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�� Introduction

In this paper we shall discuss the smoothness of re�nable function vectors� These
are solutions to functional equations of the type

��x� �
NX
n��

P n ���x� n� � �����

where the 	coe
cients� P n are r � r matrices �r � N� r � ��� and where
� 
� ���� � � � � �r���T is an r�dimensional function vector� Equations of type �����
are natural generalizations of the re�nement equations studied in e�g� Cavaretta�
Dahmen� and Micchelli ������� where r � �� therefore we shall call them re�nement
equations as well� or occasionally vector re�nement equations�
Vector re�nement equations have come up in several papers� The oldest example
is probably the multiwavelet construction by Alpert and Rokhlin ������ �see also
Alpert �������� where the �� are all supported on ��� �� and are polynomials of de�
gree r � � on their support� In this example the smoothness of the �� is of course
known� equation ����� is useful as a computational tool in going from one multires�
olution level to the next� Matrix generalizations of type ����� were also discussed in
more generality in Goodman� Lee� and Tang ������ and Goodman and Lee �������
including how to de�ne wavelets once the scaling functions were known� However�
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it was not clear how to construct smooth non�polynomial examples� let alone how
to connect smoothness with properties of the P n� This was in marked contrast with
the case r � �� where the link between smoothness of � and properties of the P n

or of the re�nement mask

P �u� 
�
�

�

X
n

P n e
�iun �����

is well understood� and where this connection can be exploited to construct � with
arbitrary pre�assigned smoothness as well as many other properties �see Daubechies
�������� Donovan� Geronimo� Hardin� and Massopust ������ �hereafter referred to
as DGHM� were the �rst to construct continuous non�polynomial re�nable function
vectors� They gave examples of special bases of selfsimilar wavelets� generated by
continuous scaling functions that satisfy an equation of type ������ In their pa�
per� the iterated function technique used in the construction was the key to derive
smoothness� rather than properties of the P n� This �rst example triggered several
other constructions �e�g� Strang and Strela �������� as well as work on the �lter
bank implications of ����� �Vetterli and Strang ������� Heller et al� ������� and a
systematic study of the approximation order of solutions of ����� �Heil� Strang� and
Strela ������� Plonka ������a��� This last work contains the key to understanding
how solutions of ����� can be smooth�
As shown in Plonka ������a�� the space spanned by the functions ���x�n� �n � N�
can only have approximation order m if P �u� has certain particular factorization
properties� �We assume that the ���x� n� are also �algebrically� linearly indepen�
dent�� This is reminiscent of the case r � �� where similarly linearly independent
translates of a re�nable function � can only provide approximation order m if the
re�nement mask� often denoted by m��u�� can be factored as

m��u� �

�
� � e�iu

�

�m

q�u� � �����

where q��� � �� q is ���periodic and non�singular for u � �� By iterating the
formula

���u� � m�

�
u

�

�
��
�
u

�

�
�

which is obtained by Fourier transformation from ������ and exploiting the factor�
ization ������ one then �nds

j���u�j � j
�Y
j��

m���
�j u�j � C �� � juj��m

�Y
j��

jq���j u�j �

where the in�nite products converge uniformly on compact sets ifm� or� equivalently�
q is H�older continuous in u � �� Together with estimates of the type supujq�u�j � B
or� more generally� supujq��

k��u� q��k��u� � � � q�u�j � Bk for some k � N n f�g� this
leads to

j���u�j � C �� � juj��m�log�B �����
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�see e�g� Daubechies ������ ������ Cohen and Conze �������� The factorization
������ together with estimates on the factor q�u�� therefore leads to decay for ��� and
hence to smoothness estimates for �� By using more sophisticated methods involving
transfer operators� one can re�ne the brute force estimates ����� and formulate
necessary and su
cient conditions on q�u� ensuring that � lies in some Sobolev
space W s �see Conze and Raugi ������� Villemoes ������� Eirola ������� Gripenberg
������� Herv�e ������� Cohen and Daubechies �������� Here again� the factorization
����� is a key ingredient�

In this paper� we shall see that the factorization for the matrix P �u� discovered by
Plonka ������a� for the case r � �� can play a similar role� although the discussion
is more intricate�
We shall assume that the ���x � n�� � � �� � � � � r � �� n � Zform a linearly inde�
pendent basis for their closed linear span V�� and that they provide approximation
order m� i�e�� for f � Wm one has

kf � ProjVjfkL� � C ��jm kfkWm �

where Vj is the scaled space

Vj � fg � L��R�� g���j �� � V�g� �����

Then� it is shown in Plonka ������a� that there exist r � r matrices C��u�� � � � �
Cm���u� �constructed explicitly in Plonka ������a�� see also below� such that P �u��
de�ned in ������ factors as

P �u� �
�

�m
C���u� � � �Cm����u�P

�m��u�Cm���u�
�� � � �C��u�

��� �����

where P �m��u� is well�de�ned� By Fourier transform of ����� we obtain

���u� � P
�
u

�

�
��
�
u

�

�
� �����

This can be iterated again� and we �nd

���u� � P
�
u

�

�
P

�
u

�

�
� � �P

�
u

�n

�
��
�
u

�n

�
� �����

Substituting ����� in ����� leads to

���u� � ��mnC��u� � � �Cm���u�P
�m�

�
u

�

�
� � �P �m�

�
u

�n

�
�����

�Cm��

�
u

�n

���
� � �C�

�
u

�n

���
��
�
u

�n

�
�

Even at this stage� the case r � � is more complicated than r � �� The matrices
P ���ju� or P �m����ju� do not commute� and the discussion of the convergence of
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an in�nite product de�nition for ���u� is therefore more complex�
Herv�e ������ studied the convergence of the matrices �n�u�

�n�u� 
� P
�
u

�

�
P

�
u

�

�
� � �P

�
u

�n

�
� ������

as n ��� and showed that convergence is assured if P ��� � diag��� ��� � � � � �r����
with j�lj 	 � for l � �� � � � � r � �� or if P ��� is similar to such a matrix� i�e��
P ��� � M diag��� ��� � � � � �r���M

�� for some non�singular M � This already ex�
cludes the case where P ��� is not diagonalizable� Moreover� our matrices P �m����
may well have a spectral radius larger than �� so that Herv�e�s results cannot be used
for the products P �m��u
�� � � �P �m����nu� in ������ Heil and Colella ������ discuss
not only the convergence of�n�u� �with results similar to Herv�e ������� but also the
convergence of �n�u�v� where v is a �xed r�dimensional vector� If v is an eigenvec�
tor of P ��� with eigenvalue �� then�n�u�v may converge even if the spectral radius
�� of P ��� is strictly larger than �� Heil and Colella call this constrained convergence�
They prove constrained convergence if �� 	 � and if the largest eigenvalue of P ���
is nondegenerate� We use a di erent technique that proves convergence of �n�u�v
if �� 	 �� without non�degeneracy condition� and that extends to some cases where
�� � �� if P �u� has vanishing derivatives at u � �� Once convergence of ����� or
����� is established� we can proceed to the main topic of this paper� namely how the
factorization ������ together with estimates on P �m��u� can lead to decay of j����u�j
�� � �� � � � � r � �� as juj � �� As in the case r � �� this can be exploited to prove
L��convergence and pointwise convergence theorems �in the 	x�domain�� similar to
those in Daubechies ������� One can also introduce matrix transfer operators to
prove more precise estimate like in the case r � ��

This paper is organized as follows� In section �� we recall the precise results on the
factorization of P �u� obtained in Plonka ������a�� We also show that this factor�
ization is necessary in order to obtain smooth functions ��� � � � � �r��� In section ��
we discuss the pointwise convergence of �n�u�a� as n � �� for a �xed vector a�
In section �� we exploit the factorization ����� to prove� under certain additional
conditions� that limn���n�u�a decays� as a function of u� for juj � �� We show�
in section �� how transfer operators can also be used to evaluate the regularity of
the scaling functions� Section � gives a short uniqueness discussion
 in the previous
sections an in�nite product solution for ����� has been constructed� if this has suf�
�cient decay� then its inverse Fourier transform gives a solution to ������ Theorem
��� shows that� under certain conditions on the mask� this solution is unique in a
wide class of functions� In section � we show how the decay estimates proved earlier
can be used to translate the pointwise convergence of �n�u�a to convergence of the
cascade and subdivision algorithms in the 	x�domain�� Finally� section � studies
several examples� we apply our analysis to see how the �known� smoothness of spline
functions and of the DGHM scaling functions can be recovered� and we construct
some new examples with controlled smoothness�

�



�� Factorization of the refinement mask

We want to recall some results of Plonka ������a�� We start by some de�nitions�
Let r � N be �xed� and let y � Rr be a vector of length r with y 	� �� Here and
in the following� � denotes the zero vector of length r� We suppose that y is of the
form

y � �y�� � � � � yl��� �� � � � � ��
T �����

with � � l � r and y� 	� � for � � �� � � � � l� �� Introducing the direct sum of square
matrices A 
B 
� diag�A� B�� we de�ne the matrix Cy by

Cy�u� 
� !Cy�u�
 Ir�l� �����

where Ir�l is the �r � l�� �r � l� unit matrix� If l � �� then !Cy�u� is de�ned by

!Cy�u� 
�

�
BBBBBBBB�

y��� �y��� � � � � �

� y��� �y���
� � �

���
���

� � � � � � � � � �

�
� � � � � � y��l�� �y��l��

�e�iu
yl�� � � � � � y��l��

�
CCCCCCCCA

� �����

if l � �� i�e�� if y 
� �y�� �� � � � � ��T with y� 	� �� then !Cy�u� is the scalar
��� e�iu�
y�� so that Cy�u� is a diagonal matrix of the form

Cy�u� 
� diag

�
� � e�iu

y�
� �� � � � � �

�
�

It can easily be observed that Cy�u� is invertible for u 	� �� Further� the matrix
Cy is chosen such that

yT Cy��� � �T �

We introduce
Ey�u� 
� ��� e�iu�C��

y �u� � �����

Assuming that y is of the form ������ we obtain that Ey�u� � !Ey�u�
���e�iu� Ir�l
with

!Ey�u� 
�

�
BBBBBBBB�

y� y� y� � � � yl��

y�z y� y�
� � �

���
���

� � �
� � �

� � � yl��

y�z y�z
� � � yl�� yl��

y�z y�z � � � yl��z yl��

�
CCCCCCCCA

�z 
� e�iu� � �����

Note that Ey can be written in the form

Ey�u� � Ey���� i��� e�iu� �DEy���� � �����
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where D denotes the di erential operator with respect to �� D 
� d
 d�� The vector
y need not to be such that its zero entries always occur at the tail� If the non�zero
entries of the vector y are given in a di erent order than in ������ then the matrices
Cy and Ey are de�ned just by reshu"ing the rows and columns accordingly�
We can now formulate the factorization results for P �u�� The following theorem is
a special case of a theorem proved in Plonka ������a�


Theorem ��� Let � 
� ����
r��
��� be a re�nable vector of compactly supported func�

tions� and let f���� �n� 
 n � Z� � � �� � � � � r� �g form a linearly independent basis
of their closed linear span V�� Then V� provides approximation order m if and only
if the re�nement mask P of � satis�es the following conditions�
The elements of P are trigonometric polynomials� and there are vectors yk �
R
r� y� 	� � �k � �� � � � �m� �� such that for n � �� � � � �m� � we have

nX
k��

�
n

k

�
�yk�

T ��i�k�n �Dn�kP ���� � ��n �yn�
T� �����

nX
k��

�
n

k

�
�yk�

T ��i�k�n �Dn�kP ���� � �T �

Furthermore� the equalities ����� imply that there are vectors xk 	� � �k � �� � � � �m�
�� such that P factorizes

P �u� �
�

�m
Cx�

��u� � � � Cxm��
��u�P �m��u�Cxm��

�u��� � � � Cx�
�u��� � �����

where the �r � r��matrices Cxk
are de�ned by xk �k � �� � � � �m� �� via ����� and

P �m��u� is an �r � r��matrix with trigonometric polynomials as entries�

The vectors xl �l � �� � � � �m� �� in Theorem ��� are completely de�ned in terms of
the vectors yk �k � �� � � � �m � ��� In particular� we have �x��T � �y��

T � �x��T �
��i��y��

T �DCy
�
���� � �y��

T Cy
�
��� �cf� Plonka ������a��� With the assumptions

in Theorem ���� approximation order m is equivalent with exact reproduction of
algebraic polynomials of degree m � � in V�� Vice versa� if algebraic polynomials
of degree m � � can be exactly reproduced in V�� i�e�� if there are vectors ynl � R

r

�l � Z� n � �� � � � �m� �� such thatX
l�Z

�ynl �
T ��x� l� � xn �x � R� n � �� � � � �m� �� �

then ynl can be written in the form

ynl �
nX

k��

�
n

k

�
ln�k yk� �

and the vectors yk� �k � �� � � � �m� �� satisfy the equalities ����� with respect to the
re�nement mask P of ��
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Now� assume that � is a re�nable function vector with a re�nement mask P satisfy�
ing the conditions ����� for the vectors y�� � � � �ym�� �y� 	� ��� Further� letM � Rr�r

be an invertible matrix and
���x� 
�M ��x��

Then �� is also a re�nable function vector with the re�nement mask P ��u� 
�
M P �u�M��� since

��
�
�u� � M ���u� �M P �u
�� ���u
��

� M P �u
��M�� ��
�
�u
�� �

Observe that P � is obtained by a similarity transformation from P � i�e�� P and P �

possess the same spectrum� Furthermore� P ��u� satis�es the conditions ����� for
n � �� � � � �m� � with vectors y��� � � � �y

�
m��� given by

�y���
T � �y��

T M�� �� � �� � � � �m� �� �

Hence� P � can also be factored as in ����� withC�matrices de�ned by certain vectors
x
�
�� � � � �x

�
m��� In particular� we have �x���

T 
� �y���
T � �y��

T M��� Note that this
implies that the factorization ����� is not invariant under basis transformations� For
instance� in the case where we consider a single factorization�

P �u� �
�

�
Cy

�
��u�P ����u�Cy

�
�u��� �����

with y� � �y��
r��
��� �y� 	� ��� we could choose instead to carry out �rst the basis

transformation

M �

�
BBBBBBB�

y� y� y� � � � yr��
� � � � � � �

� � �
� � � �

���
���

���
� � �

���
� � � � � � �

�
CCCCCCCA

� ������

For P ��u� �MP �u�M�� the equations ����� now hold with �y���
T � ��� �� � � � � ���

and we can factor P ��u� accordingly� Multiplying the factored expression by M��

on the left and M on the right� we obtain

P �u� �
�

�
Dy

�
��u�Q����u�Dy

�
�u��� � ������

where Dy
�
�u� is now de�ned by

Dy
�
�u� 
�M�� diag

�
�� z� �� � � � � �

�
�

�
BBBBBBB�

� � z �y�
y�
z �y�

y�
z � � � �yr��

y�
z

� � � � � � �
� � � � � � �
���

���
���

� � �
���

� � � � � � �

�
CCCCCCCA

�

�



Other choices of M would lead to yet other factorizations� In most applications�
the original factorization ����� turns out to be the most useful� We shall use the
existence of this di erent factorization ������ as a tool to study the spectrum of
P �������

In the second part of this section� we show that the factorization of the re�nement
mask is necessary in order to obain smooth functions�

Lemma ��� Let � 
� ����
r��
��� be a re�nable vector of compactly supported functions�

i�e�� we have

��x� �
NX
n��

P n ���x � n�� ������

Further� let f���� � n� 
 n � Z� � � �� � � � � r � �g form a Riesz basis of their closed
linear span V�� If �� � Cm���R� �� � �� � � � � r � ��� then V� provides approximation
order m� In particular� there are vectors x�� � � � �xm�� �x� 	� �� such that the
re�nement mask P of � factorizes in the form ������

Proof� From the Riesz basis property� there exist dual scaling functions !�� � V��
� � �� � � � � r � � such that

h���� � k�� !���� � l�i � 
���
k�l�

where h�� �i denotes the usual scalar product in L��R�� These functions are de�ned
by

��!���u�� � � � �
�!�r���u��

T �G�u��� ���u��

where the matrix elements of G�u� are de�ned by

g����u� �
X
n�Z

����u� �n������u� �n��

�
X
k�Z

h��� ���� � k�ieiku ��� � � �� � � � � r � ���

The Riesz basis property is equivalent with the fact that G�u� is uniformly non�
singular� Since its entries are trigonometric polynomials� it follows that the functions
!�� have exponential decay� We thus can de�ne the polynomials

pn���x� �
Z �

��
yn !���y � x� dy�

We shall prove that for n 	 m� we have

xn �
X
k�Z

r��X
���

pn�� �k����x� k�� ������

for all x � R��Note that for a �xed x� the above sum has a �nite number of non zero
terms��
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We proceed by induction on n� For n � �� we remark that � cannot vanish at every
integer
 by repeated application of the re�nement equation ������� we would obtain
that � vanishes at all dyadic rationals ��jk �j � N� k � Z� and thus is identically
zero� Let l and �� be such that ����l� � C 	� � and de�ne fj � �����

�j � �l�� For
j � �� we have f � V�j � V� �with V�j as in ������� and thus

fj�x� �
X
k�Z

r��X
���

hfj � !���� � k�i���x� k�� ������

As j goes to ��� fj�x� tends to C uniformly on every compact set� and for a �xed
k � Z� hfj � !���� � k�i tends to C p����k�� We thus obtain ������ from ������� by
letting j go to in�nity�
Now suppose that ������ is proved up to order n� �� For the same reason as above�
we can �nd l and �� such that Dn����l� � C 	� �� We then de�ne

fj�x� � �njn# ������
�jx� l��

n��X
s��

Ds����l� ��
�jx�s
s#��

From the recursion hypothesis� we have

fj�x� �
X
k�Z

r��X
���

hfj � !���� � k�i���x� k�� ������

As j goes to ��� fj�x� tends to Cxn uniformly on every compact set� and for a
�xed k � Z� hfj � !���� � k�i tends to C pn�� �k�� We thus obtain ������ from ������� by
letting j go to in�nity� Hence� we have proved that all polynomials of degree m� �
are linear combinations of the functions ��� �� � �� � � � � r � ���
By Theorem ��� in Plonka ������a�� it follows that V� provides approximation order
m� Hence� by Theorem ���� P �u� can be factorized as in Theorem ����

�� Convergence of infinite matrix products

Ultimately� we are interested in L��solutions ��x� of ������ and their smoothness� if
they have any� We also want the space spanned by the ���x�n� �� � �� � � � � r��� n �
Z� to have a certain approximation order� For � � L�� the Fourier transform �� is a
well�de�ned and continuous vector�valued function that must satisfy ����� for all u�
In particular� we must have

����� � P �������� �

On the other hand� if we want any non�zero approximation order� then we must have
����� 	� �� since ����� � � would imply

R
���x � n� dx � � for all �� n� making it

impossible to construct the function � as a combination of the ���x� n�� Together�
these two observations imply that we should take ����� � a� where a is a left
eigenvector of P ��� for the eigenvalue �� Note that we know that � has to be an

�



eigenvalue of P ��� because of ������ In all the examples we shall consider in practice�
� will be compactly supported� more generally� � should have good �exponential�
decay� so that �� will be smooth� This means that we expect that in

���u� � P

�
u

�

�
� � �P

�
u

�n

�
��
�
u

�n

�

� P

�
u

�

�
� � �P

�
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�

the second term should become negligibly small in the limit for n � �� This
suggests that we de�ne

��n�u� 
� P
�
u

�

�
� � �P

�
u

�n

�
a � �n�u�a

and study its limit for n � �� In this section� we shall discuss the existence of
this limit� pointwise in u� In what follows� kvk will denote the Euclidean norm
of v � R

d� i�e�� kvk � �v�� � � � � � v�r���
���� and kV k 
� max kV vk
kvk will be

the corresponding matrix norm �spectral norm� for V � R
r�r� Recall that the

spectral norm of a matrix V can be de�ned by the spectral radius of V
T
V � i�e��

kV k � kV k� 
� ���V
T
V ������

Lemma ��� Suppose that a is an eigenvector of P ��� for the eigenvalue �� Further�
suppose that P satis�es

kP �u�� P ���k � C juj� � �����

for some � � �� and that
kP ���k � �� �

Then the in�nite product
���u� 
� lim

n��
�n�u�a �����

converges pointwise for any u � R� The convergence is uniform on compact sets�

Proof� The estimate ����� implies that

kP �u�k � kP ���k� C juj� � kP ���k eC
� juj��

Hence� we have

kP
�
u

�

�
� � �P

�
u

�l

�
k � eC

�juj������������l�	 kP ���kl

� eC�juj
�

kP ���kl

since ���� � � � �� ��l�� � ���

����� 	 � for � � �� Using this estimate and observing
that

�k�u�a� a �
	
P

�
u

�

�
� � �P

�
u

�k

�
� P ���k
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P ���k�l a � �����

��



it follows that for any k � N

k�k�u�a� ak � C eC�juj
�

juj�
�X
l��

�
kP ���k

��

�l

� C � eC�juj
�

juj� �

where we assume that a is normalized� kak � �� for the sake of convenience� Now�
remarking that �N�k�u�a��N �u�a � �N�u���k���Nu�a� a�� we obtain

k�N�k�u�a��N �u�ak � C � eC�juj
������N�� juj�

�
kP ���k

��

�N

�

and hence
lim

m�n��
k�m�u�a��n�u�ak � ��

Thus� ����� converges pointwise for all u � R� The convergence is uniform on
compact sets�

This result is often su
cient� Note that� when the entries of P �u� are trigonometric
polynomials� ����� is always satis�ed with � � � and can be satis�ed for integer
values � � � if and only if P �u� has vanishing derivative at the origin� The argument
can be pushed a little further� allowing for the replacement of kP ���k by the spectral
radius of P ����

�� � ��P ���� 
� maxfj�j 
 P ���x � �x� x 	� �g �

Theorem ��� Let a be an eigenvector of P ��� for the eigenvalue �� Suppose that
P �u� satis�es ������ and that

�� 	 �� � �����

Then ���u�� de�ned by ������ converges pointwise for all u � R� and the convergence
is uniform on compact sets� Moreover� ���u� is H�older continuous in u � ��

Proof� �� Again� we assume kak � � for the sake of convenience� Let Q�u� 
�
P �u��P ���� Then it follows from ����� that kQ�u�k � C juj� with � � �� Further�
observe that kP ���kk � C	 ��� � ��k� Then we have

k�N�u�k � kP
�
u

�

�
� � �P

�
u

�N

�
k

� k�P ��� �Q
�
u

�

�
� � � � �P ��� �Q

�
u

�N

�
�k

� k
NX
l��

X
m������ml���N�l

P ���m� Q

�
u

�m���

�
P ���m� Q

�
u

�m��m���

�
� � �

�Q
�

u

�m��m������ml�l

�
P ���ml��k�

��



The second summation above is taken over all positive integer m�� � � � �ml�� such
that m� � � � ��ml�� � N � l� Introducing b � ��� 	 �� this leads to

k�N�u�k �
NX
l��

X
m������ml���N�l

C l��
	 ��� � ��N�lC l juj�l ���

Pl

k��
�mk����l���k�

� C	b
�N�l bl�l�����

NX
l��

��� � ��N�l �juj�C	C�
l

X
m������ml���N�l

b�m��l��������ml�� 	�

�� Next we �nd an upper bound for the sum over m�� � � � �ml��� Consider the sum

AM�L 
�
X

m������mL�M

bm���m�����LmL � �����

For AM�L we �nd the recursion �putting m � m��

AM�L �
MX
m��

bM AM�m�L�� � bM
MX

m��

AM�m�L��

with AM�� � bM and A��L � �� We show by induction that

AM�L �
bM

��� b�L��
� �����

For L � � and M � N� ����� is satis�ed� Now� assume that ����� holds for L � �
and M � N� Then we obtain by the recursion formula

AM�L�� � bM
MX
m��

AM�m�L �
bM

��� b�L��

MX
m��

bm �
bM

��� b�L
�

�� Substituting ����� into the expression for k�N�u�k obtained above� we �nd

k�N �u�k � C	

NX
l��

��� � ��N�l �juj�C	C�
l b�N�l bl�l�����AN�l�l��

� C	

NX
l��

��� � ��N�l �juj�C	C�
l b

l�l�����

�� � b�l

� C	 ��� � ��N
NX
l��

�
juj�C	C

��� � ����� b�

�l
bl�l������ �����

The sum in ����� converges uniformly for juj � $� since b 	 �� Hence� we can
estimate

k�N�u�k � C	�
 ��� � ��N � �����

��



�� Now� with the same argument as in the proof of Lemma ���� we have by �����

k�k�u�a� ak � C
kX
l��

C	�
 ��� � ��l��
�
juj

�l

��

� C �
	�
 juj

�
kX
l��

�
�� � �

��

�l
� �����

Hence� uniform boundedness of k�k�u�a� ak is ensured� if �� 	 ��� by choosing �
su
ciently small� Again� it follows that

k�N�k�u�a��N �u�ak � C	�
 C
�
	�
��� � ��N

juj�

�N�

kX
l��

�
�� � �

��

�l

� C ��
	�
 juj

�
�
�� � �

��

�N
�

where the last term is uniformly small in k if N is su
ciently large� Thus� for
�xed u� �k�u�a is a Cauchy sequence for �� 	 ��� implying that we have pointwise
convergence of ��u�� Moreover� the convergence is uniform on compact sets� The
H�older continuity of ��u� in u � � directly follows from ������

�� Decay of infinite matrix products

Having shown that ���u� is well�de�ned �under some conditions on P �u��� we now
proceed to study how the factorization ����� of the re�nement mask P �u� can lead
to decay in u of ���u� for juj � �� Let us suppose that P �u� can be factored in
the form

P �u� �
�

�m��� e�iu�m
Cx�

��u� � � �Cxm��
��u�P �m��u�Exm��

�u� � � �Ex�
�u��

where theC� and E�matrices are de�ned as in ����� and ����� and where the vectors
x�� � � � �xm�� are all di erent from the zero vector� We can now rewrite ���u� as

���u� 
� lim
n��

�n�u�a � lim
n��


�
�

�n��� e�iu��n�

�m
Cx�

�u� � � �Cxm��
�u�

�P �m�
�
u

�

�
� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�

�
u

�n

�
a

�
�

We note again that� since xT� P ��� � x
T
� with x� 	� � � � is an eigenvalue of P ���� and

we take a to be a right eigenvector of P ��� for that eigenvalue� We also assume that
xT� a 	� �� if the eigenvalue � of P ��� is nondegenerate� then this is automatically
satis�ed� Note that for u � � we have ����� � limn�� P ���n a � a� We will
establish conditions under which

kP �m�
�
u

�

�
� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�
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u
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tends to a �nite limit for n � �� since limn�� j��n �� � e�iu��
n
��nj � juj�� for

u 	� �� this then implies

k ���u�k � �� � juj��m kCx�
�u� � � �Cxm��

�u�k �����

� lim
n��

kP �m�
�
u
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�
� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�

�
u

�n

�
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Let us de�ne the vectors ek 
� �ek���
r��
��� by

ek�� 
�



� if xk�� 	� ��
� if xk�� � ��

�����

where xk�� are the components of the vectors xk �k � �� � � � �m��� introduced above�

Theorem 	�� Let P be an r � r�matrix of the form

P �u� �
�

�m
Cx�

��u� � � �Cxm��
��u�P �m��u�Cxm��

�u��� � � �Cx�
�u����

where the matrices Cxk
are de�ned by the vectors xk 	� � �k � �� � � � �m � �� via

����� and where P �m��u� is an �r � r� matrix with trigonometric polynomials as
entries� Suppose that P �m����em�� � em�� where em�� is de�ned by ������ Further�
suppose that

�m 
� ��P �m����� 	 � �����

and let for k � �

�k 
�
�

k
log� sup

u
kP �m�

�
u

�

�
� � �P �m�

�
u

�k

�
k� �����

Then there exists a constant C � � such that for all u � R

k ���u�k � C �� � juj��m�
k � �����

Note that the requirement P �m�em�� � em�� is automatically satis�ed in the case
of interest to us� i�e�� if P �u� is the re�nement mask for the vector of functions
���x�� � � � � �r���x� whose integer translates provide approximation order m� see
Plonka ������a��
Proof� �� From ����� it follows that

Exm��
�u� � � �Ex�

�u� � Exm��
��� � � �Ex�

��� �
mX
k��

�� � e�iu�kG
�k�
xm�������x�

with some matrices G�k�
xm�������x�

depending on Ex� ��� and �DEx� ����
�� � �� � � � �m� ��� Hence� we can write
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with
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where vk 
�G
�k�
xm�� �����x�

a �k � �� � � � �m��
�� We can estimate the second term T ��n�u� with the same argument as in ������

kT ��n�u�k � C
mX
k��

j��nujk kP �m�
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�
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� C	�juj �
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Since the spectral radius �m of P �m���� is supposed to be 	 �� it follows that for all
u � R

lim
n��

kT ��n�u�k � ��

�� We now concentrate on T ��n�u�� From the structure ofE xk
��� and the de�nition

����� of ek it follows that� for any vector b

Exk
��� b � �xk�

Tb ek �k � �� � � � �m� ���

Repeating this argument� we obtain

Exm��
��� � � �Ex�

���a � ��x��
Ta� ��x��

Te�� � � � ��xm���
Tem���em���

This leads to

T ��n�u� � ��x��
Ta� ��x��

Te�� � � � ��xm���
Tem���P

�m�
�
u

�
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� � �P �m�

�
u

�n

�
em���

Since P �m����em�� � em��� and �m 	 �� we �nd by Theorem ��� that lim
n��

T ��n�u�

is well�de�ned for all u� and uniformly bounded on compact sets�
�� Take now any u � R� If juj � � then by the H�older continuity of P �m��u� with
H�older exponent � � � there is a C such that kT ��n�u�k � C� If juj � �� de�ne L
such that �L�� 	 juj � �L� Thus�

k lim
n��

T ��n�u�k � kP �m�
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�
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By the de�nition of �k it follows that

k lim
n��

T ��n�u�k � C � �L 
k � C �� �� � juj�
k�

��



i�e�� by ����� and the observations above we �nd a constant C such that

k ���u�k � C �� � juj��m�
k �

Remarks�
�� It follows from ����� that the components of ��x� are continuous if P satis�es
the above conditions and if �k 	 m� ��
�� For the proof of Theorem ��� we have assumed that ��P �m����� 	 �� As we will
see in Lemma ��� below� this can be ensured if the largest eigenvalue of P ��� apart
from the eigenvalue � is smaller than ��m���
�� In order to avoid that T ��n�u� collapses to � as n��� i�e�� limn�� kT ��n�u�k � ��

which would imply ���u� � �� we have to make sure that

��x��
Ta� ��x��

Te�� � � � ��xm���
Tem��� 	� �� �����

Note that this is already satis�ed if there is an index � �� � � � r � �� such that
the �th component of xk does not vanish for all k � �� � � � �m � �� On the other
hand� since xl is a left eigenvector� and el�� a right eigenvector of P

�l����� both for
the eigenvalue �� ����� is also satis�ed if the eigenvalue � of P �l���� is nondegerate�
for all l�

More detailed estimates show that decay of ���u� is also possible in some cases where
��P �m�� � ��

Corollary 	�� Let P be again an r � r�matrix of the form

P �u� 
�
�

�m
Cx�

��u� � � �Cxm��
��u�P �m��u�Cxm��

�u��� � � �Cx�
�u����

where the matrices Cxk
are de�ned by the vectors xk 	� � �k � �� � � � �m � �� via

����� and where P �m��u� is an �r � r� matrix with trigonometric polynomials as
entries� Suppose that Pm���em�� � em��� Further� suppose that

kP �m��u�� P �m����k � C juj� �����

and that the E�matrices de�ned in ����� satisfy

kExm��
�u� � � �Ex�

�u��Exm��
��� � � �Ex�

���k � C juj�� �����

Now� if �m 	 �minf���g� then there exists a constant C � � such that for all u � R

k ���u�k � C �� � juj��m�
k �

where �k is de�ned in ������

��



Proof� Observe that

kP �m�
�
u

�

�
� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�

�
u

�n

�
ak � kSn�u�k� kT ��nk�

with

Sn�u� 
� P �m�
�
u

�

�
� � �P �m�

�
u

�n

�

�
	
Exm��

�
u

�n

�
� � �Ex�

�
u

�n

�
�Exm��

��� � � �Ex�
���



a

and where T ��n is de�ned as in the proof of Theorem ���� With the same argument
as in Theorem ��� �cf� ������ we obtain by ����� that

kSn�u�k � kP �m�
�
u

�

�
� � �P �m�

�
u

�n

�
k

�k�Exm��

�
u

�n
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�
u

�n

�
�Exm��

��� � � �Ex�
����ak

� C	�
 ��m � ��nC
juj�

�n�
�

Thus Sn�u� tends to zero for n � � if �m 	 ��� Further� since em�� is an eigen�
vector of P �m����� we can apply Lemma ��� in order to show that T ��n is convergent
for ��m � �� 	 ��� Hence�

P �m�
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u
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� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�

�
u
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�
a

is well�de�ned if �m 	 �minf���g� Following point � of the proof of Theorem ��� we
can �nd a constant C such that

k ���u�k � C �� � juj��m�
k �

Since P �m��u� is completely determined by P �u�� the conditions �m 	 � or �m 	
�
 are restrictions on P �u�� The following lemma shows that there is a simple
connection between the spectra of P ��� and P �m����� which makes it possible to
recast bounds on �m as spectral bounds on P ��� as well�

Lemma 	�� Let P �u� be an r � r�matrix of the form

P �u� �
�

�
Cx�

��u�P ����u�Cx�
�u���� �����

where Cx�
is de�ned by x� 	� � via ������ and assume that P ������e� � e� 	with e�

de�ned by x� via ����� 
� Then� P ��� possesses a spectrum of the form f�� ��� � � � �
�r��g if and only if P ������ possesses a spectrum of the form f�� ���� � � � � ��r��g�

��



Proof� �� First� observe that the factorization ����� implies that P ��� has the
eigenvalue � with left eigenvector x�� At the same time� x� is a left eigenvector of
P ��� for the eigenvalue �� i�e�� we have

�x��
T P ��� � �x��

T � �x��
T P ��� � �T

�cf� Plonka ������a�� Theorem �����
�� Without loss of generality� we assume that x� is of the form
x� � �x���� � � � � x��l��� �� � � � � ��T with � � l � r and x��� 	� � for � � �� � � � � l � ��
Now� consider P ��u� 
�M P �u�M�� with

M 
�

�
BBBBB�

x��� x��� � � � x��l��

� �
� � � �

���
� � � � � �

���
� � � � � �

�
CCCCCA 
 Ir�l�

where Ir�l is the �r� l�� �r� l� unit matrix �cf� section ��� SinceM is invertible�
P ���� possesses the same spectrum as P ���� The left eigenvector of P ���� for
the eigenvalue � is x� 
� �x��T M

�� � ��� �� � � � � ��T � Analogously� x� is the left
eigenvector of P ���� for the eigenvalue �� Hence� we �nd the factorization

P ��u� �
�

�
C���u�P � ����u�C��u��� ������

with
C��u� 
� diag �� � e�iu� �� � � � � ���

Observe that P ���� has the structure

P ���� �

�
� � � � � �

r��� R���

�
�

where r��� is a vector of length r�� and R��� an �r���� �r����matrix� it follows
by the factorization ������ that P � ������ is of the form

P � ������ �

�
� � � � � �

� �R���

�
�

Consequently� P � ������ has the spectrum f�� ���� � � � � ��r��g if and only if P
���� has

the spectrum f�� ��� � � � � �r��g�
�� We show next that P � ������ and P ������ have the same spectrum� The fac�
torizations ����� and ������ imply the following connection between P � ������ and
P ������


P ����u� � A��u�P � ����u�A�u����

��



where

A�u� 
� Cx�
�u���M��C��u�

�

�
BBBBBBB�

� � � � � � �
z x��� x��� � � � x��r��
z � x��� � � � x��r��
���

���
� � � � � �

���
z � � � � � x��r��

�
CCCCCCCA

 Ir�l �z 
� e�iu��

Since A��� is invertible� it follows that P � ������ and P ������ are similar� and thus
the spectra of P ��� and P ������ are connected as given in Lemma ����

It follows that the spectrum of P �m���� is likewise given by f�� �m��� � � � � �m�r��g�
The requirement that �m 	 �� �as in Corollary ��� thus translates into

maxfj��j� � � � � j�r��jg 	 ���m � ������

Remark�
If m � �� which need not be true in general� but which we expect to be true in
most cases �� � � except if both P �u� and Exm��

�u� � � �Ex�
�u� have vanishing

derivatives at u � ��� then ������ automatically implies that ��� the spectral radius
of P ���� equals �� It also implies that the eigenvalue � of P ��� is nondegenerate�
Since �k � � for all k� we need to have m � � in order to ensure decay faster than
�� � juj����	 for j ���u�j�

�� Transfer operators

In this section� we want to investigate regularity estimates for � in terms of Sobolev
estimates� using transfer operators� The Sobolev exponent s of � is de�ned by

s � supf
�
Z �

��
k ���u�k� �� � juj��
 du 	 ��g�

We assume that the factorization ����� and the hypothesis ����� of Theorem ��� are
satis�ed� As we saw in the proof of Theorem ���� we have

k ���u�k � C�� � juj��mkT��u�k�

where
T ��u� � lim

n���
T ��n�u�

and

T ��n�u� 
� P
�m�

�
u

�

�
� � �P �m�

�
u

�n

�
Exm��

��� � � �Ex�
���a�

��



It follows that if we can prove an estimate of the type

Z �n�

��n�
kT ��u�k

� du � C ��n
� �����

then � is in the Sobolev space Hs for all s 	 m� ��
The estimate ����� is related to the spectral property of the transition operator T
that acts on ���periodic r � r matricesM �u� according to

�TM���u� 
� P �m��u�M�u��P �m����u��P �m��u���M�u����P �m����u���� �����

where �P �m��� 
� �P �m��
T
� As in the scalar case� this operator leaves a �nite

dimensional space E containing the identity invariant� if P �m� has trigonometric
polynomial entries �cf� Cohen and Daubechies �������� Let � be the spectral radius
of T restricted to E�

Theorem 
�� The estimate ����� holds for all � � log���
� log�

� Consequently� � is in

Hs for all s 	 m� log���
� log � �

Proof� For all n � �� we haveZ �

��
T nM�u� du �

Z �

��
T T n��M�u� du

�
Z ��

���
P �m��u
��T n��M �u
���P �m����u
�� du

� � � � � � �

�
Z �n�

��n�
P �m��u
�� � � �P �m����nu�M ���nu��P �m������nu� � � � �P �m����u
�� du�

If we takeM � I and apply the trace operation� we thus obtain the estimate

Z �n�

��n�
Tr�P �m��u
�� � � �P �m����nu��P �m������nu� � � � �P �m����u
��� du � C	�� � ��n�

for all n � �� Since kAk� �
q
Tr�AA�� is an equivalent norm for �nite matrices� it

follows that Z �n�

��n�
kP �m��u
�� � � �P �m����nu�k� du � C	�� � ��n�

This last estimate clearly implies ����� for all � � log���
� log � � if we observe that T ��u� �

P �m��u
�� � � �P �m����nu�T ����nu� and that T ��u� is uniformly bounded on compact
sets�

��



�� Uniqueness

If the conditions of Theorem ��� are satis�ed� with �k 	 m � � for some k � ��
then �� is well�de�ned and integrable� so that ��x�� its inverse Fourier transform� is
well�de�ned as well� Since ���u� is obviously a solution to ������ ��x� is a solution
to ������ Is it the only one% The following theorem lists some conditions that ensure
uniqueness�

Theorem ��� Suppose that the conditions of Theorem ��� are satis�ed� with
infk�� �k 	 m��� and that the eigenvalue � of P ��� is nondegenerate� Then ��x� is
a compactly supported continuous solution to ������ Moreover� if ��x� is any other
L��solution to ����� such that

R
��x� dx 	� � and

R
�� � jxj�k��x�k dx 	 �� then

��x� is a multiple of ��x��

Proof� �� We assume� as in Theorem ���� that all the entries of P �u� are trigono�
metric polynomials� Let us� for this point only� consider u to be complex rather
than real� The argument that kP

�
u
�

�
� � �P

�
u
�n

�
k is bounded uniformly in n � �

and in u � fz� jzj 	 �g holds for complex u as well� Since kP �u�k � CeRjImuj� it
then follows that for any juj � �� �k � juj 	 �k���

kP
�
u

�

�
� � �P

�
u

�n

�
ak � CkeRjImuj����������������k�C� � C ��� � juj�k log� C eRjImuj�

It follows that ���u� � limn�� P
�
u
�

�
� � �P

�
u
�n

�
a satis�es the same bound� implying

that � is a compactly supported distribution� On the other hand� ��x� is bounded
and continuous because� by Theorem ���� j ���u�j � C�� � juj����	 for real u� Note
that �� is a C��function since its Fourier transform has compact support�
�� If ��x� is another L��solution� then ����� 	� � must be an eigenvector for P ���
with eigenvalue �� so that ����� � ca for some c 	� �� Since

R
jxjk��x�kdx 	�� we

also have k���u�� �����k � Cjuj� Hence� for any �xed u�

k���u�� c ���u�k

� lim
n��

kP
�
u

�

�
� � �P

�
u

�n

� 	
��
�
u

�n

�
� �����



k

� C � lim
n��

kP �m�
�
u

�

�
� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�

�
u

�n

�

�
	
��
�
u

�n

�
� �����



k

� C � lim
n��

�
C	�juj��m � ��nC�C

juj

��n

�
� � �

since �m 	 �� Thus� � � c��

All the examples studied in the literature so far correspond to P �u� in which all the
entries are trigonometric polynomials� and that is why we have mostly restricted

��



ourselves to this case� Nevertheless� most of our analysis carries over to the non�
polynomial case� In Plonka ������a�� the original version of Theorem ��� does not
require the �� to be compactly supported� nor the entries of P to be trigonometric
polynomials� only su
cient decay in x for ��x� and a su
ciently high regularity
of P �u� are required� As shown in section � �where the P �u� were not restricted
to trigonometric polynomials�� this then implies j ���u� � �����j � Cjuj �since P
is H�older continuous in u � � with H�older exponent at least ��� This� in turn� is
the only ingredient necessary in point � of the proof of Theorem ���� which estab�
lishes uniqueness of the solution within a certain class of functions with mild decay�
Compact support of ��x� is� of course� no longer assured�

�� Convergence of the cascade algorithm

If P �u� is m �m � �� times factorizable �in the sense of Plonka ������a��� i�e��

P �u� �
�

�m��� e�iu�m
Cx�

��u� � � �Cxm��
��u�P �m��u�Exm��

�u� � � �Ex�
�u��

if the spectral radius of P �m���� is less than �� and if� for some �xed k�

�k �
�

k
log� sup

u
kP �m�

�
u

�

�
� � �P �m�

�
u

�k

�
k 	 m�

then our analysis in the previous sections has shown that

���u� � lim
n��

P

�
u

�

�
� � �P

�
u

�n

�
a

�with �x��T a � � � is well�de�ned� and that

k ���u�k � C �� � juj��m�
k �

Moreover� we have k ���u� � �����k � C juj for juj � �� So far� this convergence
is only pointwise� in the Fourier domain� For practical applications one is often
interested in convergence of iterative schemes that generate the function � in the
	x�domain�� One has to distinguish two types of schemes



 The cascade algorithm� introduced in Daubechies ������� consists in iterating
the mapping f ��

PN
n�� P nf��x � n� on a well chosen initial function vector

f�x��


 The subdivision or re�nement algorithm consists in iterative re�nements of a
	vector sequence� s��k� by rules of the type

sn��
�nk� �

X
m

P T
k��msn����

�n��m�

�see Cavaretta� Dahmen and Micchelli ������ or Dyn ������ for an overview
of subdivision schemes��

��



In the scalar case� it can easily be checked that n iterations of the cascade algo�
rithm� initiated on the 	hat�function� &�x� 
� maxf�� � � jxjg� are equivalent to
the linear interpolation of the points generated by n iterations of the subdivision
algorithm� initiated on a Dirac sequence 
�k�� However� the subdivision process is
often preferred� because of its local nature�
In the vector case� these relations are more complex
 if one iterates n times the
cascade algorithm on an initial vector function of the type &�x� b where b is a �xed
vector� then the result �n is expressed in the Fourier domain by

��n�u� � �&���nu�P �u
�� � � �P ���nu�b� �����

In contrast� if one iterates n times the subdivision algorithm on an inital vector
sequence s��k�� the resulting sequence sn�k� is related to s� by

��sn�u��
T � ��s��u��

TP �u
�� � � �P ���nu��

Here ��sn�u��T is the row vector composed by the Fourier series of each component
of sn� After linear interpolation� we obtain a row vector function � !�n�x��T given by

� �!�n�u��
T � �&���nu���s��u��

TP �u
�� � � �P ���nu��

This shows that the j�th component of �n can be obtained by applying the subdi�
vision algorithm on the initial vector sequence �s��l�k� � 
l�j
k�� �i�e� the sequence
� � � ������� � � � in the j�th component� and the zero sequence in all other compo�
nents�� then taking the scalar product with the vector b and interpolating linearly
the resulting scalar sequence�
Let us now investigate the convergence of the cascade algorithm� keeping in mind
these more sophisticated relations with subdivision schemes� In order to simplify the
study of convergence� we shall use the function sin��x�

�x
as a starting point� rather than

the hat function &�x� � which is equivalent to considering band�limited interpolation
of the sequences generated from the subdivision scheme� We thus de�ne

��
b�l�

� �u� 
� ������	�u� ����� � ������	�u�a � ��
b�l�

n �u� 
� P
�
u

�

�
��
b�l�

n��

�
u

�

�
� �����

Note that ������ � ������ The following result deals with the convergence of the
cascade algorithm in the uniform norm�

Theorem 
�� Let P be an r � r matrix with the assumptions of Theorem ���� If
�k de�ned in ����� satis�es �k 	 m� �� then we have

lim
n��

k ��
b�l�

n � ��kL� � ��

As a consequence �b�l�
n �x� converges uniformly to ��x��

��



Proof� We have

��
b�l�

n �u� � ������	��
�nu�P

�
u

�

�
� � �P

�
u

�n

�
a�

With the assumptions of Theorem ���� we already know that ��
b�l�

n converges point�
wise �and uniformly on compact sets� to ���
Using the factorization of P �u�� we obtain

��
b�l�

n �u� � ������	��
�nu�

�
�

�n��� e�iu��n�

�m
Cx�

�u� � � �Cxm��
�u�

�P �m�
�
u

�

�
� � �P �m�

�
u

�n

�
Exm��

�
u

�n

�
� � �Ex�

�
u

�n

�
a�

and thus

k ��
b�l�

n �u�k � C��� � juj��m ������	��
�nu� kP �m�

�
u

�

�
� � �P �m�

�
u

�n

�
k�

Now� from the assumptions of Theorem ���� we have

������	��
�nu� kP �m�

�
u

�

�
� � �P �m�

�
u

�n

�
k � C��� � juj�
k �

where C� does not depend on n� We thus have the uniform estimate

k ��
b�l�

n �u�k � C�� � juj��m�
k �

Since m� �k � �� we can apply dominated convergence and the result follows�

Remarks�
�� Because the hat function &�x� and the sinc function sin��x�

�x
agree on integers� one

easily checks that the vector functions �n de�ned by ����� �with b replaced by a�
and the band�limited �b�l�

n agree in the dyadic rationals ��nZ�

�n��
�nk� � �b�l�

n ���nk� � k � Z�

Now �n is just the linear interpolation of the �n���nk� because � is H�older contin�
uous� and supk k�n��

�nk������nk�k � � as n��� it follows that �n converges
uniformly to � as well�
�� The same arguments will also give L��convergence� assuming only �k 	 m� �

��

�� If m��k � m���� convergence results in Cm�

can also be obtained starting from
the same cardinal sine function�
�� The graphs for the examples in section � are� in fact� graphs of close approxi�
mations �n to the true solutions �� obtained by the subdivision iteration described
just before in Theorem ����

��



	� Examples

In this section we want to apply the analysis of the previous sections to various
examples� We will see that the known smoothness of B�splines with multiple knots
and of DGHM scaling functions can be recovered� Further� we construct a new
example with controlled smoothness�

���� B�splines with multiple knots

Let r � N and m � N� be given �xed integers� We consider equidistant knots with
multiplicity r� xl 
� bl
rc �l � Z�� where bxc means the integer part of x � R� Let
Nm�r
� �� � Z� denote the cardinal B�spline of order m and defect r with respect to

the knots x�� � � � � x��m given by the following formulas

For m � � and � � �� � � � � r � � let N��r

� 
� Dr����

�r � � � �� and let N��r
r�� 
� 
�

where 
 denotes the Dirac distribution� For m � � and x� � x��m � �� we de�ne
Nm�r
� according to the distribution theory by

Nm�r
� 
�

Dr�m����


r � �� �
�

Further� let N��r
r�� 
� ������� � �����	�
�� Assume that for l � Zand � � �� � � � � r � �

we have N��r
��lr 
� N��r

� �� � l�� Now� for m � � and x��m � x� � let Nm�r
� �� � Z� be

de�ned by the recursion formula

�x��m � x��N
m�r
� �x� 
� �x� x��N

m���r
� �x� � �x��m � x�Nm���r

��� �x��

Note that for � � Zand m � N

Nm�r
��lr � Nm�r

� �� � l� �l � Z�

and for m � r�

�Nm�r
� ��� �

Z �

��
Nm�r
� �x� dx �

�

m
�

It is well�known that for m � r� we have Nm�r
� � Cm�r���R�� We put Nm 
�

�Nm�r
� �r����� and �Nm 
� � �Nm�r

� �r������ In particular� we obtain

�N ��u� �

�
�iu�r��

r � �
� � � � �

�iu��

�
� �

�T

�

As shown in de Boor ������� the spline functions Nm�r
� �� � l� �m � r� l � Z� � �

�� � � � r��� form a Riesz basis of their closed linear span V�� Furthermore� V� provides
approximation order m�
The vector Nm satis�es a vector re�nement equation

�Nm��u� � Pm�u� �Nm�u��

��



where the re�nement mask Pm is of the form

Pm�u� �
�

�m
Cx�

��u� � � �Cxm��
��u�P ��u�Cxm��

�u��� � � �Cx�
�u��� �����

with matrices Cxk
de�ned by the vectors of spline knots xk 
� �xm�k� � � � �

xm�k�r���T �k � �� � � � �m� �� via ����� and with the re�nement mask of N �

P ��u� 
� P ���� � diag ��r��� � � � � ���

�cf� Plonka ������b��� In particular� we have the recursion

Pm�u� �
�

�
C��u�Pm���u�C�u�

���

with C de�ned by �xm� � � � � xm�r���T � where Pm�� is the re�nement mask of the
B�spline vector Nm�� of order m� ��
Now� let us apply the theory of the previous sections to the re�nement mask Pm�
Repeated application of Lemma ��� yields that Pm��� possesses the spectrum
f�� �r���m� � � � � ��m��g� Since kP ��u� � P ����k � Cjuj� holds for all � � �� we
have by Lemma ��� pointwise convergence of

lim
n��

nY
l��

P �

�
u

�l

�
a

with a 
� ��� � � � � �� ��T for all u � R� Hence� it follows for all m � N� that

��m�u� 
� lim
n��

nY
l��

Pm

�
u

�l

�
a� �����

where a 
� ��� � � � � �� �z �
r�m��

� �� � � � � �� �z �
m��

�T for r � m� � and a 
� ��� � � � � ��T for r � m � ��

is at least pointwise convergent� As we will see later� Theorem ��� implies that for
m � r the solution �m�x� coincides with Nm�x��
Observe that for r � �� we have the well�known re�nement equation for cardinal
B�splines

Pm�u� �

�
� � e�iu

�

�m

�

Now� assume that r � �� Then ��P ����� � �r�� � �� such that we can not apply
our analysis in Theorem ��� to the factorization ������ But using Lemma ���� we
�nd that P r����� with

P r���u� 
�
�

�r��
Cxm�r����u� � � �Cxm��

��u�P ��u�Cxm��
�u��� � � �Cxm�r���u�

��

possesses the spectrum f�� �� ���� � � � � ��r��g� i�e��

��P r������ � ��

��



Note� that P r�� is the re�nement mask of N r��� Thus� we can apply Theorem ���
to the factorization

Pm�u� � Cx�
��u� � � �Cxm�r ��u�P r���u�Cxm�r�u�

�� � � �Cx�
�u���

and �nd that
k ��m�u�k � C �� � juj��m�r���
�

with

�� � log� sup
u

kP r��

�
u

�

�
k� �����

Lemma ��� For �� given in ����� we have �� � ��

Proof� Observe that N r���r
� is de�ned by the knots �� � � � � �� �z �

r

� that means N r���r
� �



r�� � Further� N

r���r
� �� � �� � � � � r � ��� de�ned by �� � � � � �� �z �

r��

� �� � � � � �� �z �
�

� coincide with

the Bernstein polynomials of degree r � �� i�e�

N r���r
� �x� �

�
r � �

� � �

�
x��� ��� x�r���� �

Hence the re�nement mask of N r�� can explicitely be given by

P r���u� �

�
� �T

� Ar���u�

�

with

Ar���u� �
�

�

�
A�

r�� �A
�
r�� e

�iu
�
�

where A�
r�� and A

�
r�� are triangular matrices of the form

A�
r�� 
�

�
�

�j

�
j

i

��r��

i�j��

� A�
r�� 
�

�
�

�r���j

�
r � �� j

i� j

��r��

i�j��

�see e�g� Micchelli and Pinkus �������� Recall that the spectral norm kV k� of a
matrix V 
� �vij�ni�j�� can be estimated by the product of the matrix ��norm and
the matrix ��norm

kV k� 
� max
�	j	n

nX
i��

jvijj� kV k� 
� max
�	i	n

nX
j��

jvijj� �����

i�e��
kV k�� � kV k� kV k�

��



�see e�g� Lancaster and Tismenetsky �������� Since all entries of A�
r�� and A�

r��

are nonnegative� it follows that

sup
u
kAr���u�k� � kAr�����k� � max

�	j	r��

�

�

r��X
i��

�
�

�j

�
j

i

�
�

�

�r���j

�
r � �� j

i� j

��

�
�

�j��

jX
i��

�
j

i

�
�

�

�r���j

r��X
i�j

�
r � �� j

i� j

�
�
�

�
�
�

�
� ��

Analogously � we �nd that

sup
u
kAr���u�k� � kAr�����k� � ��

Hence� we have supu kP r���u�k� � �� and thus �� � ��

By Theorem ��� it follows for � � �� � � � � r � � that

k ��mk � C �� � juj��m�r���

i�e�� the elements of �m are �m � r � ���times continuously di erentiable� Since
�� 	 m � r� Theorem ���� ensuring the uniqueness of the limit� yields for m � r
that �m�x� � Nm�x�� Further� we also have uniform and L��convergence of the
associated cascade algorithm�

We want to check� whether the smoothness result can be improved by Corollary ����
By
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k � �� we have ����� only with � � �� Hence� our result can not
be improved�

���� DGHM�scaling functions

Now� we consider the example of two scaling functions treated in Donovan� Geron�
imo� Hardin� Massopust ������� In the special case s � s� � s� of their construction�
let �� be a solution of ����� with the re�nement mask
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The re�nement mask P �u� can be factorized
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Since P ������ possesses the spectrum f�� �sg� by Lemma ��� the re�nement mask

P ��� has the spectrum f�� sg� Observe that ��� �s����

s��
�T is a right eigenvector of

P ��� for the eigenvalue � so that Theorem ��� yields that for jsj 	 �� the in�nite
product
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converges pointwise for u � R� By simple computations� we �nd that P does not
satisfy ����� with � � �� such that convergence of the in�nite product can not be
shown for jsj � �� In order to apply Theorem ���� we even need that j�sj 	 � and
hence jsj 	 �
�� As before� Corollary ��� will not provide an improvement of the
results� since P ��� does not satisfy ����� with � � ��
We apply Theorem ��� and obtain for k � N the estimate
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We show

Lemma ��� For a �xed s with jsj 	 �
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By induction it follows that
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We will show that� for any �xed s with jsj 	 �
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Now� choosing k such that k � �
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Since for jsj 	 �
� there is a k � N such that �k 	 �� it follows that the elements
of the solution � of the the vector re�nement equation ����� with the re�nement
mask P de�ned in ����� are continuous� The uniqueness of the solution is ensured
by Theorem ���� Further� by the analysis in section �� we have uniform and L��
convergence of the associated cascade algorithm�

Remarks�
�� The continuity of �� and �� for jsj 	 �
� is also proved in DGHM ������ by means
of fractal interpolation� In their paper it is already shown that ��� �� are Lipschitz
continuous for jsj 	 �
�� i�e�� there exits an M 	� such that for all x� y � ��� �� we
have j���x� � ���y�j � M jx � yj �� � �� ��� Further� if �
� 	 jsj 	 �� then ��� ��
have the H�older exponent � � � log jsj
 log ��
�� The solutions �� and �� are symmetric� and they have a very short support� In
particular� supp �� � ��� ��� supp �� � ��� ��� and we have

�� � ���� � �
��� �� � ���� � ���

��



The closed linear span V� of the integer translates of �� and �� provides the approx�
imation order �� Using the results in section �� this fact is a simple consequence
of the factorization ����� of the re�nement mask P � Note that in DGHM ������ it
is proved that the hat function &�x� 
� maxf�� � � jxjg is contained in V�� which
already implies that V� has approximation order ��
�� In the case s � ����� it is shown in DGHM ������ that the integer translates of
�� and �� form an orthogonal basis of V��

���� Scaling functions with controlled smoothness

We consider solutions of the vector re�nement equation ����� with the re�nement
mask
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Observe that P ������ and P ��� possess the spectra f�� �g and f�� �
�g� respectively�
Hence� by Theorem ��� the in�nite product
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Now� applying Theorem ��� with
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we have that
k���u�k � C �� � juj����
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i�e�� the elements ��� �� of the solution � are continuous functions� For the support
of �� and �� we obtain
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Furthermore� we have the symmetry relations

���� � x� � ���� � x�� ���� � x� � ����� x��

It can be shown that the integer translates of �� and �� form a Riesz basis of their
closed linear span V�� Then factorization of the re�nement mask already implies
that V� provides approximation order � �cf� section ��� In particular� the equalities
����� are satis�ed with y� 
� ��� ��T and y� 
� ��� ��T � Actually� the approximation
order � is already provided by the closed linear span of the integer translates of ���
We have indeed
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so that for odd l
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and hence ������l� � �� For even l we have
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i�e�� ������l� � �����l�� Thus� ������l� � � for l � Zn f�g� Analogously� for the
derivative of �� it follows� for odd l�
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i�e�� �D�������l� �
�
�
�D������l�� Thus� ��� satis�es the Strang�Fix conditions of order

��

������l� � � �l � Zn f�g�� ��� 	� ��

�D������l� � � �l � Z��

Finally� we note that� in this example� there is no function f in the space V� which
is already re�nable by itself� In the most other examples considered in the litera�
ture� even if the elements of � are not re�nable by themselves� there exist re�nable
functions in the span of their integer translates� in the spline example �see section
���� the space V�� spanned by the B�splines of order m with r�fold knots� contains
the cardinal B�splines Nm�k �k � �� � � � � r � ��� in the case of the DGHM�scaling
functions� V� contains the hat function�
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