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We study the existence and regularity of compactly supported solutions ¢ =
(¢,,),Z5 of vector refinement equations. The space spanned by the translates
of ¢, can only provide approximation order if the refinement mask P has
certain particular factorization properties. We show, how the factorization
of P can lead to decay of |¢,(u)| as |u| — oc. The results on decay are
used in order to prove uniqueness of solutions and convergence of the cascade
algorithm.
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1. INTRODUCTION

In this paper we shall discuss the smoothness of refinable function vectors. These
are solutions to functional equations of the type

o(x) = Z_%Pn ¢(2x —n) (1.1)

where the “coefficients” P, are r x r matrices (r € N,r > 1), and where
¢ = (¢o,...,¢,_1)T is an r—dimensional function vector. Equations of type (1.1)
are natural generalizations of the refinement equations studied in e.g. Cavaretta,
Dahmen, and Micchelli (1991), where r = 1; therefore we shall call them refinement
equations as well, or occasionally vector refinement equations.

Vector refinement equations have come up in several papers. The oldest example
is probably the multiwavelet construction by Alpert and Rokhlin (1991) (see also
Alpert (1993)), where the ¢, are all supported on [0, 1] and are polynomials of de-
gree r — 1 on their support. In this example the smoothness of the ¢, is of course
known; equation (1.1) is useful as a computational tool in going from one multires-
olution level to the next. Matrix generalizations of type (1.1) were also discussed in
more generality in Goodman, Lee, and Tang (1993) and Goodman and Lee (1994),
including how to define wavelets once the scaling functions were known. However,



it was not clear how to construct smooth non-polynomial examples, let alone how
to connect smoothness with properties of the P,. This was in marked contrast with
the case r = 1, where the link between smoothness of ¢ and properties of the P,
or of the refinement mask

- %ZPH e~ (1.2)

is well understood, and where this connection can be exploited to construct ¢ with
arbitrary pre—assigned smoothness as well as many other properties (see Daubechies
(1992)). Donovan, Geronimo, Hardin, and Massopust (1994) (hereafter referred to
as DGHM) were the first to construct continuous non-polynomial refinable function
vectors. They gave examples of special bases of selfsimilar wavelets, generated by
continuous scaling functions that satisfy an equation of type (1.1). In their pa-
per, the iterated function technique used in the construction was the key to derive
smoothness, rather than properties of the P,. This first example triggered several
other constructions (e.g. Strang and Strela (1994)), as well as work on the filter
bank implications of (1.1) (Vetterli and Strang (1994), Heller et al. (1994)) and a
systematic study of the approximation order of solutions of (1.1) (Heil, Strang, and
Strela (1994), Plonka (1995.a)). This last work contains the key to understanding
how solutions of (1.1) can be smooth.

As shown in Plonka (1995.a), the space spanned by the functions ¢,(x —n) (n € N)
can only have approximation order m if P(u) has certain particular factorization
properties. (We assume that the ¢,(x — n) are also (algebrically) linearly indepen-
dent.) This is reminiscent of the case r = 1, where similarly linearly independent
translates of a refinable function ¢ can only provide approximation order m if the
refinement mask, often denoted by mg(u), can be factored as

ot = (F5) atw, (13)

where ¢(0) = 1, ¢ is 2x—periodic and non—singular for v = . By iterating the

day=mo (5) 4(35) .

which is obtained by Fourier transformation from (1.1), and exploiting the factor-
ization (1.3), one then finds

formula

1B} = L mo(2~ )] < € (1 + [ul) H|q2fu,

7=1

where the infinite products converge uniformly on compact sets if mg or, equivalently,
q is Holder continuous in u = 0. Together with estimates of the type sup,|¢(u)| < B
or, more generally, sup, |q(2" " u) ¢(2"7%u) ... q(u)| < B* for some k € N\ {0}, this
leads to

B()] < C (1 -+ Jul) s (14)
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(see e.g. Daubechies (1988, 1992), Cohen and Conze (1992)). The factorization
(1.3), together with estimates on the factor ¢(u), therefore leads to decay for ¢, and
hence to smoothness estimates for ¢. By using more sophisticated methods involving
transfer operators, one can refine the brute force estimates (1.4) and formulate
necessary and sufficient conditions on ¢(u) ensuring that ¢ lies in some Sobolev
space W? (see Conze and Raugi (1990), Villemoes (1994), Eirola (1992), Gripenberg
(1993), Hervé (1994), Cohen and Daubechies (1994)). Here again, the factorization
(1.3) is a key ingredient.

In this paper, we shall see that the factorization for the matrix P(u) discovered by
Plonka (1995.a) for the case r > 1, can play a similar role, although the discussion
is more intricate.

We shall assume that the ¢,(z —n), v =0,...,r — 1, n € Z form a linearly inde-
pendent basis for their closed linear span V4, and that they provide approximation
order m, i.e., for f € W™ one has

I = Projy, fllz= < C2777 || fllwnm,
where V; is the scaled space
Vi={g € L*(R); g(27"") € Va}. (1.5)

Then, it is shown in Plonka (1995.a) that there exist r x r matrices Co(u), ...,
C..—1(u) (constructed explicitly in Plonka (1995.a); see also below) such that P(u),
defined in (1.2), factors as

Pu) = 2% Co(2u)...Crp1(2u) P(m)(u) Ci(u)™ ... Colu)™, (1.6)

where P(m)(u) is well-defined. By Fourier transform of (1.1) we obtain
. u\ 4 [u
=P|- — . 1.7
b =P(5) s (5) (17)
This can be iterated again, and we find
. u u u\ 4 [ u
=P|-|P(-)...P|— — ] . 1.8
() (2) (4) <2n) ¢ <2n) (18)

Substituting (1.6) in (1.8) leads to
d(u) = 27 Colu) ... Crpi(u) P (%) .. P (ﬂ) (1.9)

2n
u\ ! uN"l s
C.al—) ...Co|— — .
: 1<2n) °<2n) ¢<2n)
Even at this stage, the case r > 1 is more complicated than r = 1. The matrices
P(277u) or P (277u) do not commute, and the discussion of the convergence of
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an infinite product definition for ¢(u) is therefore more complex.
Hervé (1994) studied the convergence of the matrices I, (u)

IL,(u) := P (g) P (%) ..P (2%) : (1.10)

as n — 0o, and showed that convergence is assured if P(0) = diag(1, pi1,. .., ftr-1),
with g < 1 for I = 1,...,r — 1, or if P(0) is similar to such a matrix, i.e.,
P(0) = M diag(1, pt1,...,ptr—1) M~ for some non-singular M. This already ex-
cludes the case where P(0) is not diagonalizable. Moreover, our matrices P™(0)
may well have a spectral radius larger than 1, so that Hervé’s results cannot be used
for the products P (u/2)... P™(27"u) in (1.8). Heil and Colella (1994) discuss
not only the convergence of I, (u) (with results similar to Hervé (1994)) but also the
convergence of II, (u)v, where v is a fixed r—dimensional vector. If v is an eigenvec-
tor of P(0) with eigenvalue 1, then II,,(u) v may converge even if the spectral radius
po of P(0) is strictly larger than 1; Heil and Colella call this constrained convergence.
They prove constrained convergence if pg < 2 and if the largest eigenvalue of P(0)
is nondegenerate. We use a different technique that proves convergence of I, (u) v
if po < 2, without non—degeneracy condition, and that extends to some cases where
po > 2, if P(u) has vanishing derivatives at v = 0. Once convergence of (1.8) or
(1.9) is established, we can proceed to the main topic of this paper, namely how the
factorization (1.6), together with estimates on P(m)(u) can lead to decay of |qA$l,(u)|
(v=0,...,r—1) as |u| — oo. As in the case r = 1, this can be exploited to prove
L*—convergence and pointwise convergence theorems (in the “z—domain”) similar to
those in Daubechies (1988). One can also introduce matrix transfer operators to
prove more precise estimate like in the case r = 1.

This paper is organized as follows. In section 2, we recall the precise results on the
factorization of P(u) obtained in Plonka (1995.a). We also show that this factor-
ization is necessary in order to obtain smooth functions ¢, ..., #,_1. In section 3,
we discuss the pointwise convergence of IL, (u)a, as n — oo, for a fixed vector a.
In section 4, we exploit the factorization (1.6) to prove, under certain additional
conditions, that lim,—., IT,(u) @ decays, as a function of u, for |u| — co. We show,
in section 5, how transfer operators can also be used to evaluate the regularity of
the scaling functions. Section 6 gives a short uniqueness discussion: in the previous
sections an infinite product solution for (1.7) has been constructed; if this has suf-
ficient decay, then its inverse Fourier transform gives a solution to (1.1). Theorem
6.1 shows that, under certain conditions on the mask, this solution is unique in a
wide class of functions. In section 7 we show how the decay estimates proved earlier
can be used to translate the pointwise convergence of II,,(u)a to convergence of the
cascade and subdivision algorithms in the “z—domain”. Finally, section 8 studies
several examples; we apply our analysis to see how the (known) smoothness of spline
functions and of the DGHM scaling functions can be recovered, and we construct
some new examples with controlled smoothness.



2. FACTORIZATION OF THE REFINEMENT MASK

We want to recall some results of Plonka (1995.a). We start by some definitions.
Let r € N be fixed, and let y € R” be a vector of length r with y # 0. Here and
in the following, 0 denotes the zero vector of length r. We suppose that y is of the
form

y:(yo,...,y1_1,0,...,0)T (21)

with 1 <! <randy, #0forv=0,...,l—1. Introducing the direct sum of square
matrices A @ B := diag(A, B), we define the matrix Cy by

Cy(u) :=Cy(u)® I, (2.2)

where I,_; is the (r — ) x (r — ) unit matrix. If [ > 1, then éy(u) is defined by

Yo ! _yo_l 0 0
0 yit oy :
Cylu) = : L : (2.3)
0 e e yl_—lz _yl_—lz
—e My 0 0y,

if [ =1, ie., if y == (y0,0,...,0)7 with yo # 0, then éy(u) is the scalar
(1 —€e™™)/yo, so that Cy(u) is a diagonal matrix of the form

1 — —u
Cy(u) := diag ( ‘ ,1,...,1) .
Yo
It can easily be observed that Cy(u) is invertible for u # 0. Further, the matrix
Cy is chosen such that
We introduce

Ey(u):=(1- e_m) C!_ll(u) ) (2.4)

Assuming that g is of the form (2.1), we obtain that Ey(u) = Ey(u)@(l—e_m) I,
with

Yo Y1 Y2 s Y11
Yoz Y1 Y2 ' :
Ey(u) = S T (z:= e_m) ) (2.5)
Yoz Y1z - Y2 Y
Yoz Y1z ... Y122 Y1

Note that Ey can be written in the form

Ey(u) = By(0) — i(1 — ) (DB )(0) . (2:6)
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where D denotes the differential operator with respect to w, D := d/ dw. The vector
y need not to be such that its zero entries always occur at the tail. If the non-zero
entries of the vector y are given in a different order than in (2.1), then the matrices
Cy and Ey are defined just by reshuffling the rows and columns accordingly.

We can now formulate the factorization results for P(u). The following theorem is
a special case of a theorem proved in Plonka (1995.a):

Theorem 2.1 Let ¢ := (¢,)Z5 be a refinable vector of compactly supported func-
tions, and let {¢,(-—n): n €Z, v=0,...,r—1} form a linearly independent basis
of their closed linear span Vo. Then Vo provides approximation order m if and only
if the refinement mask P of ¢ satisfies the following conditions:

The elements of P are trigonometric polynomials, and there are vectors y, €
R yo #0 (k=0,....,m — 1) such that forn =0,...,m — 1 we have

S (1) et e 00 = 2 ) )

k=0

é (Z) (y,)" (20)F" (D"FP)(x) = 0T .

Furthermore, the equalities (2.7) imply that there are vectors &y #0 (k=0,...,m—
1) such that P factorizes
1
P(u) = Q—maO(Zu) . Cg,._(2u) P(m)(u) Cg, (u)'...Cg,(w)™", (28)

where the (r x r)-matrices Cg, are defined by x), (k=0,...,m —1) via (2.2) and
P(m)(u) is an (r X r)—matriz with trigonometric polynomials as entries.

The vectors @; (I =0,...,m —1) in Theorem 2.1 are completely defined in terms of
the vectors y, (k = 0,...,m — 1). In particular, we have (zo)T = (y,)7, (z1)T =
(—1)(yo)T (DCy )(0) + (y,)? Cy (0) (cf. Plonka (1995.a)). With the assumptions
in Theorem 2.1, approximation order m is equivalent with exact reproduction of
algebraic polynomials of degree m — 1 in V. Vice versa, if algebraic polynomials
of degree m — 1 can be exactly reproduced in Vg, i.e., if there are vectors yi € R”
(l€Z,n=0,...,m—1) such that

Z(yf)T(,b(x—l):x” (reRyn=0,....m—1),

lEZ
then y7 can be written in the form
n < n n—
k=0

and the vectors y& (k = 0,...,m — 1) satisfy the equalities (2.7) with respect to the
refinement mask P of ¢.



Now, assume that ¢ is a refinable function vector with a refinement mask P satisfy-
ing the conditions (2.7) for the vectors yg, ..., ¥y,,_1 (yo # 0). Further, let M € R™*"
be an invertible matrix and

¢*(x) = M ¢(x).
Then ¢' is also a refinable function vector with the refinement mask Pﬁ(u) =

M P(u) M™', since

¢ (u) = M (u)=M P(u/2) ¢(u/2)
— M Pu/2) M~ ¢ (u)2) .

Observe that P* is obtained by a similarity transformation from P, i.e., P and P*
possess the same spectrum. Furthermore, P*(u) satisfies the conditions (2.7) for
n=0,...,m— 1 with vectors yg, . ,ygn_l, given by

(¥) =) M~ (v=0,....m-1).

Hence, P" can also be factored as in (2.8) with C—matrices defined by certain vectors
o) ... z' . In particular, we have (a:g)T = (yg)T = (y,)T M~'. Note that this
implies that the factorization (2.8) is not invariant under basis transformations. For

instance, in the case where we consider a single factorization,

Pu) = %Cyo (QU)P(I)(U)CyO(u)_l (2.9)

with ¥, = (v,)/Z6 (yo # 0), we could choose instead to carry out first the basis
transformation

Yo Y1 Y2 ... Yr—1
O 1 0 ... 0

M = 0o o0 1 - 0 . (2.10)
0O 0 0 ... 1

For P*(u) = M P(u)M™" the equations (2.7) now hold with (yg)T = (1,0,...,0),
and we can factor Pﬁ(u) accordingly. Multiplying the factored expression by M ™!

on the left and M on the right, we obtain
P(u) = Dy, (20)Q" (1) Dy, ()" (2.11)

where Dy (u) is now defined by

1 —2 ¥y ¥, = _¥r=1
vo vo vo
0 1 0o ... 0
Dyo(u)::M_ldiag (1—2,1,...,1): 0 0 L. 0
0 0 0 1



Other choices of M would lead to yet other factorizations. In most applications,
the original factorization (2.8) turns out to be the most useful. We shall use the
existence of this different factorization (2.11) as a tool to study the spectrum of

PW(0).
In the second part of this section, we show that the factorization of the refinement

mask is necessary in order to obain smooth functions.

Lemma 2.2 Let ¢ := (¢,).20 be a refinable vector of compactly supported functions,
i.e., we have

= Z_: P, ¢(2x —n). (2.12)

Further, let {¢,(- —n): n €Z,v=0,...,r— 1} form a Riesz basis of their closed
linear span V. If ¢, € C™ 1 (R) (v =0,...,7 — 1), then Vg provides approzimation
order m. In particular, there are vectors ®g,...,@n—1 (€, # 0) such that the
refinement mask P of ¢ factorizes in the form (2.8).

Proof: From the Riesz basis property, there exist dual scaling functions 6, € Vi,
v=0,...,7r — 1 such that

<¢M( - k)? él/( - Z)> - 5u,u5k,la
where (-, -) denotes the usual scalar product in L*(R). These functions are defined
by A )
(do()s - 6,y ()" = Gu)™" @(u),
) are defined by

where the matrix elements of G (

Gup(u) = Z (/Aﬁu(u + QRW)W

neZ

= > (s Gu(- — k))e™ (pyv=0,...,7r—1).

kEZ

The Riesz basis property is equivalent with the fact that G(u) is uniformly non-
singular. Since its entries are trigonometric polynomials, it follows that the functions
¢, have exponential decay. We thus can define the polynomials

Pro(@ / Yy du(y —a) d

We shall prove that for n < m, we have
Z an (K)o (x — k), (2.13)
k€Z v=0

for all @ € R.(Note that for a fixed x, the above sum has a finite number of non zero
terms.)



We proceed by induction on n. For n = 0, we remark that ¢ cannot vanish at every
integer: by repeated application of the refinement equation (2.12), we would obtain
that ¢ vanishes at all dyadic rationals 277k (j € N, k € Z) and thus is identically
zero. Let [ and vy be such that ¢,,(/) = C # 0 and define f; = ¢,,(277 - +1). For
J >0, we have f € V_; C Vy (with V_; as in (1.5)), and thus

ZZ (f12 8- = k)bl — k). (2.14)

k€Z v=0

As j goes to +oo, fi(x) tends to C uniformly on every compact set, and for a fixed
k€ z, <fj,</~$y(- — k)) tends to C po,(k). We thus obtain (2.13) from (2.14), by
letting j go to infinity.

Now suppose that (2.13) is proved up to order n — 1. For the same reason as above,

we can find [ and v such that D"¢,, (/) = C' # 0. We then define

filx) =2"n! ¢, (2772 + 1) — ZDsqﬁyO (277 2)*/s!].

From the recursion hypothesis, we have

= ZTZ_:WM%(- — k) (x — k). (2.15)

keZ v=0

As j goes to 400, fi(x) tends to Ca™ uniformly on every compact set, and for a
fixed k € Z, (f;, ¢.(- — k)) tends to C p,, (k). We thus obtain (2.13) from (2.15), by
letting j go to infinity. Hence, we have proved that all polynomials of degree m — 1

are linear combinations of the functions ¢,, (v =0,...,r —1).
By Theorem 2.2 in Plonka (1995.a), it follows that V4 provides approximation order
m. Hence, by Theorem 2.1, P(u) can be factorized as in Theorem 2.1. [

3. CONVERGENCE OF INFINITE MATRIX PRODUCTS

Ultimately, we are interested in L'-solutions ¢(x) of (1.1), and their smoothness, if
they have any. We also want the space spanned by the ¢, (x—n) (v =0,...,r—1, n €
Z) to have a certain approximation order. For ¢ € L', the Fourier transform (,23 is a
well-defined and continuous vector-valued function that must satisfy (1.7) for all w.
In particular, we must have ) )
#(0) = P(0)9(0) -

On the other hand, if we want any non-zero approximation order, then we must have
(,25(0) # 0, since (,25(0) = 0 would imply [ ¢,(x —n) de = 0 for all v,n, making it
impossible to construct the function 1 as a combination of the ¢, (x —n). Together,
these two observations imply that we should take (,25(0) = a, where a is a left
eigenvector of P(0) for the eigenvalue 1. Note that we know that 1 has to be an
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eigenvalue of P(0) because of (2.7). In all the examples we shall consider in practice,
¢ will be compactly supported; more generally, ¢ should have good (exponential)
decay, so that ¢ will be smooth. This means that we expect that in

p(u) = P(%)P%)(ﬁ(%)
- P(%)..-P<%)a+P<%)...P<%) [(%(2%)_&(0)] |

the second term should become negligibly small in the limit for n — oco. This
suggests that we define

[

T, (u)i= P (—) P (i) a=Tl,(u)a

2 AL
and study its limit for n — oo. In this section, we shall discuss the existence of
this limit, pointwise in w. In what follows, ||v| will denote the Euclidean norm
of v € R ie., ||v|| = [v2+ - 4+ v2_,]"% and ||V := max|Vo|/|v]| will be
the corresponding matrix norm (spectral norm) for V. € R™™". Recall that the
spectral norm of a matrix V' can be defined by the spectral radius of v’ V., ie.,
IVI= Ve = (o(VE V)2

Lemma 3.1 Suppose that a is an eigenvector of P(0) for the eigenvalue 1. Further,
suppose that P satisfies

[P(u) = PO)|| < C Jul™, (3.1)
for some o > 0, and that
I1PO)] <27 .
Then the infinite product )
Y(u):= nh_}rgo IL,(u)a (3.2)

converges pointwise for any u € R. The convergence is uniform on compact sets.
Proof: The estimate (3.1) implies that
1P| < PO+ C Jul* < [P(0)] 71

Hence, we have
P(S)...Pp(=)
2 2!

since [27% 4+ ... + 2‘“] < 122 < < oo for a > 0. Using this estimate and observing
that

My(v)a—a — [P() . ( )—P(O)k]a

_yp ( ) 5 (21 1) [P (%) —P(O)] PO0)a, (3.3)

=1

eO’|u|°‘[2‘°‘+...+2—la] HP(O) Hl

IA

< PO

10



it follows that for any k£ € N

i (u)a —a| < C el |y io: lHP(O)H]

=1 2¢
< e

where we assume that a is normalized, ||a|| = 1, for the sake of convenience. Now,
remarking that Iy, x(u)a — My (u)a = My (u)[Ix(2"Vu)a — a], we obtain

(11 Ne PO
HHN+k(u)a— HN(u)aH < (1 Calul®(1+2 N )|u|a (H ( )H) :

and hence

lim _|[TL, («) @ — TL,(u) al| = 0.

Thus, (3.2) converges pointwise for all v € R. The convergence is uniform on

compact sets. ]

This result is often sufficient. Note that, when the entries of P(u) are trigonometric
polynomials, (3.1) is always satisfied with o = 1 and can be satisfied for integer
values o > 1 if and only if P(u) has vanishing derivative at the origin. The argument
can be pushed a little further, allowing for the replacement of || P(0)|| by the spectral
radius of P(0),

po = p(P(0)) := max{|A| : P(0)& =A@, & # 0} .

Theorem 3.2 Let a be an eigenvector of P(0) for the eigenvalue 1. Suppose that
P(u) satisfies (3.1), and that

pPo < 2%, (34)
Then Y(u), defined by (3.2), converges pointwise for all u € R, and the convergence

is uniform on compact sets. Moreover, X (u) is Holder continuous in u = 0.

Proof: 1. Again, we assume ||a|| = 1 for the sake of convenience. Let Q(u) :=
P(u)— P(0). Then it follows from (3.1) that ||Q(u)]| < C |u]* with o > 0. Further,
observe that ||P(0)]] < C. (po + ¢)¥. Then we have

M) = 1P (5)P(55)]
1PO) +@(5)1-.1P0)+ @ (5 )1l
1Y Y Pore(ph) PO () -

I=0mi+..+mpy1=N-I
<Q <2m1+m2+ -|—ml+l) P0)™ .
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The second summation above is taken over all positive integer my,...,myyq such
that my 4+ ... 4+ myy1 = N — . Introducing b = 27 < 1, this leads to

N
My ()l < 32 > CH (po + )V O u|! 270 Dcolmat 0410
(=0 ml+...+ml+1:N—l
N

S CEb_N-H bl(l+1)/2 Z(po 4 6)N—l (|u|a060)l Z b[m1(1+1)+...+ml+1]'
(=0 ml+...+ml+1:N—l
2. Next we find an upper bound for the sum over mq,...,m;;1. Consider the sum
AM7L — Z bm1—|—2m2+...LmL‘ (35)

mi -|—-|—T)’LL:M

For Aprp we find the recursion (putting m = my)

M M
AM,L — Z bM AM—m,L—l — bM Z AM—m,L—l
m=0

m=0

with Ay g = MM and Ao, = 1. We show by induction that
bM

Amr < W

(3.6)

For L = 1 and M € N, (3.6) is satisfied. Now, assume that (3.6) holds for L > 1
and M € N. Then we obtain by the recursion formula

bM M bM

M
Apppr = b Z Api—m,p < m Z_:O b < (1— b

m=0

3. Substituting (3.6) into the expression for ||IIy(u)|| obtained above, we find

=

Iy (u)|| < CeY (po+ )N (Ju]* CO) bV D2 ANy
=0
N N lbl(l-|—1)/2
< O (po+ )N (Ju]* C.C) 1
(=0 (1 - b)
N {
|u|cy c.C ] (i
< Cc(p + )V l p+n/2, 3.7
(ot 9 2 | G v a0 =) (37

The sum in (3.7) converges uniformly for |u| < €, since b < 1. Hence, we can
estimate

Iy (u)]| < Ceg (po + €)Y (3.8)

12



4. Now, with the same argument as in the proof of Lemma 3.1, we have by (3.3)

Mwa—al < ¢ 3 Capm+a~ (4)

l
=1 2

k l
/ o P —|—6
Clalul Y (2 (3.9)

=1

IA

Hence, uniform boundedness of ||[II;(u)a — al| is ensured, if py < 2%, by choosing ¢
sufficiently small. Again, it follows that

ul” & o+ ey
Mass(wa —Tyujall < Con Clalm+ 0"y 3 (“5)
=1

N
< ol (22)

20&

where the last term is uniformly small in k& if NV is sufficiently large. Thus, for
fixed u, II;(u)a is a Cauchy sequence for pg < 2%, implying that we have pointwise
convergence of Y (u). Moreover, the convergence is uniform on compact sets. The
Holder continuity of Y (u) in u = 0 directly follows from (3.9). [

4. DECAY OF INFINITE MATRIX PRODUCTS

Having shown that Y(u) is well-defined (under some conditions on P(u)), we now
proceed to study how the factorization (2.8) of the refinement mask P(u) can lead
to decay in u of Y(u) for |u| — oo. Let us suppose that P(u) can be factored in
the form

1

Pu) = m

Cx,(2u)...Cg, _,(2u) P(m)(u) Eg, (u)...Eg, (u),

where the C— and E-matrices are defined as in (2.2) and (2.4) and where the vectors
Zo, ..., &, are all different from the zero vector. We can now rewrite Y (u) as

Y(u) = lim M, (u)a= lim H2”(1 —t—w/zn)r Cax,(u)...Cg, _ (u)

n—oo

< P (%) .. .p™ (2%) Eaz. . (2%) ...Ea, (2%) a}

We note again that, since &) P(0) = @l with ¢ # 0, 1 is an eigenvalue of P(0), and
we take @ to be a right eigenvector of P(0) for that eigenvalue. We also assume that
zl a # 0; if the eigenvalue 1 of P(0) is nondegenerate, then this is automatically
satisfied. Note that for u = 0 we have Y(O) = limy—e P(0)"a = a. We will

establish conditions under which

m U m U U U
1P (5) P (55) Baw (57) - B (57)
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tends to a finite limit for n — oo; since lim,_ o [277 (1 — e™™/2")="| = |u|™" for
u # 0, this then implies
)l < (4 Ju)™[Cay(v)... Ca, ., (u] (4.1)

: (m) E) (m) (i) (i) (i)
< lim ||P (2 PO () By (o) Bay (5] all

Let us define the vectors ey, := (ex, )i by

L 1 lf l’k’y 7£ 0,
Chw *= { 0 if ay, =0, (42)

where xy , are the components of the vectors @) (k = 0,...,m—1) introduced above.

Theorem 4.1 Let P be an r X r—matrix of the form

1
P(u) = o Ca,(2u) ... Ca,,_,(2u) P™(u) Cap,,_, (u)™" .. Car(u) ™",
where the matrices Cg, are defined by the vectors & # 0 (k= 0,...,m — 1) via
(2.2) and where P(m)(u) is an (r x r) matriz with trigonometric polynomials as
entries. Suppose that P(m)(())em_l = e,,—1 where e,,_1 is defined by (4.2). Further,
suppose that
Pm 1= p(P(m)(O)) <2 (4.3)
and let for k> 1
1 my [ e
T = log, sup P (5) ... p™ (27) I|. (4.4)
Then there exists a constant C' > 0 such that for all w € R

1T ()| < C (14 ful)7 (4.5)

Note that the requirement P(m)em_l = e,,_1 1s automatically satisfied in the case
of interest to us, i.e., if P(u) is the refinement mask for the vector of functions
do(), ..., ¢r—1(x) whose integer translates provide approximation order m; see
Plonka (1995.a).

Proof: 1. From (2.6) it follows that

m

Ew, ,(v)...Eg,(u) = Eg, ,(0)... Ez,(0) + Y. (1 - ¢ ™" GS | &

k=1

with some matrices GE;;Zn—17~~~7wO depending on Eg (0) and (DEg,)(0)

(v=0,...,m—1). Hence, we can write

U U u u

14



with
u u

Ty, (u) :i= P (5) P (2—) Ee. (0)...Ez,(0)a

and -
Ty(u) = S (1 — /2y pl) (E) _ pm (i) -
k=1 2 2n
where vy, := G%Zﬂ_hwwo a(k=1,...,m).

2. We can estimate the second term T’ ,,(u) with the same argument as in (3.8),
T < S P (LY pom (2
[Ton(u)] < C D 127" 5) ALl
k=1

27" | P (3) P (i) I
2 2m

< Cop 27" (pm + )"

IA

Since the spectral radius p,, of P(m)(()) is supposed to be < 2, it follows that for all
u € R
Jim [T (0)] = 0.

3. We now concentrate on Ty ,(u). From the structure of E g, (0) and the definition
(4.2) of ey it follows that, for any vector b

Eg, (0)b=(xx)"be, (k=0,...,m—1).
Repeating this argument, we obtain

Eg, ,(0)...FEg,(0)a = [(a:o)Ta] [(a:l)Teo] e [(a:m_l)Tem_g] €m_1-

This leads to

u u

T (1) = [(wo) a] [(21) e0]. .. (1)  €,_s] P (5) ..pm (2—) €1,

Since P(m)(()) €mn_1=€n_1,and p, < 2, we find by Theorem 3.2 that nh_}rgo T . (u)
is well-defined for all u, and uniformly bounded on compact sets.

4. Take now any u € R. If |u| <1 then by the Holder continuity of P(m)(u) with
Holder exponent @ > 1 there is a C' such that |Ty,(u)|| < C. If |u| > 1, define L

such that 2871 < Ju] < 2%, Thus,

. m U m U . U
I Jim Toa)ll < 1P (5). PO () 1 lim T (57)

n—oo n—oo

< (m) (E) _ pm) (i) _

By the definition of ~; it follows that

I Jim Ty ()| < €257 < C7 (1 4 Jul )%,

15



i.e., by (4.1) and the observations above we find a constant C' such that

1T ()] < C (LA Ju))™"* . »

Remarks.

1. It follows from (4.5) that the components of X () are continuous if P satisfies
the above conditions and if v < m — 1.

2. For the proof of Theorem 4.1 we have assumed that p(P(m)(O)) < 2. As we will
see in Lemma 4.3 below, this can be ensured if the largest eigenvalue of P(0) apart
from the eigenvalue 1 is smaller than 271,

3. In order to avoid that T’y ,,(u) collapses to 0 as n — oo, i.e., lim,— ||T1,.(u)|| = 0,
which would imply Y(u) = 0, we have to make sure that

(o) al [(@1) o] .. (1) ernsl 7 0. (4.6)

Note that this is already satisfied if there is an index v (0 < v < r — 1) such that
the vth component of @, does not vanish for all £ = 0,...,m — 1. On the other
hand, since @; is a left eigenvector, and e;_y a right eigenvector of P(l)(()), both for

the eigenvalue 1, (4.6) is also satisfied if the eigenvalue 1 of P(0) is nondegerate,
for all [.

More detailed estimates show that decay of Y(u) is also possible in some cases where

p(P)) > 2.
Corollary 4.2 Let P be again an r X r—matriz of the form

Pu):= 2% Cg,(2u)...Cg, _(2u) P (u)Cg, _ (u)"...Cgp,(u)"!,

where the matrices Cg, are defined by the vectors ¢y # 0 (k= 0,...,m — 1) via
(2.2) and where P(m)(u) is an (r x r) matriz with trigonometric polynomials as
entries. Suppose that P™(0)e,,—1 = e,_1. Further, suppose that

1P () = PU(0)] < Clul* (4.7)
and that the E-matrices defined in (2.4) satisfy
|Ew,, ,(u)... Bg,(v) — Eg,_,(0)... Eg,(0)|| < C|ul’. (4.8)
Now, if p,, < 2™l Bt then there exists a constant C' > 0 such that for all u € R
1T ()| < O (14 Juf)™m+%,

where vy is defined in (4.4).
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Proof: Observe that

) (U e u u
IP) (2). P (1) o,y (5) - Bay (50) al S Sutw)ll+ |T10)

with

Su(u) = P (5] P (1)

X [Ewm_l (2%) ...Eg, (2%) —Ez,_,(0)...Eg,(0)| a

and where T, is defined as in the proof of Theorem 4.1. With the same argument
as in Theorem 3.2 (cf. (3.8)) we obtain by (4.8) that

ISu@l < 1P (5).. P (S]]

NBe,, (5) - Fao (5 ) = Fa,(0)... By (0)]al
L Jul?
< CE,Q (pm + 6) C 275

Thus S, (u) tends to zero for n — o if p,, < 29, Further, since e,,_; is an eigen-
vector of P(m)(()), we can apply Lemma 3.1 in order to show that T’ , is convergent
for (pm + €) < 2%. Hence,

P (5)o 7 (3) B (3) . ()

is well-defined if p,, < 2™ A} Following point 4 of the proof of Theorem 4.1 we
can find a constant ' such that

1Y)l <O +]u)™ ™ m

Since P(m)(u) is completely determined by P(u), the conditions p,, < 2 or p, <
27 are restrictions on P(u). The following lemma shows that there is a simple
connection between the spectra of P(0) and P(m)(()), which makes it possible to
recast bounds on p,, as spectral bounds on P(0) as well.

Lemma 4.3 Let P(u) be an r x r—matriz of the form

1
P(u) = 5 Car,(2u) PY(u) Cary ()™, (4.9)
where Cg, is defined by xo # 0 via (2.2), and assume that P(l)(()) eo = ey (with eg
defined by @o via (4.2) ). Then, P(0) possesses a spectrum of the form {1, p1,...,
tr—1} if and only if P(l)(()) possesses a spectrum of the form {1,2uy,...,2p,_1}.

17



Proof: 1. First, observe that the factorization (4.9) implies that P(0) has the
eigenvalue 1 with left eigenvector ®y. At the same time, &y is a left eigenvector of
P(r) for the eigenvalue 0, i.e., we have

(xo)" P(0) = (o),  (x0)" P(r)=0"

(cf. Plonka (1995.a), Theorem 4.1).

2. Without loss of generality, we assume that &g is of the form

xo = (200, T04-1, 0,...,0)T with 1 <1 <r and x9, # 0 for v =0,....1— 1.
Now, consider P¥(u) := M P(u) M ™" with

Zoo Loa1 --- Lo,-1
M = 0 ! h 0 S%; Ir—lv
0 0 ... 1

where I,_; is the (r —[) x (r — [) unit matrix (cf. section 2). Since M is invertible,
P*(0) possesses the same spectrum as P(0). The left eigenvector of P*(0) for
the eigenvalue 1 is &' := (2o)T M~ = (1,0,...,0)T. Analogously, &' is the left
eigenvector of P¥(x) for the eigenvalue 0. Hence, we find the factorization

P(u) = %cﬁ(gu) PO (1) O () (4.10)

with '
C*(u) := diag (1 —e™™, 1,...,1).

Observe that Pﬁ(()) has the structure

PO = { 1 (7] )

where 7(0) is a vector of length r — 1 and R(0) an (r —1) x (r — 1)—matrix, it follows
by the factorization (4.10) that Pﬁ(l)(()) is of the form

1 0...0

P00~ f5) [sh1] )

Consequently, Pﬁ(l)(()) has the spectrum {1,2u1, ..., 2u,_1 } if and only if P*(0) has
the spectrum {1, pr1,. .., pr—1}.

3. We show next that Pﬁ(l)(()) and P(l)(()) have the same spectrum. The fac-
tOfi)zations (4.9) and (4.10) imply the following connection between Pﬁ(l)(()) and
PY(0):

PO (u) = A(2u) PP (u) A(u)™,

18



where

A(u) = Cg,(u) ' M~ C*u)
10 0 0
Z o1 To,2 To,r—1
= z 0 To2 ... Zor-1 fas IT—I (Z = e—iu)‘
z 0 oo 00 2o

Since A(0) is invertible, it follows that Pﬁ(l)(()) and P(l)(()) are similar, and thus
the spectra of P(0) and PM(0) are connected as given in Lemma 4.3. ]

It follows that the spectrum of P(m)(()) is likewise given by {1,2"pu1, ..., 2™ u,_1}.
The requirement that p,, < 2* (as in Corollary 4.2 thus translates into

max{|p|, ..., 1]} <287 . (4.11)

Remark.

It m > A, which need not be true in general, but which we expect to be true in
most cases (A = 1 except if both P(u) and Eg, _ (u)... Eg,(u) have vanishing
derivatives at u = 0), then (4.11) automatically implies that pg, the spectral radius
of P(0), equals 1. It also implies that the eigenvalue 1 of P(0) is nondegenerate.
Since v, > 0 for all k£, we need to have m > 2 in order to ensure decay faster than

(14 Jul)7 for [T (w).

5. TRANSFER OPERATORS

In this section, we want to investigate regularity estimates for Y in terms of Sobolev
estimates, using transfer operators. The Sobolev exponent s of X is defined by

s=sup{s; [P (1+ [uP) du < +oo).

We assume that the factorization (2.8) and the hypothesis (4.3) of Theorem 4.1 are
satisfied. As we saw in the proof of Theorem 4.1, we have

I ()l < O+ [u) ™" |73 (w)]),

where
Ti(u)= lim Tq,(u)

n—4oco
and

T, . (u) i= P™ (%) ... pm (QE) Ee. .(0)... Ex,(0)a.
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It follows that if we can prove an estimate of the type

2"
[T du < 2, (5.1)

then Y is in the Sobolev space H* for all s < m — .
The estimate (5.1) is related to the spectral property of the transition operator 7
that acts on 27-periodic r x r matrices M (u) according to

(TM)(2u) := P (u) M (u)(P™)*(u) + P (ut- ) M (ut7) (P (utr), (5.2)

where (P(m))* = (P(m))T. As in the scalar case, this operator leaves a finite
dimensional space K containing the identity invariant, if P has trigonometric
polynomial entries (cf. Cohen and Daubechies (1994)). Let o be the spectral radius
of 7T restricted to F.

Theorem 5.1 The estimate (5.1) holds for all v > %g%. Consequently, Y is in
Hsforalls<m—%El

2log2°
Proof: For all n > 0, we have

T M) du= [ TTT M) du

_ _2; PO (u/2) T M (u/2) (P (1)2) du
_ _2: PO (w)2) .. P (2 ) M (2 0) (P (27 L (P (u/2) du.

If we take M = I and apply the trace operation, we thus obtain the estimate

/2% Te[PU (u)/2) ... P (27 u)(PU™)Y*(27") ... (PU™)*(u/2)] du < C.(o+ €)",

=27

for all n > 0. Since ||Al|s = /Tr(AA*) is an equivalent norm for finite matrices, it
follows that

2"
/ 1P (w/2). .. P2 )| du < Culo + ¢)".

-2

This last estimate clearly implies (5.1) for all v > %g%, if we observe that T (u) =

P(m)(u/Z) . P(m)(Z_”u)Tl(Z_”u) and that T’y (u) is uniformly bounded on compact
sets. ]
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6. UNIQUENESS

It the conditions of Theorem 4.1 are satisfied, with v, < m — 1 for some £ < 1,
then Y is well-defined and integrable, so that Y (x), its inverse Fourier transform, is
well-defined as well. Since Y(u) is obviously a solution to (1.7), Y (z) is a solution
o (1.1). Is it the only one? The following theorem lists some conditions that ensure
uniqueness.

Theorem 6.1 Suppose that the conditions of Theorem 4.1 are satisfied, with
infr>1 . < m—1, and that the eigenvalue 1 of P(0) is nondegenerate. Then X (x) is
a compactly supported continuous solution to (1.1). Moreover, if ¢(x) is any other

L-solution to (1.1) such that [ @(x) dz # 0 and [(1 + |z])||@(z)|| dz < oo, then
¢(x) is a multiple of X (x).

Proof: 1. We assume, as in Theorem 4.1, that all the entries of P(u) are trigono-
metric polynomials. Let us, for this point only, consider u to be complex rather
than real. The argument that || P (%) P (2%) || is bounded uniformly in n > 1

and in v € {z;|z| < 1} holds for complex u as well. Since |P(u)| < Ceftlmul it
then follows that for any |u| > 1, 2% < |u| < 2%F1,

P (%) P (2%) al| < Ok RImul(1/241/4+.+1/28) o < C'(1 + Ju|)F 1082 © FRllmul,

It follows that Y(u) = lim,_.. P (%) P (2n) a satisfies the same bound, implying

that Y is a compactly supported distribution. On the other hand, Y () is bounded
and continuous because, by Theorem 4.1, |Y(u)| < C'(1 + |u|)~' for real u. Note
that Y is a C>—function since its Fourier transform has compact support.

2. If ¢(x) is another L'-solution, then (,25( 0) # 0 must be an eigenvector for P(0)
with eigenvalue 1, so that $(0) = ca for some ¢ # 0. Since [ |z|||o(z)||dz < oo, we
also have ||@(u) — ¢(0)|| < C|u|. Hence, for any fixed u,

Ié(u) — T (0]

-l 1p (3) P (5) 6 (5) - 0]

< fim [P (5) - P (5) Ba (55) -+ B ()
Je(%) 4]

<Chm [C|u(Pm+6)CC|u|] 0,

since p,, < 2. Thus, ¢ = X. [

All the examples studied in the literature so far correspond to P(u) in which all the
entries are trigonometric polynomials, and that is why we have mostly restricted
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ourselves to this case. Nevertheless, most of our analysis carries over to the non-
polynomial case. In Plonka (1995.a), the original version of Theorem 2.1 does not
require the ¢, to be compactly supported, nor the entries of P to be trigonometric
polynomials; only sufficient decay in a for ¢(x) and a sufficiently high regularity
of P(u) are required. As shown in section 3 (where the P(u) were not restricted
to trigonometric polynomials), this then implies |Y(u) — Y (0)| < Clu| (since P
is Holder continuous in v = 0 with Holder exponent at least 1). This, in turn, is
the only ingredient necessary in point 2 of the proot of Theorem 6.1, which estab-
lishes uniqueness of the solution within a certain class of functions with mild decay.
Compact support of Y(x) is, of course, no longer assured.

7. CONVERGENCE OF THE CASCADE ALGORITHM

If P(u)is m (m > 1) times factorizable (in the sense of Plonka (1995.a)), i.e.,

1

Pu) = m

Cg,(2u)...Cg, _ (2u) P (u)Eg,  (u)... Eg,(u),

if the spectral radius of P(m)(()) is less than 2, and if, for some fixed £,
1 my [ e
=7 log, sup P (5) ... p™ (27) | < m,
then our analysis in the previous sections has shown that

Y(u) = lim P(%) P(Q%) a

n—oo

(with (2¢)T @ = 1) is well-defined, and that

1T ()]l < € (14 ful)m 4%
Moreover, we have || X(u) — YX(0)]] < Cu| for |u| < 1. So far, this convergence
is only pointwise, in the Fourier domain. For practical applications one is often

interested in convergence of iterative schemes that generate the function Y in the
“r—domain”. One has to distinguish two types of schemes:

e The cascade algorithm, introduced in Daubechies (1988), consists in iterating
the mapping f +— S°_ P, f(2x — n) on a well chosen initial function vector

f(z).

e The subdivision or refinement algorithm consists in iterative refinements of a
“vector sequence” so(k) by rules of the type

$.(277k) = > P, 8,21(27" ' m)

(see Cavaretta, Dahmen and Micchelli (1991) or Dyn (1992) for an overview
of subdivision schemes).
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In the scalar case, it can easily be checked that n iterations of the cascade algo-
rithm, initiated on the “hat-function” A(z) := max{0,1 — |z|}, are equivalent to
the linear interpolation of the points generated by n iterations of the subdivision
algorithm, initiated on a Dirac sequence 6(k). However, the subdivision process is
often preferred, because of its local nature.

In the vector case, these relations are more complex: if one iterates n times the
cascade algorithm on an initial vector function of the type A(x)b where b is a fixed
vector, then the result ®,, is expressed in the Fourier domain by

®,(u) = A27"u)P(u/2)... P(27"u)b. (7.1)

In contrast, if one iterates n times the subdivision algorithm on an inital vector
sequence so(k), the resulting sequence s, (k) is related to so by

(32 (u))T = (30(w)) P(u/2)... P(27"u).

Here (3,(u))T is the row vector composed by the Fourier series of each component
of s,. After linear interpolation, we obtain a row vector function (®,(z))? given by

(8,(u))T = A7) (50(w)) T P(uf2) ... P(27"u).

This shows that the j-th component of ®,, can be obtained by applying the subdi-
vision algorithm on the initial vector sequence (s9;(k) = 6;;0r0 (i.e. the sequence
---0001000- - - in the j-th component, and the zero sequence in all other compo-
nents), then taking the scalar product with the vector b and interpolating linearly
the resulting scalar sequence.

Let us now investigate the convergence of the cascade algorithm, keeping in mind
these more sophisticated relations with subdivision schemes. In order to simplify the

sin(rz)

study of convergence, we shall use the function as a starting point, rather than

the hat function A(a) , which is equivalent to considering band-limited interpolation
of the sequences generated from the subdivision scheme. We thus define

&' (u) = \por ()T (0) = xrm(w)a, @ (u) = P (%) & (%) . (1.2)

Note that @0(0) = Y(O) The following result deals with the convergence of the
cascade algorithm in the uniform norm.

Theorem 7.1 Let P be an r X r matriz with the assumptions of Theorem 4.1. If
& defined in (4.4) satisfies v < m — 1, then we have

. ~ bl %
lim [[®, — X[ = 0.

As a consequence B () converges uniformly to Y(z).
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Proof: We have
&' (u) = \jor (270 P (%) ..P (QE) a.

< bl
With the assumptions of Theorem 4.1, we already know that ®_ converges point-
wise (and uniformly on compact sets) to Y.
Using the factorization of P(u), we obtain

@, (u) = Xrm(27"u) lQ”(l —t—i“/Q")] Cg,(u)...Ce,,_, (u)

PO(2)P (3 B () o ()

~ b.l. —m —n m m
€. ()l < Coll + [u) ™" Neg @) [P (5 ) o P ()

and thus

Now, from the assumptions of Theorem 4.1, we have

[

u
Xera @) [P (5 ) 0 PO (D)) < ol + ful)™,

where C'; does not depend on n. We thus have the uniform estimate
< bl
1@, (u)|] < C(1+ Juf)™" "

Since m — 7 > 1, we can apply dominated convergence and the result follows. m

Remarks.

1. Because the hat function A(z) and the sinc function %;T—xl agree on integers, one
easily checks that the vector functions ®,, defined by (7.1) (with b replaced by a)
and the band-limited <I>f;'l' agree in the dyadic rationals 27"Z,

®,(27"k) = ®H(27"k) , ke

Now @, is just the linear interpolation of the @,(27"k; because Y is Holder contin-
uous, and supy, ||®,(27"k) — X(27"k)|| — 0 as n — oo, it follows that ®,, converges
uniformly to Y as well.

2. The same arguments will also give L*-convergence, assuming only v, < m — %
3. If m —~; > m/ +1, convergence results in C™' can also be obtained starting from
the same cardinal sine function.

4. The graphs for the examples in section 7 are, in fact, graphs of close approxi-
mations ®,, to the true solutions ¢, obtained by the subdivision iteration described

just before in Theorem 7.1.
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8. EXAMPLES

In this section we want to apply the analysis of the previous sections to various
examples. We will see that the known smoothness of B—splines with multiple knots
and of DGHM scaling functions can be recovered. Further, we construct a new
example with controlled smoothness.

8.1. B-SPLINES WITH MULTIPLE KNOTS

Let r € N and m € Ny be given fixed integers. We consider equidistant knots with
multiplicity r, «; := [l/r| (I € Z), where |x] means the integer part of © € R. Let
N™" (v € Z) denote the cardinal B-spline of order m and defect r with respect to
the knots x,, ..., 4, given by the following formulas:

Form=0and v =0,...,r —2let N :=D"7'7§/(r — 1 — v) and let N.”", := 6,
where 6 denotes the Dirac distribution. For m > 1 and z, = z,4,, = 0, we define
N" according to the distribution theory by

Dr—m—l—u5

r—1—v’

m,r ,__
N =

Further, let N, := (X[o,1) + X(017)/2. Assume that for / € Z and v = 0,...,r —1
we have N;_’:ZT := NY(- = 1). Now, for m > 2 and ,4,, > @, let N™" (v € Z) be
defined by the recursion formula

(T — ) NJV () 1= (2 = ) N7V (@) 4 (2 — 2) NG ().
Note that for v € Z and m € N

NI = NP1 (lem)

14

and for m > r,

. o0 1
Npro) = [ Np(a) de =
20 = [N ) de= -
It is well-known that for m > r, we have N™" € C™""YR). We put N,, :=

(N7 —L and N, = (NZ”T)Z;}) In particular, we obtain

No(u) = ((i“)H ) 1)T |

r—1"" 1

As shown in de Boor (1976), the spline functions N*"(- = I)(m > r; [ € Z; v =
0,...r—1) form a Riesz basis of their closed linear span V. Furthermore, V4 provides
approximation order m.

The vector IN,, satisfies a vector refinement equation

A

N, (2u) = P,,(u) N, (u),
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where the refinement mask P, is of the form
1
P, (u)= o Cx,(2u)...Cg, _,(2u) Po(u)Cg, _ (u)™"...Cg,(u)"" (8.1)

with matrices Cg, defined by the vectors of spline knots @; = (xp—g,...
Totir_1)! (E=0,....,m — 1) via (2.2) and with the refinement mask of Ny

Y

Py(u) := Py(0) = diag (2"71,...,2°)

(cf. Plonka (1995.b)). In particular, we have the recursion
1
Pm(u) = 5 C(Zu) Pm_l(u) C(u)_l,

with C defined by (2, ..., Zmir—1)’, where P, _; is the refinement mask of the
B-spline vector IN,,_1 of order m — 1.

Now, let us apply the theory of the previous sections to the refinement mask P,,.
Repeated application of Lemma 4.3 yields that P, (0) possesses the spectrum
{1,2r=t=m . 27 Since ||Po(u) — Po(0)]] < Clul® holds for all o > 0, we

have by Lemma 3.1 pointwise convergence of
- u
tim T Po () @
=1

with @ := (0,...,0,1)T for all u € R. Hence, it follows for all m € Ny that

~ . n U

*(u) 1= Jim TP (5) a, (8.2)

=1

here @ := (0,...,0,1,...,1)7 f > 1 and a := (1,...,1)7 f < 1,

where ( orr>m-+1 an ( )t for r <m+
r—m-—1 m41

is at least pointwise convergent. As we will see later, Theorem 6.1 implies that for

m > r the solution X, (x) coincides with N, (x).

Observe that for r = 1, we have the well-known refinement equation for cardinal

B-splines '
14 e™\"™
P(u) = :

= (25

Now, assume that r > 2. Then p(Py(0)) = 2"~ > 2, such that we can not apply
our analysis in Theorem 4.1 to the factorization (8.1). But using Lemma 4.3, we

find that P,_1(0) with

1
P, i(u):= o Cg,_,..(2u)...Cg,_ (2u) Py(u) Cg,_,(u)"... Ce, . (u)™!
possesses the spectrum {1, 1, 27 ... 27"} je.,

p(P,1(0)) = 1.
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Note, that P,._q is the refinement mask of N,._;. Thus, we can apply Theorem 4.1
to the factorization

P,.(u)=Cg,(2u)...Cg,_ (2u)P,_1(u)Cgq,_ (u)™'...Cg,(u)™"

and find that )
1 ()| < C (1 4 u)7mFr—Hm
with

U
71 =logy sup [ Py (51 (8.3)

Lemma 8.1 For v, given in (8.3) we have v; = 0.

Proof: Observe that Nj~"" is defined by the knots 0,...,0, that means Nj~'" =
———

P

4. Further, N.=% (v = 1,...,r — 1), defined by 0,...,0,1,...,1, coincide with
e e’ N e’

r—1
r—v v

the Bernstein polynomials of degree r — 2, i.e.

r— 2

v—1

NIV () = ( ) 2= 2y

Hence the refinement mask of IN,_; can explicitely be given by

Pat= (o 4% )

1 .
~ 5 (Ag—z +A e_w)a

where AY_, and A}_, are triangular matrices of the form

. r—2 . r—2
1 /7 1 r—2—9
0 o 1 —
A = (27 (@)) A= (27—2—1‘( i—j ))
1,7=0 2,7=0

(see e.g. Micchelli and Pinkus (1991)). Recall that the spectral norm ||V ||z of a

matrix V' := (v;;)7,_; can be estimated by the product of the matrix I-norm and

with
AT_Q (U)

the matrix co—norm

V1 := max Z loijl, IV := max Z 0341, (8.4)

1<5<n 1<i<n

i.e.

IVIE < IV IV e
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(see e.g. Lancaster and Tismenetsky (1985)). Since all entries of AS_Q and Ai_z
are nonnegative, it follows that

12201 (5 1 r—2—3

1 1 =2f(r—2—3\ 1 1
:21‘+1Z(@')+2r—1—f§ =gt

=0

sup || A,—2(u)|1

Analogously , we find that
sup [|Ar—2 ()]0 = [ Ar-2(0)|oc = 1.

Hence, we have sup,, ||P,-1(u)||2 = 1, and thus v, = 0. n
By Theorem 4.1 it follows for v =0,...,r — 1 that

1ol < O (1 fu)™ 7,

i.e., the elements of Y, are (m — r — 1)—times continuously differentiable. Since
v < m — r, Theorem 6.1, ensuring the uniqueness of the limit, yields for m > r
that X,.(z) = N,.(z). Further, we also have uniform and L?-convergence of the
associated cascade algorithm.

We want to check, whether the smoothness result can be improved by Corollary 4.2.

By

m—r—1

|Bx,_,(u)... Ba,(u) = Bx,_,(0)... Ex,(0) = || 3 (1—¢ ™) G _a,l

k=1

veey

be improved.

8.2. DGHM-SCALING FUNCTIONS

Now, we consider the example of two scaling functions treated in Donovan, Geron-
imo, Hardin, Massopust (1994). In the special case s = s1 = 35 of their construction,
let ¢ be a solution of (1.7) with the refinement mask

1 : . :
P(U) = 5 (PO + P1 e + P2 6_2“‘ + P3 6_32u), (85)
where
52453 1 52453 0
A 2(s+2 L 2 (542
PO = ( _3(5—1)(5-|E1)(5)2—35—1) 352 45—1 ) ) Pl = ( _3(5_1)(55_1)(22_5+3) 1 ) R
4(s5+2)2 2 (s+2) 4 (s+2)?
0 0 0 0
P, = 3(s=1)(s41)(2=s43)  3s24s—1 | 3= | 3(s=1)(s+1)(s>=3s-1) 0 /-
4 (s+2)2 2 (s+2) 4(s42)?
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The refinement mask P(u) can be factorized

P(u) = i Cu, (2u) Cae, (2u) P (u) Cae, (u) ™ Oy (u) ™, (8.6)

where Cg,, Cg, are defined by x¢ := (—3(21_21), DT and &, := (1, 1)T via (2.2) and

(2) 1 2 0 i
P (u) = ) (52—35—1)22+(—1((Js2—2§§5+6)2+(52—35—1) 4s(1 4 2) (z:=e").
s+

Since P(Q)(O) possesses the spectrum {1, 4s}, by Lemma 4.3 the refinement mask
P(0) has the spectrum {1, s}. Observe that (1, %)T is a right eigenvector of
P(0) for the eigenvalue 1 so that Theorem 3.2 yields that for |s| < 2, the infinite

product

b= tim TP (3) (o | (5.7
=1 st+2

converges pointwise for u € R. By simple computations, we find that P does not
satisfy (3.1) with a > 1, such that convergence of the infinite product can not be
shown for |s| > 2. In order to apply Theorem 4.1, we even need that |4s| < 2 and
hence |s| < 1/2. As before, Corollary 4.2 will not provide an improvement of the
results, since P® does not satisfy (4.7) with a > 1.

We apply Theorem 4.1 and obtain for £ € N the estimate

()| < C (1 + [u])~2
with |
L o) (U 9) [ U
Vi = Elog2 sup | P® (5) ... P¥ (27) I|.
We show

Lemma 8.2 For a fived s with |s| < 1/2, there is a number k € N such that v, < 1.

Proof: 1. Since P®(u) is of the form

with
(s* —3s — 1)6_2“‘ + (—10s* — 8s + 6)6_“‘ +(s* —3s—1)

a(u) = \

2(s+2)
b(u) = 2s(1+ e_m),

p® (%) P (%) = ( a(u)2) —I—a%u/ll)b(u/Q) b(U/Q)Ob(u/AI) ) '
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By induction it follows that

u u L ¥
P (5)P(3) = (st (s) netoe) nns) )

2. Note that the spectral norm of a matrix V' can be estimated by the Frobenius
norm of V' := (vy)i,, i.e.,

. 1/2
V]2 < (Z Ivz’j|2) =Vl

7,7=1

We will show that, for any fixed s with |s| < 1/2 there is a k € N such that
1 U U
Elog2 sup | P® (5) ... P® (27) |lr < 1.

First, observe that by, := sup, |[I\-, b(27'u)| < |4s|*. Further, for

—sup 3 (3) T o(3)

(=0

we obtain the estimate

k ) ) |4S|l_1
a < E (52—33—1 1—|—e_2“‘/2l +(—10s> —8s+ 6 e_“‘/zl)‘i
Jax| < ot ( ) ( )+ ( ) 2(s +2)
1 - 2 2 -1
75 218 — 35 —1 —10s° — 8 6| |4s| .
2(5—|—2)l:1<|8 ° |+ ° S |)|S|

Since |s| < 1/2, we have 2|s* —3s — 1| < 9/2 and | — 10s? — 8s + 6| < 38/5. Thus,

121 & 121 k

1
o 4 -1 4 [— 1

=1

For the Frobenius norm of P®(u/2)... P®(u/2") we find

U U
sup || P (5) .. P® (27) e < (14 laxl? + |be]?)?

121 F : e
(1+ ( 30 Z|4S|l 1) + |45|2k) -

3. First, we consider the case that s is fixed with 0 < |s| < 1/4. Then,

121 2\ Y2
P (3)...P<2> (ﬂ) < (2 ( k) .
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2
Now, choosing k such that & > $log, (2 + (121k) ) (this is satisfied for k > 5) we
obtain that

1/2
1 u u 1 121k\°
pros ol (5). 20 () 1= o 2+ (5] ) <

4. Now, we deal with the case that s is fixed with 1/4 < |s| < 1/2. Then |a;| <
2k |43|k ! such that

Y

U U 121 12
sup || P?) (5) P (27) e < (1 + ( - k) s [2472 4 |45|2’f) .

Choosing k such that log,|4s] < 1 + L-logy((1214/30)+4) (this is e.g. satisfied if

2h—2
log, |4s] < 1 — Tkg24) then it follows

121

45/? 2% — 1
30 ) + |)<

(2% — 2) log, |45 + log, ((

and hence

121
1+ ( 20 k) 452572 4 |45 < 275,

For the Frobenius norm it follows that

1 U U

oz sup [P (5 P2 () e

1 121 _

oA log, (1 + ( = k) 45|22 4 |45|2’f) <1l. =m

IA

Since for |s| < 1/2 there is a k € N such that v < 1, it follows that the elements
of the solution ¢ of the the vector refinement equation (1.1) with the refinement
mask P defined in (8.5) are continuous. The uniqueness of the solution is ensured
by Theorem 6.1. Further, by the analysis in section 7, we have uniform and L?*-
convergence of the associated cascade algorithm.

Remarks.

1. The continuity of ¢¢ and ¢ for |s| < 1/2 is also proved in DGHM (1994) by means
of fractal interpolation. In their paper it is already shown that ¢q, ¢, are Lipschitz
continuous for |s| < 1/2, i.e., there exits an M < oo such that for all z, y € [0, 1] we
have |¢,(z) — ¢, (y)| < M |x —y| (v = 0,1). Further, if 1/2 < |s| < 1, then ¢q, ¢4
have the Holder exponent oo = —log |s|/ log 2.

2. The solutions ¢g and ¢, are symmetric, and they have a very short support. In
particular, supp ¢o = [0, 1], supp ¢ = [0, 2], and we have

G0 =0o(- —1/2), 1 =¢u(- - 1).
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The closed linear span V4 of the integer translates of ¢y and ¢y provides the approx-
imation order 2. Using the results in section 2, this fact is a simple consequence
of the factorization (8.6) of the refinement mask P. Note that in DGHM (1994) it
is proved that the hat function A(z) := max{0, 1 — |z|} is contained in Vg, which
already implies that V4 has approximation order 2.

3. In the case s = —0.2, it is shown in DGHM (1994) that the integer translates of
oo and ¢ form an orthogonal basis of V4.

8.3. SCALING FUNCTIONS WITH CONTROLLED SMOOTHNESS

We consider solutions of the vector refinement equation (1.1) with the refinement

mask
- 1 e—iu + 26—2iu + e—Biu (e—iu o 26—3iu + e—5iu)/2
1 (2) —1 -1
= 1 Cwo (QU) CQ31 (QU) P (u) CQ31 (u) Cwo(u) >
where

— o

1—€_iu 0 i 1
Ca) =)= (75 V) PO = (i | ).
8

Observe that P(Q)(O) and P(0) possess the spectra {1, 1} and {1,1/4}, respectively.
Hence, by Theorem 3.2 the infinite product

Blu) i= JLI&IZIHTIP ) ( e )

converges pointwise, since (1,1/96) is a right eigenvector of P(0) for the eigenvalue
1. Further, considering the product

u e=3iu/2 4 eTtu(1—emtu/2)2 o= 3iu/2

(2) @2y = , . 64 , . .
P (U)P (2) — ( e—zu/2(1_6—zu)2 _|_ e (1—6_“‘)2 6_“‘/2(1—6_“‘)2 —|_ e—3iu/2 ) 9

32 32 64

we find for the matrix I-norm and the matrix co—norm (defined in (8.4))

33

u U 33
up | PO) PO (D)< T sup |POw) PO ()]l < =2

2 — 16

Hence, for the spectral norm it follows that

u
sup [P () PO (5] ]

u u /233
< (sup I1P2() PO () sup [ PO PO (3) 1) < 2.
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Now, applying Theorem 4.1 with

1 u 1 /33
72 = 5 log, sup [P (u) P (5) 2 < 5 log, (E) ~ 0.52219706

we have that

¢l < C (14 Jul) 7,

i.e., the elements ¢g, ¢1 of the solution ¢ are continuous functions. For the support
of ¢g and ¢, we obtain

2 10 15
supp ¢o = [57 3]7 supp ¢ = [57 g]-

Furthermore, we have the symmetry relations

$o(2 + ) = ¢o(2 — z), pi(l+7)=¢1(1 —2).

It can be shown that the integer translates of ¢y and ¢, form a Riesz basis of their
closed linear span Vy. Then factorization of the refinement mask already implies
that Vg provides approximation order 2 (cf. section 2). In particular, the equalities
(2.7) are satisfied with y, := (1, 0)T and y, := (2, 0)T. Actually, the approximation
order 2 is already provided by the closed linear span of the integer translates of ¢.

We have indeed
1 0 0 0
P(O):(L 1)7 P(W):(L_l)v
128 4 128 4

opyo = (0

N
~—
S
o
3
S
=
S—’
I
SN
o O
als O
~—

so that for odd I[:

A

b(2x1) = P(x) b(rl)
and hence ng(Qﬂ'l) = 0. For even [ we have

A A

¢(271) = P(0) ¢(xl),

ie., qgo(Qﬂ'l) = qgo(ﬂ'l). Thus, qgo(Qﬂ'l) = 0 for [ € Z\ {0}. Analogously, for the
derivative of ¢ it follows, for odd /,

(D§)(251) = £ ((DP)(x) b(1) + P(x) (D) (1))
so that (Dqgo)(Zﬂ'l) = 0. For even [ we have

(D)(271) = 3 ((DP)0) b(x1) + P(0) (DB)(x1)) .
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Figure 1: Graph of ¢q
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A~

i.e., (Dao)(2rl) = %(quﬁo)(ﬂ'l). Thus, do satisfies the Strang-Fix conditions of order
2

Y

(1€Z\{0}), o #0,
(lez).

{so(w) =
(De)(2rl) =

Finally, we note that, in this example, there is no function f in the space V5 which
is already refinable by itself. In the most other examples considered in the litera-
ture, even if the elements of ¢ are not refinable by themselves, there exist refinable
functions in the span of their integer translates; in the spline example (see section
8.1) the space Vg, spanned by the B—splines of order m with r—fold knots, contains
the cardinal B—splines N, (k = 0,...,7 — 1), in the case of the DGHM-scaling

functions, V4 contains the hat function.

0
0
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