
Adaptive Greedy Tehniques for ApproximateSolution of Large RBF SystemsRobert Shabak and Holger WendlandAbstratFor the solution of large sparse linear systems arising from interpo-lation problems using ompatly supported radial basis funtions, alass of eÆient numerial algorithms is presented. They iterativelyselet small subsets of the interpolation points and re�ne the urrentapproximative solution there. Convergene turns out to be linear, andthe tehnique an be generalized to positive de�nite linear systems ingeneral. A major feature is that the approximations tend to have onlya small number of nonzero oeÆients, and in this sense the tehniqueis related to greedy algorithms and best n{term approximation.1 IntrodutionLet 
 � IRd be a bounded domain, and let � : 
 � 
 ! IR be asymmetri positive de�nite funtion. This means that for any �nite setX = fx1; : : : ; xNg of N di�erent points in 
 the matrixAX := (�(xj; xk))1�j;k<�Nis symmetri and positive de�nite. In partiular, we think of � being a radialbasis funtion generated by a ompatly supported funtion � : [0; h0℄! IRvia �(x; y) := �(kx� yk2). In this ase, the matrix AX will be sparse for h0small enough.The reonstrution of a funtion f : 
 ! IR from its disrete data fjX =(f(x1); : : : ; f(xN))T on X an be done by an interpolantsf;X := NXj=1�j(f;X)�(�; xj) (1)1



whose oeÆients �(f;X) = (�1(f;X); : : : ; �N(f;X))T satisfy the systemAX�(f;X) = fjXThe main goal of this paper is to provide methods that eÆiently produeapproximate solutions of very large systems of the above form. In addition,we onentrate on approximate solutions with only few nonzero oeÆients�j(f;X). The reason is that the evaluation of a full sum in (1) on manypoints will be too ostly, if the sum ontains a term for eah data value. Inshort, we try to approximate N data with K << N terms, and we want tokeep the storage and omputational e�ort proportional to N . This impliesthat we try to avoid storage of the full matrix AX .2 Native Spae NormA ruial tool will be the norm k:k� de�ned via the inner produt(sf;X ; sg;Y )� = MXi=1 NXj=1�i(f;X)�j(g; Y )�(xi; yj):For the speial ase �(x; y) = kx� yk2 log kx� yk2 in IR2 the value ksf;Xk2�desribes the bending energy of a thin plate desribed by the funtion sf;X .Thus one should view this norm as kind of an energy. The losure of allfuntions of the form sf;X with respet to the above norm is a (\native")Hilbert spae N� of funtions in 
. We do not want to pursue this topi anyfurther (see e.g. [5℄ for a reent referene), but we need the orthogonalityrelation (sf;X ; f � sf;X)� = 0for all f from the native spae. It is a onsequene of the fat that sf;Xhas minimal norm under all funtions in N� that interpolate f on X. ThePythagorean Theorem then implieskfk2� = kf � sf;Xk2� + ksf;Xk2�; (2)and we shall make frequent use of this equation.3 Iteration on ResidualsThe orthogonality relation (2) simply says that the \energy" of a funtionf an be split up into the \energy" of an interpolant sf;X plus the \energy"of the residual f � sf;X . We shall apply this \energy split" reursively byinterpolating the residual. More preisely:2



Algorithm 1 Start with a given funtion f0 := f 2 N� and iterate over anindex k = 0; 1; ::: by interpolating fk on some set Xk � 
 by sk := sfk;Xk.The next iterate will then be fk+1 := fk � sk.Theorem 1 The funtions sk of Algorithm 1 satisfy the summability ondi-tion kf0k2� � kfm+1k2� = mXk=0 �kfkk2� � kfk+1k2��= mXk=0 kskk2�: (3)
Proof: Using Algorithm 1, equation (2) turns intokfkk2� = kfk � sfk;Xkk2� + ksfk;Xkk2�= kfk+1k2� + kskk2�and by summation we get (3). 2We now want to look for onditions that imply onvergene of the residualsfk to zero, beause then our aumulated interpolantsgk := kXj=0 sj = f � fk+1 (4)onverge to f for k ! 1. This needs some further assumptions, sine wehave so far not exluded trivial ases like Xk = X for all k.4 Convergene AnalysisFrom the energy viewpoint, we should require that sk piks up at least aertain fration of the energy of fk.Theorem 2 If there is some positive onstant  suh thatkskk� � kfkk� for all k; (5)then the funtions fk and the aumulated interpolants gk of (4) onvergelinearly to zero and f , respetively, in the native spae.
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Proof: The assertion is implied bykfk+1k2� = kfkk2� � kskk2� � (1� 2)kfkk2�:2But sine kfkk� is not easily aessible in pratie, we prefer to use a weakerseminorm j:j�, i.e. jf j� � Ckfk� for all f 2 N�: (6)Theorem 3 If there is some positive onstant  suh thatjskj� � jfkj� for all k; (7)then the seminorms jfkj� and jf � gkj� onverge to zero for k ! 1. Morepreisely, they form square summable sequenes.Proof: The assumptions (6) and (7) implykf0k2� � kfm+1k2� = mXk=0 �kfkk2� � kfk+1k2��= mXk=0 kskk2�� 2C2 mXk=0 jfkj2� (8)
and summability of jfkj2� = jf � gk�1j2�. This is all we an hope for under ourweak hypotheses. 2But note that the seminorm j:j� an be a norm like k:k2 or k:k1 on 
. Thenwe would get onvergene in these norms, and the requirement (7) in eahstep still is manageable. We leave this interesting ase and its onsequenesfor alulating native spae norms open for later work.5 Interpolation on subsetsAn important speial ase arises from a disrete norm j:j� = k:kLp(X) on alarge subset X = fx1; : : : ; xNg � 
. By standard results on error boundsfor radial basis funtion interpolation, this is a bounded seminorm on thenative spae. We now on�ne everything to X and use the above argumentfor s(f;X) instead of f . 4



Algorithm 2 Start with data f0jX of some funtion f0 := f 2 N� anditerate over an index k = 0; 1; ::: by interpolating the data fk jX of fk on somesubset Xk � X = fx1; : : : ; xNg � 
 satisfyingjfkjLp(Xk) � jfkjLp(X): (9)by sk := sfk;Xk . The next iterate will then be fk+1 := fk � sk.Theorem 4 The funtions gk of (4) onverge linearly in N� to s(f;X).Furthermore, the norms jfkjLp(X) of residuals fk onverge linearly to zero.Proof: We �rst apply the results of Theorem 3 to s(f;X) instead of f , notingthat everything just works on the �nite set X. At eah step of Algorithm 2we need Xk � X and (7) in the formjskjLp(X) � jfkjLp(X) for all k; (10)whih is easily ahievable, sine we make sk to oinide with fk on Xk � Xby interpolation. In fat, due tojskjLp(X) � jskjLp(Xk) = jfkjLp(Xk) � jfkjLp(X) (11)we only require Xk to satisfy (9).Then the aumulated approximations gk onverge to s(f;X) on X. Butsine funtions of this form are bijetively mapped to their values on X, wehave a onvergent iterative sheme for solving large systems of the form (1).But this is not the end of the story. Sine we restrit everything to Xand linear ombinations s of �(�; xj) for xj 2 X, there are onstants 1 =1(p;X;�) and C1 = C1(p;X;�) with1jsjLp(X) � ksk� � C1jsjLp(X)for all suh s. But nowkskk� � 1jskjLp(X) � 1jfkjLp(X) � 1C1 kfkk� (12)implies linear onvergene by Theorem 2. 2For smooth radial basis funtions and densely distributed points in X, thequotient 1=C1 an be extremely small, making the linear onvergene state-ment a purely theoretial issue. The onvergene behavior of kskk� from (3)often shadows linear onvergene within the numerially relevant range ofiterations. 5



6 Iterative interpolation on single pointsLet us look at the above argument for the ase where Xk onsists of a singlepoint xjk 2 X = fx1; : : : ; xNg. We get linear onvergene via (9) in Theorem4, if the ondition jfk(xjk)j � jfkjL1(X) (13)holds at eah step. This is lear for p = 1 in (11), and for the other aseswe havejfkjpLp(X) � jfkjpLp(Xk) � jfk(xjk)jp � pjfkjpL1(X) � pN jfkjpLp(X): (14)Piking the maximum absolute value of the residual at eah stage means = 1, and then we have a \greedy" method. Sine this extremely simplealgorithm turns out to be unexpetedly useful in ase of ompatly supportedradial basis funtions, let us write it down in some detail. Everything is doneon funtion or residual values on a large �nite set X = fx1; : : : ; xNg. Storageis needed for X and the values fjX = (f(x1); : : : ; f(xN))T , whih are lateroverwritten by residuals, i.e.the values of fk on X. Furthermore, a vetorof length N aumulates the oeÆients �j of the funtions gk for later use.Storage requirements thus are N � (d+ 2) in d dimensions.Algorithm 3 For initialization, the values of f = f0 on X are generatedand stored. The N oeÆients are set to zero. For the startup iterationindex k = 0 we further pik some dummy point xj0 2 X = fx1; : : : ; xNg andthe dummy oeÆient �j0 = 0.The iteration at stage k then loops over all values of fk on X and does twothings on eah value: it replaes fk(xi) by the residualfk+1(xi) := fk(xi)� �jk�(xi; xjk)and it keeps trak of the maximum absolute value of the updated results. Afterthis loop over N elements, there is some point xjk+1 2 X = fx1; : : : ; xNgwhere jfk+1(xjk+1)j = jfk+1jL1;X, and the interpolant to this value on xjk+1 isthe funtion sk := �(�; xjk+1) fk+1(xjk+1)�(xjk+1; xjk+1) :Thus we set �jk+1 := fk+1(xjk+1)�(xjk+1; xjk+1)and add this value to the urrent value of �jk+1 to update the total approxi-mation. Then we repeat the iteration for k + 1 instead of k.6



Due to Theorems 1 and 4, the values jfkjL1;X generated by Algorithm 3 aresquare summable and onverge linearly to zero. This proves linear onver-gene of the algorithm, measured in the native spae norm or any disretenorm on X.For uriosity, one an form the energykskk2� = fk+1(xjk+1)2�(xjk+1 ; xjk+1)and monitor the monotonely onvergent sum over these values aordingto (3). The values jfkjL1;X are also numerially available, and they mustonverge linearly (but not neessarily monotonely) to zero. Furthermore,their squares are summable, and they must onverge to zero at least like1=k. Though being inferior to linear onvergene, this onvergene behaviouris the one that an be numerially observed in early stages of the iteration.These values an be used as a stopping riterion, but one an also hoose anydisrete norm jfkjLp;X for this purpose. In view of (3) and (8), a omparisonof the sum of squares of kskk� and jfkjLp;X reveals some information on theonstants in the error analysis.Convergene of the algorithm is rather slow, but its merits for extremelylarge problems rely on other properties:� It brings in one oeÆient at a time, and it produes approximationsthat have less than the full number of nonzero oeÆients.� It does not form any matrix{vetor multipliations, and it does noteven store the oeÆient matrix.� Compared to the onvergene analysis in [3℄, its onvergene (in theory)is linear with respet to the index k only, and does not require N suhsteps to form a suessful iteration.Let us do a very rough analysis of its performane, based on the weakeronvergene behaviour like 1=k. After k steps the order of magnitude of theresiduals will be brought down by a fator of 1=k, and this is ahieved byusing only k approximating funtions. One an possibly expet 1% aurayafter 100 steps, using just 100 oeÆients.This strategy is not useful if one wants an exat solution of a system of, say,100.000 data points. But it often does not make sense to use all 100.000 de-grees of freedom to solve suh a system exatly, oming up with a \solution"7



with 100.000 oeÆients, whose sheer size limits its usefulness. It seems tobe muh more reasonable to get away with 1000 nonzero parameters that�t the data to an auray of 0.1%. The above algorithm adaptively pikspoints (and orresponding oeÆients) that are the best andidates for fur-ther treatment, and it turns out to be extendable to an algorithm that isthe �rst to use radial basis funtions of di�erent sales adaptively. We shalladdress this in the next setion.Some omments towards other tehniques seem appropriate at this point.� The Faul-Powell [3℄ method will usually work on a full oeÆient vetor.Convergene of the latter is proven via steps that need a full sweepover a set of N diretions, and thus eah step ontains a full oeÆientvetor. If just a part of the �rst sweep is onsidered, the tehnique getsomparable to ours, beause it then does not work on a full oeÆientvetor. Linear onvergene is not proven.� Conjugate gradients have linear onvergene like our tehnique, andin ases where its onvergene rate is numerially reasonable, it out-performs our method. But it uses matrix{vetor multipliations, andthese (and the onvergene rate) limit its appliability. For large andbadly onditioned problems our tehnique will already produe somereasonable approximation before the onjugate gradient method haseven �nished its �rst step.� The above tehnique is a speial ase of a greedy algorithm as desribedin [1℄, [4℄,[2℄, [6℄, and [7℄. We use it here for solving a large linear sys-tem, but the analysis in setion 3 shows that the notion of a ditionaryis appliable here. Furthermore, it extends to ases with multiple in-stanes of funtions �, or with radial basis funtions of varying sale.We shall exploit these possibilities later, without using results of theited literature on greedy algorithms.7 General Linear SystemsWe now look at the above greedy algorithm in ase of a general linear systemAx = b with a symmetri and positive de�nite N � N oeÆient matrix A.As usual in the theory of the onjugate gradient method, we de�nekxk2A := xTAx for all x 2 IRN :8



Algorithm 4 For j := 0 start with xj := 0 2 IRN ; rj := �b 2 IRN . Theniterate for j = 0; 1; 2; : : : as follows:stop if krjk1 is small enough, else:jrjkj j := krjk1�kj := �rjkj=akj ;kjxj+1 := xj + �kjekjrj+1 := rj + �kjAekj (in pratie)= Axj+1 � b (by indution)Note that the method introdues only the numerially relevant unknownsdue to its pivoting strategy based on the right{hand side. Thus the teh-nique is fundamentally di�erent from the method of Gauss{Seidel or Jaobi.Furthermore, the method does not form any matrix{vetor produts. It paysfor this by a low onvergene rate.Theorem 5 The iterates xj of Algorithm 4 onverge linearly to the solutionx� 2 IRN with Ax� = b. The onvergene rate an be bounded above viakx� � xj+1k2A � kx� � xjk2A  1� �min(A)N maxk akk!Proof: By a standard variational argument, the algorithm solves the mini-mization problem kx� � xj+1kA = min� kx� � xj � �ekjkA:By Pythagoras' theorem we then getkx� � xjk2A = kx� � xj+1k2A + �2kjkekjk2A:From kekjk2A = akj ;kj and j�kj j = krjk1=akj ;kj we onludekx� � xj+1k2A = kx� � xjk2A � krjk21=akj ;kj :We are done if we showkrjk21 � �min(A)N kx� � xjk2A:But this follows fromkx� � xjk2A = (x� � xj)TA(x� � xj) = (x� � xj)T rj � krjk1kx� � xjk19



and �min(A)kx� � xjk21 � N�min(A)kx� � xjk22� N(x� � xj)TA(x� � xj)= Nkx� � xjk2A: 2The above algorithm annot be suggested as a general{purpose solver forsymmetri positive de�nite linear systems. It makes sense only for aseswhere the appliation expets to get away with an approximative solutionthat has many zero oeÆients. This, however, is the ase as soon as baseswith some hierarhial struture or a lot of built{in redundany are onsid-ered. Sine preonditioning an be seen as an appropriate hange of basis, itmakes sense to investigate how this algorithm behaves under some additionalpreonditioning. But we leave suh things open here.8 Adaptive SalingWe now want to look at a modi�ation of Algorithm 2 that uses saled radialbasis funtions �(x; y) := �(kx�yk2=2). In partiular, we aim at funtions� that have support in [0; 1℄, suh that �(x; y) vanishes for kx� yk2 > .Algorithm 5 We �x real onstants�; � > 0 <  < � < 1 < �:Furthermore, we use some disrete norm for residuals on a large data set X,and we need an iteration ount K � 1 and a large starting sale . In whatfollows, a suessful try is de�ned by a run of K steps of Algorithm 3 at a�xed sale  suh that the disrete norm of residuals is redued at least by afator of �.� The outermost loop runs over suessful tries until the disrete norm ofresiduals falls below a presribed bound �. At eah iteration, it uses theother loops to �nd a suessful try by suitable variation of the values ofK and :� A middle loop tries larger and larger numbers K;K�;K�2; : : : ofiterations, and an inner loop� tries sales ; �; �2 > : : : > until a suessful try is found. 10



Sine we know that at any �xed sale Algorithm 3 must bring the residualsto zero after suÆiently many iterations, the middle loop must terminate ateah of the �nitely many sales allowed in the inner loop. It terminates usingthe sale that roughly takes the fewest number of new points to reah suess.Sine the middle loop redues the residual norm by a ertain fator smallerthan 1, any presribed auray an be reahed after suÆiently many outeriterations.Note that the algorithm tries �rst to get away with as few new points aspossible, using the smallest possible iteration ount that leads to a redutionof the residuals. For eah iteration ount, it tests large sales �rst, butpriority is given to the iteration ount over the sale.Setting K = 1, using a large  and extremely small values of Æ; 1��; ��1 willlead to a very time{onsuming optimization, trying hard to reonstrut thedata with as few enters as possible. We shall all suh a ase an \optimizing"run of the algorithm in our examples. But there are some eonomizationsthat should be pointed out.First, extremely small sales will have a very loal e�et and will not lead toany reasonable redution in early stages of the algorithm. This means thatthe algorithm tends to prefer large sales over small sales at early stages,and extremely small values of Æ need not be onsidered. We found Æ = 0:5or Æ = 0:25 quite suÆient.Seond, if the sales  for suessful ases are inspeted, they tend to bedereasing steadily (but not monotonially). It therefore makes sense to usean update formula like new := � � suesswith some fator � � 1 after eah suess.Third, the neessary iterations to reah suess have the tendeny to inrease.This suggests an update formulaKnew := � �Ksuesswith some fator � � 1 after eah suess. The two values above are de-termined after a suessful outer iterations, and used for starting the inneriterations.A partiularly eÆient situation is given by � = � = 1, foring suessfuliterations to have weakly monotone inreasing or dereasing values of K and, respetively. We shall all suh a run of Algorithm 5 a \monotoni" run.11



If applied for ompatly supported radial basis funtions, the algorithm inits above form reahes smaller and smaller sales, until the alulations anbe loalized and parallelized. This has not yet been fully exploited in thenumerial examples following in the next setion.But we want to point out a further generalization. One an view the inneriteration just as a trial of M di�erent radial basis funtions, ignoring saleompletely. Sine the middle iteration inreases the number of iterationsfor eah funtion, it will automatially selet the radial basis funtion thatreahes suess using the fewest enters. The inner loop must be �nite, butafter eah suess of the outer iteration one an ome up with a di�erentset of �nitely many andidates for radial basis funtions. It is easy to in-orporate thin{plate splines or multiquadris at early stages, and one ango over to ompatly supported funtions when it omes to resolving loaldetails. Numerial experiments in this diretion are still to be arried out.The notion of a ditionary with respet to a greedy algorithm in the sense of[1℄, [4℄,[2℄, [6℄, and [7℄ applies here, and it is an interesting researh area topursue this onnetion further.9 Numerial ExperimentsWe start with a reprodution of the following Franke{type funtion:f(x) = 3Xj=0 aj exp(�bjkx� xjk22)with the values j aj bj xj0 1.0 -0.1 ( 0.0, 0.0)1 1.0 -5.0 ( 0.5, 0.5)2 1.0 -15.0 (-0.2,-0.4)3 1.0 -9.0 (-0.8, 0.8)To make it less smooth, we introdued a singularity of lower-order derivativesalong the line � � � = �1:0 by taking f(�; �) � (� � � + 1:0)� instead off(�; �) for �� � < �1:0. The funtion plot is given in Figure 1, and one anlearly see the modi�ation in the front right orner. We then piked 40000random enters on [�1;+1℄2 and onstruted approximate solutions of theorresponding interpolation problem, onsisting of up to 500 enters. In allexamples to follow, we onentrate on three ases that redue the maximum12



21.510.50-0.5 10.50-0.5-110.50-0.5-1
Figure 1: Franke{type funtionabsolute value of the residuals to 10%, 5%, and 1%, respetively. Furtherredution should be done by loal tehniques provided by a forthomingpaper. The following table shows how many of the 40000 data loations areneessary to reah the presribed auray:% monotone optimized10% 41 275% 61 451% 125 143These two runs were made with � = � = 0:9;  = 0:5; � = 2, and the startingsale was  = 10. A more detailed plot of the error as a funtion of the usedenters is in Figure 2, while the orresponding sales are in Figure 3. Notehow lose the monotone run is to the optimized run in both ases, in partiu-lar for large numbers of enters. The error for the monotone run does not leadto a monotone dereasing error urve, beause monotoniity is only attainedfor the outer iteration. Sine later iterations use large values of K, there arelearly visible non{monotoni setions in the urve for the monotoni run inFigure 2. The derease of the optimized sale in Figure 3 learly shows thatthe optimizing algorithm has a strong tendeny to \loalize" automatially.Both �gures strongly support our suggestion to prefer the monotoni run overthe optimizing run, if one just wants a quik approximation of 1% auray.13



"optimal""monotone"Max. error versus number of data used

1000100101

1010.10.010.001 Figure 2: Error behaviorIn partiular, the alulation time for up to 500 atually used enters outof 40000 on a notebook with a 350MHz AMD{K6 under Linux was about 1hour for the full optimization, as opposed to 100 seonds for the monotonerun. If just the 1% aurate solution based on 125 points is needed, themonotone run needs 30 seonds.Figure 4 shows how our adaptive tehnique automatially selets ruialpoints near the disontinuity line, if we let the monotone run extend upto 500 enters. The 1% aurate approximations from the table above donot yet disover the disontinuity preisely.The mbay.dat data from R. Franke's webpage are rather diÆult to handle,though they have only 1669 data points. The main problem is their in�nitevariation in relative sale. In the NE area of Figure 5 there is an area havingdata values exatly zero, and near the origin there is a single sharp positivepeak. Both of these are de�ned by rather few data values, but there aremany and dense data with small positive values desribing a \shallow" areawith small positive data values. The problem is to avoid negative valuesof the reonstrution in the zero area, and to avoid errors from the �ttingof the peak to propagate into the shallow area. An exat solution with = 1:0 is given in Figure 6. Note that there are areas with negative funtionvalues (the solid ontour line desribes the zero level), and there is somevisible undulation near the NE orner. The oarse approximations with our14



"optimal""monotone"Support radii versus number of data used

1000100101

1010.10.01 Figure 3: Sale behavioralgorithm, starting with  = 0:3, yielded the following numbers of enters fora presribed relative auray:% monotone optimized10% 48 285% 109 551% 430 335Even the optimized approximation of Figure 7 is alulated rather quikly(48 seonds on the aforementioned notebook omputer) ompared to an exatsolution of a full system with 1669 equations.In all ases one an observe how the residuals and the sales go down pro-portionally to 1=k, when k enters are introdued. The summability of thesquares of the residuals supports this behaviour, but asymptoti linear on-vergene is not visible at this distane from the full solution.All examples will be provided and doumented on the Internet via URLhttp://www.num.math.uni-goettingen.de/shabak, inluding some ray{traed reprodutions showing more details.
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0.50.450.40.350.30.250.20.150.10.050 Figure 5: Data loations for mbay.dat
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Figure 6: Exat solution with  = 1:017
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Figure 7: Optimized run with 335 enters
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Figure 8: Monotoni run with 430 enters18


