Split-Radix Algorithms

for Discrete Trigonometric Transforms

GERLIND PLONKA AND MANFRED TASCHE

Abstract

In this paper, we derive new split-radix DCT—algorithms of radix—2 length, which are
based on real factorization of the corresponding cosine matrices into products of sparse,
orthogonal matrices. These algorithms use only permutations, scaling with /2, butterfly
operations, and plane rotations/rotation-reflections. They can be seen by analogy with
the well-known split-radix FFT. Our new algorithms have a very low arithmetical com-
plexity which compares with the best known fast DCT-algorithms. Further, a detailed
analysis of the roundoft errors for the new split-radix DCT-algorithm shows its excellent
numerical stability which outperforms the real fast DCT—algorithms based on polynomial
arithmetic.

Mathematics Subject Classification 2000. 65T50, 65G50, 15A23.

Key words. Split-radix algorithm, split-radix FFT, discrete trigonometric transform,
discrete cosine transform, arithmetical complexity, numerical stability, factorization of
cosine matrix, direct sum decomposition, sparse orthogonal matrix factors.

1 Introduction

Discrete trigonometric transforms are widely used in processing and compression of sig-
nals and images (see [17]). Examples of such transforms are discrete cosine transforms
(DCT) and discrete sine transforms (DST) of types I — IV. These transforms are gener-
ated by orthogonal cosine and sine matrices, respectively. Especially, the DCT-II and its
inverse DCT-III have been shown to be well applicable for image compression. The roots
of these transforms go back to trigonometric approximation in the eighteenth century (see
[10]). Discrete trigonometric transforms have also found important applications in numer-
ical Fourier methods, approximation via Chebyshev polynomials, quadrature methods of
Clenshaw—Curtis type, numerical solution of partial differential equations (fast Poisson
solvers), singular integral equations, and Toeplitz—plus—Hankel systems. Since DCT's are
the most widely used transforms, we shall concentrate on the construction of real, fast,
and numerically stable DCT-algorithms in this paper.

For large transform lengths n, and even for relatively small lengths n = 8 and n = 16
used in image compression, one needs to have fast DCT-algorithms. There is a close
connection between fast DCT—algorithms and factorization of the transform matrix. Let
C, € R"™ be an orthogonal cosine matrix of large radix—2 order n. Assume that we
know a factorization of (', into a product of sparse matrices

Co=M"D MY 1 <m<n. (1.1)

Then the DCT-transformed vector (,x with arbitrary x € R” can be computed recur-
sively by
<D . Ap(s) ()

k23 2

(x@ :=x)

(m) = C,x. Since all matrix factors in (1.1) are sparse,

for s =0,...,m — 1 such that x
the arithmetical complexity of this method will be low such that the factorization (1.1)
of C,, generates a fast DCT—-algorithm. For an algebraic approach to fast algorithms of
discrete trigonometric transforms we refer to [16].

We may distinguish the following three methods to obtain fast DCT-algorithms:

1. Fast DCT-algorithms via FFT: It is natural to focus first on the computation of DCT
by using the FFT (see [15, 25, 7], [17], pp. 49 — 53, and [24], pp. 229 — 245). Such
DCT-algorithms are easy to implement using standard FFT routines and possess a good
numerical stability (see [2, 23]). However, the real matrix—vector product C,x is computed
in complex arithmetic. Therefore the arithmetical complexity of these DCT-algorithms
is relatively high. The best FFT-based DCT—algorithms require about 2.5n log, n flops,
where a flop is a real arithmetical operation.

2. Fast DCT—-algorithms via polynomial arithmetic: All components of C,,x can be inter-
preted as values of one polynomial at n nodes. Reducing the degree of this polynomial by
divide—and—conquer technique, one can get a real fast DCT-algorithm with low arithmeti-
cal complexity (see [9, 20, 21, 16]). The best DCT-algorithms require about 2n log, n
flops. A polynomial DCT-algorithm generates a factorization (1.1) of C,, with sparse,
non—orthogonal matrix factors Més), i.e., the factorization (1.1) does not preserve the or-
thogonality of C,, (see e.g. [19, 2, 23]). This fact leads to a bad numerical stability of
these DCT-algorithms [19, 2, 23].

3. Fast DCT—algorithms via direct matriz factorization: Using simple properties of
trigonometric functions one may find direct factorizations of the transform matrix C,

into a product of real, sparse matrices. The trigonometric approximation algorithm of
Runge [18] can be considered as a first example of this approach. Results on direct matrix
factorization of €}, into orthogonal, sparse matrices are due to Chen et al. [4] and Wang
[26]. Note that various factorizations of C,, use non—orthogonal matrix factors (see [17],
pp. 53 — 62, [3, 12, 13]). Many results were published without proofs. A direct “orthogo-
nal” factorization of the cosine matrix of type Il and of order 8 was given by Loeffler et
al. [14] and is used even today in JPEG standard (cf. Example 2.8). Improving the earlier
results in [4, 26], Schreiber has given a constructive proof of a factorization of some cosine
matrices of size 2" into a product of sparse, orthogonal matrices in [19]. Unfortunately,
the construction of this factorization is not simple.

However, another important result in [19] (see also [23]) says that a fast DCT—-algorithm
possesses an excellent numerical stability, if the algorithm is based on a factorization of
(', into sparse, orthogonal matrices. Therefore, in order to get real, fast, and numerically
stable DCT-algorithms, one should be especially interested in a factorization (1.1) with
sparse, orthogonal matrix factors.

In this paper, we shall derive new split-radix DCT-algorithms of radix—2 length, which
are based on real factorization of the corresponding cosine matrix into a product of sparse,
orthogonal matrices. Here a matrix factor is said to be sparse if each row and column
contains at most 2 nonzero entries. The new DCT —algorithms require only permuta-
tions, scaling (with v/2), butterfly operations, and plane rotations/rotation-reflections
with small rotation angles. In contrast with many other factorizations, this split—radix
approach admits a recursive factorization of a cosine matrix into a product of sparse,
orthogonal matrices. We shall show that the split-radix DCT—algorithms can be seen
by analogy with the well-known split-radix FFT. Our new algorithms have a very low
arithmetical complexity which compares with the best known fast DCT—algorithms. In
particular, the obtained factorization of the cosine matrix of type II and of order 8 is
very similar to that in [14] and needs exactly the same number of multiplications and
additions. Algorithms with better arithmetical complexity can only be achieved using
scaling matrices which are incorporated into the quantization process afterwards (see e.g.
5)).

Further, a detailed analysis of the roundoft errors for the new split-radix DCT-II algo-
rithm shows its excellent numerical stability which outperforms the real fast DCT-II
algorithms based on polynomial arithmetic.

The paper is organized as follows: In Section 2 we introduce different types of cosine and
sine matrices and derive factorizations of the cosine matrices of types I — IV. All proofs
are based on divide—and—conquer technique applied directly to a matrix. That is, a given
trigonometric matrix can be represented as a direct sum of trigonometric matrices of half
size (and maybe of different type). While the factorization in Lemma 2.2 has already
been used before (see e.g. [18, 4, 26]), the factorization of the cosine matrix of type IV in
Lemma 2.4 is new and one of the basic results of this paper. It enables us to derive the
corresponding split—radix DCT-algorithms.

In Section 3 we revisit the split-radix FFT and represent it in a new form which is
completely based on matrix factorization of the Fourier matrix.

In Sections 4, 5 and 6 we derive some split—radix algorithms for DCT-II, DCT-IV, and
DCT-I. A split—radix DCT-III algorithm follows immediately from a split-radix DCT-II
algorithm. A comparison of these algorithms with the split-radix FFT shows the close

connection between these approaches. We also compute the arithmetical complexity of
the new algorithms.

Section 7 is devoted to a comprehensive analysis of the numerical stability of a split—radix
DCT-II algorithm. It can be shown that the new algorithm has a very low arithmetical
complexity and a better numerical stability than the DCT—algorithm based on polynomial
arithmetic.

2 Trigonometric matrices

Let n > 2 be a given integer. In the following, we consider cosine and sine matrices of
types I — IV with order n which are defined by

Cla = 2 (el) cos22)7 .
Cil = \/%<6n(]) COS]%(2221)W>n_1 9 Céll = (CéI)Tv
7,k=0
Ol = 2 ((cos CottZEIT) (2.1)
7,k=0
SLy o= /2 <sin_<f+1>§f+1>7r>“‘2 |
7,k=0
S =\ [2 (e 4 1) sin GEREEDEY T g (11T
7,k=0
Siv = \/z<sin7(2j+l)4(2k+l)7r>n_l .
" " §,k=0

Here we set €,(0) = €,(n) := v/2/2 and ¢,(j) := 1 for 5 € {1,...,n — 1}. In our notation
a subscript of a matrix denotes the corresponding order, while a superscript signifies
the “type” of the matrix. First cosine and sine matrices appeared in connection with
trigonometric approximation (see [10, 18]). In signal processing, cosine matrices of type
IT and III were introduced in [1]. The above classification was given in [26] (cf. [17], pp.
12 - 21).

The cosine and sine matrices of type I — IV are orthogonal (see e.g. [17], pp. 13 — 14,
[22, 19]). Strang [22] pointed out that the column vectors of each cosine matrix are
eigenvectors of a symmetric second difference matrix and therefore orthogonal.

In the following, I, denotes the identity matrix and J, := (6(j + & —n + 1));;;) the
counteridentity matrix, where § means the Kronecker symbol. Blanks in a matrix indicate
zeros or blocks of zeros. The direct sum of two matrices A, B is defined to be a block
diagonal matrix A& B := diag (A, B).

Let ¥, := diag ((—1)*)7Z; be the diagonal sign matrix. In the following lemma we
describe the intertwining relations of above cosine and sine matrices.

Lemma 2.1 The cosine and sine matrices in (2.1) satisfy the intertwining relations
Ci-u Jn+1 = Zn-l—l C7£-|—17 S£—1 Jno1 =Xy Si—p

chy, =y, sy, =%, st (2.2)
cvyy, = J,u.0lV, SV s, =J, 8,8

and

J,CH = slly, cv, =%, S, (2.3)

The proof is straightforward and is omitted here (see [19]). The corresponding properties
of CI and SHI follow from (2.2) — (2.3) by transposing.

A discrete trigonometric transform is a linear mapping generated by a cosine or sine
matrix in (2.1). Especially, the discrete cosine transform of type 11 (DCT-II) of length
n is generated by CII. The discrete sine transform of type I (DST-I) of length n — 1 is
generated by SI_|.

In this paper, we are interested in fast and numerically stable algorithms for discrete
trigonometric transforms. As an immediate consequence of Lemma 2.1, we only need to

construct algorithms for DCT-I, DCT-II, DCT-IV, and DST-I.

For even n > 4, P, and P,y denote the even—odd permutation matrices (or 2—stride
permutation matrices) defined by

P.x = (:1:0,:1;2,...,xn_z,xl,xg,...,xn_l)T, X = (2;)iZ0,
Pn-l-ly = (y07y27'"7yn7y17y37"'7yn—1)T7 y:(y])?:o

Note that P;' = P! is the n;—stride permutation matrix and P}, = PL | is the (n;+1)-
stride permutation matrix with n; :=n/2.

Lemma 2.2 Let n > 4 be an even integer.
(i) The matriz CI can be factorized in the form

Cl =Py (Ch @) T(0) (2.4)

with the orthogonal matrix

I J I J
1 n1 n1 _ 1 1 n1
Tn(o) 2 (Inl _Jm) - E([nl D Jm) (Jm —1,) :
(ii) The matriz CL,, can be factorized in the form
Ci-u = PnT+1 (Cil—l—l D Ciln) Tn+1(2) (2-5)
with the orthogonal matrix

[nl Jnl
V2
[nl _Jnl

Tot1(2) :=

Sk

(iii) The matriz SI_| can be factorized in the form

Sy = P (S e S]) T (2), (26)

n

Proof. We show (2.4) by divide—and—conquer technique. First we permute the rows of
CIT by multiplying with P, and write the result as a block matrix:

- 252kt)Mt , o maaheyn\ P11

L (en(24) cos %)M_O (en(2) cos %)M_O
PO = 7 =0 k=0
N (2 +1) cos GHIENY T ((974 1) cos Gtz
7,k=0 7,k=0

5

By (2.1) and
(274+1)(n+2k+1)7

j 2k+1 (n—2k—1 27+1)(n—2k-1
j(nt2ktl)m COoS i(n)7r7 CcOS ST T = — coS 2+ (n=2k=1)x
n n 2n 2n

it follows immediately that the four blocks of P, C'}! can be represented by C! and C!":

Pn CII — 1 (07511 C17{1[Jnl) _ (CII D CIV) 1 (Inl Jnl)

COS

ve\¢gv _ovy, V2 Ly =
_ (s)T 0)
Since P71 = PT and T,(0) T,,(0)T = I,,, the matrices P, and T,(0) are orthogonal.
The proofs of (ii) and (iii) follow similar lines. O

Remark 2.3 The trigonometric approximation algorithm of Runge [18] is equivalent to
(2.5) and (2.6). Similar factorizations of C*, CI | and S!_, were also been presented in
[26], but by using of modified even-odd permutation matrices @), and (), defined by

QX = (o, T2y..o Tneg, Tuoty Tnogy ..., xl)T, X = (:I;j)?:_(},
Qn-l-ly = (y07 Y2, - 5 Yns Yn—1,Yn—3, - - - yl)Tv y = (yj)?:O'
From (2.4) we obtain the following factorization of C11 :
I T (AT v
C,t =T, (0) (Ch7 @ CLl) P (2.7)

Now we introduce modified identity matrices
I, = diag (e.(5)")iZ, I = diag (en(j +1)71)15,.

Note that I’ and I” differ from I, in only one position. The matrix I’ has the entry /2
in the left upper corner and I’ has the entry v/2 in the right lower corner. Let V,, be the
forward shift matrix

Vie= (87 — k= 1),
i.e., V,, has nonzero entries 1 only in the upper secondary diagonal. Note that for arbitrary
x = (z;)"Zy € R" we have
VnX = (0 s XY s L1y e ey $n_2)T, VnTX = ($1, L2yeoo sy Typ—1, O)T

Further we define cosine and sine vectors by

-1 n—1

2k+1)r\ " . (2k+1
¢ = (cos CENT) T s i (sin CRUS)
k=0 k=0

Lemma 2.4 For even n > 4, the matriz OV can be factorized in the form
Gl = P A1) (Chf @ O Ta(1) (2.8)
with the modified addition matrix

[7/1 anzm
An(l) = % (VT _J Zn) ([nl b Jnl)

and the cross—shaped twiddle matrix

T,(1) = (L & 5, (

The two matrices A, (1) and T,(1) are orthogonal.

diag ¢, S, diag (Jn, 8n,)
—J,, diag s, diag (J,, ¢,) '

6

Proof. We show (2.8) again by divide—and—conquer technique. Therefore we permute
the rows of C'IV by multiplying with P, and write the result as block matrix:

<COS (4j-|—1)(2k-|—1)7r>n1_1 <COS (4j+1)(n+2k+1)7r>n1_1

4 , 1 ,
P CIV 1 " J,k=0 " J,k=0
e - — —
" VI (4543)(2k4+1)r \ 171 (14543)(n42k+ 1)\ " L

oS = oS =
J,k=0 J,k=0

Now we consider the single blocks of P, CIV and represent every block by Cﬁ and Sﬁ
1. By (2.2) and

cos (4j—l—1)4(2k—|—1)7r — cos j(2k7;|—1)7r cos (2k;|;11)7r _<in j(2k7;|—1)7r <in (2k;|;11)7r
it follows that
. ni—1
\/% <cos W%;:o = % (I, CHdiag c,, — V;,, S diag sy,)
= % (1, Clldiag c,, — Vj, By, SH T, diag s,). (2.9)

2. By (2.2) and

cos (4j+3)4(2k+1)7r ~ cos (j-l—l)(ik-l—l)w cos (21:;1)% 4 sin (j-l—l)(ik-l—l)w “n (21:;1)%
we obtain that
. n1—1
g <cos <4]+3>izk+1>w>jk:0 = L (VI CMdiag e, + I/, 51 diag s,,)
= - (VECH diag ¢,y 4 1), By, SH T, diag s,) . (2.10)
3. By (2.2) and
cos (4j+1)(Z:2k+1)w _ (_1)]‘ cos <j(2k7;|—1)7r n (n—|—24];—|—1)7r>

_ (_1)] cos J(2k+1)7 <in (n—2k-1)m (_1)] <in j(2k7;|—1)7r cos (n—2k—1)m

n 4n 4n

it follows that
\/% <COS _(4J+1)(Z:2k+1)7r>n1_1

3,k=0

= (3, I, CHdiag (Ju, sn,) — S, Vi, S diag (Jy, €4,))

2 n1 “ng

75 (I, Cil Juydiag (o, 85,) + Vi By SEldiag (Jn, €0) - (2.11)

Here we have used that ¥, [} =1 ¥, and =X, V, =V, X, .
4. By (2.2) and

S

4n n 4n

cog Ait3)(nt 2kt m (_1)]‘+1 cos <(j+1)(2k-|—1)7r _ (n—|—2k+1)7r>

— (_1)j+1 COS (J’+1)(§k+1)7r <in (71—241;—1)7r + (_1)j+1 sin (J’+1)(§k+1)7r COS (71—241;—1)7r

we obtain that

n1—1
4743)(n+2k+1)7
ﬁ <COS =)(4”) >j,k:0
—% (an VnT1 Cﬁ diag (Jn, 8n,) + 2, 1), Sﬁ diag (J,, cn1)>
= 5 (Vi B, Clldiag (o, s0,) = 17, B, 4 diag (Jn, €0,)) (2.12)
= (VI Gl T, diag (T, s0,) = 17, B, ShL diag (J, €0,)) -

Using the relations (2.9) — (2.12) we get the following factorization of P, C1V:

I Vi X diag ¢ I, diag (Jy, s,,)
Pn CIV _ 1 ni ny ~iny C[[S[[ny ni ni Pny)
. VEQ§ —m2m><n*9””<—kwmg%l diag (o)

Thus (2.8) follows by the intertwining relation (2.3), namely S!! = J,, CI'S, . The
orthogonality of A,(1) and T,(1) can be shown by simple calculation. Note that T,,(1)
consists only of n; plane rotations/rotation-reflections. a

Corollary 2.5 Let n € N, n > 8 with n = 0mod 4 be given. Then the matrices C!1,
CIV. and C7£+1 can be factorized as follows

CI' = PI(PL® PL) (L @ Aw(D)(CH & O @ CLL @ CH)(T,,(0) & T, (1) T 0),
IV = PT(AL)(PL @ PLYCH & Ol @ Ol CLY (T, (0) @ T, (0) Tu(1),
Crpr = Pl (Pl @ T (0)) (Crpy @ Ctt @ O @ Ol) (T 11(2) @ Pay) T (2).

Now we give a detailed description of the structures of CI, CIV CH and CIV. Here, we
want to assume that a matrix—vector product of the form

o a1 T
—day Ao €1

is realized by 2 additions and 4 multiplications (see Remarks 2.10 and 2.11). As we shall
see, the above factorization of C'lf for n = 8 can be used to construct a fast algorithm
which needs only 10 butterfly operations and 3 rotations/rotation-reflections.

Example 2.6 For n = 4 we obtain by Lemma 2.2 that
Cil =Pl (Cy & ;") Ti(0)
with

1 1 cos T sin = Iy Jy
ol = L clV = 8 8 T.(0) = L .
2 V2 (1 —1)7 2 (simE —COS£>7 1(0) 2(]2 —J2>

8 8

Note that Pl = P,. This yields

1 1 cos T sin = T J
CII:lP 9 8 8 2 2
* 2 4((1 —1)69\/_<sing —COS%)) <[2 —J>

such that Cl'x with x € R* can be computed with 8 additions and 4 multiplications.
The final scaling with 1/2 is not counted. We see that only 3 butterfly operations and 1
scaled rotation-reflection are required.

Example 2.7 For n = 4 we obtain by Lemma 2.4 that
Ci¥ o= PYA(G @ G (L)
5 PI A1) (VRO @ VaC]) T(1)

with
v M v
V2 Cos {g , , sin 7g
v M v
A1) = L 1 1 Tu(1) — cos 75 sin %
4() -2 1 1) 4() - s 3r 3r
- —sin g oS g
2 S _ sl
V2 sin < Cos 1g

Hence, we can compute C'IVx with x € R* with 10 additions and 10 multiplications. We
see that only 3 butterfly operations, 1 rotation, and 1 rotation—reflection are required.

Example 2.8 For n = 8 we obtain by Corollary 2.5 that
Cs' = PSPy Pa) (I As(1)) (3 @ C3Y @ O3 @ C37) (T4(0) & Tu(1)) T5(0)

with .
(L
TS(O)_\/§<I4 —J4>'

Note that Bg := PI(Py @& Py) coincides with the bit reversal matrix (see [24], pp. 36 —
43). This yields the factorization

O3 = 2 Bs(L A1) (V206 V201 620 an/201N (V2TY(0)8v2T4(1)) (i‘ _ﬁ)

which is very similar to that of Loeffler et al. [14]. Note that
NeYe = (1 1)

1 -1

is a butterfly matrix. If we compute C{x for arbitrary x € R® then the algorithm based
on the above factorization requires only 26 additions and 14 multiplications (not including
the final scaling by v/2/4). Further we see that only 10 (scaled) butterfly operations, 1
scaled rotation, and 2 scaled rotation-reflections are used.

Example 2.9 For n = 8 we obtain by Corollary 2.5 that
ClV = PIAs()(Pya Py (CHaclV ool oclV)(Ty0) o T4(0)) Ts(1)
= 2RI VBAs(1) (P& Pi) (V2OH & V30T @20 & VaclY)
(V2T4(0) @ V2T4(0)) Tx(1)
with the cross—shaped twiddle matrix

cos = sin =

32 5 5 32
v M v
cos 37 i i sin 37
v M v
cos 27]] sin 27
cos £ sin ==
T (1) — 32 32
s —sinZE cos &
. 32 32 .
M v v
, sin 27 — cos 37 ,
M i i
— Sin 39 COS 39
sin 37r—2 — COS 37r—2

and the modified addition matrix

1 1
1 -1
A1) = & ! ! (1 Jy)
1 1
1 -1
V2

Remark 2.10 In [9, 14] one can find the identity

Qo aiy s 1 -1 0 o + “ ! 0 s
= aq 1 —1 .
—a1 ag Ty 0 —1 1 T
aog — dy 0 1

If the terms ag + a; and ag — ay are precomputed, then this formula suggests an algo-
rithm with 3 additions and 3 multiplications. Using this method, the DCT-II of length
8 in Example 2.8 needs only 11 multiplications and 29 additions. However, the numer-
ical stability of this method is worse than the usual algorithm with 2 additions and 4
multiplications (see [27]).

Remark 2.11 For a rotation matrix

(cos Siﬂ99> (¢ € (—m, m)),

—s8iny cosy

there is a second way to realize the matrix vector multiplication with only 3 multiplications
and 3 additions. Namely, using 3 lifting steps [5], one finds the factorization

(Cmz)= (6 ™) (Lis 1) (0 ™).

The above matrix factors are not orthogonal. However, it has been shown (see [27]) that
for small rotation angle ¢ the roundoff error is less than for classical rotation. The same
method is also applicable to the rotation-reflection matrix

(cosc,o Sif“P) (¢ € (—=m, 7))

sing —cos

3 Split-radix FFT

The unitary Fourier matrix

Fy = 7z (wif) il

with w, = exp(—27i/n) is closely related with cosine and sine matrices. A standard
FFT is based on factorization of the Fourier matrix into a product of sparse, (almost)
unitary matrices. A complex matrix A, is called almost unitary, if AnA—Z = «al, with
some « > 0. A real, almost unitary matrix is called almost orthogonal.

10

Lemma 3.1 For even n > 4, the Fourier matriz F,, can be factorized as follows

F, = PI(F, @ F,)U,, (3.1)
F, = U,(F, ®&F,)P"

with the unitary matrix
. mn]— [nl [nl
Un = <[n1 D dlag (wi)k:01> % ([.y) :

Proof. We only sketch the proof of (3.1). Multiplying F,, with the permutation matrix
P, we obtain the block matrix

ki — 27(n1+k)yny —
P F =L (Wi)y (wn]())Jyk;)
ntn = 5 (w(2j+1)k n-1 o i) (k) ym -1 |

w0 ko (w0n)ik=0

The four blocks can be expressed in the form

F F
Pn Fn = X . " . "
V2 (Fn diag (wf)ily! —Fh, diag (w5)2;61>

I I
= (F,, ®F,)2%1{ . " oo
(Fy ® ”ﬁ(dlag (whyig! —diag (w§>2;51>

. n]— [nl [nl
e (Fnl @ Fnl) ([nl @ dla,g (wﬁ)kzol) % <[n1 _[n > .

1

Obviously we have U, UT = I,,. This completes the proof of (3.1). O

Remark 3.2 In signal processing, the even—odd permutation of rows of F,, (as realized
in the above proof of (3.1)) is called “decimation—in—frequency”, since the frequency—
dependent row indices are decimated into even and odd indices. The even—odd permuta-
tion of columns of F,, (corresponding to (3.2)) is called “decimation—in—time”, since the
time—dependent column indices are splitted (see [24], pp. 67 — 68).

In the case n = 2" (¢ > 2), recursive application of (3.1) provides the Gentleman-Sande
factorization of F, (see [24], pp. 65 — 67). Recursive application of the transposed fac-
torization yields the well-known Cooley—Tukey factorization (see [24], pp. 17 — 21). The
corresponding FFT are also known as radix—2 algorithms. A better arithmetical com-
plexity can be achieved using the so—called split—radix algorithm. The idea of split—radix
FFT, due to [6, 7], can be described as a clever synthesis of radix-2 and radix-4 FFTs
(see [24], pp. 111 — 119).
In this section we want to derive a new approach to the split-radix FFT which is com-
pletely based on the matrix factorization of F,. In the next sections, we will apply the
same ideas to derive new split—radix DCT-algorithms.
Let n = 2" (t > 2). We set ng :=n27°=2"%for s =0,...,¢ — 1. Further, we introduce
the odd Fourier matrix

). 1 <w(2j+1)k>n—1

n o ﬁ 2n k=0 .
]7 -
This matrix is unitary, too. Note that F), is also called the even Fourier matrix. We shall

show that F,, can be splitted into F),, & Fé}) in a first step, then F),, & Fé}) can be splitted
into I, & Fé;) & F,., & F,, in a second step and so on. This procedure follows from

11

Lemma 3.3 For even n > 4, the matrices F,, and FY can be factorized as follows

Foo= Pl (Fy @ ED)W,0) (33)
FO = PI(F, @ B, Wa(1) (3.4)

with the unitary matrices

L, I, .
W00 =5 (1)s W)= (D 0 D) W0) (U © (18,
where D, = diag (wh)t

The proof is similar to that of Lemma 3.1 and is omitted here.
For n = 2' (¢ > 3), we conclude from Lemma 3.3 that

F, :Pg(Pgl @Pg;)(Fm @Féi)@Fm @Fm)(Wnl(O)@Wnl(l))Wn(O)

Recursive application of Lemma 3.3 provides the split—radix factorization of F,, on which
the split-radix FFT is based. The factorization steps can be illustrated in the following
diagram:

step s =0
step s =1
step s = 2

(Fn3)< step s = 3

Now we shall answer the following problem: On which positions k& € {1,...,2°} in step
s€40,...,t =1} occur £, and Féi), respectively?

We introduce the binary vectors 3, := (85(1),...,5:(2%)). If F,, stands at position k
in step s, then let f5(k) := 0. We put gs(k) := 1, if Fél) stands at position k in step
s (see [24], pp. 115 — 119). By Lemma 3.3, from §s(k) := 0 it follows immediately
that s41(2k — 1) = 0 and (,41(2k) = 1. Further, from Gs(k) := 1 it follows that
Bs41(2k — 1) = B541(2k) = 0. Now, our diagram looks as follows:

Bo = (0)
51 = (07 1)
B, =1(0,1,0,0)

63 = (07 17070707 1707 1)

Lemma 3.4 Lett € N with t > 2 be given and 3, := (0). Then
654—1 :(65735)7 5:07"'7t_27 (35)

12

where BS equals B, with the exception that the last bit position is reversed. Further,
18,1l = 4oy Bs(k) = (27 = (=1)7) (3.6)

is the number of ones in the binary vector 3,.

S

Proof. The assertion (3.5) follows by induction. For s = 0 we have 8, = (0) and
B, = (0,1) by Lemma 3.3 such that 8, = (8,,8)-
Assume that for arbitrary s € {1,...,¢t — 2},

65 = (65—17 Bs—l)‘

Then we have by definition)
65 = (65—17 65—1)‘ (37)

In step s + 1, the first part of vector 8,, namely 8,_;, turns into (8,_;, Bs_l) by our as-
sumption. The second part of B,, namely 3,_,, changes into (8,_;, B,_;) by assumption.

Consequently, we obtain 3, | = (Bs_1s Bs—l? B._1, B._1) = (B, B,).
The 1-norm of 3, equals the number of ones in 3,. By (3.3) we know that §,(k) =0

implies s41(2k — 1) = 0 and (s11(2k) = 1. By (3.4) we see that (k) = 1 implies
Bs41(2k — 1) = 0 and (,41(2k) = 0. Thus we have

1Bsllx + 185411l = 2% 1Bl = 0.

Using classical difference equation theory we obtain (3.6). a

We introduce permutation matrices
Pn(s)::PgS@...@PnTS, s=0,...,t—2,
and for each pointer 3,
Wi(B,) = Wi (B:(1) & ... & W, (B5(27), s=0,...,1—1,

with W, (0) and W, (1) as in Lemma 3.3. Note that B, := P,(0)... P,(t — 2) is the bit
reversal matrix (see [24], pp. 36 — 43). Further, W, (3,_,) is a diagonal block matrix,
where each block in the diagonal is either

1 (1 _ 1
F2_ﬁ<1 _1> of F2 _\/5<1 1>

Recursive application of Lemma 3.3 provides the split—radix factorization of Fj,.

Theorem 3.5 Let n = 2" (t > 3). Then the Fourier matriz F,, can be factorized into the
following product of sparse unitary matrices

F, =B, Wn(ﬁt—1)Wn(5t—2) s Wn(ﬁo)-

In order to reduce the number of multiplications, the factor v/2/2 in each matrix W, (83,)
is moved to the end of calculation. From

Fn = ﬁ Bn \/§Wn(6t_1) \/§Wn(6t—2) cee \/§Wn(ﬁ0)
we obtain the following split-radix FFT:

13

Algorithm 3.6 [Split—radix FFT]
Input: n=2"(¢t>3), xe C".

1. For s = 3,...,t precompute the roots of unity wh. (k=1,...,2°7% —1).

2. For s =0,...,t—2 form 554—1 = (55,[35) with 8, = (0).

3. Put x(© :=x and compute for s =0,...,t — 1

X = VI (8,

4. Permute x) := B, x(t=1),

Ot

. Multiply with scaling factor y := T x(1),
Output: y = F,x.

The split-radix FFT is known to be one of the FFT with lowest arithmetical complexity,
in particular, it has a lower complexity than radix—2 and radix—4 FFTs (see e.g. [24], p
119).

4 Split-radix DCT-II algorithms

In this section, we present split—radix algorithms for the DCT-II of radix—2 length. Re-
cursive application of (2.4) and (2.8) provides the split-radix factorization of CI. The
corresponding complete factorization can be derived similarly as worked out in Section 3
for the Fourier matrix. Note that there does not exist a factorization of C1Z or C'IV which
is analogously to that of Lemma 3.1. Therefore a split-radix DCT-II algorithm seems to
be very natural. A split-radix DCT-III algorithm follows immediately from a split—radix
factorization of C'!! by transposing.

Let n = 2' (¢ > 2) be given. Further, let ny, := 2% (s = 0,...,¢t — 1). In the first
factorization step, C'I! is splitted into Cﬁ b Cﬂ/ by (2.4). Then in the second step, we
use (2.4) and (2.8) in order to split C!7 & C1V into CIl ¢ CIV & CH & CI1. In the case
ny > 2 we continue this procedure. Finally, we obtain the split-radix factorization of CI.
The first factorization steps are illustrated by the following diagram:

step s =0
step s =1
step s = 2
step s = 3

As in Section 3, we introduce binary vectors B, = (55(1),...,55(2%)) for s € {0,...,t—1}.
We put 3,(k) := 0 if CI! stands at position k € {1,...,2°} in step s, and B,(k) := 1 if
Cév stands at position k£ in step s. These pointers 3, have the same properties as in
Section 3.

14

For each pointer 3, we define the modified addition matrix

Aa(B,) = A (B1) B oo ® A (B(2)), s =0,..,t—2

with A, (0) :=1,,, and A, (1) as in Lemma 2.4, further the modified twiddle matrix

To(8,) = T (A1) . ® T (Bul2), s=0,0 01

with T,,.(0) and T, (1) as in Lemma 2.2 and Lemma 2.4, and finally the cosine matrix

Co(B)) = Co(Bs(1) @ .. Co(Bo(2°), 5=0,...,0—1

with €, (0) := C!T and C,,(1) := CIV. Let the permutation matrices P,(s) be given as
in Section 3.

Note that C,,(8,) = CII. We shall see in the following that the cosine matrix C,(83,) ap-
pears as intermediate result in our recursive factorization of CZ. The matrix C,,(8,_,) =
T,(B,_,) is a diagonal block matrix, where each block in the diagonal is either C} or
C1V. By construction, all matrices P,(s), A,(3,) and T,,(8,) are sparse and orthogonal.

Theorem 4.1 Let n =2 (t > 2). Then CI can be factorized into the following product
of sparse orthogonal matrices

Cl = (Pa(0)Au(Bo)) - - (Pult = 2)Au(B,2)) Ta(Bir) - - Tl Bo)- (4.1)

Proof. The split-radix factorization (4.1) follows immediately from

Cn(B,) = Po(s)An(B,)Cu(B11)10(B,), s=0,...,t—2. (4.2)
By definition of P,(s), A,(83,), Cu(B,) and T,(8,), these formulas (4.2) are direct conse-
quences of Lemma 2.2 and Lemma 2.4. a

In order to reduce the number of multiplications, we move the factors 1/4/2 in the matrices
T.(8,), s=10,...,t — 1 to the end of the calculation and obtain with the scaled, almost
orthogonal matrlces S.(8,) :=2T,(8,) the factorization

CI = (PO A(BY) - (Pl = D ABu)Su(Bir) - SulBy). (43
This implies the following fast algorithm for the DCT-II of radix—2 length:

Algorithm 4.2 [Split-radix DCT-II algorithm]
Input: n=2"(t>2), xe R"™

1. Precompute v/2/2 and for s = 0,...,t —2 and & = 0,...,2° — 1 the values
V2 cos 25";13 and /2 sin 25";?”.

2. For s =0,...,t—2 form 554—1 = (55,[35) with B, := (0)

3. Put x(© :=x and compute for s =0,...,t — 1

x(sH1) . Sn(ﬁs)x(s)-

15

4. For s =0,...,t —2 compute
x4 = p (1 — s —2) A, (B,_,_,) x"F).

1
n

2t—1)

5. Multiply with scaling factor y := ==x!

Output: y = Clix.

Now we determine the arithmetical complexity of this split-radix DCT-II algorithm. As
usual, the final scaling by n='/? is not counted. For an arbitrary real matrix A, of order
n, let a(A,) and (A,) denote the number of additions and multiplications for computing
A, x with arbitrary x € R".

Theorem 4.3 Let n = 2" (¢t > 2) be given. Then the split-radiz Algorithm 4.2 for the
DCT-ITI of length n possesses the following arithmetical complexity

oz(CH) = 48y l(—l)t +1,

3 9 9

/,L(Cil) = nt—én—l—l(—l)t—l—l.

Proof. By (4.3) it follows that

o(C) = S al5,(8.)+ Y a(Au(B,). (4.4)
(O = (S8 S ulALB,). (4.5)

By definition of A,(3,) and S,(8,) we obtain
a(Su(B,)) =n, w(Su(B,)) = 2n, 1B,

a(An(B,)) = 1(An(B,)) = (ns = 2) [|B,]l

By (3.6) we have ||3,][1 = £ (2° — (—1)*). Inserting these values into (4.4) and (4.5) yields
the assertions of the theorem. a

We want to derive a second algorithm which possesses even lower arithmetical complexity.
We slightly change the derived orthogonal matrix product (4.1) in the following way.
Instead of A,(3,), consider the modified addition matrices

A;(ﬁs) = A;S(ﬁS(l)) ... D A;S(ﬁses))v §=0,...,01 =2

with A7 (0) := A,.(0) = I, and A’ (1) := V2 A, (1). Hence A,(83,) and A,(B,) are
connected by

AL(B,) = Dn(B,) An(B,)

with a diagonal matrix

D,(B,):=(V2)*VI, 3.2, s=0,...,t—2. (4.6)

16

Further, consider the modified twiddle matrices
Su(B,) =5, (B:(1)) & ... B 5, (Bs(2°), s=0,...,1 =2
with 57 (0) := \/§Tns(0) and S (1) := T,,(1) such that

S(B.) = (Du(B,)) 7" Su(B,)-

As before, the matrices A/ (3,) and S/ (8,) are sparse matrices with at most 2 nonzero
entries in each row. More precisely, after suitable permutations, A/ (83,), s =1,...,t — 2,
contains only butterfly matrices (with entries +1) and diagonal matrices (with entries 1
and v/2). The matrices S’ (8,), s = 0,...,¢ — 2 only contains butterfly matrices (with
entries +1), rotation matrices, and rotation-reflection matrices. Note that A/ (8,) =
A4,(0) = L and S,(8,) = V3T, (0).

With the changed matrices we find from (4.1) the factorization

I 1 / o / / /
Ol = g P04 B - Pt = 24, (B) T (B, (Broa) - 51(Bo)

since for each s = 0,...,¢ — 2 the product of diagonal matrices D,(8,)™' ... D,.(By)"
commutes with T,,(8,,) and with A, (8,). Observe that the inner matrix 7,,(8,_,) is not
modified. For the algorithm, we multiply this matrix with v/2 and finally obtain

CI = L PL(0) AL(By) .. Palt = 2) AL(B,2)Su(Bi) SL(Bs) - SL(By). (A7)

This factorization leads to the following modified split—radix DCT-II algorithm:

Algorithm 4.4 [Modified split—radix DCT-II algorithm]
Input: n=2"(t>2), x € R"

1. Precompute v/2, ﬂcosg, V2sinZ, and for s = 1,...,t =2,k =0,...,2° — 1

87
2k+1 . (2k1
precompute the values cos (2:_13)” and sin { 2:_13)”.

2. For s =0,...,t =2 form B3, := ([35,[35) with B, := (0).
3. Put x(© := x and compute for s =0,...,t —2

XU = 57 (8,)x).

4. Compute x := 5, (8,_,)x~1.
5. For s =0,...,t —2 compute
(1) Pn(t s 2) A;(ﬁt—s—Q) «(t+s)

1 (2t-1)

6. Multiply with scaling factor y := —=x .

3

Output: y = Clix.

17

The arithmetical complexity of this modified split-radix DCT—II algorithm can be deter-
mined analogously as in Theorem 4.3. By (4.7) it follows that

o(C1) = a(S,(B)+ 3 a(S1(8,)) + Y alAL(8,)).
WO = u(SuB) + S S8 + 3 (A8,

S

and 57 (3,) we obtain for s =0,...,t —2

) o (Su(8,)) = 204 18,1,
) = (s =28l w(ALB)) = 21181
) = o p(Su(Bier)) = 418l

By (3.6) we have ||B,|li = £(2° — (—1)?). Inserting these values into the above equations
yields for Algorithm 4.4

= n

oz(CH) = %nt—gn—%(—l)t—l—l,
) =

Remark 4.5 For comparison, the algorithm presented by Wang [26] (which already out-
performs the algorithm in [4]) for the DCT-II of length n = 2' needs 2 nt — n + 3 multi-
plications and %nt — 2n + 3 additions. The complexity of our new Algorithm 4.4 is even
comparible with fast DCT-II algorithms based on polynomial arithmetic which need % nt
multiplications and 3nt —n + 1 additions (see e.g. [12, 13, 20, 21]). Namely, using the
method of Remark 2.10 (or Remark 2.11) computing a (scaled) rotation matrix/rotation—
reflection matrix with only 3 multiplications and 3 additions, we obtain for Algorithm

4.4

a(S(8,) = ynslBlli+n, w(SH(B) =50 1B, s=0,...,t =2,
a(To(Bi21) = NBicull + 1, (T (Bir) = 3B ll1-

Hence we get o(CH) = 2nt —n + 1 and p(C1) = int — 1.
The goal of [24], p. 229 was to develop FFT-based DCT-II algorithms that require
2.5n log, n flops, assuming that the transform length n is a power of 2. We have shown
that this is also possible with 2n log, n flops using only operations of simple structure,
namely permutations, scaling with /2, butterfly operations, and plane rotations/rotation—
reflections with small rotation angles contained in (0, 7/4).

5 Split-radix DCT-1IV algorithms

The same split—radix technique as in Sections 3 and 4 can be applied to the DCT-1V of
radix—2 length.

Let n = 2' (t > 2) be given. In the first step we can split CIV into CIT @ CI by (2.8).
Then in the second step, we use (2.4) in order to split CH@CH into CH@CIV@CH@CW.

18

In the case ny > 4, we continue the procedure. This method is illustrated by the following
diagram:

step s =0
step s =1
step s = 2

CHEREHEHCEREICEHCED step 5 = 3

Analogously as in Sections 3 and 4, we introduce binary vectors 7, := (vs(1),...,7s(2%)),
s € {0,...,t —1}. We put v,(k) := 0 if C!! stands at position k € {1,...,2°} of step
s, and ys(k) ;=1 if Cév stands at position k£ of step s. These pointers possess different
properties as in Lemma 3.4.

Lemma 5.1 Lett € N (¢t > 2) and ~, := (1). Then

75+1:(:757:)/5)7 SZO?"'vt_Qv
where 7, equals v, with the exception that the last bit position is reversed. Further,

Il = z (k) = 120 4 2(— 1)),

The proof is similar to that of Lemma 3.4 and omitted here. Now, for each pointer =,
we define A, (v,) and T,,(7,) (or their modified versions) in the same way as A, (83,) and
T.(3,) in Section 4.

Theorem 5.2 Let n = 2! (t > 2). Then the matriz CIV can be factorized into the
following product of sparse orthogonal matrices

Civ = Pu(0)An(¥o) - -+ Pult = 2) An(Yemo) Tu(vet) - - - Tul0)-

The proof directly follows from Lemma 2.2 and Lemma 2.4.

The factorization of CIV in Theorem 5.2 (slightly changed by diagonal matrices as in
Section 4) implies fast DCT-IV algorithms analogously to Algorithm 4.2 or Algorithm
4.4.

For computing C'IV'x for x € R" using Lemma 2.4 and Algorithm 4.4 we derive an
arithmetical complexity

a(CVy = 2a(CT) + a(V2 A1) + o(TW(1))
= Int—2n+2(-1),
p(CY) = 2p(CL]) + n(V2 A1) + p(T(1))

= Znpt+tn—-2(-1)+1

We see that DCT-IV of radix—2 length n can be computed by (142 log, n)n flops. With
the method of Remark 2.10 (or Remark 2.11), the number of multiplications can even be
reduced further.

19

6 Split-radix DCT-I algorithms

A split-radix DCT-T algorithm is based on (2.5), (2.7), and (2.8). Let n = 2" (¢t > 2) be
given. Further, let ny := 27% (s = 0,...,¢t — 1). In the first factorization step, C7£+1 is
splitted into C7£1+1 P Ciln by (2.5). Then in the second step, we use (2.5) and (2.7) in
order to split Cil_l_l) Ciln into 07524-1) 075211@ 075211@ Cg/ In the case ny > 2 we continue
this procedure. For CIV we use the factorization

¢, =T () (C e O Al By

which follows from (2.8) by transposing. Finally, we obtain the split-radix factorization
of C'l.,. Note that (2.5) is in some sense also true for n = 2:

Cy = P (G @ 1) T5(2),

i.e., the DCT-I of length 3 can be computed by 2 (scaled) butterfly operations.
The first factorization steps can be illustrated by the following diagram:

step s =0
step s =1
step s = 2

CICNENCENEDNTENE) o=

Now we have to indicate on which position k& € {1,...,2*} instep s € {0,...,¢—1} stands
CL .., CHI and CIV respectively. We introduce triadic vectors 8, = (d,(1),...,d,(2°))
for s € {0,...,t — 1} as pointers. Since C£S+1 stands at first position of each step s,
we set d,(1) := 2. We put (k) := 0 if CH1 stands at position k € {2,...,2°} in step

se{l,....,t =1}, and §,(k) :=1if CIV stands at position k in step s.

0o = (2)
0, = (270)
8, = (2,0,0,1)

é;=(2,0,0,1,0,1,0,0)
These pointers §, have similar properties as 3, in Section 3.
Lemma 6.1 Lett € N with t > 2 be given and 8o := (2). Then
d.41 = (65, B,), s=0,...,t—2, (6.1)
where B, is determined by the recursion (3.5). Further,
6l =2 =420~ 4+ 3 -1y

is the number of ones in the triadic vector §.

20

The proof is similar to that of Lemma 3.4 and omitted here for shortness.

For each pointer §, we define the matrix
Bnt1(6,) =Pl & B, (8,(2)) & ... 8 B,.(8,(2%)), s=0,...,t—2,
with B, (0) := T,.(0)T and B,_(1) := T,,.(1)T as in Lemma 2.2 and Lemma 2.4. Further

we introduce the matrix
Uns1(05) :=T,.41(2) B U, (85(2)) & ... B U, (8:(2°)), s=0,...,t—2,
with U,.(0) := P,, and U, (1) := A, ()T P,. as in Lemma 2.2 and Lemma 2.4, and

finally the cosine matrix
Cot1(8:) = CL L 0 Co(6:(2) & ... Co(8:(2°), s=0,...,¢t—1,

with €, (0) :== C and C, (1) := C[Y.
Note that (o) = C7£+1- We shall see in the following that the cosine matrix C,,41(8;)

appears as intermediate result in our recursive factorization of C7£+1- By construction, all
matrices B, (d5) and U,(d5) are sparse and orthogonal.

Theorem 6.2 Let n = 2' (t > 2). Then the matriz Cl, can be factorized into the
following product of sparse orthogonal matrices

Ci—l—l — Bn+1(60) e Bn+1(5t_2) Cn_|_1(5t_1) Un—l—l((st—Q) e Un+1(60). (62)

The proof directly follows from Lemma 2.2 and Lemma 2.4. The matrix Cp,41(d:—1) in
(6.2) is a block matrix consisting only of C (in the first block), CHI and CIV. The
factorization of C'L, | in Theorem 6.2 implies a fast DCT-T algorithm with

oz(Ci_H) = %nt—%n—l—t—l—%(—l)t—l—%,
/,L(Ci_l_l) = %nt—%n—l—t—%(—l)t—l—%

We see that DCT-I of length n 4+ 1 can be computed by 3n log, n flops if n is a power of
2. This split-radix DCT-I algorithm uses only permutations, scaled butterfly operations,
and plane rotations/rotation-reflections and works without additional scaling. Therefore
we obtain a higher arithmetical complexity. For comparison, the FFT—-based DCT-I algo-
rithm in [24], pp. 238 — 239 requires 2.5 n log, n flops, but it possesses a worse numerical
stability, since it requires divisions by small sine values.

7 Numerical stability of split-radix DCT algorithms

In the following we use Wilkinson’s standard method for the binary floating point arith-
metic for real numbers (see [11], p. 44). If @ € R is represented by the floating point
number fl(x), then

fiz) =w(1+4d) (|6l <u),

where u denotes the unit roundoff or machine precision as long as we disregard underflow

and overflow. For arbitrary zg, 21 € R and any arithmetical operation o € {4, —, x, /},
the exact value y = x¢ 0 21 and the computed value § = fl(x¢ 0 1) are related by
fi(zoo0x1) = (xgoar)(1l +6°) (16°] < w). (7.1)

21

In the IEEE arithmetic of single precision (24 bits for the mantissa with 1 sign bit, 8 bits
for the exponent), we have u & 27** & 5.96-107%. For arithmetic double precision (53 bits
for the mantissa with 1 sign bit, 11 bits for the exponent), we have u & 27°% & 1.11-10716
(see [11], p. 45).

Usually the total roundoff error in the result of an algorithm is composed of a number
of such errors. To make the origin of relative errors é7 clear in this notation, we use
superscripts for the operation o and subscripts for the operation step k.

In this section we show that, under weak assumptions, a split-radix DCT-II algorithm
possesses a remarkable numerical stability. We consider Algorithm 4.2 in detail. The
other algorithms can be analysed similarly.

The roundoff errors of Algorithm 4.2 are caused by multiplications with the matrices
Sa(By), s =0,...,t—1,and A,(B,), s=1,...,t — 2. These matrices have a very simple
structure. After suitable permutations, every matrix is block—diagonal with blocks of
order < 2. All blocks of order 1 are equal to 1. Every block of order 2 is either a (scaled)

butterfly matrix
1 1 1 (1 1 1 (1 —1
1 -1/’ vzl —1)” vz \ 1 1)’

or a scaled rotation matrix/rotation-reflection matrix
do a1 o a1
—ar ap)’ a1 —ao
with

ok 1 1 ok 11
do = V3 cos PEADT gy R A DT

9543 SYTER s=0,...,t—2;k=0,...,2° — 1.

First we analyse the roundoff errors of simple matrix—vector products, where the matrix
of order 2 is a (scaled) butterfly matrix or scaled rotation matrix. Before starting the
detailed analysis, we show the following useful estimate.

Lemma 7.1 For all a,b,c,d € R, we have
(Jacl + b + ac — ba])? + ([ad| + be] + |ad + bel)? < 2(a? + B)(c +)
where the constant 16/3 is best possible.

Proof. Without loss of generality, we can assume that a,b,¢,d > 0 and ac > bd. Then
the above inequality reads as follows

(ac)2 + (ad + bc)2 < %(a2 + 62)(02 + dz).
This inequality is equivalent to
0 < (ad — bc)2 + (ac — Zbd)2

and obviously true. For ¢ = ¢ = v/2 and b = d = 1 we have equality. a

22

Lemma 7.2 (i) For the butterfly operation yo := xo + 1, Y1 = To — &1 with o =
fi(zo + x1) and g1 := fl(xo — x1), the roundoff error can be estimated by

(0 — yo)* + (g1 — y1)? < 2u? (2 + 7). (7.2)

(ii) If the scaling factor a & {0, 1} is precomputed by a = a + Aa with |Aa| < ¢y u, then
for the scaled butterfly operation yo := a(xo+x1), y1 := a(xo—x1) with Jo := fl(a(xo+x1))
and g1 :=fl(a(xo — x1)), the roundoff error can be estimated by

(90 = 0)* + (g1 — 91)* < (2v2]al + V21 + O(u))* u® (a5 +). (7.3)

(iii) If the different entries ar ¢ {0, £1} with a* := a} + ai > 0 are precomputed by
ar = ap + Aay with |Aay| < cau for k= 0,1, then for the scaled rotation

Yo := QoZo + A1T1, Y1 = —A1Tg + Aoy
with go 1= fl(Goxo + ar121), 11 := fl(—a1xo + Gox1), the roundoff error can be estimated by
(%0 — y0)* + (91 — y1)* < (J5 lal + V2 e + O(u))* u? (a5 + 7). (7.4)
Proof. (i) By (7.1) we have

Yo = ($0+$1)(1+58_):yo+($o—|—$1)53_7
o= (wo—x1) (L+67) =y + (20— 21) 65

with |§] < w for & = 0,1 such that by
|90 — yol < |wo + z1]u, 91 — il < [wo — 21w,

we obtain (7.2).
(ii) Putting zo := a(wxo + x1), 21 := @(xo — 1), it follows from (7.1) that

Jo = alxo+x1)(L+65)(1+05) = 20+ alxo + 21) (65 + 65 + 6595),
71 = alzo— 1)1+ 07)(1+6) = 21 4 alxe — 1) (6] + 67 +6767)

with |5 < u, 6] < u, k= 0,1. Thus, by
|90 — 20| < la(wo + @1)|(2u+w?), |G — 21| < a(zo — 21)](2u 4 w?)

we get the estimate

90 — zo|” + |51 — 21 < 28 u® (24 u)? (xf + 2)
with @* = a? + O(u), i.e.
< (2v2]a| 4+ O(u)) u

(yNo—Zo> (51?0)

Y1 — #1 2 T
2o — Yo . 1 1 Lo
o) =2 () ()

23

2

we obtain

<V2qu

Z0 — Yo
21— Y /|,

and finally by triangle inequality

G251,

()

< (2V21al+V2e + O(u))u

2

()

2

(iii) Introducing zo := @oxo + @121, 21 := —d10 + aox, it follows from (7.1) that
Jo = laoxo(l + &g) + arws(l+67)] (14 4d5),
g1 = [=aawo(l +65) + aows (1 +65)] (1 + 6f)

with [6X| <w for j =0,....3 and [6;| < u for k= 0,1. Hence we obtain

(laoxo| + |arz1| + |Goxo + @r21]) w + (|Goxo| + |a1x1]) v

(larzo| + |aox1| + |d120 — @ox1]) w + (Jarzo| + |aox1]) u?

|yNo —Zo|

<
gy — z1] <
and hence

|90 — Zo|2 + |91 — 21|2 < [(Jaowo| + |@121| + |a@oxo + CNlle’JC1|)2
+ (|arxo| + |aox1] + |ar1ao — Elo$1|)2] U2(1 + U)Q-

Applying Lemma 7.1, we find

90 — 20> 4+ |51 — 21| <

since a3 + ai = a2 + ai + O(u) = a® + O(u) by assumption. Therefore we obtain

(222 = (rvow) o (2]
(27m)=(A) (2) -
(o] =vaee | (20)

since the matrix in (7.5) is almost orthogonal and therefore its spectral norm equals

we conclude that

<V2ecu

’
2

\/(Aa0)2 + (Aay)? < V2 ¢y u.

Using the triangle inequality, we obtain (7.4). O

For an arbitrary input vector x € R”, let y := CIx € R" be the exact transformed vector.
Further let y € R™ be the output vector computed by Algorithm 4.2 using floating point
arithmetic with unit roundoff u. Since C! is nonsingular, ¥ can be represented in the

24

form y = CH(x + Ax) with Ax € R™. An algorithm for computing C!x is called
normwise backward stable (see [11], p. 142), if there is a positive constant k,, such that

1A%}z < (kau+ O(u?)) %]z (7.6)

for all vectors x € R” and k,u < 1. The constant k, measures the quality of numerical
stability. Since C'? is orthogonal, we conclude that |Ax|, = [[CH(Ax)||z = ||y — ¥|2
and ||x||; = ||Cx]|; = ||y]l2- Hence we also have normuwise forward stability by

Iy = ll2 < (kaw + O(*) Iy |2,

if (7.6) is satisfied.
Now let us look closer at the computation steps in Algorithm 4.2. In step 1 of Algorithm
4.2, for every s = 0,...,t — 2, all values

25_|_3 9 25+3 9 k :07...725 - 1 (77)

are precomputed. If cosine and sine are internally computed to higher precision and the
results afterwards are rounded towards the next machine number, then we obtain very
accurate values of (7.7) with an error constant ¢; = 1 (see Lemma 7.2, (iii)). We use
the matrices gn(ﬁs), s=1,...,t—1, with precomputed entries (7.7) instead of S, (3,) =
ﬂTn(ﬁs). Assume that the value v/2/2 is precomputed with an error constant ¢; (see
Lemma 7.2, (ii)). We use the matrices A,(8,), s = 1,...,t — 2, with the precomputed
scaling factors v/2/2 instead of A,(83,).

The vectors 3, in Algorithm 4.2, 2. are generated without producing roundoft errors.
Let %(© = x(© := x. We denote the vectors computed in Algorithm 4.2, 3. by

%o+ .= ﬂ(gn(ﬁs)fc(s)), s=0,...,t—1.
Further, we introduce the error vectors e**!) € R” by
() = 5 (8,)%x) 4 e+, (7.8)

Note that e*t!) describes the precomputation error and roundoff error of one step in
Algorithm 4.2, 3. The matrix—vector product S, (3,)%x®) = S, (3o)x involves only butterfly
operations such that by Lemma 7.2, (i)

le™]l2 < v/2ufx]|2- (7.9)

Every matrix—vector product gn(ﬁs) %), s =1,...,t—1, consists of butterfly operations
and rotations/rotation-reflections scaled by v/2 such that by Lemma 7.2, (i) and (iii) we
obtain

e[, < (%+\/§C2+O(U))UH)~((S)H2, s=1,...,t—1. (7.10)
Now we introduce the vectors computed in Algorithm 4.2, 4. by

KD = (P,(t — s — 2) A, (B_,_o) XY, s=0,...,t—2,
and the corresponding error vectors e(**s+1) ¢ R by

x0T = P (L — s — 2)Au(B,_,_y) XUT) 4 el (7.11)

25

The vector e*t*T1) describes the precomputation error and roundoff error of one step in
Algorithm 4.2, 4. Permutations do not produce roundoft errors. Every matrix—vector
product An(ﬁt_s_z)fc(t"'s), s = 0,...,t — 3, consists of identities and scaled butterfly
operations (with precomputed scaling factor v/2/2) such that by Lemma 7.2, (ii) we can
estimate

e+, < (24 V2¢ + Ow) u||x+),, s=0,...,t—3. (7.12)

Note that by A,(8,) = I, we have e?*~1) = 0.

The final part of Algorithm 4.2 is the scaling y := ﬁ x(2=D Let y := ﬂ(T x(2-1)), By
(7.1) we find the estimate
Iy =yll: < 15— =xE Do+ Z XD =G,
S o S P b St S [(7.13)

We are now ready to estimate the total roundoff error ||y — y||2 of Algorithm 4.2 under
the assumption that /2/2 and the trigonometric values (7.7) in the factor matrices are
precomputed with error bounds cju and cyu.

Theorem 7.3 Let n = 2' (1 > 3). Assume that /2/2 is precomputed with absolute
error bound cyu and the values in (7.7) are precomputed with absolute error bound cyu,
respectively. Then the split-radix Algorithm 4.2 is normuwise backward stable with the
constant

k, = <%—|—2—|—\/§c1—|—02> (logzn—l)—ﬂcl.

Proof. First we estimate the roundoff error ||[%x(*=1 —x@*=1||,. Applying (7.8) and (7.11)
repeatedly, we obtain

K = X+ P0)An(Bo) - Pall = 2)An(Bi-2)Su(Bit) - Sul(By)e
Pr(0)An(By) - - - Pl — Q)An(ﬁt—z)sn(ﬁt—1)e(t_l)

Pr(0)An(By) - - - Pl — Q)An(ﬁt—z)e(t)

Po(0)An(Bg)e). (7.14)
The matrices S,(3,), s = 0,...,t — 1, are almost orthogonal with the spectral norm

15,(8,)|l2 = V2. The matrices P,(s) A,(B,), s = 0,...,1 — 2, are orthogonal such that
| Pa(s) An(B,)]|2 = 1. By (7.8) and (7.11) we can estimate

V21X ||y + [[eBFY),, s=0,...,0—1,
%2 ||y + [[e, s=0,...,0—2.

o

[E|

IA A

Thus by (7.10) and (7.12) we see that

K] < (V2 O@) KO, s =0, 01,
K< (14 O(u) K, s =0, -2

IA A

Since x(©) = x this implies
I+
(e

(272 + O(u)) ||x|l2, s=0,...,t—1, (7.15)
22+ O(uw)) x|z, s=0,...,t—2. (7.16)

26

From (7.10), (7.12), (7.15), and (7.16) it follows that

leC], < 25/2(% + c2 + O(u)) u x|z, s=1,...

et stV), < 2224 V2 4+ O(w)u x|z, s=0,...,t—3.
We obtain from (7.14) that

%7 = xED), < S0 (Biy) - SaBo) el + SB[
el + ... + [,
< (V2 eM s 4.+ V2| + €@y + ... + 2D,

and hence by (7.9)

2t—1) _ 275—1)H2

x(

4
< 2y ((7§ +24V2¢e + e)t—-1)—-1- V2e + (’)(u)) ||1x|]2- (7.17)
The final part of Algorithm 4.2 is the scaling y = 272 x=1_ Let y = fl(271/2%(2-1),
For even ¢ this does not produce a additional roundoff error. By (7.13), (7.16) and (7.17)
we get the final estimate

I

17 =yl <u (5 +2+V2a+)t —1) = V2 + O(w) x|
This completes the proof. a

Remark 7.4 In [2], it has been shown that for computing y = C!lx one has normwise
backward stability with

(i) k. = V2n%? for classical matrix—vector computation,

(il) k, = (4\/5 +2)log,n + V2 for an FFT-based DCT-11 algorithm, and

(iii) k, = (2/3)(n — 1) for a real fast algorithm based on polynomial arithmetic.

In these algorithms the nontrivial entries of the factor matrices were assumed to be pre-
computed exactly. As shown in Theorem 7.3, the new Algorithm 4.2 is extremely stable
with a constant which is comparable with the constant for the FF'T-based DCT-II algo-
rithm.

Remark 7.5 Considering the numerical stability of Algorithm 4.4, we obtain a constant
k., = O(y/n logyn). Hence Algorithm 4.4 is less stable than Algorithm 4.2. This is due
to the fact that all matrices Al (B,) and S} (B,), s =1,...,t —2, as well as S,(3,_,) are

not longer orthogonal, but have the spectral norm v/2.

References

[1] H. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine transform, IEEE Trans.
Comput. 23 (1974), 90 — 93.

[2] G. Baszenski, U. Schreiber, and M. Tasche, Numerical stability of fast cosine trans-
forms, Numer. Funct. Anal. Optim. 21 (2000), 25 — 46.

27

3]

17)
18]
19)
20]
21]

[22]

V. Britanak, A unified discrete cosine and discrete sine transform computation, Signal

Process. 43 (1995), 333 — 339.

W. H. Chen, C. H. Smith, and S. Fralick, A fast computational algorithm for the
discrete cosine transform, IEEE Trans. Comm. 25 (1977), 1004 — 1009.

[. Daubechies and W. Sweldens, Factoring wavelet transforms into lifting steps, J.

Fourier Anal. Appl. 4 (1998), 247 — 269.

P. Duhamel and H. Hollmann, Split radix FFT algorithms, Electron. Lett. 20 (1984),
14 - 16.

P. Duhamel, Implementation of the split-radix FFT algorithms for complex, real,
and real-symmetric data, IEEE Trans. Acoust. Speech Signal Process. 34 (1986),
285 — 295.

E. Feig, A scaled DCT algorithm, Proc. SPIE 1244 (1990), 2 — 13.

E. Feig and S. Winograd, Fast algorithms for the discrete cosine transform, IEEE
Trans. Signal Process. 40 (1992), 2174 — 2193.

M. T. Heideman, D. H. Johnson, and C. S. Burrus, Gauss and the history of the fast
Fourier transform, Arch. Hist. Exact Sci. 34 (1985), 265 — 277.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia,
1996.

H. S. Hou, A fast recursive algorithm for computing the discrete cosine transform,

IEEE Trans. Acoust. Speech Signal Process. 35 (1987), 1455 — 1461.

B. Lee, A new algorithm to compute the discrete cosine transform, IEEE Trans.
Acoust. Speech Signal Process. 32 (1984), 1243 — 1245.

L. Loeffler, A. Ligtenberg, and G. S. Moschytz, Practicle fast 1-d DCT algorithms
with 11 multiplications, Proc. IEEE ICASSP (1989), 989 — 991.

M. J. Narasimha and A. M. Peterson, On computing the discrete cosine transform,

[EEE Trans. Commun. 26 (1978), 934 — 936.

M. Pischel and J. M. Moura, The algebraic approach to the discrete cosine and sine
transforms and their fast algorithms, Preprint, Carnegie Mellon Univ., Pittsburgh,
2001.

K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Appli-
cations, Academic Press, Boston, 1990.

C. Runge, On the decomposition of empirically given periodic functions into sine

waves (in German), Z. Math. Phys. 48 (1903), 443 — 456, and 52 (1905), 117 — 123.

U. Schreiber, Fast and numerically stable trigonometric transforms (in German),

Thesis, Univ. of Rostock, 1999.

G. Steidl, Fast radix—p discrete cosine transform, Appl. Algebra Engrg. Comm. Com-
put. 3 (1992), 39 — 46.

G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete
Fourier—cosine and Fourier—sine transforms, Math. Comput. 56 (1991), 281 — 296.

G. Strang, The discrete cosine transform, SIAM Rev. 41 (1999), 135 — 147.

28

[23] M. Tasche and H. Zeuner, Roundoff error analysis for fast trigonometric transforms,
in: Handbook of Analytic—Computational Methods in Applied Mathematics, G. Anas-
tassiou (ed.), Chapman & Hall/CRC, Boca Rota, 2000, pp. 357 — 406.

[24] C. F. Van Loan, Computational Framework for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.

[25] M. Vetterli and H. J. Nussbaumer, Simple FFT and DCT algorithms with reduced
number of operations, Signal Process. 6 (1984), 267 — 278.

[26] 7. Wang, Fast algorithms for the discrete W transform and the discrete Fourier
transform, IEEE Trans. Acoust. Speech Signal Process. 32 (1984), 803 — 816.

[27] H. Zeuner, A general theory of stochastic roundoff error analysis with applications

to DFT and DCT, J. Comput. Anal. Appl., to appear.

INSTITUTE OF MATHEMATICS, GERHARD-MERCATOR-UNIVERSITY OF DUISBURG,
D - 47048 DUISBURG, GERMANY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROSTOCK,
D - 18051 ROSTOCK, GERMANY

E-mail addresses: plonka@math.uni-duisburg.de
manfred.tasche@mathematik.uni-rostock.de

29

