each knot x ∈ Xm with xk < x < xl is paired with some x̃ ∈ Xm with
xk < x̃ < xl, and vice versa. Moreover, it cannot happen that one such x ∈ Xm ∩ (xk, xl) is
paired with different knots x̃1 6= x̃2 in P1 and P2, since the pairing procedure in Algoritm 1 is
defined uniquely.

Lemma 2.11 Let f ∈ S1(X) with the sets P1 and P2 of persistence pairs, where P1 ∩P2 = ∅.
Then, for each persistence pair (xk, xl) ∈ P1 ∪ P2, the values xk and xl are neighbor knots in
Xm ∪Xm.
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Proof. Assume by contrast that there is a persistence pair (xk, xl) ∈ P1 ∪ P2 that does not
satisfy this assertion. Without loss of generality let xk ∈ Xm and xl ∈ Xm and (xk, xl) ∈ P1.
Since xk and xl are no neighbor knots in Xm ∪ Xm, there exist (by Lemma 2.10) x̃0 ∈ Xm

and x̃1 ∈ Xm with xk < x̃1 < x̃0 < xl that also form a persistence pair (x̃1, x̃0) in P1 and such

that according to Algorithm 1 f(x̃0) ≥ f(xk) and f(x̃1) < f(xl). Hence, for {−f(xk)}Nk=0,
we find similarly as in the proof of Lemma 2.10 that (x̃1, x̃0) is also a persistence pair in P2,
contradicting the assumption P1 ∩ P2 = ∅.

Proof. (of Theorem 2.9) 1. Let f ∈ S1(X) be given with local minima and maxima sets
Xm, Ym , Xm, Y m and sets P1 and P2 of persistence pairs. We order all persistence pairs
(xk, xl) ∈ P1 ∪ P2 by their distances |f(xl)− f(xk)| starting with the smallest. Now we apply
the following iterative simplification algorithm to f0 := f . If (xk, xl) is the persistence pair in
P1 ∩ P2 of f0 with smallest absolute difference |f0(xl)− f0(xk)|, we determine f1 ∈ S1(X) by

f1(x) =


f0(xk) + f0(xl)

2
, x ∈ X ∩ [xk, xl],

f0(x), x ∈ X \ [xk, xl].

Hence, since f0 is monotone in [xk, xl], we have changed the total variation by 2|f0(xk) −
f0(xl)|, i.e.,

TV (f1) = TV (f0)− 2|f0(xk)− f0(xl)|.

Consider now the change of persistences of f1. Obviously, since |f0(xl) − f0(xk)| was the
smallest absolute difference, f1(xk) and f1(xl) are no longer extremal values of f1 while all
other extremal values remain the same compared to f0. Due to Algorithm 1 and Lemma 2.10,
f1 possesses the same persistence pairs as f0 up to (xk, xl), i.e.,

‖f1‖per = ‖f0‖per − 2|f0(xk)− f0(xl)|.

This simplification can now be applied to f1 removing the next persistence pair (x1
k, x

1
l ) of

f1 with smallest absolute difference |f(x1
k) − f(x1

l )| to obtain f2 etc. If m is the number of
persistence pairs in P1 ∩ P2, then, after m simplification steps we obtain fm ∈ S1(X) with

‖fm‖per = ‖f0‖per − 2
∑

(xk,xl)∈P1∩P2

|f0(xk)− f0(xl)|

=
∑

(xk,xl)∈P1\P2

|f0(xk)− f0(xl)|+
∑

(xk,xl)∈P2\P1

|f0(xk)− f0(xl)|

and with
TV (fm) = TV (f0)− 2

∑
(xk,xl)∈P1∩P2

|f0(xk)− f0(xl)|. (2.2)

Hence, it remains to consider the relation between ‖f‖per and TV (f) for a function f = fm ∈
S1(X) with persistence sets P1, P2 satisfying P1 ∩ P2 = ∅.

2. Assume now that we have P1 ∩ P2 = ∅ for f ∈ S1(X). By construction of P1 and P2 in
Algorithm 1, we know that each local extremum knot xk that is not a global extremum and
not a boundary knot (i.e., x0 < xk < xmax), occurs in two persistence pairs, one in P1 and one
in P2. By Lemma 2.11, these two persistence pairs are different and connect xk with its two
spatial extremum knot neighbors. Further, each boundary knot (x0 and xmax) that is not a
global extremum, occurs in one persistence pair, namely in P1 if it is a local minimum and in
P2 if it is a local maximum. This persistence pair connects the boundary knot with its spatial
extremum knot neighbor. If xk is a global extremum (maximum or minimum) knot of f and
not a boundary knot, then it occurs in only one persistence pair (in P1 if being the global
maximum or in P2 otherwise). By Lemma 2.11, this persistence pair connects xk with one of
its spatial extremum knot neighbors.
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But since all other knots are already connected with their spatial extremum knot neigh-
bors by persistence pairs, there is only one ”connection” missing, namely between the global
minimum knot and the global maximum knot. Hence, we obviously have

‖f‖per = TV (f)− max
(x,y)∈X

|f(x)− f(y)|.

Finally, if xk is a global extremum of f and a boundary knot, then it does not occur in
any persistence pair. Also in this case, we can repeat the argument, observing that only the
connection between the global minimum knot and global maximum knot is missing. Together
with (2.2) the assertion of the theorem follows.

Example 2.12 We consider X = {xj}8j=0 with xj = j, and let f ∈ S1(X) be given by the

vector {f(xj)}8j=0 = (1, 0, 3, 2, 5, 1, 4, 0, 2), see Figure 2(a). We obtain the sets

Xm = {x1, x3, x5, x7}, Xm = {x0, x2, x4, x6, x8},
P1 = {(x2, x3), (x5, x6), (x4, x7)},
P2 = {(x2, x3), (x5, x6), (x7, x8), (x0, x1)},

Hence, we find the persistence distance ‖f‖per = (1 + 3 + 5) + (1 + 3 + 2 + 1) = 16, and
the discrete total variation TV (f) = 21. After simplification of f according to the procedure
described in the proof of Theorem 2.9, where the persistence pairs (x2, x3) and (x5, x6) in

P1 ∩ P2 are removed, we obtain f2 with {f2(xj)}
8

j=0 = (1, 0, 2.5, 2.5, 5, 2.5, 2.5, 0, 2)
T
. For f2,

we regard

Xm = {x1, x7}, Xm = {x0, x4, x8}
P1 = {(x4, x7)}, P2 = {(x0, x1), (x7, x8)},

such that ‖f2‖per = 5 + 1 + 2 = 8 and TV (f2) = 13.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Figure 2: (a) Illustration of the spline functions f and (b) of f2 in Example 2.12.

Remark 2.13 The submodularity of the persistence distance stated in Theorem 2.8 follows
now directly from the submodularity of the discrete total variation in Proposition 2.1. For all
y, z ∈ RN+1 we find with ym := max{yj : j = 0, . . . , N}, ym := min{yj : j = 0, . . . , N}, and
zm := max{zj : j = 0, . . . , N}, zm := min{zj : j = 0, . . . , N},

‖y‖per+‖z‖per= TV (y) + TV (z)−(ym−ym)−(zm−zm)

≥ TV (max(y, z)) + TV (min(y, z))−ym+ym−zm+zm

= TV (max(y, z)) + TV (min(y, z))− (max{ym, zm}
−max{ym, zm})− (min{ym, zm} −min{ym, zm})

= ‖max(y, z)‖per + ‖min(y, z)‖per.
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3 Application in signal denoising

Having found the close relationship between persistence distance and discrete total variation,
we want to explore some first ideas of how this relationship can be applied to signal denoising.

One of the most famous and successful models for signal denoising is the celebrated Rudin-
Osher-Fatemi model [14]. Considering the discrete setting, let f ∈ S1(X) be the noise contam-
inated version of a clean signal u ∈ S1(X), i.e.,

f(xj) = u(xj) + n(xj), xj ∈ X,

where (n(xj))xj∈X denotes a vector of i.i.d. random variables simulating white noise, with
mean value zero and variance σ2. In order to reconstruct u, it is proposed to minimize the
functional

J(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
j=0

|u(xj+1)− u(xj)|,

where the second term coincides with the discrete total variation TV (u) in (2.1). The above
functional J(u) is strictly convex but not differentiable. The parameter λ > 0 balances the
regularization term TV (u) and the data fitting term, and a suitable choice of λ is crucial for
the success of the method. The main advantage of the ROF model in comparison to other
models involving a smoother regularization term is its ability to preserve sharp changes in the
data.

From Theorem 2.9 it follows that the ROF functional can also be written as

J(u) =
λ

2

N∑
j=0

|u(xj)−f(xj)|2+‖u‖per+ max
x,x̃∈X

|u(x)−u(x̃)|

=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
∑

(x,x̃)∈P1

|u(x)− u(x̃)|

+
∑

(x,x̃)∈P2

|u(x)− u(x̃)|+ max
j,k∈{0,...,N}

|u(xj)− u(xk)|.

In contrast to the total variation TV (u), the persistence distance consists of a sum of distances
of function values being local extrema of the function u, i.e., describing the topological proper-
ties of the function u, where small distances |u(x)− u(x̃)| (being related to small pairs (x, x̃))
correspond to oscillatory behavior like noise while the large distances |u(x) − u(x̃)| describe
the important features of the function u. Let for simplicity

P (u) = P = P1 ∪ P2 ∪ {(x, x̃)}

be the set of all (persistence) pairs, where (x, x̃) denotes the pair of knots whose corresponding
function values are the global minimum and the global maximum of f . Here, as before, pairs
in P1 ∩ P2 occur twice in P (u).

3.1 Weighted ROF-model based on the persistence distance

We propose to consider the new weighted functional

J̃(u) =
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
∑

(xj ,x̃j)∈P (u)

αj(u)|u(xj)− u(x̃j)|, (3.3)

where αj = αj(u) should be large for small distances |u(xj)−u(x̃j)| and rather small for large
distances |u(xj)−u(x̃j)|. A suitable choice of weights αj enables us to ensure that the denoised

signal u obtained by minimization of J̃(u) keeps the essential features of f , and in particular
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preserves the significant extremum values of f . From Lemma 2.10 and Lemma 2.11 it follows
that there is a special structure of persistence pairs of a function u ∈ S1(X). We regard
persistence pairs that occur only once, i.e., being not contained in P1(u) ∩ P2(u), as single
persistence pairs, while persistence pairs in P1(u) ∩ P2(u) are denoted as double persistence
pairs. Single persistence pairs have a special importance for the function structure, and the
corresponding function values can be seen as significant extremum values of u. The pair
(argminx∈Xm

u(x), argmaxx∈Xmu(x)) of global minimum and maximum knots will be handled
like a single persistence pair by introducing the set

S(u) := P (u) \ (P1(u) ∩ P2(u)).

We observe that for each interval [xl, xl+1] formed by neighboring knots in the knot set X,
there exists a unique chain of interlacing intervals corresponding to persistence pairs, such that

[xl, xl+1] ⊆ [xl1, x̃
l
1] ⊂ . . . ⊂ [xlr(l), x̃

l
r(l)],

where (xlν , x̃
l
ν) ∈ P1(u) ∩ P2(u) for ν = 1, . . . , r(l) − 1 and (xlr(l), x̃

l
r(l)) ∈ S(u). If already

(xl, xl+1) ∈ S(u) then the chain collapses to this one interval and we have [xl, xl+1] = [xl1, x̃
l
1],

i.e., r(l) = 1. Analogously, for each double persistence pair (xj , x̃j), there exists a unique chain
of interlacing persistence intervals that contains [xj , x̃j ]. We say that this double persistence
pair has the order k if there are k further “persistence” intervals containing the interval [xj , x̃j ].
In particular, all pairs in S(u) are of order k = 0.

For the smoothing algorithm, we want to consider not only the local behavior of the function
around the interval [xl, xl+1] but also the function structure in the corresponding chain. We
may have some a-priori information on the structure of the original signal regarding the number
of levels in the above chains in order to judge which persistence pairs indeed represent important
features. Note that our theoretical observations in Theorem 3.1 will be true for arbitrary choices
of the weights αj(u) in (3.3). In our numerical experiments, we choose for every (persistence)
pair (xj , x̃j) ∈ P (u) the weight

αj(u) =
1

1 + β|u(x̃j)− u(xj)|
(3.4)

with some suitable β > 0. Thus, this weight is rather small for large distances |u(x̃j)− u(xj)|
and approximately 1 for small distances.

The proposed new functional J̃(u) in (3.3) is highly nonlinear. For the numerical evaluation,
we show that J̃(u) can also be seen as a weighted ROF-functional.

Theorem 3.1 Consider for each interval [xl, xl+1], l = 0, . . . , N − 1, the corresponding com-
plete chain of persistence intervals of u such that [xl, xl+1] ⊆ [xl1, x̃

l
1] ⊂ . . . ⊂ [xlr(l), x̃

l
r(l)], and

denote by αlν(u) = αlν , ν = 1, . . . , r(l), the weight in the functional J̃(u) in (3.3) corresponding
to the persistence pair (xlν , x̃

l
ν). Then the weighted functional J̃(u) in (3.3) is equivalent to the

weighted ROF functional

Jw(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
l=0

wl(u)|u(xl+1)− u(xl)|, (3.5)

where

wl(u) = wl :=

r(l)∑
ν=1

(−1)ν−1αlν . (3.6)

Proof. The following considerations can be carried out for each single pair (x, x̃) in S(u)
separately in order to compute the weights wl(u) for all [xl, xl+1] ⊆ [x, x̃]. Therefore we
restrict ourselves to one interval I = [x, x̃] with (x, x̃) ∈ S(u).
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For each [xl, xl+1] ⊂ I we consider the corresponding chain [xl, xl+1] ⊆ [xl1, x̃
l
1] ⊂ . . . ⊂

[xlr(l), x̃
l
r(l)] = [x, x̃] and apply the following procedure. If r(l) = 1, we find wl(u) = αlr(l) = αl1

as the weight corresponding to (x, x̃) that has to be assigned to the term |u(xl+1) − u(xl)|.
For r(l) ≥ 2, we consider the adjacent smaller persistence interval [xlr(l)−1, x̃

l
r(l)−1] being a

subinterval of [xlr(l), x̃
l
r(l)] = [x, x̃]. By construction of the persistence pairs it follows that either

u(xlr(l)) > u(x̃lr(l)) and u(xlr(l)−1) < u(x̃lr(l)−1) or vice versa. Hence, since |u(xlr(l))−u(x̃lr(l))| >
|u(xlr(l)−1)− u(x̃lr(l)−1)| we obtain for x = xlr(l) < xlr(l)−1 < x̃lr(l)−1 < x̃lr(l) = x̃ that

|u(x)− u(x̃)| = |u(xlr(l))− u(x̃lr(l))|

= |u(xlr(l))− u(xlr(l)−1)| − |u(xlr(l)−1)− u(x̃lr(l)−1)|

+|u(x̃lr(l)−1)− u(x̃lr(l))|. (3.7)

Multiplying αlr(l)(u) on both sides of (3.7) it follows that

αlr(l)(u)|u(xlr(l))− u(x̃lr(l))|

= αlr(l)(u)|u(xlr(l))− u(xlr(l)−1)| − αlr(l)(u)|u(xlr(l)−1)

−u(x̃lr(l)−1)|+ αlr(l)(u)|u(x̃lr(l)−1)− u(x̃lr(l))|

thereby showing how the weighted difference αlr(l)(u)|u(xlr(l)) − u(x̃lr(l))| can be rewritten for

the three subintervals of [xlr(l), x̃
l
r(l)]. Hence, the new coefficient corresponding to the term

|u(xlr(l)−1)− u(x̃lr(l)−1)| is now the sum of its original coefficient αlr(l)−1(u) and −αlr(l)(u). In

case of r(l) = 2 we thus obtain the weight wl(u) = αlr(l)−1(u)− αlr(l)(u).

For r(l) > 2, the same argument can be applied to the persistence pairs (xlr(l)−1, x̃
l
r(l)−1)

and (xlr(l)−2, x̃
l
r(l)−2), and we find the new coefficient for the term |u(xlr(l)−2) − u(x̃lr(l)−2)|

as the sum of αr(l)−2 and −(−αr(l)(u) + αr(l)−1(u)). We repeat this argument until the

smallest interval [xl1, x̃
l
1] in the chain of [xl, xl+1] is reached and obtain the coefficient wl(u) of

|u(xl1)− u(x̃l1)| of the form

wl(u) =

r(l)∑
ν=1

(−1)ν−1αlν . (3.8)

This is exactly the weight that we have to assign to |u(xl+1)− u(xl)|.

3.2 Numerical algorithm

In this subsection, we propose a numerical scheme to minimize the nonlinear weighted TV-
functional Jw(u) in (3.5). Let X be an equidistant partition of the interval [a, b], i.e. xj :=
a+(b−a)j/N , j = 0, . . . , N . Let fj := f(xj) be the given noisy values and let uj := u(xj) be the
values of the wanted denoised signal for j = 0, . . . , N . Starting with u0 = (u0

j )
N
j=0 := (fj)

N
j=0,

we iteratively apply the following data-dependent filter

uk+1
j =

λfj + g1,j(u
k)ukj−1 + g2,j(u

k)ukj+1

λ+ g1,j(uk) + g2,j(uk)
(3.9)

for j = 1, . . . , N − 1, where the filter coefficients g1,j(u
k) and g2,j(u

k) are given by

g1,j(u
k) :=

{
wj−1(uk)/|ukj − ukj−1| for |ukj − ukj−1| 6= 0,
0 else,

g2,j(u
k) :=

{
wj(u

k)/|ukj − ukj+1| for |ukj − ukj+1| 6= 0,
0 else.

For j = 0 and j = N , the filter (3.9) is simplified by assuming that uk−1 = ukN+1 = 0 and

g1,0(uk) = g2,N (uk) = 0. Here wj(u
k), j = 0, . . . , N − 1, are the weights of the functional
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Jw(u) in (3.6). In order to stabilize the procedure and to reduce the computational costs,
we will compute the weights wj(u

k) not in each iteration step but employ an outer iteration
to recompute the persistence weights and an inner iteration, where we apply several filtering
steps with fixed weights. The complete algorithm is given as follows.

Input: noisy vector f , parameters λ, β.

1) Initialize u0 = f .

2) For k = 1, . . . , nouter do

Compute the persistence weights wj(u
k) in (3.6) and (3.4) for

j = 0, . . . , N − 1.

Initialize uk,0 := uk, i.e., uk,0j := ukj for j = 0, . . . , N .

For ` = 1, . . . , ninner do

Compute for j = 0, . . . , N

uk,`+1
j =

λfj+g1,j(uk,`)uk,`
j−1+g2,j(uk,`)uk,`

j+1

λ+g1,j(uk,`)+g2,j(uk,`)
,

where as before g1,j(u
k,`) := wj−1(uk)/|uk,`j − u

k,`
j−1|

for |uk,`j − u
k,`
j−1| 6= 0 (and g1,j(u

k,`) := 0 else)

g2,j(u
k,`) := wj(u

k)/|uk,`j − u
k,`
j+1| for |uk,`j − u

k,`
j+1| 6= 0

(and g2,j(u
k,`) := 0 else).

end

Put uk+1 := uk,ninner .

end

Output: u = unouter approximates the minimizer of min
u

Jw(u).

Table 2: Algorithm II: Weighted TV minimization.

Observe the functional Jw(u) is not necessarily convex. Within the inner iterations, where
the weights in the second term of the functional are fixed, we have applied a usual gradient
method that is justified by the next theorem. Of course, the filter in (3.9) for computing uk,`+1

j

in Algorithm 2 can be also be replaced by slightly smoother versions as e.g. in [6].

Theorem 3.2 Let X = {xj}Nj=0 with xj = a + (b − a)j/N . For given f ∈ S1(X) and uk ∈
S1(X), let Jw(u, uk) be the weighted ROF-functional

Jw(u, uk) :=

λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
l=0

wl(u
k)|u(xl+1)− u(xl)| (3.10)

with fixed weights wl(u
k). If the sequence (uk,`)∞`=0 of functions obtained by the inner iteration

in Algorithm 2 converges to some function u, then u satisfies

∂Jw(u, uk)

∂u(xj)
= 0 for j = 0, . . . , N. (3.11)

Proof. We first consider j = 1, . . . , N − 1. The limit u of the sequence (uk,`)∞`=0 given by the
inner iteration in Algorithm 2 satisfies

[λ+ g1,j + g2,j ]uj = λfj + g1,juj−1 + g2,juj+1
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Figure 3: Top: two piecewise smooth test signals,

Bottom: noisy signals with PSNR 26.18 (left) and PSNR 24.77 (right).

with g1,j = wj−1(uk)/|uj − uj−1| for |uj − uj−1| 6= 0 (and g1,j = 0 else) as well as g2,j =
wj(u

k)/|uj − uj+1| for |uj − uj+1| 6= 0 (and g2,j = 0 else). Hence

λ(uj − fj) + g1,j(uj − uj−1) + g2,j(uj − uj+1) = 0.

Incorporating the definitions of g1,j and g2,j we find

λ(uj − fj) + wj−1(uk)sign(uj − uj−1)

+wj(u
k)sign(uj − uj+1) = 0

and the assertion follows, where for uj − uj−1 = 0 (resp. uj − uj+1 = 0) the definition of a
subdifferential has to be applied. The special cases j = 0 and j = N are obtained analogously.

3.3 Numerical experiments

In this section, we study the performance of our proposed method which in the following is
called persistence denoising method. We employ the two test signals consisting of piecewise
smooth functions in Figure 3.2 taken from the WaveLab toolbox (see
http://statweb.stanford.edu/∼wavelab), where the original signals of length 1000 are
shown in the first row, and the noisy signals (perturbation with white noise) are shown in
the second row.

We compare the denoising performance of our method based on persistence with denoising
results using the nonlinear digital TV-filter by Chan, Osher and Shen in [6] (called COS
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(a) COS method, PSNR 33.79 (b) COS method, PSNR 31.21
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(c) persistence simplification, PSNR 32.08 (d) persistence simplification, PSNR 30.95
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(e) persistence denoising, PSNR 35.56 (f) persistence denoising, PSNR 31.80

Figure 4: First column: comparison of the denoising performance of the three methods

applied to the first test signal; Second column: comparison of the denoising

performance of the three methods applied to the second test signal.
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method), and with the denoising algorithm proposed in [2] (called persistence simplification).
Figures 4(a) and (d) show the denoising result obtained by the COS model with 70000 iterations
using λ = 0.04 for the first and λ = 0.15 for the second test signal. Despite its denoising
performance, there remain small oscillations also in smooth parts of the signal. Taking a
larger parameter λ, one obtains a stronger smoothing effect while the significant peaks of the
signals will be smoothed out even further. Figures 4(b) and (e) are obtained by using the
persistence simplification in [2] with thresholds 23.2 and 10.0, respectively. It performs well in
some constant regions but suffers from strong oscillations at other smooth parts of the signals.
This procedure keeps the significant peaks of the signal well and even overshoots, i.e. does not
denoise at peak points.

The results of our method using Algorithm 2 are shown in Figures 4(c) and (f). Figure 4(c)
is obtained with λ = 0.0025, β = 0.8 and using 100 outer iterations and 700 inner iterations.
Figure 4(f) is found with λ = 0.0042, β = 2.18 with 100 outer and 700 inner iterations.
As desired, the new algorithm keeps the significant features of the test signals very well and
performs better for denoising in flat regions than the persistence simplification. Unfortunately,
some isolated noisy points near jumps remain after denoising. This phenomenon is caused by
significant persistence pairs (single pairs) that occur by pairing of local minima and maxima
of the noisy function that are beyond the genuine local minima and maxima of the function.
The denoising performance of the new algorithm can be strongly improved by application of a
local median filter in a post-processing step.

For a better comparison, Figure 5 shows the results of the three methods for local regions,
particularly for flat regions (see (a) and (b)) and for peak denoising (see (c) and (d)). These
illustrations nicely show that our new method is able to perform better than the other two
methods regarding denoising in flat regions as well as regarding correct peak preservation.

4 Conclusion

In this paper, we have proposed the new notion of persistence distance for piecewise linear
functions with compact support. Note that the persistence distance can be simply generalized
to continuous tame functions on the interval with a finite number of extremal values. We have
shown the properties of the persistence distance and particularly found a close relationship
between the persistence distance and the discrete total variation of functions on the interval.
As a first attempt to apply the new topological notion of a signal, we proposed a novel signal
noising scheme that is based on this relationship. The new denoising scheme can also be viewed
as a weighted ROF model which exploits the nice combination of local information from discrete
total variation and abundant structural information from persistence homology. The obtained
functional is highly non-convex such that a convergence proof for the corresponding proposed
iteration scheme cannot be achieved.

Numerical experiments show the better denoising performance of our proposed method in
comparison with the nonlinear digital total variation filter from [6] and another persistence-
based technique in [2]. In particular, the new algorithm preserves significant signal peaks very
well and shows a good performance in smooth regions.
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