Module regpy.operators.bases_transform
Functions
def chebyshev_basis(coef_nr, eval_domain, dtype=builtins.float)
-
Expand source code
def chebyshev_basis(coef_nr,eval_domain,dtype=float): """Implements a tensor basis of Chebyshev polynomials for product spaces. It requires that both coef_domain and eval_domain has the same dimension. Parameters ---------- coef_nr : scalar or tuple Number of Coefficients of Chebychev polynomials in the coefficients basis. eval_domain : regpy.vecsps.Prod Tensor product of `GridFcts` instances on which the Chebyshev polynomial are evaluated. dtype : np.dtype, optional type of the underlying spaces, by default float Returns ------- BasisTransform A bases transform from coefficients of Chebychev polynomial to their evaluation. """ assert isinstance(eval_domain,Prod) if isinstance(coef_nr, tuple): assert len(coef_nr) == eval_domain.ndim elif isinstance(coef_nr,int): coef_nr = (coef_nr,)*eval_domain.ndim coef_domain = Prod(*[NumPyVectorSpace(nr) for nr in coef_nr]) bases = [] for D_i, N_i in zip(eval_domain,coef_nr): assert isinstance(D_i,GridFcts) x = D_i.axes[0] B_i = np.zeros((len(x),N_i)) Id = np.eye(N_i) for k in range(N_i): pol = np.polynomial.chebyshev.Chebyshev(Id[k,:],domain = (D_i.axes[0][0],D_i.axes[0][-1])) B_i[:,k] = pol(x) bases.append(B_i) return BasisTransform(coef_domain,eval_domain,bases,dtype)
Implements a tensor basis of Chebyshev polynomials for product spaces. It requires that both coef_domain and eval_domain has the same dimension.
Parameters
coef_nr
:scalar
ortuple
- Number of Coefficients of Chebychev polynomials in the coefficients basis.
eval_domain
:Prod
- Tensor product of
GridFcts
instances on which the Chebyshev polynomial are evaluated. dtype
:np.dtype
, optional
type of the underlying spaces, by default float
Returns
BasisTransform
- A bases transform from coefficients of Chebychev polynomial to their evaluation.
def legendre_basis(coef_nr, eval_domain, dtype=builtins.float)
-
Expand source code
def legendre_basis(coef_nr,eval_domain,dtype=float): """Implements a tensor basis of Legendre polynomials for product spaces. It requires that both coef_domain and eval_domain has the same dimension. Parameters ---------- coef_domain : regpy.vecsps.Prod Coefficients of tensor products of Legendre polynomials. eval_domain : regpy.vecsps.Prod Tensor product of `GridFcts` instances on which the Legendre polynomial are evaluated. dtype : np.dtype, optional type of the underlying spaces, by default float Returns ------- BasisTransform A bases transform from coefficients of Legendre polynomial to their evaluation. """ assert isinstance(eval_domain,Prod) if isinstance(coef_nr, tuple): assert len(coef_nr) == eval_domain.ndim elif isinstance(coef_nr,int): coef_nr = (coef_nr,)*eval_domain.ndim coef_domain = Prod(*[NumPyVectorSpace(nr) for nr in coef_nr]) bases = [] for D_i, N_i in zip(eval_domain,coef_nr): assert isinstance(D_i,GridFcts) x = D_i.axes[0] B_i = np.zeros((len(x),N_i)) Id = np.eye(N_i) for k in range(N_i): pol = np.polynomial.legendre.Legendre(Id[k,:],domain = (D_i.axes[0][0],D_i.axes[0][-1])) B_i[:,k] = pol(x) bases.append(B_i) return BasisTransform(coef_domain,eval_domain,bases,dtype)
Implements a tensor basis of Legendre polynomials for product spaces. It requires that both coef_domain and eval_domain has the same dimension.
Parameters
coef_domain
:Prod
- Coefficients of tensor products of Legendre polynomials.
eval_domain
:Prod
- Tensor product of
GridFcts
instances on which the Legendre polynomial are evaluated. dtype
:np.dtype
, optional
type of the underlying spaces, by default float
Returns
BasisTransform
- A bases transform from coefficients of Legendre polynomial to their evaluation.
def bspline_basis(k, t, dim=1, add_points=10)
-
Expand source code
def bspline_basis(k,t,dim=1,add_points=10): """Implements a B-Spline basis in an arbitrary Dimension (given by dim) the splines are generated via BSpline from scipy.interpolate. In each dimension it uses the knots given in t to generate a B-Spline Basis. The evaluation domain is a refined grid determined by the point added between points given by add_points: `np.linspace(t[0],t[-1],t.size*add_points)` Note, that to do that accurately construct Splines, we use the key extrapolate=False and extend the original knot points given in t by additionally 2k points with equidistant distance to T. By this construction the splines will be zero at the boundary. Parameters ---------- k : integer Smoothness degree of the used Splines. t : np.ndarray One dimensional array of knot points for evaluating the Splines. dim : int, optional Dimension of the resulting spaces, by default 1 add_points : int, optional Number of points to be added between each Knot for evaluation, by default 10 Returns ------- BasisTransform A base transform from coefficients of Splines to evaluation on a grid constructed from a refined grid of the given evaluation knots. """ assert t.ndim == 1 and isinstance(k,int) and isinstance(dim,int) and isinstance(add_points,int) assert t.size > k+1 n = t.size -k-1 coef_domain = Prod(*[UniformGridFcts(np.arange(n)) for i in range(dim)]) eval_domain = Prod(*[UniformGridFcts(np.linspace(t[0],t[-1],t.size*add_points)) for i in range(dim)]) basis = np.zeros((t.size*add_points,n)) j=0 axis = eval_domain[0].axes[0] # added points to to t since BSpline only gives back data in t[k] to t[n]=t[-k] and t of size n+k+1 #assuming t to be equidistant points diff = t[1]-t[0] # T has t_size + 2*k points hence T[k] = t[0] and T[-k] = t[-1] hence full interval under consideration T = np.linspace(-k*diff+t[0],t[-1]+k*diff,t.size+2*k) c = np.zeros(t.size+k+1) for c_i in coef_domain.factors[0].iter_basis(): c[k:k+n] = c_i spl_i = BSpline(T,c,k) basis[:,j] = spl_i(axis) j += 1 return BasisTransform(coef_domain,eval_domain,[basis for i in range(dim)])
Implements a B-Spline basis in an arbitrary Dimension (given by dim) the splines are generated via BSpline from scipy.interpolate. In each dimension it uses the knots given in t to generate a B-Spline Basis. The evaluation domain is a refined grid determined by the point added between points given by add_points:
np.linspace(t[0],t[-1],t.size*add_points)
Note, that to do that accurately construct Splines, we use the key extrapolate=False and extend the original knot points given in t by additionally 2k points with equidistant distance to T.By this construction the splines will be zero at the boundary.
Parameters
k
:integer
- Smoothness degree of the used Splines.
t
:np.ndarray
- One dimensional array of knot points for evaluating the Splines.
dim
:int
, optional- Dimension of the resulting spaces, by default 1
add_points
:int
, optional- Number of points to be added between each Knot for evaluation, by default 10
Returns
BasisTransform
- A base transform from coefficients of Splines to evaluation on a grid constructed from a refined grid of the given evaluation knots.
Classes
class BasisTransform (coef_domain, eval_domain, bases, dtype=builtins.float)
-
Expand source code
class BasisTransform(Operator): r""" Consider an evaluation domain given as Tensor product \(D_1\otimes \dots\otimes D_n\) with \(D_1,\dots,D_n\) being \(n\) `regpy.vecsps.VectorSpaceBase`'s and a tensor in the coefficients domain \(V_1\otimes \dots\otimes V_m\) then we define an operator mapping coefficients to some function `f: eval_domain -> dtype`: \[ f(d_1,...,d_n) = \sum_{k_1=0}^{N_1-1} ... \sum_{k_n=0}^{N_n-1} c_{k_1,...k_n} b^1_{k_1}(x_1) .... b^n_{k_n}(x_n). \] So that the operator BasisTransform maps the coefficient tensor \(c = (c_\{k_1,....k_n\})\) to the tensor of function values \((f(x))_{x in eval_domain}\) Parameters ---------- eval_domain : regpy.vecsps.Prod an instance of the class `regpy.vecsps.Prod` in vector spaces of size where each D_i has size M_i coef_domain : regpy.vecsps.Prod an instance of the class `regpy.vecsps.Prod` in vector spaces of size where each V_i has size N_i bases : [ np.ndarray, ... ] a list of matrices \([B_1,..., B_n]\) where the matrix \(B_l\) of size \(M_l \times N_l\) and contains the function values of the basis \(\{b^l_0, b^l_{M_l-1}\}\) of the l-th coordinate: \[ B_l = (b^l_{k}(x_{l,j}))_{j=0:M_l-1, k=0:N_l-1} \] """ def __init__(self,coef_domain,eval_domain,bases,dtype=float): assert isinstance(coef_domain,Prod) assert isinstance(eval_domain,Prod) assert len(bases) == eval_domain.ndim assert coef_domain.ndim == eval_domain.ndim assert len(bases) <= 26 assert coef_domain.dtype == dtype and eval_domain.dtype == dtype assert np.all(basis.shape[1]== eval.size for (basis,eval) in zip(bases,eval_domain)) assert np.all(basis.shape[1]== coef.size for (basis,coef) in zip(bases,coef_domain)) super().__init__(coef_domain,eval_domain, linear=True) self.dtype = dtype """ `dtype ` of the vector spaces.""" self.ndim = coef_domain.ndim """ dimension of the `coef_domain`. """ self.bases = bases """List of all the bases transforms as a list of `np.ndarray`s """ def _eval(self, coef): ## separate 1-D and 2-D because of performance if self.ndim == 1 and self.domain[0].size*self.codomain[0].size <= 50000000: return self.bases[0] @ coef elif self.ndim == 2 and (self.domain[0].size+self.domain[1].size)*(self.codomain[0].size+self.codomain[1].size) <= 4000000: return np.linalg.multi_dot([self.bases[0].T, coef, self.bases[1]]) else: self.sumrule = "".join(chr(k) for k in range(65,65+self.ndim))+","+",".join(["".join(chr(k) for k in [97+l,65+l]) for l in range(self.ndim)])+"->"+"".join(chr(k) for k in range(97,97+self.ndim)) self.einsum_path = np.einsum_path(self.sumrule,coef,*self.bases, optimize='optimal')[0] return np.einsum(self.sumrule,coef,*self.bases,optimize=self.einsum_path) def _adjoint(self, G): ## separate 1-D and 2-D because of performance if self.ndim == 1 and self.domain[0].size*self.codomain[0].size <= 50000000: return self.bases[0].H @ G elif self.ndim == 2 and (self.domain[0].size+self.domain[1].size)*(self.codomain[0].size+self.codomain[1].size) <= 4000000: return np.linalg.multi_dot([self.bases[0].conj().T, G, self.bases[1].conj()]) else: self.sumrule = "".join(chr(k) for k in range(97,97+self.ndim))+","+",".join(["".join(chr(k) for k in [97+l,65+l]) for l in range(self.ndim)])+"->"+"".join(chr(k) for k in range(65,65+self.ndim)) self.einsum_path = np.einsum_path(self.sumrule,G,*self.bases, optimize='optimal')[0] return np.einsum(self.sumrule,G,*self.bases,optimize=self.einsum_path)
Consider an evaluation domain given as Tensor product D_1\otimes \dots\otimes D_n with D_1,\dots,D_n being n
VectorSpaceBase
's and a tensor in the coefficients domain V_1\otimes \dots\otimes V_m then we define an operator mapping coefficients to some functionf: eval_domain -> dtype
: f(d_1,...,d_n) = \sum_{k_1=0}^{N_1-1} ... \sum_{k_n=0}^{N_n-1} c_{k_1,...k_n} b^1_{k_1}(x_1) .... b^n_{k_n}(x_n). So that the operator BasisTransform maps the coefficient tensor c = (c_\{k_1,....k_n\}) to the tensor of function values (f(x))_{x in eval_domain}Parameters
eval_domain
:Prod
- an instance of the class
Prod
in vector spaces of size where each D_i has size M_i coef_domain
:Prod
- an instance of the class
Prod
in vector spaces of size where each V_i has size N_i bases
:[ np.ndarray, … ]
- a list of matrices [B_1,..., B_n] where the matrix B_l of size M_l \times N_l and contains the function values of the basis \{b^l_0, b^l_{M_l-1}\} of the l-th coordinate: B_l = (b^l_{k}(x_{l,j}))_{j=0:M_l-1, k=0:N_l-1}
Ancestors
Instance variables
var dtype
-
dtype
of the vector spaces. var ndim
-
dimension of the
coef_domain
. var bases
-
List of all the bases transforms as a list of
np.ndarray
s
Inherited members