
AN EXTENDED CONTINUOUSNEWTON METHODyI. Dienerzand R. SchabackxCommunicated by L.C.W. Dixon1 IntroductionThe problem of determining the global minimum and all global minimizersof a su�ciently smooth function f on a subset of IRn has received increas-ing interest during the last two decades. The most widely used methodsare of stochastic nature and only comparatively few deterministic method-s have been considered. Among the deterministic methods the continuousNewton method is of particular interest, since it is related to the well knownusual Newton method and since the trajectories it generates have very niceproperties. In section 1.1 we describe this method. In sections 1.2 and 1.3,we recall an extension �rst introduced in Refs. 1{2 which overcomes someshortcomings of the original method. In sections 2 and 3 we describe a nu-merical approach and some implementational details. Finally, in section 5,we present the results of some numerical tests of the method.yThe authors would like to thank L.C.W. Dixon for pointing out some errors in theoriginal version of this paper and for several suggestions of improvements.zAssistant Professor, Institut for Numerical and Applied Mathematics, University ofG�ottingen, G�ottingen, Germany.xFull Professor, Institut for Numerical and Applied Mathematics, University ofG�ottingen, G�ottingen, Germany. 2



1.1 Branin's MethodLet f : B ! IR be a twice di�erentiable function on the bounded regionB � IRn. We consider the problem of �nding all critical points of f in B byusing a trajectory method. Such methods consist in numerically followingcertain implicitly de�ned curves in B which theoretically contain all criticalpoints. One such method was proposed by Branin (Ref. 3) in 1972 andhas since then become known as the Continuous Newton Method. ActuallyBranin considered the more general problem of determining all zeros of afunction F : IRn ! IRn. In our setting we take F to be the gradient rf off . We denote the Hessian matrix of f at x by Hf (x), its adjoint matrix by~Hf (x), and consider the following autonomous di�erential equation:dx=dt = � ~Hf(x)rf(x): (1)If the integration is started in x0, the direction of rf(x) along the solutioncurves obviously stays parallel to rf(x0). This important property is usedlater to de�ne a more general set of curves. Euler's discretization yieldsxk+1 = xk � hk ~Hf (xk)rf(xk) (2)with suitably chosen steplengths hk. If j ~Hf (x)j 6= 0 we have the relation~Hf (x) = jHf (x)jH�1f (x) and (2) is just the damped Newton iteration methodfor �nding zeros of rf , i.e. critical points of f .Equation (1) has two types of stationary points. One occurs ifrf(x) = 0,i.e. if x is a critical point of f . The other occurs if rf(x) 6= 0 but~Hf (x)rf(x) = 0. These were called extraneous singularities by Branin.Branin's method consists in selecting a starting point x0 and following thecorresponding curve de�ned by (1). If a critical point is found on the path,it is output and the sign in (1) reversed. The integration is then continueduntil the next critical point is found or a termination criterion is satis�ed.The numerical implementations of Branin's algorithm so far have used dif-ferent integration techniques, sometimes coupled with interpolation schemes(see Refs. 4{6). These approaches do not seem to be particularly e�cient,since they hardly take the special structure of the de�ning equation (1) intoaccount.The main problem with this method (and all other trajectory methods) is,that in general not all critical points of f lie on a single connected trajectory3



component and thus other trajectory components have to be found. Thisproblem was tackled in Ref. 2 by an extension of Branin's approach. Thecorresponding numerical method will be described in this paper.1.2 Extension of Branin's MethodIn Ref. 1 a new way to look at the trajectories generated by the continuousNewton method was proposed. The trajectories can be obtained in the form(Tgf)�1(0) for suitably de�ned functions (Tgf) : IRn ! IRn�1.De�nition1.1. Let f : IRn ! IR be continuously di�erentiable and letg 2 IRn be a �xed nonzero direction. Then we call the setTg(f) := fx 2 IRnjrf(x) and g are parallelga Newton trajectory of f . Let G : IRn ! IRn�1 be a linear map of rankn� 1 such that Gg = 0. Except for this, G can be arbitrarily chosen, e.g. asG = (gt1; gt2; . . . ; gtn�1)t; where g1; g2; . . . ; gn�1; gn := g form an orthonormalbasis of IRn and t stands for transposition. We use G later for dimensionalrecursion (see section 3.3). With a �xed choice of such a matrix G we de�nethe continuous map (Tgf) by(Tgf) : IRn ! IRn�1; x 7! Grf(x):Obviously we have (Tgf)�1(0) = Tg(f), andTg(f) = fx 2 IRnjGrf(x) = 0g: (3)The set (Tgf)�1(0) is independent of the special choice of G as long asthe kernel of G is spanned by g. Also, Tg(f) = Th(f) if g and h are linearlydependent and nonzero. The (trivial) but important property of the Newtontrajectories is given by the followingTheorem 1.1 Let g; h 2 IRn be linearly independent vectors and f continu-ously di�erentiable. Then Tg(f) \ Th(f) = Crit(f), the set of critical pointsof f .Thus, in principle, one can �nd all critical points by completely tracinga Newton trajectory for f . In practice, however, various di�culties arise.4



First, Tg(f) might not be one{dimensional. This problem can be removed byimposing generic regularity conditions on f . A harder problem is that Tg(f)is not connected in general. Conditions on f which guarantee connectednesswere given in Ref. 1, but these conditions are too strong to apply in thegeneral case.An attempt to cope with this problem was made in Ref. 2. The con-struction described in that paper is very general and leads to a locally 1-dimensional net of curves connecting all critical points. However, numericaltracing of the whole net is not generally possible, because of certain \one{way{streets", i.e. paths whose \entrances" can be found, whose \exits", how-ever, depend on global information about f and are overlooked by numericalmethods. Details will be described below. Every critical point de�nes a nu-merically traceable subnet which often contains many or all critical points off . In the next section we give a short summary of the construction for thespecial case of Newton trajectories . For details and the general constructionthe reader should consult Ref. 2.1.3 Connecting the ComponentsLet B � IRn be a bounded convex region in Rn. Suppose 0 6= g 2 IRnis given and the critical points of the function f : B ! IR are distributedamong several disconnected components of the locally 1-dimensional Newtontrajectory Tg(f). Let us further suppose that f is constant on the boundaryof B and that this boundary contains no critical points of f . De�ne anauxiliary function Q on B by x 7! gtx, where t stands for transposition andwrite Q̂(x) for Q�1(Q(x)). Then it is shown in Ref. 2 that the setTg(f) [[x2� Q̂(x) (4)is connected where the Q̂(x) are the touching hyperplanes of Tg(f). Geo-metrically, (4) means that the disconnected components of Tg(f) are joinedtogether by a limited number of parallel hyperplanes orthogonal to g. Onlythose hyperplanes are needed which are \touching" Tg(f) in some point x.These \touching points" form a set �. An example is given in Figure 3,and details are explained below. If n = 2 the set de�ned by (4) is alreadygenerically 1-dimensional and connected, since in this case the Q-contours5



are straight lines. If n � 3, the Q-contours are intersections of hyperplanesin IRn with the convex set B. However, the entireQ-contours are not needed.Only the (nonempty) set Tg(f) \[x2� Q̂(x) (5)is of interest since its elements are possible starting points for new compo-nents of Tg(f).In Ref. 2, it is shown that the set Tg(f) \ Q̂(x) is equal to the set ofcritical points for the function f restricted to Q̂(x). Thus we have a problemof the same form as the original one, but posed on the (n� 1){dimensionallinear space Q̂(x). This argument can be repeated, until the dimension of thebase space is 2. Each problem generates locally 1-dimensional trajectories,and the overall result is a locally 1-dimensional trajectory net which containsTg(f). Recursion through dimensions involves a simpli�cation, because moreand more components of Grf(x) are replaced by linear functions (see section3.3 below).For the purpose of the present paper a simpli�ed concept of touchingpoints and touching hyperplanes su�ces:De�nition1.2. Let x be a point on Tg(f). Then x is called a touching pointof Tg(f) if there exists a neighbourhood U of x such that Tg(f)\U is containedin only one of the two closed halfspaces de�ned by Q̂(x). The set Q̂(x) isthen called a touching hyperplane. Let � be a subset of all touching pointsthat contains at least one touching point from every touching hyperplane.Let x be a point on Tg(f) and suppose Tg(f) is a C1 curve in a neigh-borhood of x. Let � : [0; 1]! B be a regular local parametrization of Tg(f),and x = �(t0). Then Q̂(x) is a touching hyperplane, if t0 is an isolated zeroof gt _�(t) with sign change or a point of an interval where gt _�(t) vanishesidentically. This fact will be used later as a criterion for the detection oftouching hyperplanes. 6



2 Numerical Method2.1 OverviewThe special form (3) of the trajectories will in principle be invariant duringrecursion through the dimension of the problem. Therefore we propose anumerical method that makes exhaustive use of this special structure.The algorithm will be described bottom{up in several stages:(i) Computation of local steps;(ii) Control of stepsize and direction;(iii) Detection and treatment of exceptional points;(iv) Recursion through dimensions;(v) Bookkeeping strategy.It uses a �xed vector g 2 IRn n f0g and an arbitrarily chosen matrix G :IRn �! IRn�1 with rankG = n� 1 and Gg = 0.2.2 Computation of Local StepsA local step at a point x 2 IRn near a trajectory Tg(f) will be dependent ona single control parameter p 2]0; 12dcptp], where dcptp is an input parameterdescribing the minimal expected distance between exceptional points, i.e.critical points. It steers the \resolution" of the algorithm. The local steph(x; p) is computed under the assumption rank(GHf (x)) = n � 1 byStep L1. Find a vector z(x) 2 IRn withGHf (x)z(x) = 0;zt(x)z(x) = 1:This can be done by incomplete LU factorization, and the decomposi-tion should be stored for later use. Since z(x) is determined only upto a sign, we employ a �xed strategy to choose a sign, but allow anadditional control parameter � 2 f�1; +1g to reverse orientation ofz(x). 7



Step L2. Solve the system� GHf (x)zt(x) �h(x; p) = � �Grf(x)p �for the step h(x; p), using the factorization calculated in step L1.We note some simple facts:Theorem 2.1. The step h(x; p) satis�es(a) h(x; p) = h(x; 0) + p � z(x);(b) z(x) is tangential to Tg(f) if x 2 Tg(f);(c) h(x; 0) is the Newton step for the system Grf(x) = 0 de�ning Tg(f);(d) z(x) is orthogonal to h(x; 0).If x is on the trajectory, properties a) and b) imply that h(x; p) is a predictorstep for large p, where p acts as a stepsize. Properties a) and c) show thath(x; p) is a corrector for small p, performing a Newton step towards thetrajectory. Indeed, when x is near the trajectory Tg(f), the vector z(x) isnearly parallel to Tg(f), and since h(x; 0) is orthogonal to z(x), it will pointtowards the trajectory, being approximately orthogonal to the tangent at thenearest point (see Figure 1).For e�ciency reasons, property a) suggests to compute h(x; 0) �rst in stepL2; then control of p does not require much additional work for computingh(x; p) for di�erent values of p.In contrast to other methods (see Refs. 10{11) we only need a singleparameter to control both predictor stepsize and the relative weight of pre-diction versus correction. The drawback is that we do not use high{orderpredictors.2.3 Control of Local StepsThe choice of the parameter p of a local step should make sure that theprogress along the trajectory is as large as possible under the restriction thatthe trajectory is not \lost". To de�ne the latter notion we simply postulatethat there exists a neighborhood U of x+h(x; p) such that a unique point of8



������*AAAAAAUx z(x)h(x; 0) -x+ h(x; p) z(x+ h(x; p))? H Tg(f)Figure 1: Local control.the trajectory should exist in U \H for a hyperplane H through x+ h(x; p)with normal vector z(x+ h(x; p)) (see Fig. 1).This can be guaranteed by the Newton{Kantorovitch theorem (see e.g.Ref. 7) applied to the systemAx;p(y) := � Grf(x+ h(x; p) + y)zt(x+ h(x; p))y � = 0;because for a solution Y (x; p) of Ax;p(Y (x; p)) = 0 we havex+ h(x; p) + Y (x; p) 2 Tg(f);zt(x+ h(x; p))Y (x; p) = 0:The standard form of the Newton{Kantorovitch theorem explicitly gives tworadii 0 < r < R of balls Br and BR around the starting point y = 0; there isa solution of the system in the smaller ball and there is no other solution inthe larger ball. In our case the required bounds fork(A0x;p)�1(0)k � D;k(A0x;p)�1(0)Ax;p(0)k � �9



can be calculated directly, and the Lipschitz constant L for A0x;p(y) as afunction of y can be estimated numerically. We then accept a step h(x; p),if the Newton{Kantorovitch theorem is applicable, i.e. if 2D�L � 1. Thisguarantees existence of the solution Y (x; p) withinkY (x; p)k � D�1L�1(1�p1� 2DL�) =: rand uniqueness withinkY (x; p)k � D�1L�1(1 +p1� 2DL�) =: R;if the Lipschitz constant L is assumed to be correctly estimated. The actualradii r and R for existence and uniqueness are not explicitly controlled byour method. It su�ces to be sure that there always is a unique trajectorypoint near to the actually calculated point. The aws of this argumentare that the Lipschitz constant is only an estimate and that acceptance ofh(x; p) tacitly assumes that all smaller values of p are acceptable, too. Thisis motivated by Theorem 2.1, but leaves a possibility for the algorithm toswitch to a di�erent locally unique trajectory without notice. This, however,is an improbable event because switching over to a hidden quasi{bifurcationbranch (see Fig. 2) will often give a jump in the orientation of z(x). Thisjump is detectable by checking the sign of zt(x)z(x+ h(x; p)), using the factthat the trajectory is traced with a �xed algorithm determining the localorientation of z(x) in continous dependence on x.���������:������������1���������:Figure 2: Quasi{bifurcation with hidden switch to another trajectory com-ponent, recognizable by checking orientation.Control of p is simply done by decreasing p by a certain factor less thanunity whenever h(x; p) is not accepted. This brings the new direction \closer"to the actual trajectory. After an accepted step, p is increased again.10



3 Exceptional Cases3.1 Regularity and BifurcationSince Tg(f) = (Grf)�1(0) the assumption rankGHf = n � 1 on Tg(f) isgeneric, because 0 needs only to be a regular value of Grf to ensure non-degeneracy. Small perturbations of g will remove singularities, and in practicethe algorithm will encounter only \quasi{bifurcations" in the sense of Fig. 2.The mildly degenerate cases of this sort are overcome by the automaticuse of small values of p along a single trajectory; the others will lead to a rankloss when trying an incomplete LU factorization in step L1. If the rank lossconcerns just one dimension, a projection onto a two{dimensional subspaceis possible, and the asymptotes of hyperbolae like in Fig. 2 can be calculatedgiving the necessary information to handle the bifurcation. Other cases haveto be eliminated by choosing other values of g, such that (hopefully) 0 is nowa regular value for Grf . Practical experience shows that it is not worthwhileto handle genuine bifurcations explicitly, because they are very rare indeedand the necessary computing e�ort is better invested into tracing a trajectorysystem for a di�erent g. We therefore simply assume for our method that 0is a regular value for Grf .3.2 Critical Points and Touching PointsIn contrast to earlier trajectory algorithms the tracing method described sofar will only slow down near quasi{bifurcations or in regions with very largeLipschitz constants for the Hessian along the trajectory, but not necessarilynear critical points or touching points. These are detected by additionallymonitoring two simple real{valued functions that necessarily vanish at thesepoints and have a sign change in nondegenerate cases:g(x) := gtrf(x); for critical points,�g(x) := gtz(x); for touching points.Theorem 3.1.(a) The function g(x) has zeros on Tg(f) in critical points only, and thesezeros x� are simple, if g =2 kerHf (x�), e.g. if Hf (x�) is nondegenerate.11



(b) Isolated touching points ~x on Tg(f) are characterized by the propertythat �g(x) has a zero with sign change at ~x.(c) If Tg(f) is nondegenerate around an isolated touching point, �g(x) willhave a zero with sign change on any curve su�ciently close to Tg(f).Proof : The equationsgtrf(x) = 0 and Grf(x) = 0implyrf(x) = 0 and vice versa; a zero x� of the derivative of g would implyrg(x�) = gtHf (x�) = 0;proving assertion a). The other statements are immediate consequences ofthe de�nition of touching points. 2If Hf (x�) is nonsingular in a critical point x�, the trajectory Tg(f) inter-sects the zero set of g(x) transversally, and therefore the numerical detectionof critical points via a sign change of g(x) is numerically stable even if thetrajectory is not followed exactly.The exact detection of touching points is somewhat more problematic,because their de�nition already involves a higher derivative than needed forcritical points. Fortunately, touching points need not be calculated veryprecisely for the following reasons:(i) Imprecisely calculated touching points can be seen as exact touchingpoints of trajectories with a slightly perturbed g. The algorithm fol-lows a G{contour on a hyperplane parallel and very near to the exactone, until a new trajectory component is hit (see Fig. 3 for illustra-tion). In nondegenerate situations this trajectory component will cutall parallel hyperplanes transversally, and the algorithm simply reachesthe new trajectory component in s slightly di�erent point. Here the\one{way{streets" come up again: touching points are the well-de�ned\entrances", but the exits lie somewhere on a new trajectory compo-nent. Errors in the calculation of touching{points just result in tracinga neighbouring \one{way{street", but the exit will normally lead tothe same new trajectory component.(ii) If a touching point is falsely assumed to exist, the algorithm gets anadditional chance for recursion, and no information is lost.12



The actual calculation of critical points and touching points employs thefollowing strategy:Step C1. Halt trajectory tracing whenever one of the indicator func-tions g or �g is very small or has a sign change.Step C2. Try to �nd an approximate zero or a local minimum of theindicator function by bisection. Use small values of p for this calcula-tion, to make sure to be very near the actual trajectory Tg(f).Step C3. Record the solution for later use, and follow the bookkeepingstrategy described in section 3.4.3.3 Dimensional Recursion by ProjectionIf G :=0BBB@ gt1gt2...gtn�1 1CCCA ; gi 2 IRn; 1 � i � n; gn := gis the matrix chosen when starting the procedure for the original n{dimensionalproblem, dimensional recursion simply uses the system0BBBBBBBBBBBBBBBB@
gt1Hf (x):::gtm�1Hf (x)gtm+1:::gtnzt(x)

1CCCCCCCCCCCCCCCCAh(x; p) = 0BBBBBBBBBBBBBBBB@
�gt1rf(x):::�gtm�1rf(x)0:::0p

1CCCCCCCCCCCCCCCCA ;where z(x) is a normalized solution of the homogeneous system without thelast equation. Given a starting point x 2 IRn for the m{dimensional sub-problem, everything is projected onto the a�ne space x+ spanfg1; . . . ; gmg,13



and after some simple reductions eliminating n�m homogeneous equationsthe problem has the same form as before. The reductions are independentof x and can be done once for all before actually tracing the trajectory.3.4 Bookkeeping StrategyThe algorithm normally detects many critical points and touching pointsfor subproblems on di�erent dimension levels, forming a tree{like dynamicaldata structure. To avoid multiple tracing of the same or neighboring tra-jectories, and to avoid low{dimensional subproblems whenever possible, aserious bookkeeping problem arises which greatly inuences the performanceof the algorithm.The algorithm has been programmed by A. Drexler (Ref. 8) who solvedmost of the implementational problems. To keep a record of what is achieved,a dynamically varying list of possible and yet unused starting points and ofcritical points on each level is kept. On each dimension level m the tracedtrajectories start in a touching point ~xm+1 which was found and registered onlevel m+ 1. Therefore the starting point of the whole algorithm is formallyclassi�ed and recorded as a touching point of a virtual problem of dimensionn + 1. The trajectory on level m has to be traced in both directions (thisis where the initial orientation of z(~xm+1) has to be chosen and recorded inorder to be reversed later) and a backward pointer to ~xm+1 is kept for thewhole tracing.The computation halts at the boundary of a prescribed large cube B,to which the whole process is assumed to be con�ned, or if a critical{ ortouching point is found twice on levelm. The latter is done to recognize cyclictrajectories and to avoid repeated tracing of parts of the current trajectory.In either case the local trajectory section is declared to be completelytraced; if this is the case for the other orientation, too, the complete trajec-tory component is considered to be traced, and ~xm+1 is marked as \traced"on the list.New critical{ or touching points found on level m are added to the liston that level. For e�ciency reasons, tracing continues until a trajectory{component on level m has been traced in both directions.To start a new trajectory the tree{like data structure is searched for avail-able new starting points, always beginning at the highest possible dimensionlevel. The search algorithm uses the fact that a critical point recorded on14



level m starts a new trajectory component on level m + 1 while a touchingpoint recorded on level m starts a new trajectory on level m� 1. Recordingthe exceptional points on \their" level facilitates cycle checking, which mustbe e�cient because it occurs very frequently.3.5 Reducing the Number of Touching PointsWhenever the quantity ~� := ��gtm~x1m � gtm~x2m�� (6)for two touching points ~x1 and ~x2 on levelm on the same trajectory is small,the new trajectory components T1 and T2 starting at ~x1 and ~x2 on levelm�1will be con�ned to parallel touching hyperplanes on level m with distance~�. On both hyperplanes the same function is used to de�ne the trajectory,and thus T1 and T2 will di�er only slightly on level m � 1. This also holdsfor the critical points on them, and these will normally lead then to thesame trajectory on level m again. Since we are really interested in touchinghyperplanes and not in touching points, it is reasonable to start the recursionin only one of ~x1m and ~x2m. Note that this argument is quite similar to theone used to explain possible tolerances in the calculation of touching points.Thus each new touching point ~xm of a trajectory on level m is comparedto the other touching points already found on the same level. If the di�er-ence de�ned by (6) is less than an input parameter �, the touching point~xm is discarded. This important additional strategy strategy keeps the algo-rithm from tracing large numbers of similar trajectories on parallel touchinghyperplanes without getting any new information (see �g. 3). It is not sen-sitively dependent on the actual value of �, provided that � is neither zeronor extremely small (see Table 2 below).4 ExampleIn order clarify some of the points made in the preceding sections we nowdiscuss a larger example. It has been produced by applying the presentmethod to the function fa de�ned in section 5, where n := 4 and d := 5.The parameter � was set to 1 and we considered the region [�6; 6]4 � IR4.Furthermore, we traced three levels, i.e. we had to solve subproblems ofdimension 4,3 and 2. Fig. 4 shows the graph traced by the Algorithm.15



The three levels in the �gure correspond to the 4,3 and 2 dimensionalsubproblems. The di�erent trajectory components are represented by stringsconsisting of the symbols T; t; C; c; ; and 9. T and t stand for touching pointsand C and c for critical points on the respective level (dimension). Thesymbol ; denotes a trajectory on which no touching points and no criticalpoints were found. The symbol 9 means that a trajectory was found, whichhad been traced before and thus is not traced again. In Fig. 4 the trajectorycomponents on the di�erent levels are joined by arrows labeled by sequencenumbers indicating the order in which the tree was traversed.One type of arrow originates at a touching point (denoted by the symbol`t') at level L = 4 or 3 and leads to a subproblem in dimension L � 1.Thus such an arrow points to a trajectory component at level L � 1. Theother type of arrow originates at critical points on a level L = 2 or 3 andpoints to a trajectory component traced at level L + 1. The symbols `T'denote touching points which were not expanded because of the �-heuristicdescribed in section 3.5, or because they occured on the lowest possible level,i.e. on level 2. The symbols `c' denote critical points of an L-dimensionalsubproblem which initiates a new problem in dimension L+1. The symbols`C' on level L stand for critical points that do not initiate a new problem onlevel L+1 either because L = 4 or they result from the fact that a touchingpoint t on level L is a critical point for the corresponding subproblem onlevel L� 1.As can be seen from �gure 4 the algorithm found 9 critical points on level4. These are critical points of fa.The algorithm was started at the origin and the vector g was taken as thegradient of fa at the origin. The �rst trajectory component traced contained2 critical points of fa (arrow labeled 1). Furthermore, two touching pointswere found.Then a 3-dimensional problem was started at the �rst touching pointfound on level 4 (arrow 2). This 3-dimensional problem led to 2 touchingpoints on level 3. One of them was discarded by the �-heuristic. It is thusmarked with `T'. Next, according to the strategy described in section 3.4, anew 3-dimensional problem is started at the second touching point found onlevel 4 (arrow 3). This leads to 2 new touching points on level 3.To continue, the algorithm selected the touching point remaining in the�rst trajectory traced on level 3 (arrow 4) and starts a subproblem on level 2,i.e. a 2-dimensional problem. Two touching points and one critical point are16



found. The two touching points are labeled `T' rather than `t' since thebottom level was reached and no dimensional recursion was to be performed.At the next step the algorithem selects the critical point found on level2 and starts in it a new problem on level 3 (arrow 5). This leads to 3critical points on level 3 which are expanded (and lead to problems on level4) into the trajectories pointed to by the arrows labeled 6,7 and 8. One ofthe new trajectories on level 4 contains no critical points and no touchingpoints. Thus it is labeled ; in �gure 4. The other two trajectory componentson level 4 contain respectively 2 and 5 critical points of fa and no furthercritical points are found by subsequent tracing.5 Numerical Tests5.1 Test ProblemsThe algorithm has been tested on a large number of problems with up to32 dimensions. Along with some of these problems we include here, forthe purpose of comparison, some standard test problems extracted from theliterature.1. The two{dimensional six{hump{camelback function de�ned byfc(x) := 13x61 � 2:1x41 + 4x21 + x1x2 � 4x22 + 4x42is a standard test problem. The function fc has 15 critical points in theregion [�2:5; 2:5]2. Their minimum distance from each other is greaterthan 0.3 .2. This test problem is the error function of a two{dimensional linear�Cheby�shev approximation:ft(x) := 0:066581 sin (�x1) sin (�x2)+ 0:002503 � sin (�x1) sin (3�x2) + sin (3�x1) sin (�x2)�+ 0:000086 sin (3�x1) sin (3�x2)+ 0:000559 � sin (�x1) sin (5�x2) + sin (5�x1) sin (�x2)�� x1(1 � x1)x2(1 � x2):17



The function ft has 51 critical points in the region [0; 1]2. Their mini-mum distance from each other is greater than 0.05 . Many of the criticalpoints have narrow oval regions of attraction.3. This problem is de�ned byfe(x) := dXi=1 �ie�i((x1�xi1)2+(x2�xi2)2)where d = 5 and�1 = 2; �1 = �1; x11 = �2; x12 = 0;�2 = 3; �2 = �2; x21 = 3; x22 = 0;�3 = 1; �3 = �3; x31 = 1; x32 = 2;�4 = 4; �4 = �3; x41 = 0; x42 = 2;�5 = 2; �5 = �2; x51 = 0; x52 = �1: :The function fe has 9 critical points in the region [�5; 5]2. Theirminimum distance from each other is greater than 0.95 . The maximaof this function are sharp peaks. A contour plot of this function alongwith a Newton{trajectory and the touching hyperplanes is shown inFig. 3.4. The four{dimensional Shekel functions are de�ned by (cf. Ref. 9)fs(x) := � dXi=1 1kx� aik22 + ci ;where d � 1, the ai are vectors in IRn, and the ci are real numbersde�ned as in Ref. 9. Common values for d are 5, 7, and 10. (Inthe literature the resulting functions functions are usually denoted bySQRN5, SQRN7 and SQRN10.) For these d the functions fs apparentlyhave 11, 13, and 21 critical points in the region [0; 12]4. Their minimumdistance from each other is greater than 0.55, 0.9, and 0.75 . Some ofthe extrema of fs have tiny regions of attraction.5. The last example is n{dimensional:fa(x) := dXi=1 arctan �kx� aik2�18



on the region [�6; 6]n, where d � 1 and the vectors ai 2 [�6; 6]n arerandomly chosen. The number of critical points and the appropriatedomain of search both depend on d and the ai. For d = 3 and d = 10and the vectors chosen for the examples given in Tab. 4 the number ofcritical points is given by the righthand entries of the table below andthe minimum distance of critical points from each other is given by thelefthand entries: n d = 3 d = 102 2:0 5 0:2 58 1:7 5 1:6 1316 3:5 5 1:5 135.2 Test ResultsThe tests were conducted by A. Drexler using the program described inRef. 8. Each test was run 10 times with random starting points xs and �xedestimates for dcptp and �. The vector g was computed as g := rf(xs), andthe maximal number of levels to be traced was prescribed via a constant lmax.In Tables 1{4, the len entries list the average length of the trajectories bylevels and in total. The lengths were computed by seperately summing thelengths of the steps taken in the various (n�k){dimensional subproblems fork = 0; 1; . . . ; lmax� 1. The evals entries list the average number of gradient{and Hessian evaluations by levels and in total. Since the ultimate goal wasto �nd all critical points and numerous critical points were found in everycase the succ entries list the percentage of runs that successfully found allcritical points.The \Level" entry indicates the dimension of the subproblem traced inthe corresponding row; when there are lmax traced levels for an n{dimensionalproblem, we have lmax rows with dimensions n; n�1; . . . ; n�lmax+1 indicatedbelow \Level".5.3 ConclusionsThe test results show that the method is able to �nd all critical points foran astonishingly large percentage of test runs. It should not be applied withhigh resolution (i.e. dcptp small, � = 0; lmax = n) for a single value of g andxs, tracing trajectories recursively through all levels, because the computing19



Table 1: Results for the functions fc and ft.fc, dcptp = 0:3, � = 0 ft, dcptp = 0:05, � = 0n = 2 Level len evals succ len evals succlmax = 1 2 15.0 465 100% 7.8 1536 90%lmax = 2 2 16.5 533 10.0 21311 13.9 112 4.7 294Total 30.4 645 100% 14.7 2425 100%Table 2: Results for the function fe.dcptp = 0:95 � = 0 � = 0:9 � = 1000n = 2 Level len evals succ len evals succ len evals succlmax = 1 2 17.3 482 20%lmax = 2 2 52.2 1671 46.0 1425 33.9 10151 62.9 211 42.7 142 11.0 38Total 115 1882 90% 88.7 1567 90% 44.9 1053 80%e�ort increases too much (see Table 4, n = 8; 16). However, the methodhas rather good chances to �nd all critical points when applied for a smallnumber of di�erent choices of xs and g, tracing only a small number of levelswith values of dcptp and � which are not too small. Recursion by at least oneor two levels is strongly recommended (see Table 3). The chance of �ndingall critical points is enhanced, of course, when several runs with di�erentstarting points are made.It is always a di�cult issue to compare the e�ciency of di�erent algo-rithms for global optimization. For local optimization one common criterionis the local convergence rate and the size of the regions of convergence. Butfor global optimization there is, as yet, no generally accepted measure forthe e�ciency on which comparisons could be based. One usually comparesthe number of function evaluations for some test problems. Furthermore, ourmethod is designed to compute all stationary points and not just the globalminimizers. Since many methods were tested on the Shekel{functions fs andresults for this function are given in the literature we shall briey compareour results for these functions (Table 3) with the results obtained by otherresearchers (cf. Ref. 9).Branins original method needs 5500, 5020 and 4860 gradient and hessian20



Table 3: Results for the functions fs.d = 5, dcptp = 0:55 d = 7, dcptp = 0:9 d = 10, dcptp = 0:75n = 4 Level len evals succ len evals succ len evals succlmax = 1 4 28.3 551 0% 37.9 715 0% 29.7 540 0%lmax = 2 4 46.0 942 64.0 1233 68.7 1304� = 1:0 3 61.5 1153 79.0 1388 59.1 987Total 108 2095 30% 143 2661 30% 128 2291 10%lmax = 4 4 77.8 1646 94.2 1823 125 2419� = 1:0 3 170 3277 185 3190 187 30512 176 1806 214 1805 235 23251 29.9 121 44.3 120 85.8 279Total 454 6850 100% 537 6938 100% 633 8074 60%evaluations for SQRN5, SQRN7 and SQRN10 respectively. In a much moree�cient implementation of the method by J. Gomulka (cf. Ref. 5) thesenumbers were reduced to 275, 251 and 243 gradient and hessian evaluationsrespectively. Since these implementations traced only one component on leveln we have to compare these results with the numbers given in the �rst rowof table 3. Thus the numbers for our method are 551, 715 and 540 gradientand hessian evaluations. In comparing these numbers one has to keep inmind that our results are averages obtained by starting the method in 10randomly generated starting points within the feasible region whereas thenumbers given by Gomulka are the results for a single run. So we might claimthat the e�ciency of our implementation (considered as an implementationof Branins method, i.e. with lmax = 1) is roughly comparable to the e�cientimplementation by Gomulka. It has been already observed by Gomulka that,for these examples, it is a matter of \pure chance", wether the ordinaryBranin method �nds the global minimizer. However, as can be seen from theresults in table 3 for lmax = 2; 4, our scheme of dimensional recursion greatlyenhances the probability that all stationary points are found. For lmax = 2and 4 the global minimizer was found for all three functions in every case.A comparison of our method with a stochastic method is even more di�-cult. We shall briey compare the present method with the e�cient \MultiLevel Single Linkage" (MLSL) method proposed in Ref. 12. The authorsreport 404, 432 and 564 function evaluations respectively. However, it isnot clear from their presentation, how these numbers were obtained. For21



Table 4: Results for the functions fa.d = 3 d = 10Level len evals succ len evals succn = 2 dcptp = 2:0 dcptp = 0:2lmax = 1 2 21.6 263 60% 14.2 357 0%lmax = 2 2 30.6 360 23.5 626� = 1:0 1 32.3 49 29.8 316Total 62.9 409 100% 53.4 942 30%n = 8 dcptp = 1:7 dcptp = 1:6lmax = 1 8 36.8 1013 60% 37.5 985 0%lmax = 2 8 59.8 1643 69.5 1818� = 1:0 7 65.1 1770 60.8 1644Total 125 3413 80% 130 3462 10%n = 16 dcptp = 3:5 dcptp = 1:5lmax = 1 16 30.8 559 0% 85.0 3068 10%lmax = 2 16 77.6 1392 147 5358� = 1:0 15 51.8 1055 117 4740Total 129 2447 80% 264 10098 40%instance, MLSL generates an initial sample of function values, then selectscertain points from this sample in which local searches are started. For theselocal minimizations a variable metric method (VA10AD) was used. There-after the sample is increased and new local searches are initiated until astopping criterium is satis�ed. Obviously, at least the gradient of the func-tion must also be evaluated a certain number of times. Also it is not clear,wether the function evaluations used to generate the initial sample were in-cluded in the numbers. MLSL did not �nd the global minimizer for SQRN7in one of four runs. Although this problem could be avoided, by choosingdi�erent parameters for the stopping criterium, this modi�cation resulted inmore function evaluations (factors 2 and 3 for SQRN7 and SQRN10).The e�ciency of the numerical implementation described above can befurther improved, for instance by using update schemes for the Hessian ma-trix. We do not claim that our method is more e�cient than most othermethods. Instead we feel that, in the lack of generally accepted measures forthe performance of algorithms for global optimization, at present all methods22



have distinct advantages and drawbacks. The main purpose of this study wasto show that the general idea of recursive descent proposed in Ref. 2 is nu-merically feasible and yields satisfactory results. Since Newton{trajectorieshave strong theoretical properties it can be hoped that future results on thetopology of the Newton{trajectories can in some practically important casesguarantee that all critical points are found.The idea of Newton{trajectories is not limited to IRn but can be extendedto functions on di�erentiable manifolds. Moreover, insight into the geometricstructure of the trajectories might also help with the study of the convergencebehavior of the usual Newton method.

23



References[1] Diener, I., On the Global Convergence of Path-Following Methods toDetermine All Solutions to a System of Nonlinear Equations, Mathe-matical Programming, Vol. 39, pp. 181{188, 1987.[2] Diener, I., Trajectory Nets Connecting All Critical Points of a SmoothFunction, Mathematical Programming, Vol. 36, pp. 340{352, 1986.[3] Branin, F.H., A Widely Convergent Method for Finding Multiple So-lutions of Simultaneous Nonlinear Equations, IBM. Journal of Researchand Development, pp. 504{522, 1972.[4] Gomulka, J., Remarks on Branin's Method for Solving Nonlinear E-quations, Towards Global Optimisation, Edited by L.C.W. Dixon andG.P. Szeg�o, North{Holland, Amsterdam, Holland, Vol. 1, pp. 96{106,1975.[5] Gomulka, J., Two Implementations of Branin's Method: NumericalExperience, Towards Global Optimisation, Edited by L.C.W. Dixon andG.P. Szeg�o, North{Holland, Amsterdam, Holland, Vol. 2, pp. 151{163,1978.[6] Hardy, J.W., An Implemented Extension of Branin's Method, TowardsGlobal Optimisation, Edited by L.C.W. Dixon and G.P. Szeg�o, North{Holland, Amsterdam, Holland, Vol. 1, pp. 117{139, 1975.[7] Ortega, J.M., and Rheinboldt, W.C., Iterative Solution of Non-linear Equations in Several Variables, Academic Press, New York, NewYork, 1970.[8] Drexler, A., Zur Numerik eines erweiterten kontinuierlichenNewton{Verfahrens, Universit�at G�ottingen, Diplomarbeit, 1988.[9] Dixon, L.C.W., and Szeg�o, G.P., The Global Optimization Problem:An Introduction, Towards Global Optimisation, Edited by L.C.W. Dixonand G.P. Szeg�o, North{Holland, Amsterdam, Holland, Vol. 2, pp. 1{15,1978. 24



[10] Allgower, E. L., and Georg, K., Predictor{Corrector and Simpli-cial Methods for Approximating Fixed Points and Zero Points of Non-linear Mappings, Mathematical Programming, Edited by A. Bachem,M. Gr�otschel and B. Korte, Springer{Verlag, Berlin, Germany, pp. 15{56, 1983.[11] Georg, K., Zur Numerischen Realisierung von Kontinuit�atsmethodenmit Pr�adiktor{Korrektor- oder simplizialen Verfahren, Habilitations-schrift, Bonn, Germany, 1982.[12] Rinnooy Kan, A.H.G., Boender, G.C.E., and Timmer, G.T.,A Stochastic Approach to Global Optimization, Report No. 8429/O,Erasmus University, Rotterdam, Holland, 1984.

25



List of Figures1 Local control. : : : : : : : : : : : : : : : : : : : : : : : : : : : 92 Quasi{bifurcation with hidden switch to another trajectorycomponent, recognizable by checking orientation. : : : : : : : 103 Contour plot of the function fe with a Newton trajectory andthe touching hyperplanes. : : : : : : : : : : : : : : : : : : : : 274 Graph traced by the algorithm. The function is fa with n =4; d = 5 and � = 1 in the region [�6; 6]4. : : : : : : : : : : : : 28List of Tables1 Results for the functions fc and ft. : : : : : : : : : : : : : : : 202 Results for the function fe. : : : : : : : : : : : : : : : : : : : : 203 Results for the functions fs. : : : : : : : : : : : : : : : : : : : 214 Results for the functions fa. : : : : : : : : : : : : : : : : : : : 22

26



Figure 3: Contour plot of the function fe with a Newton trajectory and thetouching hyperplanes. 27



614?13������18619?465 cTTCCcCTTc cccCtt;CtTcccCccc 999C?1 tCtCTCT;CtCTCTCTC999 617616615SSSSSw3������2������6CCCCCO7AAAAAK8����������� 9612611610Figure 4: Graph traced by the algorithm. The function is fa with n = 4; d = 5and � = 1 in the region [�6; 6]4.
28


