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ABSTRACT

We consider Lebesgue—integrable, compactly supported solutions of two—
scale difference equations and investigate the relations between translates of these
solutions. A detailed study of corresponding invariant subspaces leads to new
observations concerning the factorization of the refinement mask and certain
spectral properties of corresponding coefficient matrices. In particular, new ne-
cessary conditions for the existence of integrable, compactly supported solutions
are derived.

1. INTRODUCTION

A two—scale difference equation is a functional equation of the form

n

Qp(t/Q):ZCVQD(t_V)a (11)

v=0

where ¢, are given real or complex constants with cge, 20 and n > 1. A
function ¢ satisfying (1.1) for all real ¢, is called refinable.

Functional equations of type (1.1) arise in many contextes, in the con-
struction of wavelets as well as in interpolating subdivision schemes. There
are a lot of papers studying these equations extensively (see e.g. Micchelli

*Partly lectured by the first author at August 14, 1996, on the Sixth Conference of
the International Linear Algebra Society in Chemnitz (Germany)

LINEAR ALGEBRA AND ITS APPLICATIONS xxx:1-xxx (1994) 1

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0024- 3795/94/$6.00



2

& Prautzsch [19], Daubechies & Lagarias [5, 6], Cavaretta, Dahmen &
Micchelli [1], Dyn, Gregory & Levin [8], Colella & Heil [2], Jia [12, 13],
Lau & Wang [17], Griepenberg [10]). In particular, several special cases
of solutions are investigated. For subdivision schemes for instance, com-
pactly supported solutions ¢ € C(R) (or more generally, ¢ € LP(R)) with
L?-stable (or LP-stable) integer translates are considered ([8, 12]).

In what follows, we are interested in (1.1) as a functional equation, and
consider solutions with the following property.

DEFINITION 1.1. A refinable function ¢ is called E-solution (essential
solution) of (1.1), if it is a not identically vanishing, Lebesgue—integrable
and compactly supported function. Two E-solutions ¢; and @2 are not
considered as different, if there exists a constant ¢, such that ¢; = cps
almost everywhere.

As shown in [5], the assumptions in the definition yield that supp ¢ C
[0, n].

By Fourier transform of (1.1), we obtain

p(2u) = P(e™™) p(u) (1.2)

with ¢(u) = ffooo o(t) e dt, and with the refinement mask (or the

two—scale symbol)
n

1 v
P(z) = 5 VZ:OCVZ : (1.3)
Assuming that (1.1) is given with real coefficients ¢,, in [5] it is proved
that:

(i) if |[P(1)] < 1 or P(1) = —1, then (1.1) has no E-solution;

(i) if P(1) =1, then (1.1) has at most one E-solution;

(iii) if | P(1)] > 1, and if an E-solution ¢ exists, then P(1) = 2™ for some
nonnegative integer m. If, in the last case, the coefficients ¢, (v = 0,...,n)
are replaced by 27™¢, in (1.1) then the new two-scale difference equation
possesses a continuous solution g, and ¢ is the m-th derivative of g,

dm
dxmg(x)’

almost everywhere. Hence, we make the
ASsUMPTION (Al): Throughout the paper, we assume that P(1) = 1.

pla) =

Then, for the Fourier transform ¢(u) of a refinable function ¢, we obtain
by repeated application of (1.2),

o) = [T Pem/),



where we have assumed that ¢(0) = [’ ¢(¢) dt = 1 (see [5, 20]).

For t = 0 and ¢t = n, (1.1) simplifies to ¢(0) = ¢ ¢(0) and p(n) =
¢n p(n), respectively.
AssuMPTION (A2): Throughout the paper (disregarding the exceptional
case of step functions), we assume that co # 1, ¢ # 1.

This implies together with the foregoing equations that the E-solution
¢ satisfies ¢(0) = ¢(n) = 0.
For a refinable function ¢, we introduce the vector

D(t) = (p(t), p(t+1),..., 0t +n—1)". (1.4)

Since supp ¢ C [0, n], it sufficies to consider ¢(¢) for 0 < ¢ < 1. Further, in
view of ¢(0) = ¢(n) = 0, there is an exact equivalence between ¢ and the
vector ¢ (cf. [2], Proposition 1).

Asin [2, 5,6, 8, 12, 19], we introduce the 1 x 2 block Toeplitz matrices
Ag = (coj-k), j,k=0,...,n—1 and A1 := (c2j_p+1), J,k=0,...,n—1,
where ¢; = 0 for j < 0 and j > n, respectively, i.e.,

co 0] 0] L 0] cq co 0] L 0]

Cco cq co L 0] cs Cco cq L 0]
Ag = . , A=

0] .. Cp—1 Cp—2 Cp—3 0] Cn Cp—1 Cp—2

0] L 0] Cn Cp—1 0] L 0] 0] Cn

Observe that the both matrices Ag and A; contain M := (C2j—k+1);220 as

a submatrix with the following peculiarity: If M possesses the spectrum

spec(M), then spec(Ag) = spec(M)U{eg} and spec(A;1) = spec(M)U{e,}.
With the notations above, (1.1) can be written in the vector form

v (g) = Aod(t), v (%) = Ay (1) (1:5)

for0 <t <1.
The equations in (1.5) imply that

[ 1—-1
o()=awi0. w(1-15) =atv. o)
and for t = 0 and ¢ = 1, respectively,

1/)(0) = Ao 1/)(0), 1/)(1) =4 1/)(1)~ (1~7)

Introducing the vector 1/;(15) = (e(t), ..., ot +n—2))7, relations (1.7)
reduce to the single relation (1) = M ¥ (1). In the case 9(1) # 0, which

is valid for a nontrivial continuous solution (cf. [6], Proposition 2.1), (1)
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is necessarily a right eigenvector of M corresponding to the eigenvalue 1,
and, of course, 1 is also an eigenvalue of the both matrices Ay and A;.
Starting with an eigenvector 1/;(1) of M corresponding to 1, we can recur-
sively compute values of ¢ at dyadic rationals by means of (1.5). This
dyadic interpolation method is extensively explained in [6] and [19]. Tt also
applies if ¢ has linearly dependent integer translates, while the subdivision
algorithm usually does not work in this case (cf. e.g. [1]).

The matrix M may have the eigenvalue 1 with a multiplicity greater
than 1. In this case, only one particular linear combination of corresponding
eigenvectors can lead to an E-solution ¢ (see Example 1 later on).

In the following, it is also convenient to introduce the infinite matrix
A := (c25-k)j k>0 and the infinite column vector 9 (t) := (¢(t + j));>0 of
a refinable function ¢, so that (1.1) can be written in the form

" (g) = A1) (1.8)

for —co <t < 1.

Micchelli & Prautzsch [19] and Colella & Heil [2] succeeded in estab-
lishing necessary and sufficient conditions for the existence of continuous
solutions of (1.1). They extensively studied the space W C C*,

W= {b(t) - %(0) 1€ [0, 1]}

Conditions could be expressed in terms of the joint spectral radius
p(Aolw, A1lw) of the two matrices Ay and Aj restricted to the subspaces
W (cf. [2]). As shown in [2], Proposition 3, W is the smallest subspace of
C" invariant under both Ay and A;, which contains the vector ¢ (1) —(0).
So, if ¢(0), ¢(1) are determined by (1.7), then T can be constructed with-
out knowing ¢ explicitly.

The space W is uniquely determined by its orthogonal complement

Ly C @,
Ly := span {w € C" : wT (t) = wT 4(0), t € [0,1] }. (1.9)

In Daubechies & Lagarias [6], the special case Lo = {(1,...,1)T} has been
considered. Further, let

Lo :=span {w = (w;);>0: wl P (t) = wl P(0),t € (=00, 1]} (1.10)

with 4 (t) := (¢(t + j));>0 satisfying (1.8). In particular, for w € Ly we
have by definition

iw(t +i)=c (1.11)



for all ¢ < 1 with a fixed constant ¢. Since 4(t) has only finitely many
components different from zero, there arise no convergence problems.
Concerning E-solutions, we extend the spaces Ly and Ly, respectively,
to
L:=span{w € C" : wl (t) = ¢, t €[0,1], a.e. }, (1.12)

L :=span{w = (w;);>0 : wT1/J(t) =c¢, t€ (=00, 1], ae. } (1.13)

with certain constants ¢ which depend on w (or w), but not on ¢. For
simplicity, we restrict ourselves to these extended spaces, though several of
the following results are even valid with respect to Ly, Ly, and we usually
drop the restriction “almost everywhere” tacitly. Let us emphazise that
(1.1) shall be satisfied in any case for all real ¢.

In Section 2, the properties of L and L are extensively studied. A
general characterization of elements of £ will be presented. Similar results
can be found in [1].

Knowing the structure of vectors contained in £, we are able to derive
new consequences on eigenvectors of our matrices Ag, A; and A, and on
zeros of the refinement mask P(z) from (1.3) in Section 3. Usually, papers
dealing with refinement equations are restricted to the case P(—1) =0, i.e.,
that P(z) possesses the factor z + 1. If the subdivision scheme associated
with {¢, }7_, converges uniformly (or in LP(R)), then P(—1) = 0 is nec-
essarily satisfied (see [8, 12]). Here, we drop this assumption and consider
also refinement masks with P(—1) # 0; however, we show that the refine-
ment mask P(z) of an E-solution of (1.1) always possesses a factor p(z),
which is a certain modification of (z+1). This factor p(z) can be considered
as the refinement mask of a piecewise step function. Moreover, it follows
that each E-solution can be represented as a finite linear combination of
integer translates of a simpler E-solution of (1.1) with a refinement mask
containing the factor (z41). The arguments can be pushed a little further,
also allowing assertions on multiple zeros of P(z).

Finally, in Section 4, the structure of £ implies consequences on eigen-
vectors of the coefficient matrices Ag, A; and A. In particular, it will be
shown that the matrices Ay, A; have the eigenvalue 1 also in the general
case; however, in case of continuous E—solutions, they cannot possess root
vectors belonging to the eigenvalue 1. As corollaries, we obtain new state-
ments on the non-existence of E-solutions of (1.1). The results will be
explained by examples.

2. INVARIANT SPACES

We consider the functional equation (1.1) satisfying the Assumptions
Al) and (A2) and possessing an E—solution . In this section, we want to
g 4
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derive some properties of the corresponding spaces I and £ in (1.12) and
(1.13), respectively. We start with the following basic theorem.

THEOREM 2.1. Let ¢ be an E-solution of (1.1), and let (A1), (A2) be
satisfied. Then we have

S gt +v) = / o(s) ds = 3(0) (2.1)

n
vEeZD 0

almost everywhere fort € R.

Proof. Let ¢(t) := Zz;é e(t+v). Then by (1.1) it follows for t € [0, 1]

that
6 (g) +o (%) = 26(), (2.2)

since the left hand—side is equal to

o(5)+0(%5) = ZlGre)re (5]
= nz_:lzn:ck[go(t—l—QV—k)—|—g0(t—|—1—|—21/—k)]
=0 k=0

n 2n—1

= ch Z et +v—Fk)=2¢(1).

With regard to Klemmt [16], it follows that the only Lebesque-integrable
solution ¢(t) of (2.2) is

o) = [ ots) as

almost everywhere for ¢ € [0, 1]. According to the definition of ¢(¢), this is
our assertion. [ ]
REMARKS: 1. In papers dealing with the construction of wavelets,
(2.1) is usually assumed to be true (see e.g. [4, 5]). If ¢(0) # 0, then (2.1)
implies that ¢ satisfies the moment condition of order 1, i.e., constants can
be reproduced by integer translates of .
2. For continuous solutions, it was already shown by Fichtenholz, cf. [9], p.
789-790, that (2.2) has constant solutions only. The proof of Fichtenholz
also works for Riemann—integrable functions, where (2.1) is valid for all
teR.
3. Let us mention that according to Gupta, cf. [15], p. 420, there exist
nonintegrable solutions ¢(t) satisfying (2.2), for instance ¢(t) = cot(nt)
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(0 <t < 1). In fact, there exist infinitely many nonintegrable solutions,
namely, given an arbitrary function ¢(t) for % <t < 1,1t can be continued
such that (2.2) holds.

4. For n = 1, we have ¢(t) = ¢(t) = ¢, and (1.1) implies either ¢ = 0 or
¢p = ¢; = 1, which contradicts Assumption (A2). Hence, in (1.1) we have
in fact n > 2.

For the next considerations, we repeat the following notation from linear
algebra. A vector v is called a left root vector of height £ > 2 belonging to
the eigenvalue A of a quadratic matrix M if

oI(M = anfF =0T, of(M —aDFTt £ 0T

The left eigenvector of v of M belonging to A is the (improper) left root
vector of height 1. In the following, if we speak about root vectors, then
we mean a proper root vector (of height & > 2).

THEOREM 2.2. Let ¢ be an E-solution of (1.1) with (A1), (A2). Then
for the space L in (1.12) the following assertions are satisfied.
(i) The vector e := (1,..., )T is contained in L.
(ii) If w € L, then (wT Ag)T € L and (wT A))T € L.
(iii) Let the solution ¢ be bounded in neighbourhoods of the points k (k =
0,...,n). If X € C with |A] > 1 is an eigenvalue of the coefficient matrix
Ag (or A1), then the left eigenvectors and left root vectors of Ag (or A1)
corresponding to A are contained in L.
(iv) Let the solution ¢ be continuous in the points k (k=0,...,n). Then
the left eigenvectors and left root vectors of Ay (or Ay) corresponding to
an eigenvalue A with |A\| = 1 are contained in L.
(v) If w € € is a left eigenvector of both Ay and Ay corresponding to the
etgenvalue 0, then w € L.
(vi) The dimension of L is at most n — 1.

Proof.  Assertions (i) and (ii) immediately follow from (1.12), (1.5) and
from Theorem 2.1.
(iii): Let A with |[A| > 1 be an eigenvalue of Ag, and w? Ag = Aw?. Then
we find iteratively by (1.5) and (1.6)

If k& goes to infinity, it follows, by boundedness of 4 in the neighbourhood
of 0, that w? ¥(t) = 0, i.e., w € L with the constant ¢ = 0 in (1.12).
Assuming that Ay possesses a root vector of height 2, % Ag = A\(w?! +wT),
we can use the same argument, observing that

W (1) = (%wTAO — W) (1) = %wT ¥ (%) .
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So, it follows that w € L. Analogously, we can derive the assertion for all
root vectors. The same arguments apply for eigenvectors and root vectors
of Ay, using (1.6).

(iv): For |A| = 1, we obtain the assertion in a similar manner, since the
assumed continuity of ¢ implies that ¢ is continuous in 0. In case of A # 1,
we again find ¢ = 0.

(v): This assertion easily follows from (1.5).

(vi): If there were n linearly independent vectors w*) (k =0,...,n — 1)
in L, then w® T 4(t) = ¢ for k = 0,...,n — 1 would yield a solution
¥(t) with constant components, i.e., ¢(t+j) =C;for j=0,...,n—1and
0 <t<1ae. But (1.1) yields for 0 <t < 1 that ¢(t/2) = cop(t); hence,
by Assumption (A2), it follows that Cy = 0, i.e., ¢(¢) vanishes identically
on [0,1). Applying (1.1) recursively, we find that ¢ vanishes identically on
[0, n], in contrast to our assumption. [ ]

REMARKS: 1. The boundedness of ¢ in (iii) for |A| > 1 can be weakened
by boundedness in right neighbourhoods of k for eigenvalues of Ay, and
boundedness in left neighbourhoods of & for eigenvalues of A;.

2. Analogously, in (iv), for Ay we need continuity of ¥(0) from the right;
and for Aj, continuity of ¢(1) from the left is sufficient.

3. Eigenvectors of Ag (or A;) corresponding to eigenvalues A with 0 < |A] <
1 can also be contained in L. For example, consider (1.1) with ¢g = ¢; =
cs =ca = 1/2,¢c9 = 0. Then Ay possesses the eigenvalues 1, 1/2, 1/2, —1/2
with corresponding left eigenvectors wy = (1, 1, 1, )T, ws = (1, 0, 0, 0)7,
wz = (1, =1, 0, 1)T and wy = (1, 1, =2, 1)T. Observing that (0, 1, 1, 1)T
is a right eigenvector of Ay to the eigenvalue 1, we find (1) — ¢(0) =
(1, 0,0, =1)¥. We easily check that W = {(1, 0,0, —=1)7}, since it is
already invariant under both Ay and A;. Hence, L 1s spanned by w1, ws
and wy.

4. If the first five statements of Theorem 2.2 yield n linearly independent
vectors of a formally constructed space L, then (1.1) has no E-solution.

Analogous considerations yield the following

COROLLARY 2.1. Let ¢ be an E-solution of (1.1) with (A1), (A2).
Then for the space L in (1.13) we have:
(i) The vector e := (1, 1,.. )7 is contained in L.
(ii) If w € £, then (wTA)T € L.
(iii) Let the solution ¢ be bounded in neighbourhoods of the points k (k =
0,...,n). If \ € C with |A| > 1 is an eigenvalue of A, then the left eigen-
vectors and left root vectors of A corresponding to X are contained in L.
(iv) Let the solution ¢ be continuous in the points k (k =0,...,n). Then
the left eigenvectors and left root vectors of A corresponding to an eigen-
value A with |A| = 1 are contained in L.
(v) If w is a left eigenvector of both A and A’ := (C2j—k+1)fk:0 corre-



sponding to the eigenvalue 0, then w € L.
(vi) If w € L then w € L for the corresponding restriction.

Moreover, we find

THEOREM 2.3. Let ¢ be an E-solution of (1.1) with (A1), (A2). Then
for the spaces L, £ in (1.12) and (1.13), respectively, the following asser-
tions are satisfied.

() Ifw= (wﬂ?;& is a left eigenvector or left root vector of Ag to the eigen-
value A with A # ¢, , then w is uniquely extendable to a left eigenvector or
left root vector w = (wj) ;>0 of A.

) Ifw = (wj)?gé is a left eigenvector or left root vector of Ay to the
etgenvalue X, then w is uniquely extendable to a left eigenvector or left root
vector w = (wj)j>o0 of A = (C2j—k+1)fk:0~

(i) If (wj)j>0 € L, then we have (wjtr);>0 € L for every k € N.

(i) Let w := (wj)?;é € L and let its extension w := (wj);>0 be contained
i L. Then this extension w s uniquely determined by w.

(iv) If (wj);>0 € £, then (wj+k)?;& € L for every k € Ny.

(v) dim£<dimL<n-—1.

Proof. (i): If w is a left eigenvector of Ag corresponding to A # 0 and
A # ¢p, then we have

n—1
E WiC25—k = /\wk
7=0

for k = 0,...,n — 1. From this equation, w can successively be extended
to a vector w = (wj);>0 such that Z;O:O wicoj_p = Awy 1s also satisfied
for k > n, since j runs in fact up to L#J < k. This means, that w is an
eigenvector of A to A.

For A = 0, w can also be extended to w = (w;);>0, since the components
wg (k=n,n+1,...) can be found successively from Z?:o Wj Co5—2k4n = 0
in view of ¢, # 0. Actually, there are two equations determining wy by wy
(0 <l <k—1), namely

k k
g W; €25 —ak4n = 0, g Wy caj_2k4n—1 = 0.
j=0

7=0

But the second equation is a consequence of the former ones, since both
equations are contained in the system (wj)";:k_n_l_le = 0 with det Ay = 0.
Same ideas apply for root vectors.

(i’): For left eigenvectors of A; we can prove the assertion analogously as
(i), considering A’ := (czi_j+1)f3:0 instead of A.
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(ii): Replacing ¢ by t — k in (1.11) with an arbitrary k& € N, we obtain

D wikplt+i)=c
j=—k

for t < k41 and, in view of ¢(t) = 0 for t < 0,

Y wikplt+i)=c (2.3)

7=0

for t < 1. Hence, (ii) holds.

(iii): First, it can easily be seen that an E-solution ¢(¢) can neither vanish
identically in [0, 1] nor in [n—1, n], otherwise it would vanish for all ¢ € [0, n].
By (2.3), for a certain ty € [0, 1] with ¢(to +n — 1) # 0, we find

n—1

> wikplto+j) =c.

7=0

This recursion formula shows that w, for v > n i1s uniquely determined by
the initial values w1, ..., w,_1, hence there can be at most one extension
from w to w.

Assertion (iv) follows from (ii) and from Corollary 2.1 (vi).

Finally, (v) is a consequence of (iii) and the definition of L. [ ]

REMARKS: 1. Using Theorem 2.3 (i) and Corollary 2.1 (iii), (iv) we find:
If ¢ is bounded in neighbourhoods of the points & (kK = 0,...,n), and if
w € L is a left eigenvector or left root vector of Ag (or A;) to the eigenvalue
A (JA] > 1), then w is uniquely extendable to w € L. If we replace the
boundedness condition by continuity in all points & (k = 0,...,n), then
this assertion also holds for eigenvalues A with |A| = 1.
2. If (wj)]TZO A=) (wj)]TZO then we also have (wj+1)]T20 A=) (wj_|_1)]T20.
3. For A = ¢,, 1t can happen that an eigenvector of Ay corresponding to
A cannot be extended to an eigenvector of A, but then it can always be
extended to a root vector of A corresponding to A.
For example, consider (1.1) with ¢g = ¢2 = 1/2, ¢ = 3/4 and ¢z = 1/4.
Then (—2,1,-2)7 is a left eigenvector of Ay to 1/4. This eigenvector
cannot be extended to an eigenvector of A, since there is no «, such that
(1,=2,2) A = %(1, —2,2). But, since (1, —2,2)7 is a root vector of Ay, it
can be extended to a root vector of A’; hence (2,1, —2)% can be extended
to a root vector of A.
4. If a formally constructed space £ has dimension n, then (1.1) has no
E-solution.
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Considering solutions of (1.1) with linearly independent integer trans-
lates, we have dim W = n—1. Hence, dim L = 1, and by Theorem 2.1 it fol-
lows that L = span {(1,...,1)T} and £ = span {e} = span {(1,1,1,..)7}.
By Theorem 2.2 (ii),

(L., D) Ao= O eaws > eagr, ) = AL, .., 1),

Taking into account that 2P(1) = " ¢, = 2 according to Assumption
(A1), it follows that the first sum rule, cf. [6],

Z Coy = Z Covt1 (2.4)

1s satisfied, and A must be 1.
In the following, we are interested in the structure of elements of L and
L, and in consequences for the refinement mask.

THEOREM 2.4. Let ¢ be an E-solution of (1.1) with (A1), (A2), let L be
defined as in (1.13), and let w = (w;);>0 € L. Then there are ¢, € C\ {0}
(k=1,...,1) such that the jth element of w has the form

wi =Y ()¢ (>0 (2.5)

with I < n, and where dy(j) are polynomials of degree vy in j. In case of
vi > 0, the vectors (7(})j>0 (0 < v <) belong to L.

Proof. 1. According to Theorem 2.3 (ii), by w € £, the vectors
(Wj4m)m>o (j € Ng) are also contained in £, i.e.,

Yo wipmelt+m)=c  (t<1). (2.6)

m=0

Observe that ¢() is not a constant function for ¢ € [0, 1], since ¢y # 1
by Assumption (A2). Hence, we can choose g, t; € [0, 1], such that (2.6)
is satisfied and ¢(tg) # ¢(t1). Considering (2.6) for these ¢y and ¢, and
putting by, := ¢(to + m) — ¢(t1 + m), we obtain

n—1
> b Wi =0 (2.7)
m=0

for all j € Ng.
This is a difference equation with constant coefficients, where in partic-
ular, by # 0. Hence, the solution is of the form (2.5) for j € Ny, and the
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numbers {, (k =1,...,{) are the pairwise different zeros of the character-
istic polynomial of the difference equation, i.e.,

n—1

{
> b =by [J(5 = G
k=1

m=0

where the index p of the coefficient b, is determined by p = max{j: b; #
0}. In view of Corollary 2.1 (i), both equations (2.6) and (2.7) are satisfied
at least for w; = 1 (j € Ny), and hence, p > 1. Further, by # 0 implies that
Cr # 0 for all k. The polynomials di, in (2.5) are of degree v < pug, where
pr + 1 1s the multiplicity of the zero (x in the characteristic polynomial.
(The zero polynomial di(j) = 0 is included with degree v = —1.)

2. If we assume first that the zeros (i are simple, then the coefficients
di in (2.5) are independent from j. Replacing j successively by j+ 1, j +

2,...,7+1—11in (2.5), the arising equations can be writen in form of the
system

1 ¢G .t

(e, docd, . aif) | | = we),

1 ¢ ..ot
where the determinant det ( l‘:_l)lu x—1 1s the Vandermondian of {1, ...,
and therefore different from zero. Hence, all (dj Ci)jzo (k=1,...,1) are
linear combinations of (wjyx)j>0 (K =0,...,0—1), i.e., in case of dj # 0,

also (Ci)jZO is is contained in L.

3. In the same manner, we can conclude for variable dj(j), where
instead of the Vandermondian the confluent Vandermondian appears. In
this case, for v > 0, we can enlarge j such that all coefficients of dj (j) are
different from zero. [ ]

REMARKS: 1. For ((7);50 € £, we have by Theorem 2.3 (ii)

S It pt+j)=c

7=0

for all & € Ngy. Hence, for k = 0 and & = 1, respectively,
0= ot+i)=> ITelt+j)=(1-{)e,
7=0 7=0

so that ¢ = 0 for ¢ # 1. Only for { = 1, there can be ¢ # 0. In fact, from
el (t) =1 for fon @(t) dt = 1 (see Theorem 2.1) it follows that

L={w: wlyt)=0,1€ (-0, 1], ae. }U{e}.



13

2. Instead of £, in [1], Theorem 6.4, the structure of

N, = {X: Z Aaplz —a) =0,z € R*}
a€lLs
was considered, with a result similar to Theorem 2.4. Observe that for
s =1, N, C Ly in view of the substitution a = —j. More precisely, we
have Lo = N, U {e}. The investigation of N, was especially addressed in
detail for the cube spline by Dahmen & Micchelli [3].

EXAMPLE 2.1. We consider (1.1) with the coefficients ¢g = ¢ = %,
cs=1lande; =cy=ec3=e¢4=0,1e, P(z) = %(1 + z3)2. The correspond-
ing matrices Ay and A; read

1000 0 0 0200 0 0
00 £ 00 0 10041 o0o0
o100 Lo oo 1004
A0_§00100 A1_0§0010
00 L+ 00 1 000 2 00
000 0 % 0 0000 0 3

The matrix Ag possesses the eigenvalue 1 with multiplicity 2 with cor-
responding right eigenvectors v(®) = (0, 1, 2,0, 2, 1)7, and v = (0, —1,
-2,6, -2, —=1)T.  Analogously, (1,2,0,2,1,0)7 and (-1, -2, 6, -2,
—1, 0)T are right eigenvectors of A; corresponding to 1. But only the
linear combination v(0) = (0, 1,2, 3,2, )T = %v(o) + %v(l) leads to an
E-solution of (1.1), namely

t 0<t <3,
pll)=4 (6-1) 3<1<6,
0 otherwise.

We observe that ¢(1) — ¢(0) = (1, 1, 1, =1, —1, —1) is already invariant
under both Ag and A;, such that W := span {(1, 1,1, -1, -1, —1)T}.
Hence, L is e.g. given by

(1,0,0,1,0,0)7, (0

(Oa Oa Oa 1a _1a O)Ta

T T
T = span { ’8’8’1’0’0) ,(0,0,1,0,0,1) ’ }.

; aoalf_l)T

In particular, the left eigenvectors of Ay and A; corresponding to 1 and
—1, are contained in L. The vectors in L can be extended to vectors in £,

le.,

(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,..)7,
(0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,..)7,

£ =span { (0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,..)7T,
(0,0,0,1,—1,0,2,-2,0,3,—3,0,4,—4,.. )T
(0,0,0,0,1,-1,0,2,—-2,0,3,-3,0,4, —4,.. )T
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Considering the proof of Theorem 2.4, the characteristic polynomial of the
difference equation (2.7) reads

(1+Z+22—23—Z4—25) — (Z—l) (2_62772'/3)2 (2—647Ti/3)2.

Hence, £ is also spanned by the vectors e := (1,1,1,.. )T, (eZWij/B)jZO,
(] 6271'2]/3) >0, (6471'2]/3) >0 and (] 6471'2]/3) >0-

3. FACTORIZATION OF THE MASK

As before, let ¢ be an E-solution of (1.1) under the assumptions (A1)
and (A2), and let £ be defined as in (1.13). Knowing the structure of
vectors contained in £, we shall derive consequences on eigenvectors of
the infinite matrix A = (sz’—j)z’,jzo and on zeros of the refinement mask
P(z) defined in (1.3). We shall show that for each E-solution ¢, the re-
finement mask necessarily contains a polynomial factor, which is a certain
modification of (1 + z).

Let +/C denote an arbitrarily chosen, but then fixed value of the two
square roots of ¢ (¢ # 0).

THEOREM 3.1. Let ((7);50 € £ (¢ #0) and

Ji=Y ey, B=p0) =) esjon (3.1)
j=0 7=0

Then, one of the following 4 cases arises:

(i) o« = B =0; then P(£/() = 0, and (Cj)jzo is a left eigenvector of A to

the etgenvalue 0.

(i) B = a/C (a #0); then P(—/C) =0, and ((

(iii) B = —a /¢ (a # 0); then P(\/() =0, and (

(iv) B2 # a?(; then both ((\/C)?)j>0 and ((—/C
Proof. 1f (¢?)j>0 € L, then

V)
(—/C)!
))jz0

0 € L.
320 € E
belong to L.

)
i)

A
T2
\_/'
v
o
l

00 T
(Z CZ CZi—j) = (OZ, ﬁa Caa Cﬁa C2a’c2ﬁ’ . )
=0

20

_ 1 B o Lo B AT
= 3l +\/E)((\/E) Jizo T 5l \/Z)(( VO Tse (32)

= P(VOUVO) 0+ P(=VO=V )50
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also belongs to £, according to Corollary 2.1.
Case (i): From a = 8 = 0 it obviously follows that ((7);»0 is a left zero
vector of A. Moreover, we find a & 3/\/ = P(+/() = 0.

Case (ii): For 8 = a\/( (o # 0), the vector (Cj)]TZO Aisequal to (a(v/{))j>0

and P(v/C) # 0. Hence, ((v/{)?);j»0 € £, and by a — 3//{ = 0 we obtain
that P(—/¢) = 0. Analogously, we can conclude in the case (iii).

Case (iv): By Theorem 2.3 (ii), the shifted vector

(C]-I—l)fZOA = (ﬁacaa Cﬁa Czaaczﬁa .. ')T

also belongs to £. Multiplying the matrix consisting of the two row vectors
(C])]TZOA and (C]‘H)]TZOA by

(32) (5 2)
g (o T Ca2—-pF2\ —f a )’

it follows that the vectors

(L Oa Ca Oacza Oa . ')Ta
(Oa 1a Oa Ca Oa Cza . ')Ta

and therefore also the both vectors ((£v/()7);>0 belong to L. ]
Considering the more general case if (j7¢’);>0 € £ with v > 0, analo-
gous assertions as in Theorem 3.1 can be derived.
Let, for v € Ny,

NV .={zeC: D*P(2)=0,u=0,...,v—1} (3.3)

be the set of v-fold zeros of P(z), where P(z) is the refinement mask in

(1.3), and where D denotes the usual differential operator D := %

We state the following generalization of Theorem 3.1:

THEOREM 3.2. Assume that (j* ()j>0 € L (v € No, ( # 0). Then
there exist integers v, 7 with 0 < r, 7 < v 41, such that

(1) (j“ (\/E)j)jzo eL foru = 0,,..’7~_1 and \/ZE N(V—r+1);
(2) (]“ (_\/E)j)jzo cL foru=0,...,7/—1 and _\/EE NE=F+1)

ExaMmPLE 3.1. Let us apply Theorem 3.1 to the Example 1. For {; =1,
we obtain a(1) = 8(1) = 1. Hence, putting /{1 = 1, it follows by case
(i) that P(=1) = 0. For {3 = *™/3 and /(3 = ¢™/3 we find a(e?™/3) =
1, B(e*™/3) = 4™/3 Thus, we have to apply case (i) yielding that
P(e™/3) = 0 and that (—e”j/?’)jzo = (647Tij/3)j20 € L. Finally, from (3 =
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A3 with /G5 = €2™/3 it follows that oz(e47”/3) =1, ﬁ(e‘“”/?’) = e2mi/3,
Hence, by case (ii), we obtain P(e>™/3) = 0 and (eZWij/S)jzo eL.

In some papers considering compactly supported solutions of refinement
equations (see e.g. Daubechies & Lagarias [6]), the first sume rule (2.4) is
assumed, yielding that e := (1,...,1)? is a left eigenvector of both Ay and
Ay In particular, it follows that the corresponding refinement mask P(z)
possesses the factor (z 4+ 1). For integrable solutions of (1.1) with compact
support in [0, n] and with linearly independent integer translates; the first
sum rule (2.4) is satisfied everytimes (see Section 2). Now, we show that
a refinement mask P(z) yielding an E—solution ¢, necessarily possesses a
factor p(z) which is a certain modification of (z + 1).

THEOREM 3.3. Assume that (1.1) with (A1), (A2) possesses an E-
solution ¢. Then there is a number k € Ny, such that p(z) := pg(z) is
a factor of the refinement mask P(z), where pi(z) is obtained iteratively in
the following manner:

1) po(2) = (= + 1)/2;

2) pi(z) is obtained by replacing z by z* in p;_1(z) or in a polynomial factor
of pr—1(z) 1=1,2,...,k).

The resulting factor py(z) of P(z) is a polynomial satisfying pi(1) = 1, and
all its zeros are roots of —1 of order 2" with r € {0,... k}.

Proof. With the notation e := (1,1,1,...)7, we have that e € £ in
view of Corollary 2.1 (i). Hence, we can apply Theorem 3.1 to ( = 1. By
2P(1) = a4+ 8 =2 (with «, 3 defined in (3.1)) we obtain

e" A= (o, 8, 0,8,..) =€ +(a—1)((=1)7)]5,

Let us first consider the case that o = § = 1; i.e., the case (ii) of Theorem
3.1. Then, P(—1) =0, i.e., po(2) = (# + 1)/2 is a factor of the mask P(z),
and the last statement of (ii) (in Theorem 3.1) gives no new relation in
view of ( = 1.

For a # 1, we have 3? = (2 — a)? # o2, and case (iv) of Theorem 3.1
is applicable. Hence, ((—1)j)j20 € L. Now the procedure can be repeated
with ¢ = —1.

We compute a(—1), (—1) and check which of the four cases of Theorem
3.1 can be applied. For a(—1) = g(—1) = 0, it follows that P(+i) = 0, i.e.,
p1(z) = (1 + 2?)/2. If one of the last three cases occurs, then, again (at
least one) new element of £ is found, namely (i/);>0 or ((—i)?);>0, or both
of them. The procedure must then be applied to the remaining roots { = ¢
and { = —1, respectively, or to both of them, and so on. Observe, that this
algorithm only produces numbers ¢, which are roots of unity, namely roots
of —1 of order 2 in the r-th step. Moreover, all elements e, ((—1)7);>0, ...
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of £, found iteratively by this procedure, are linearly independent. Since
the dimension of £ is finite, we must arrive at case (i) (of Theorem 3.1) after
finitely many steps, and the procedure stops. The algorithm is completely
described by determining what to do when arriving at one of the cases (i) —
(iv), after replacing the factor z—¢ of p;_1(z) by 22— = (: =) (2 + ).
Case (i) means: (z? — () is a factor of P(z) and the procedure stops for
this .

Case (ii) means: (z + +/C) is a factor of P(z) and we continue with the
factor z — /C applying Theorem 3.1 to ((+v/{)?);>0 -

Case (iii) means: (z —+/C) is a factor of P(z) and we continue with the
factor z + /¢ applying Theorem 3.1 to ((—v/{)?);>0 -

Case (iv) means: We continue with both factors (2 ++/C)(z —+/¢) applying
Theorem 3.1 to both (\/Z])jzo and ((—v<{)7);>0.

Since some factors z — ( can be gathered up, we have exactly the procedure
as described in the Theorem leading to a factor p(z) = pi(z) with the
mentioned properties. [ |

REMARKS: 1. If the refinement mask of an E-solution ¢ does not possess

the factor po(z) = (1 + 2)/2, then in view of the foregoing case (i), it has
symmetric zeros on the unit circle. Hence, the condition that P(z) has no
symmietric zeros on the unit circle, is necessary for linear independence as
well as for Riesz stability of integer translates of ¢ (see e.g. [13], Theorem
2. The simplest zero set corresponding to po(z) is R = {1}. Other examples
for zero sets are R = {1/2, 3/2} corresponding to p1(z) = (2% +1)/2 and
R = {1/8,9/8,5/4,3/2} corresponding to ps(z) = (22 4 e~ %"/*)(z —
6—52'77/4)(2 —I—i).
3. Characterising the roots e'™/4 of —1 by p/q, we can interpret the result
of Theorem 3.3 by means of the tree graph in Figure 1, in order to get the
zeros of p(z). Geometrically, the endpoints of a certain finite subtree of
the graph with invariant root 1 form the set R of zeros of a possible factor
p(%) = pr(#) in the Theorem.

The factor p(z)(= px(z)) found in Theorem 3.3 can also be characterized
as follows:

THEOREM 3.4. The polynomial p(z) can be found by the iteration pro-
cess in Theorem 3.3 if and only if it is of the form

plz) = 240)’ (3.4)

where ¢(z) is a polynomial of the same degree and possessing a set Q of
zeros with the following property: Q@ contains roots of unity with powers of
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2 as root exponent, and it is closed regarding to the operation z — 22 (i.e.,
for z € Q it follows that 2> € Q). Moreover, denoting the zero set of p(z)
by R and introducing the set () of all square roots of elements of @,

Q={:::2€qQ),
we have the relations:
R = Q\@,
Q = {sz :jEN, z € R}.

Proof. TFor m = 1, the representation is valid with ¢(z) = z — 1. For

m > 1, the construction of p(z) can be described in the following way:
241 = n(z)ri(z) = ql(z)rl(zz) = qa(2)ra(z) > ...

= e(2)r(2) = ar(2)re () = 2p(2)

with polynomials ¢;(2), r;(2) (i = 1,..., k) and ¢;(2)r;: (2%) = qig1(2)riz1(2)

(i=1,...,k—1). We find recursively

ri(2?)
2p(z) = (* + 1) :
E ri(2)
so that (3.4) is obtained with ¢(z) = (2% — 1) Hle 7i(2). Denoting the
set of zeros of p(z) by R := {£1,...,&mn}, and the zero set of ¢(z) by
Q = {o1,...,0m}, equation (3.4) shows that

v,o0:v=1,....om}={Jo,, —/o, : v=1,...,m},
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e, RUQ = Q with Q := Voo, /o, : v=1,...,m}. Thus, for every v,
there exist numbers a,, b, € {1,...,m} with €2 = 0, , 02 = 0,. Hence,

the set {o1,...,0m} is the closure of the set {¢2,... 62} by the operation
z =22 de, Q=1{z":jEN, 2z € R}. Since all & are roots of unity with a
power of 2 as root exponent, the ¢; have the same property. Finally, since
the 2m elements of Q are different, it follows that R = Q \ Q.

The second direction of the proof follows conversely. [ |

REMARKS: 1. In [1], Lemma 6.6, it was already shown that a finite
set R of complex numbers with the property R C R? := {z? : 2 € R}
and cardinality n can only consist of elements which are roots of unitary
or zero. Further, for any element z € R there is a k, 1 < k < n, such that
22 =2
2. In the special case 2p(z) = (sz +1), (3.4) is satisfied with ¢(z) = 22 1.
Of course, P(z) can have several factors of the type p(z), such that the zeros
&, can also appear with a higher multiplicity.

3. If we assume that p(z) has real coefficients only, then p(z) can be
decomposed into factors of the form 22 + axz + 1. The coefficients a; can

be found iteratively from ag := 0, a; := /2 — a;_1, since
(z2+\/2—akz—|—1) (z2 —V2—arz+1)= A apz? + 1.

The factor pi(z) of P(z), found iteratively from (z + 1)/2 as described
in Theorem 3.3, can be considered as the refinement mask of a special
compactly supported step function. This is the exeptional case, where
Assumption (A2) is not satisfied.

Let

P =3 blt—v)  (teR) (3.5)

with boby # 0 (k > 1), and where x(¢) is the characteristic function of the
interval [0, 1), i.e.,

Then according to Lawton, Lee & Shen [18] we have:

PROPOSITION 3.1. The function ¢ of the form (3.5) is refinable, if and
only if the corresponding refinement mask P(z) is of the form 2P(z) =
Q(z%)/Q(z), where Q(z) := (z — 1)(2520 by z¥) with the coefficients b, in
(3.5), and where the zero set {z € C: Q(z) = 0} is closed regarding to the

operation z — z°.
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Observe that the zeros of Q(z) in Proposition 3.1 can be arbitrary roots
of unity. The factorization P(z) = p(z)Q(z) with p(z) in (3.4), given by
Theorem 3.4, allows to simplify the E-solution of (1.1). In order to show
this, we need the

THEOREM 3.5. Let P(z) and ]S(z) be polynomuials of the form
P(z) = Pi(2) P2(2%),  P(2) = Pi(2) Pa(2),
where Pa(z) = Zi:o r, ¥ with ro # 0 and with P(1) = P(1) = 1. Then
we have: FEquation (1.1) with the refinement mask P(z) possesses an E-

solution ¢ if and only if (1.1) with ]5(,2) possesses an E-solution ¢, and we
have, fort e R,

p(t) =D m gt —v). (3.6)

Proof. Since P(1) = ]5(1) = 1, there exist unique compactly supported
distributions ¢, @ satisfying (1.1) with the refinement masks P(z), ]5(,2),
respectively (see e.g. [20], Theorem 1.1, [5, 7]). The Fourier transforms of
©,  are given by

o) = J[P(e™) Pa(e=I?)
j=1

— Pz(e—iu) le(e—iu/Zj)Pz(e—iu/Zj)’
j=1

Gv

() = TIPe™) Pofem™?),
j=1

where the infinite products converge uniformly on every compact subset of

C (cf. [20]). Hence, L
p(u) = Pa(e™) p(u).

Inverse Fourier transform yields that

k

p(t) =D m gt —v).

v=0

This equation shows: If ¢ is an E-solution, then so is ¢. Vice versa, if ¢ is an
E-solution, then, by rq # 0, the function @ can recursively be constructed
by means of (3.6) as a nonvanishing locally Lebesgue-integrable function.
Since ¢ is compactly supported, ¢ is an E-solution. [ |
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We easily conclude that, if $(t) is continuous, then also ¢(¢) is contin-
uous. Observe, that P;(z) in Theorem 3.5 is not necessarily a polynomial
as in the example P(z) = %(1 + 2%, ]5(,2) = %(1 +2), Pi(z) = (14 2%)7L.

By Theorem 3.4, each E-solution ¢ of (1.1) has a refinement mask of
the form P(z) = p(z) Q(z) with 2p(z) = ¢(2?)/q(#). The polynomial ¢(z)
possesses the simple zero 1, i.e., ¢(z) = (¢ — 1) #(z) with r(1) # 0 (see the
proof of Theorem 3.4). We can apply Theorem 3.5 as follows:

PROPOSITION 3.2. Let ¢ be an E-solution of (1.1) and let (A1), (A2)
be satisfied. Assume that the corresponding refinement mask P(z) has the
representation P(z) = p(z) Q(z). Further, let p(z) be a polynomial factor
of the form
(1+2)r(z?)

27r(z)
with p(1) = 1, and with r(z) = Zi:o ryz¥ and rg £ 0. Then (1.1) corre-

z+1
2

p(z) =

sponding to the refinement mask ]5(,2) = (z) possesses an E-solution

@ and we have
p(t) = et —v).
v=0

Proof. We apply Theorem 3.5 as follows: Putting
(z+1)Q(2)

e =S50 p =),
we have P(z) = Pi(2) Py(2?). Hence, the refinement mask
P(z) = P1(z) P2(z) also provides an E-solution ¢ of (1.1), and the assertion
follows. [ |

REMARKs: 1. By Proposition 3.2, each E-solution ¢ of (1.1) can be
represented as a finite linear combination of integer translates of an E-
solution ¢ with a refinement mask P(z) containing the factor po(z) =
(z 4+ 1)/2. This argument can even be pushed a little further, showing
that each E-solution can be given as a finite linear combination of integer
translates of a refinable function ¢ with linearly independent integer shifts
(see [12], Theorem 5.3).

2. If P(z) = P1(z) Pa(z*) then it can also be represented as

P(z) = sz 1((;2))

PZ(ZZ)P2(24),

and we can apply Theorem 3.5 with Py(z) P2(2?) instead of Ps(z). Analo-

gously, P(z) = P1(#) Pz(zzk) can be reduced to the original case replacing
k—1

Ps(z) by Po(z2) Pa(2%) ... Pa(22 ).
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EXAMPLE 3.2. (to Theorem 3.5) Let P(z) = %(z2 +V2: + 1) (z4 —
V222 +1). A corresponding solution ¢ of (1.1) is

1 t€0,1)U[5,6):

1—-vV2 te[l1,2)U4,5);
p(t) = B .

22 te[2,4);

0 otherwise.

Considering the simplified mask
1 1
P(z) = 5(,22 +V2e 4+ 1) (22 =V2241) = 5(,24 +1)

providing the solution ¢ = [0 4) (where x denotes the characteristic func-
tion), it follows that

p(t) = ¢(t) = V28(t — 1) + (t — 2).

Analogously as in the foregoing theorem, we find:

THEOREM 3.6. Let (1.1) possess an E-solution ¢(t) and assume that
the corresponding refinement mask P(z) factorizes
Pz)=(4+1)Q(z) (l€N).
Then (1.1) with the refinement mask (2™ + 1) Q(z) (m € N) also provides
an E-solution ®(t), namely

m—1

o) = > ot —v). (3.7)

v=0
The case m = 2% [ = 1 can be treated with both Theorem 3.5 and
Theorem 3.6 in view of

2k_1

(I+20+2%) .1+ =3 2

4. EIGENVECTORS OF THE COEFFICIENT MATRIX

In the considerations above, the structure of the spaces L and £ has
been used for deriving assertions on zeros of the refinement mask corre-
sponding to E—solutions. As seen in Section 2, eigenvectors and root vectors
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of Ay, A1 and A can be special elements of L and £, respectively. Now, we
want to investigate conversely, if given zeros of the refinement mask imply
consequences for the eigenvalues and eigenvectors of the matrices Ay, Ay
and A.

First, we show that there are no root vectors of Ag and A; corresponding
to the eigenvalue 1 in case of continuous E-solutions.

THEOREM 4.1. Let ¢ be a continuous E-solution of (1.1). Then the
Jordan block in the Jordan decomposition of Ay (or A1) belonging to the
eigenvalue 1 is the identity matriz, i.e., there are no root vectors of Ay (or
Ay) belonging to the eigenvalue 1. Moreover, if w is a left eigenvector of
Ag (or A1) to the eigenvalue 1, then all coefficients dj, in its representation
(2.5) are constants.

Proof. We only show the assertion for Ag.
1. Observe that by (1.7), Ap possesses the eigenvalue 1. Let us assume

that there are vectors w := (wj)?;é and w := (ﬁ;)?z_ol with

T wt Ay =a” +u” (4.1)

bl

wTAozw

so that w is an eigenvector and w 1s a root vector of height 2 to the eigen-
value 1. We show that this assumption leads to a contradiction.

By Theorem 2.2 (iv), w and @ are contained in L. Further, the both
vectors can be extended to w = (w;);>0 € £, w = (W;);>0 € £ by Theorem
2.3 (i) and Corollary 2.1 (iv). As we have shown in Theorem 2.4, w and w
can be represented in the form

! {
k=1 k=1

and also all (57 Cg)jzo, appearing in (4.2) are contained in £. We can sup-
pose that, for each k, di(j) and d (7) do not both vanish identically.

2. First, let us assume that all dy, dy in (4.2) are independent of j. Ac-
cording to (3.2), we have

o a=w (WVGY) +o((VaY) @3y
with
= POVE) = 5 36 (VEY, b= PVE) = 5 3 6 (—Va).

(4.4)
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Now, (4.1)—(4.3) yield for j € Ny

> di (e Y+ 0k (— Ck)j)) = il (4.5)

k=1

and

l l
(Z k ( )+ 0k (=G ) D (de+di)gl. (4.6)
k=1 k=1

Since ((v/@)?)j>0 and ((—v/Cx)?)j>0 (k = 1,...,1) on the left-hand side
and (Ci)jzo (k=1,...,1) on the right-hand side are linearly independent
vectors, it follows that some coefficients of the set {yg, 0 : k= 1,...,{}
must vanish. On the other side, for each k € {1,... 1}, there exist numbers
pr € {0, 1}, qx € {1,...,1} such that

G = (=1 Ve, (4.7)

where the corresponding coefficients

=} Yo forpy=0,
€ 1= { (qu for pr = 1 (48)

do not vanish. Comparing the coefficients in (4.5) and (4.6), we find dj =
exdg, and dj + cik = ¢ ciqk. Iterating the first equation, we must arive at a
cycle, say with m steps (1 < m < ). Then, after changing the notation of
the indices, we find (disregarding the preperiod)

d1:€1d2a d2:€2d3a adm:€md1a
which implies either dy = ... = d,, = 0 or €1 ¢é5...¢,, = 1. In the last case,
from
d1+621=€1622, d2+622=€2623, adm"i'jm:EmCil

we obtain by elimination

621261(622—d2), Ciz—dz:Ez(Cig—ng), ey
Cim — (m — 1)dm = Em(gl - mdl)a

and so R R R
d1 = €1 €2 .. .Em(d1 — mdl) = d1 — mdl.
It follows as before that d1 = 0 and hence, by ¢ # 0, that d2 = ds =
.=dy = 0. If m <[, we can conclude in any case that also the other

d, must vanish. But this contradicts the fact that the eigenvector w is
nonvanishing.
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3. Next, we consider the case that di(j) and cik( j) are linear in j, i.e.,
dy(§) = ax + jbs, Cik(_]) = ag + jbr with ay, by, ax, bx independent of j.
Equation (4.3) implies by differentiation with respect to { (which, in this
connection, can be considered as a variable) and multiplication with (g,

T

(jck)]>0A ((’Yk(k-l- ’Vk)(\/C_k)j-l-(é;Ck-l-%%)(—\/C_k)j)

20

So (4.1)—(4.3) yield for j € Ny,

MN

ax (9 (VG + (=G

B
I
—

+ b (ke + D) (VGY + 6+ Lo (/G )

(ar, + jbi) &L,

MN

B
I
—

and an analogous equation with ay, bk instead of ai, by on the left-hand
side and Zk lak + jbe + ax + jbk) on the right hand-side. With the
same arguments as before, we can derive that ¢, is of the form (4.7) and a
comparison of the coefﬁcients of j¢j yields

1 1
by = §€kbqka by + b = 56k by

with € as in (4.8). Now, we can conclude as before (with % instead of e)
that all by vanish. Hence, we have reduced the case of hnear di(j) to the
case of constant dy, Wthh already was seen to be impossible.
For polynomials dj (5), d (7) of higher degree the contradiction follows
in the same manner. [ |
With the help of the foregoing theorem we simply observe

COROLLARY 4.1. If the matriz Ay (or the matriz Ay ) has nonsimple
Jordan blocks corresponding to the eigenvalue 1, then (1.1) does not possess
a continuous E-solution .

This case really can happen as it is shown by

EXAMPLE 4.1.  We consider (1.1) with the coefficients ¢g = —cy4 = a,
cp=c3=1,¢2=0, witha € R, |a| < 1,a # 0. We simply observe that
the assumptions (A1), (A2) are satisfied. However, (1.1) does not possess
a continuous E-—solution, since the corresponding matrix Ay contains a
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nonsimple Jordan block corresponding to 1,

a 0 0 0
0 1 a 0
Ao = ( -a 1 0 1 )

0 0 —a 1
1 0 0 0 a 0 0 0 1 0 0 0
— T2 @ l-a ~a o 1 1 0 b — 0 -z
-1 0 1 1 0 0 1 0 0 1 0 1
= —a a a 0 0 0 O 1 -1 1 -1

Next, assuming that the refinement mask P(z) possesses a factor py(z)
(as described in Theorem 3.3), we are interested in consequences for eigen-
vectors and root vectors of the coefficient matrix A.

THEOREM 4.2. Let (1.1) have an E-solution with (A1), (A2). Then
there exists an integer k > 0 such that (eTAk)T 15 a left eigenvector of A
corresponding to the eigenvalue 1, and for k > 1, the vectors (eTA”‘I'1 —
eT AT (v =0,...,k—1) are left root vectors of height k — v of A corre-
sponding to the eigenvalue 0. Here again, e := (1,1,.. )7,

Proof. By Corollary 2.1, we have (el A —eT)? € L. Let P(z) possess
the factor p(z) = pi(z) found after k iterations as described in Theorem
3.3. Recalling the proof of Theorem 3.3, we observe that, by iterative
application of (4.3), (e? A—e”) A* =07 for k >0, where 0 := (0,0,..)7,
whereas (el A — eT)Ak_1 # 07 for k > 1. Hence, (eTAk)T Is a left
eigenvector of A corresponding to the eigenvalue 1, and by (eTA”‘I'1 —
el AV)Ak_V = 0%, we obtain the assertion concerning the root vectors of
A belonging to 0. [ ]

REMARKS: 1. Obviously, we have the identity

E—1

eTAk — eT + Z(eTAV+1 _ eTAV)

v=0
between the eigenvector el A" of A corresponding to 1, e, and the root
vectors of A corresponding to 0. Tt can easily be seen (by repeated ap-
plication of (4.3)) that e” A" is a 2Y-periodic vector. Writing )7 =
el AVt — eT A” and e) = (e‘g»y))jzo for v =0,...,k— 1, it follows that
(e(.”))"_1 o (eglﬁzy_l)"_l also belong to L. Moreover, they must be root

7 j=0>" 7=0
vectors of height & — v of Ay corresponding to 0.

2. In the case p(z) = 22y 1, we observe that
e =(2,0,...,0,—27,0,...,0,27,0,...,0,—2",0.. )7,
N——’ N——’ N——’

2v—1 2v—1 2v—1
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In particular, the e (v =0,...,k — 1) are linearly independent in this
case.

Now, let w € L, i.e., the elements of w possess the representation (2.5).
Then we have:

PROPOSITION 4.1. If w € L with the representation (2.5) is an eigen-
vector (or root vector) of A corresponding to an eigenvalue A # 0. Then
the i occuring in the representation (2.5)of w are roots of unity and the
set {Ck : k=1,...,1} is closed regarding to the operation z — 2.

Proof. Let wTA = Aw?T with A # 0. Assume first that the dy in
(2.5) are independent of j. Then we obtain, analogously as in the proof of
Theorem 4.1,

S de(ie(VCY 40 (—VO) = AD dkl (120)

with v, and i as in (4.4). Hence, with the same argument as in the proof
of Theorem 4.1, the assertion follows. Similar ideas apply for polynomials
di(j) and for root vectors. [ ]

REMARKS: 1. In the case A = 0, not only roots of unity but arbitrary
(i can appear.
2. Assertions on eigenvectors and root vectors of A to the eigenvalue 0 can
be concluded by proving the converse of Theorem 3.1 and Theorem 3.2.
If both, \/¢ and —/C, are zeros of the refinement mask P(z), then ({/);>0
is a left eigenvector of A corresponding to 0, since Z;O:O ¢j(v/¢)? =0 and

Y520 ¢ (—/C)7 = 0 imply that by (4.3),

((N)]304 = P(VO) (V) oo + P(=VO) (=V/¢)) 0 = 07

Analogously, if £/ € N®) (with N®) defined in (3.3)), then ("¢ 0

(£ =0,...,v— 1) are eigenvectors of A corresponding to the eigenvector
0.
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