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Abstract

The linear systems arising from MFS calculations share certain nu-
merical effects with other systems involving radial basis functions.
These effects concern approximation error and stability, which are
closely related, and they can already be studied for simple interpo-
lation problems without PDEs. In MFS calculations, they crucially
depend on the position and density of the source points and the col-
location points. In turn, the choice of these points must depend on
the smoothness and possible singularities of the solution. This contri-
bution provides an adaptive method which chooses good source points
automatically. A series of examples shows that the adaptive choice of
source points follows the theoretical predictions quite well.

1 Introduction

The Method of Fundamental Solutions (MFS) solves a homogeneous
boundary value problem via approximation of the boundary data by
traces of fundamental solutions centered at source points outside the
domain in question. The method has been used extensively in recent
years, and there are excellent surveys [6, 8, 5]. However, this contri-
bution focuses on the linear systems arising in MFS calculations and
ignores applications in engineering and science. Since our observations
will easily generalize to other cases, we keep the presentation and the
examples simple by restricting ourselves to the homogeneous Poisson
problem

∆u = 0 in Ω ⊂ IR2

u = ϕ on Γ := ∂Ω
(1)
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with the Laplace operator. In this case, the fundamental solution (up
to a multiplicative constant) is the singular radial kernel function

Φ(x, y) := log ‖x − y‖2

2, x, y ∈ IR2.

The source points will be taken from a curve Σ outside Ω which is often
called the “fictitious” boundary. In particular, users normally choose
N points y1, . . . , yN ∈ Σ and take linear combinations

s(x) :=

N
∑

j=1

αj log ‖x − yj‖
2

2, x ∈ Ω (2)

of fundamental solutions as trial functions being homogeneous solu-
tions of the Laplacian, i.e. harmonic functions. Of course, other homo-
geneous solutions can also enrich the trial space, and there are plenty of
such possibilities, including harmonic polynomials. Methods like this
date back to Trefftz [16] in much more general form, and are currently
revived under the name of boundary knot methods [4].

2 Error Bounds

Whatever homogeneous solutions the trial functions s are composed of,
the maximum principle will under mild assumptions on the regularity
of the domain and the boundary data [11] imply that the true solution
u and the trial approximation s satisfy the error bound

‖u − s‖
∞,Ω ≤ ‖u − s‖∞,∂Ω.

This means that users only have to worry about the L∞ approximation
error on the boundary. If a fixed space of general linear combinations

s(x) :=

N
∑

j=1

αjsj(x), x ∈ Ω

of smooth homogeneous solutions sj are admitted, the natural numeri-
cal approach induced by the Maximum Principle would be to minimize
the L∞ norm of the error on the boundary. This is a semi–infinite lin-
ear optimization problem

Minimize η

−η ≤ ϕ(x) −

N
∑

j=1

αjsj(x) ≤ η, x ∈ Γ
(3)

with N + 1 variables η, α1, . . . , αn and infinitely many affine–linear
constraints. The literature on optimization deals with such problems
[10, 9], but in many cases it suffices to come up with a cheap but
suboptimal approximation. We shall focus on this situation and give
examples later.
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3 Linear Systems

In particular, users often try to get away with picking N collocation

points x1, . . . , xN on the boundary Γ and setting up an N × N linear
system

N
∑

j=1

αjsj(xk) = ϕ(xk), 1 ≤ k ≤ N (4)

for interpolation at these points. This works well in many cases, but
the main theoretical problem with such systems is that the coefficient
matrix with entries sj(xk) may be singular. This clearly occurs for
N > 1 and the MFS, because the determinant of the N × N system
with matrix entries

sj(xk) = log ‖yj − xk‖
2

2, 1 ≤ j, k ≤ N

will be a smooth function of the source points yj, and swapping two
source points will change the sign of the determinant. Thus there are
plenty of configurations of source and test points where the system is
necessarily singular. Confining source points to curves may help in 2D
cases, but not in 3D if source points are restricted to surfaces.

Consequently, it does not make any sense to head for theorems
proving nonsingularity of the above systems. The same holds for other
unsymmetric collocation–type techniques like the one introduced by
E. Kansa [12, 13] for general PDE problems in strong form, or the
meshless local Petrov–Galerkin method of S.N. Atluri and collabora-
tors [1, 2].

Instead, systems like (4) should not be expected to be solvable
exactly. In view of the maximum principle and the semi–infinite opti-
mization problem (3) one can take many more collocation points than
source points and solve the overdetermined linear system

N
∑

j=1

αjsj(xk) = ϕ(xk), 1 ≤ k ≤ M ≥ N (5)

approximatively, e.g. by a standard least–squares solver. We shall
focus on such systems from now on.

4 Choice of Test and Collocation Points

If a good linear combination s of the form (2) is found by any method
whatsoever, users will check the maximum boundary error ‖ϕ− s‖∞,Γ

by evaluating the error in sufficiently many test points on the boundary.
Though this test also needs a thorough mathematical analysis in order
to be safe, we ignore it here. We just remark that users will need very
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many test points in case of steep gradients of the trial functions, and
this inevitably occurs if the MFS is used with source points close to
the boundary. Adding more test points still is computationally cheap
if N is not too large, and most users will be satisfied with a simple plot
of the boundary errors evaluated at test points guaranteeing graphic
accuracy, i.e. at most 1000 points per plot. We shall use this rule–of–
thumb in later examples.

Choosing M collocation points for setting up the system (4) is some-
what more difficult, but it will always stabilize the system if more
points are taken. Independent of the choice of trial functions, users
can repeat the calculation with more or other collocation points, if
they are not satisfied with the first result. This is a simple way of
introducing adaptivity into the numerical solution strategy:

Adaptivity of Testing:
If the evaluation of the boundary error on certain test points
yields values that are intolerably large, take these test points as
collocation points and repeat the calculation.

As long as the trial space S is not changed, this can improve the results,
but if the trial space is poorly chosen, the final boundary error cannot
be less than

inf
s∈S

‖ϕ − s‖∞,Γ (6)

no matter how collocation and testing is done and how many points
are used.

But there is another argument that needs consideration. If the
linear optimization problem (3) is solved for a large but finite subset Γ0

of the boundary instead of the full boundary, the Karush–Kuhn–Tucker
conditions applied to the dual reformulation [3] of a linear minimax
problem will imply that there is a subset Γ1 of Γ0 consisting of at most
N + 1 points such that

inf
s∈S

‖ϕ − s‖∞,Γ0
= inf

s∈S
‖ϕ − s‖∞,Γ1

.

This is related to the notion of support vectors in support vector ma-
chines, and it has the following implication:

Reducibility of collocation points:
If a system (4) with M >> N has a good approximate solution,
it even has a good approximate solution determined already by
a subset of at most N + 1 collocation points.

Unfortunately, these collocation points are not known beforehand, but
users should be aware of the fact that a large system with a good ap-
proximate solution will have a much smaller subsystem with an equally
good solution. This fact will reappear later, and we shall provide ex-
amples.
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5 Choice of Trial Space

The lower bound (6) for the achievable boundary error reveals that
the main design problem consists in picking good trial functions, or,
in case of the MFS, in picking good source points.

Let us postpone the MFS for a while. Users can take all homo-
geneous solutions as trial functions, and this will work well in certain
examples we shall look at later. For the Laplace operator in 2D, the
real part of any differentiable function of a complex variable will be har-
monic and can serve as a possible trial function. The standard funda-
mental solution just is a special case of a real part of a complex function
with a singularity, but there are many others without singularities, e.g.
harmonic polynomials or entire functions like f(x, y) := exp(y) cos(x).

How to choose? We shall later let an algorithm decide adaptively,
but there is a general though trivial rule:

Take trial functions with similar analytic properties as the ex-
pected solution. In particular, be careful when the solution or one
of its derivatives will necessarily have singularities somewhere.

6 Harmonic Polynomials

We explain this first for the case of using harmonic polynomials. If
the solution u of the given Poisson problem is itself a real part of a
function of a complex variable without singularities anywhere, it can
be well approximated by harmonic polynomials on any curve, namely
by the real part of its partial sums of its power series. The shape of the
domain does not matter at all, and the background PDE problem is
completely irrelevant because we only have to recover a partial power
series. A full power series of an analytic function is determined by
values on any countable set with an accumulation point, and thus
recovery of globally harmonic functions from point evaluation data
will work almost anywhere.

By analogy to certain theorems on polynomial approximations to
analytic functions [7], the rate of approximation can be expected to
be spectral, i.e. the error should behave like Cλn → ∞ as a function
of the degree n of the harmonic polynomials used, and λ > 0 can be
arbitrarily small. Then the choice of harmonic polynomials should be
superior to all choices of fundamental solutions. In many engineering
applications where MFS users report that source points of the MFS
taken far away from the domain work best, the special examples usually
have solutions without singularities anywhere, but users tend to ignore
that harmonic polynomials will do even better in such situations.

If the solution, when viewed as a global function, is still harmonic
but has a singularity at a positive distance to the boundary Γ, the rate
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of approximation will again be like Cλn → ∞, but with λ < 1 now
being bounded below, and related to the distance of the singularity to
the boundary, with λ → 1 if the singularity moves towards the bound-
ary. Again, the shape and smoothness of the boundary is irrelevant.
The crucial quantity is the distance of the closest singularity of the so-
lution from the boundary, when the solution is extended harmonically
as far as possible. Again, this case is hard to beat by the MFS, if the
singularity is sufficiently far away from the domain.

The situation gets serious if the solution or one of its derivatives
has a singularity directly on the boundary Γ. Note that this case oc-
curs whenever the boundary data, however smooth, are given by a
function which is not itself harmonic. In such a case, the rate of ap-
proximation of boundary values by harmonic polynomials can be very
poor, depending on the smoothness of the solution when restricted to
the boundary. The upshot of this discussion of harmonic polynomials
is that the MFS makes sense only if the boundary data come from
a non–harmonic function or if there is no harmonic extension of the
solution without singularities close to the boundary. Users working in
application areas do not seem to be aware of this fact.

7 Rescaling Fundamental Solutions

Before we go over to the problem of choosing good source points for the
MFS, let us consider the case of far–away source points y ∈ IR2 while
the evaluation of a fundamental solution log ‖x−y‖2

2 is at x ∈ IR2 with
a relatively small value of ‖x‖2. In such cases, the functions log ‖x−y‖2

2

will not differ much if y varies, and consequently the resulting matrix
gets a bad condition. But we can rewrite the function for large ‖y‖2 6= 0
as

log ‖x − y‖2
2 = log

(

‖x‖2
2 − 2(x, y)2 + ‖y‖2

2

)

= log

(

‖y‖2

2

(

‖x‖2
2

‖y‖2
2

− 2

(

x,
y

‖y‖2
2

)

2

+ 1

))

= log ‖y‖2
2 + log

(

1 +

(

‖x‖2
2

‖y‖2
2

− 2

(

x,
y

‖y‖2
2

)

2

))

.

If we use the expansion

log(1 + z) =

∞
∑

j=1

(−1)j−1
zj

j
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for |z| < 1, we get for sufficiently large ‖y‖2 the expansion

log ‖x − y‖2
2 − log ‖y‖2

2

= log

(

1 +

(

‖x‖2
2

‖y‖2
2

− 2

(

x,
y

‖y‖2
2

)

2

))

=

∞
∑

j=1

(−1)j−1

j

(

‖x‖2
2

‖y‖2
2

− 2

(

x,
y

‖y‖2
2

)

2

)j

=

∞
∑

j=1

(−1)j−1

j

j
∑

m=0

(

j

m

)(

‖x‖2
2

‖y‖2
2

)j−m(

−2

(

x,
y

‖y‖2
2

)

2

)m

=

∞
∑

j=1

(−1)j−1

j

j
∑

m=0

(

j

m

)

1

‖y‖2j−m
2

‖x‖2j−2m
2

(

−2

(

x,
y

‖y‖2

)

2

)m

=

∞
∑

k=1

1

‖y‖k
2

∑

k/2≤j≤k

(−1)j−1

j
[

j
∑

m=0

(

j

2j − k

)

‖x‖2k−2j
2

(

−2

(

x,
y

‖y‖2

)

2

)2j−k
]

=:

∞
∑

k=1

1

‖y‖k
2

pk(x, y)

of the fundamental solution at y into harmonic polynomials

pk(x, y) :=
∑

k/2≤j≤k

(−1)j−1

j

j
∑

m=0

(

j

2j − k

)

‖x‖2k−2j
2

(

−2

(

x,
y

‖y‖2

)

2

)2j−k

with respect to x of degree k. If we push the source point y to infinity
by writing it as y = rz for large r > 0 and fixed z ∈ IR2 with ‖z‖2 = 1,
we get

log ‖x − rz‖2
2 = 2 log r +

∞
∑

k=1

1

rk
pk(x, z)

and this is something like a “far field expansion” of the fundamen-
tal solution. Note that z and r are considered to be fixed, and thus
users are strongly advised to include constants into the space of trial
functions in order to cope with the 2 log r term.

Now let us look at the span of fundamental solutions based on
points yj = rzj on a circle of radius r for large r. We want to find
functions which are in the span when taking the limit r → ∞, and we
call this the “asymptotic span”. The linear combinations are

sr(x) =

N
∑

j=1

αj(r)

(

2 log r +

∞
∑

k=1

1

rk
pk(x, zj)

)

= 2 log r
N
∑

j=1

αj(r) +
∞
∑

k=1

1

rk

N
∑

j=1

αj(r)pk(x, zj)
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and thus have specific expansions in terms of harmonic polynomials.
If constants are not added to the span, and if the MFS works at all
for large r in a specific case, the sum of the coefficients αj(r) will tend
to zero for r → ∞ while the coefficients themselves cannot stay all
bounded. In all “pure MFS” examples with far-away source points,
the sum of coefficients will always be close to zero while the sum of the
absolute values will be extremely large.

To avoid computational crimes, we now add the constant 1 to the
span of trial functions and use a coefficient α0 for it. Then we have a
span of

sr(x) = 1



α0(r) + 2 log r

N
∑

j=1

αj(r)



+

∞
∑

k=1

1

rk

N
∑

j=1

αj(r)pk(x, zj)

which we can analyze somewhat easier. We have the constants in the
span, of course, but for arbitrary α1(r), . . . , αN (r) we can always set

α0(r) := −2 log r

N
∑

j=1

αj(r)

to cancel the first term. Now rsr(x) must be in the span, and this
asymptotically is in the span of the p1(x, zj), 1 ≤ j ≤ N , which
necessarily is a subspace V1 of the linear polynomials. To proceed
inductively, we now look at the subspace A1 of coefficient vectors α ∈
IRN with

N
∑

j=1

αjp1(x, zj) = 0.

If we take a vector α ∈ A1 and form the functions r2sr(x), we find
that the aymptotic span of the fundamental solutions contains the
polynomial space

V2 :=







N
∑

j=1

αjp2(x, zj) : α ∈ A1







of maximally second–degree polynomials. Inductively we can define
A0 := IRN and

Am :=







α ∈ IRN :
N
∑

j=1

αjpi(x, zj) = 0, 1 ≤ i ≤ m







for all m ≥ 1 and use it for defining a space

Vm :=







N
∑

j=1

αjpm(x, zj) : α ∈ Am−1
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of polynomials of degree at most m. The spaces Am form an inclusion
chain

RN = A0 ⊇ A1 ⊇ A2 ⊇ · · ·

and if we take an appropriate orthogonal basis for that chain, we get

Theorem 1 The asymptotic span for r → ∞ of fundamental solutions

with source points of the form yj = rzj for fixed points zj on the unit

circle is a space of harmonic polynomials spanned by constants and the

union of all Vm. 2

Unfortunately, it seems to be difficult to calculate the dimension of
that space, because it will depend on the number and the geometry of
the points zj .

The upshot of all of this is that the MFS for far–away source points,
if it works at all, is asymptotically nothing else than a fit of the bound-
ary data by specific harmonic polynomials. Thus the MFS should not
be used at all for far–away source points, but rather be replaced by
use of harmonic polynomials. For this reason, we do not elaborate
the above argument any further, though it would result in a way of
preconditioning MFS matrices for far–away points. It does not make
sense to precondition a matrix one should not use.

However, a rather primitive but still somewhat useful change of
basis induced by the above argument is to add constants to the MFS
span and replace the fundamental solution at y 6= 0 by

(

log ‖x − y‖2

2 − log ‖y‖2

2

)

‖y‖2

behaving like a linear polynomial in x when y is far away from x. A full
preconditioning will use such basis changes plus coefficient vectors from
an orthogonal basis of IRN which is compatible with the chain of the
Am spaces. Details can be worked out similarly to [19]. As an aside,
we remark that it is no problem to replace the standard fundamental
solutions by rational trial functions arising when taking derivatives of
log ‖x − ry‖2

2 with respect to r.
Finally, we present an example supporting the results of this and

the previous section. In Figure 1 we show the L∞ error ǫ∞(r) on the
full circle when we recover the harmonic function f(x, y) = ex cos(y)
from boundary values only on a half circle. We collocate at 100 test
points on the right half unit circle, using 20 source points on the right
half circle of radius r. We stopped the calculation when the numeri-
cal rank of the 100 × 20 collocation matrix, as given by MATLAB c©

was less than 20, and this occurred for r ≈ 5.5 already. The error de-
creases nicely with increasing r, because the setting converges towards
harmonic polynomials for r → ∞, as was shown in this section, and
since the discussion in the previous section showed that recovery by
harmonic polynomials should work on any arc.
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Figure 1: L∞ error as function of r

8 Choice of Source Points

It should be clear by now that a good placement of source points
will crucially depend on the distance of the closest singularity arising
when extending the solution harmonically outside the domain. In many
cases, the user normally does not have this information, but there are
a few guidelines.

We start by an upside–down argument. If the MFS works for suf-
ficiently many source points on a fixed curve Σ, and if the results are
getting better when taking more source points, the solution will have
a harmonic extension up to Σ, because the MFS constructs it. But if
there necessarily is a singularity inside Σ for some reason or other, the
MFS cannot work satisfactorily on Σ.

We now have to find a–priori indicators for singularities close to the
boundary. The first and simplest case arises when the known boundary
data are such that there is no C∞ extension locally into R2. This
always happens if the boundary data are not C∞ on smooth parts
of the boundary. If users know where the “boundary points of data
nonsmoothness” are, source points should be placed close to those.
Unfortunately, there currently is no general way to guess the type of
singularity beforehand, even if the position is known. Thus this case
usually must be handled experimentally.

A second and partially independent case arises for incoming corners
of the domain. Even if the boundary data have a C∞ extension to
IR2, e.g. if they are non–harmonic polynomials, users must expect
a singularity at the boundary, but the type of singularity is known,
depending on the boundary angle. Again, users should either add the
correct type of singularity or place source points close to corners in
such cases. But the situation is different if the data come from an
extendable harmonic function, even if corners are present. Then the
MFS can ignore the corners. Note that MFS examples on domains
with corners are useless as long as they consider specific boundary
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data which are values of functions with a harmonic extension.
Finally, the convergence rate of the MFS when adding more and

more source points will be strongly influenced by the smoothness of
both the data function and the MFS trial functions on the bound-
ary. Approximation theory proves in many situations that conver-
gence rates are completely controlled by the minimal smoothness of
the data function and the trial functions. Thus smooth boundary data
on smooth boundaries will lead to good convergence rates improving
with the smoothness properties. If source points can be kept at a
fixed positive minimal distance from the boundary (this requires the
solution to have a harmonic extension), then the trial functions are an-
alytic and the convergence rate will be completely determined by the
smoothness of the data on the boundary. But then the approximation
by harmonic polynomials on the boundary will also have a good con-
vergence rate depending on the smoothness of the boundary data, and
it is not easy to predict superiority of the MFS over approximation by
harmonic polynomials.

If singularities of derivatives are on the boundary or if there are in-
coming corners, the convergence rate of approximation of the boundary
data by harmonic polynomials will deteriorate seriously, and the MFS
can be competitive by placing source points closer and closer to the
singularities. A general rule is not known, but there are certain adap-
tive techniques [18, 14, 15, 6] to handle this case. We shall provide a
simple adaptive method in the next section.

9 Greedy Adaptive Techniques

Overdetermined systems like (5) can be approximately solved by a
step–wise adaptive techniques even if they are huge. We applied the
method of [17] to MFS problems, but it turned out to be less stable
than the algorithm we describe now, because the previous one did not
keep all collocation points under control.

The basic idea can be formulated independent of the MFS in terms
of solving a linear unsymmetric over– or underdetermined m×n system
of the form Ax = b. The goal is to pick useful columns of the m × n
matrix A in a data–dependent way without cutting the number of rows
down. This is also done by any reasonable solution algorithm, e.g. by
the backslash operator in MATLAB c©, and we shall present examples
later. However, standard QR routines do not account for the right–
hand side b, and they do not stop early when only a few columns of
the matrix suffice to reproduce the right–hand side with small error.
To maintain stability, we use orthogonal transformations like in any
QR decomposition, but we make the choice of columns dependent on
the right–hand side.
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In short, our adaptive algorithm for selecting good columns works
as follows:

1. Pick the column of A whose multiples approximate b best.

2. Then transform the problem to the space orthogonal to that col-
umn and repeat.

If the algorithm has selected a number of columns this way, take this
column selection for a trial space and use your algorithm of choice for
solving the given problem on that trial space. For instance, in MFS
applications one can use L∞ minimization of boundary errors after the
selection process has provided a small set of useful source points.

The actual implementation of the algorithm needs some further
explanation. Approximation of b by multiples of a single nonzero vector

a is optimal in L2, if the error vector has the form b − a · bT a
aT a , and its

squared norm then takes the minimal possible value

‖b‖2

2 −
(bT a)2

‖a‖2
2

.

If we denote the columns of A by a1, . . . , an, we thus can implement
Step 1 by taking the maximum of

(bT aj)2

‖aj‖2
2

, 1 ≤ j ≤ n, ‖aj‖2 6= 0

to pick the best column for approximation of b. If we denote this
column by u, we form the normalized vector v := u/‖u‖2 and transform
both A and b into

A1 := A − v(vT A)
b1 := b − v(vT b)

to let both b1 and the columns of A1 be orthogonal to u and v. The
new matrix has a zero column where once was u. To avoid roundoff
problems, we insert exact zeros there, but we do not delete the zero
column in order to avoid unnecessary storage transformations. Instead,
we store the column index of u for later use and proceed. The following
steps will always automatically ignore the columns we already picked.
Note that we do not care for the approximate solution of the system
and about accumulation of roundoff during the transformations. The
L2 norms of the vectors b, b1, . . . will necessarily decrease, and this can
be used for stopping the algorithm. Going for a strong error reduction
will finally use the full matrix, while users can get away with just a
few columns and a very simple numerical solution if they admit larger
errors. A MATLAB c© package is available from the author.

Application of this technique to MFS calculations is particularly
appealing in cases where the user lets the algorithm decide which trial
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function to choose. One can offer harmonic polynomials up to a fixed
degree and plenty of fundamental solutions at different distances to the
boundary, and the algorithm will pick suitable ones without knowing
background mathematics like harmonic extendibility of the solution.
Running the algorithm several times will provide the user with in-
formation about hazardous places at the boundary, and the user can
offer refined choices of source points close to these when preparing the
next run. The actual calculation of the solution is done after column
selection in order to keep the accumulated errors small.

10 Examples

To illustrate the mathematical issues of the previous sections, we now
provide a series of examples, but we have to explain the notation in the
tables and figures first. Following (4), the number of collocation points
will be M , and N will denote the number of source points offered to
the algorithm. If only a smaller subset of source points is actually used
for the calculation, we use n ≤ N . Similarly, K denotes the number of
harmonic polynomials included into the trial space, and k stands for the
number actually arising in the solution. For approximate evaluation of
the L∞ norm ǫ∞ of the error on the boundary we use max(1000, 5∗N)
points for graphic accuracy. The number M of collocation points is
always defined as 1 + max(200, 2N + 2K). The approximate solution
of the system will be done by algorithms labeled as

L2: the MATLAB c© backslash operator, i.e. a standard least–squares
solver with internal selection of columns,

A2: the same as above, but applied to the reduced matrix after adap-
tive column selection along the lines of the previous section,

A∞: an L∞ linear optimizer applied to the same adaptively reduced
matrix.

Note that the solution algorithm will have quite some influence on the
final error and the number of nonzero solution coefficients. The L2
solver always exploits maximal machine accuracy, while our adaptive
solvers A2 and A∞ are tuned for a compromise between error and
complexity.

We denote the L∞ error on our test points as ǫ∞. It is debatable
to use the RMSE error measure at all, because the Maximum Principle
is guiding the error behavior, but we also include it as ǫ2. The curves
we use for boundaries or source points consist of circles Cr with radius
r around zero, or they are obtained from a polar coordinate represen-
tation of the standard boundary B0 by adding a distance h to get a
source boundary Bh at polar distance h.
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The first example in Table 1 concerns a more or less trivial case
where the data come from a globally harmonic function f(x, y) =
exp(x) cos(y) which is the real part of the entire complex function
exp(z) = exp(x + iy). The real part of the power series of exp(z)
yields a sequence of perfect approximations by harmonic polynomials
on each domain whatsoever, and the recovery by collocation via har-
monic polynomials even works on open arcs anywhere. As expected,
the MFS cannot outperform harmonic polynomials, independent of
where the sources are. The domain is a lemniscate with an incoming
corner as in Figure 2, while the source points are on the circle of radius
4 around the origin.

N M K Alg n m k ǫ∞ ǫ2

0 201 25 L2 0 201 13 1.16e-011 7.53e-012
0 201 25 A2 0 201 12 1.82e-010 1.18e-010
0 201 25 A∞ 0 201 12 1.81e-010 1.18e-010

200 401 0 L2 36 401 0 1.54e-013 6.74e-014
200 401 0 A2 25 401 0 3.54e-009 1.90e-009
200 401 0 A∞ 28 401 0 5.88e-007 2.04e-007
200 451 25 L2 7 451 22 5.18e-010 1.79e-010
200 451 25 A2 1 451 11 5.79e-010 3.73e-010
200 451 25 A∞ 1 451 11 7.49e-010 3.89e-010

Table 1: Recovery of harmonic function
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Figure 2: Lemniscate with source points

The table should be interpreted as follows. The first three lines
used no source points at all (N = 0), but M = 201 collocation points
and allowed K = 25 harmonic polynomials. Only up to k = 13 nonzero
polynomial coefficients were calculated due to the symmetry of the data
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function, and the recovery quality via the first terms of the power series
is around 1.0e−10, independent of the algorithm used. This happened
for all domains tested. But the adaptive algorithms in lines 2 and 3
solve only a subproblem with 12 degrees of freedom after picking the
most useful harmonic polynomials.

The next three lines are a pure MFS offering 200 source points
on the circle. With the L2 solver, the results are even better than
for harmonic polynomials, and surprisingly the MATLAB backslash
solver yields only 36 nonzero coefficients, i.e. only 36 source points
were necessary. The adaptive solvers are satisfied with less accuracy,
but also use a simpler approximation by 25 or 28 source points.

The final three lines offered the same 200 source points, but allowed
also 25 harmonic polynomials. All algorithms prefer harmonic poly-
nomials over fundamental solutions. This is to be expected, because
the solution has no finite singularities. The 25 marked source points
in Figure 2 belong to the situation of the fifth line of Table 1. The
adaptive L2 algorithm picks these 25 source points with no connection
to the domain corner, as is to be expected. However, the error is worse
than for harmonic polynomials in this case.

The L∞ norm of the error using the A∞ solver in line 3 is only
slightly better than the one from the A2 solver in line 2. It cannot be
worse because they use the same trial space. However, in some of the
later cases, the A∞ algorithm, after starting from the same trial space
as the A2 algorithm, is less stable and often ends prematurely with a
larger L∞ error than the A2 solver. Future work should add a more
sophisticated L∞ solver.

In Table 2 we present the same situation, but with boundary data
given by the function x2y3. This is still smooth, but the domain has
an incoming corner causing problems.

N M K Alg n m k L∞ L2

0 201 25 L2 0 201 12 1.17e-003 3.38e-004
0 201 25 A2 0 201 12 1.17e-003 3.38e-004
0 201 25 A∞ 0 14 12 9.28e-004 6.48e-004

200 401 0 L2 36 401 0 9.41e-004 2.38e-004
200 401 0 A2 31 401 0 1.04e-003 2.78e-004
200 401 0 A∞ 32 34 0 1.31e-003 8.30e-004
200 451 25 L2 7 451 24 1.02e-003 2.72e-004
200 451 25 A2 0 451 12 1.17e-003 3.38e-004
200 451 25 A∞ 0 26 12 9.15e-004 6.46e-004

Table 2: Smooth boundary data on lemniscate, source points on circle
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With source points on the circle, none of the methods outperforms
harmonic polynomials seriously.

To demonstrate that the incoming corner is the culprit, we replace
the lemniscate now by the unit circle and get Table 3. Again, harmonic
polynomials do best. We now go back to the lemniscate, but place the

N M K Alg n m k L∞ L2

0 201 25 L2 0 201 3 1.67e-016 4.61e-017
0 201 25 A2 0 201 3 2.08e-016 6.84e-017
0 201 25 A∞ 0 201 3 1.42e-014 1.00e-014

200 401 0 L2 34 401 0 1.90e-008 9.64e-009
200 401 0 A2 33 401 0 3.31e-009 1.48e-009
200 401 0 A∞ 33 274 0 7.56e-006 3.38e-006
200 451 25 L2 17 451 11 6.47e-010 3.47e-010
200 451 25 A2 0 451 3 2.36e-016 9.79e-017
200 451 25 A∞ 0 451 3 7.31e-011 4.79e-011

Table 3: Smooth boundary data on circle

source points at a polar radial distance of 0.2 outside the boundary
(i.e. we calculate them by adding 0.2 to the radius of boundary points
in polar coordinates). This gives Table 4 and should be compared to
Table 2. The results are not better than for sources on the circle, but

N M K Alg n m k L∞ L2

0 201 25 L2 0 201 12 1.17e-003 3.38e-004
0 201 25 A2 0 201 12 1.17e-003 3.38e-004
0 201 25 A∞ 0 14 12 9.28e-004 6.48e-004

200 401 0 L2 200 401 0 3.09e-004 4.75e-005
200 401 0 A2 140 401 0 3.09e-004 4.75e-005
200 401 0 A∞ 140 386 0 3.66e-004 8.18e-005
200 451 25 L2 193 451 9 2.90e-004 4.32e-005
200 451 25 A2 104 451 13 3.09e-004 4.75e-005
200 451 25 A∞ 104 119 13 4.82e-004 1.28e-004

Table 4: Smooth boundary data on lemniscate, source points at 0.2

maybe the sources are not close enough. Thus we go for a distance
of 0.02 in Table 5, and Figure 3 shows the source point distribution
(circles, while the offered but unused source points are small dots) for
the A2 technique in the eighth line of Table 5. Note that the source
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points are automatically picked close to the singularity.
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Figure 3: Lemniscate with source points

Going even closer does not pay off, unless we enhance the colloca-
tion resolution.

Now we admit source points at different distances, starting at 0.02
and ending at 10.24 after repeated multiplications by 2. At each dis-
tance, we choose random source points such that their total is roughly
201 as in the previous cases. Now the algorithms can pick source points
at very different distances, and they do.

Finally, we allowed roughly 700 source points and varying distances
from 0.002 to 2.048 to get Table 7. The distances were prescribed
by multiplying 0.002 by powers of 2 until 2.048 was reached, while
the points for fixed distance were uniformly sampled with respect to
the parametrization of the boundary. Zooming in on the adaptively
selected source point placements gives Figure 4 for the first line of Table
7, while Figures 5 and 6 are close-ups for line 2 with the A2 algorithm.
Note that the small dots are the offered source points, while circles
indicate the selected source points.

Users may suspect that things are better if there is no incoming
corner of the domain. Thus let us take the unit circle and prescribe
the continuous boundary values ϕ(x, y) := max(0, y). This leads to two
derivative singularities of the harmonic solution at (1, 0) and (−1, 0).
Numerical results are quite similar to the case on the lemniscate, and

17



N M K Alg n m k L∞ L2

0 201 25 L2 0 201 12 1.17e-003 3.38e-004
0 201 25 A2 0 201 12 1.17e-003 3.38e-004
0 201 25 A∞ 0 14 12 9.28e-004 6.48e-004

200 401 0 L2 198 401 0 1.16e-004 2.28e-005
200 401 0 A2 196 401 0 1.16e-004 2.28e-005
200 401 0 A∞ 196 401 0 2.51e-004 9.65e-005
200 451 25 L2 198 451 12 1.17e-004 1.09e-005
200 451 25 A2 58 451 12 1.17e-004 1.09e-005
200 451 25 A∞ 58 450 12 4.32e-004 1.07e-004

Table 5: Smooth boundary data on lemniscate, source points at 0.02

N M K Alg n m k L∞ L2

210 451 25 L2 111 451 21 3.64e-004 5.75e-005
210 451 25 A2 50 451 12 3.63e-004 5.75e-005
210 451 25 A∞ 50 447 12 6.12e-004 1.45e-004

Table 6: Smooth boundary data on lemniscate, about 200 source points at
varying distances

thus we confine ourselves to offering about 700 source points on circles
with distances 0.002 to 2.048 in Table 8. The L2 solver does not
care about the right–hand side of the system, and thus it does not
realize the two singularities. This is shown in a close–up in Figure 7,
while the A2 algorithm (see Figure 8) selects source points close to
the problematic boundary locations. Note that this case is offered 729
degrees of freedom and uses maximally 490 of these.

If we drop the MFS completely and offer 751 harmonic polynomials
on the circle instead, we get Table 9. Note that this performs slightly
better than the MFS and uses 377 of the possible degrees of freedom.

N M K Alg n m k L∞ L2

704 1451 25 L2 416 1451 11 7.55e-005 5.31e-006
704 1451 25 A2 208 1451 12 6.97e-005 4.93e-006
704 1451 25 A∞ 211 1451 12 4.80e-003 6.97e-004

Table 7: Smooth boundary data on lemniscate, about 700 source points at
varying distances
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Figure 4: Lemniscate with source points, L2 algorithm

N M K Alg n m k L∞ L2

704 1451 25 L2 471 1451 19 7.69e-004 3.41e-005
704 1451 25 A2 350 1451 13 8.13e-004 3.03e-005
704 1451 25 A∞ 356 1449 14 6.92e-003 2.01e-003

Table 8: MFS results for max(0, y)

Finally, Table 10 shows how the sum of coefficients and the L1 norm
of coefficients vary with the radius r of the distance of the source points
to the boundary. To avoid symmetries, we took the boundary data
function f(x, y) := max(0, |y|) on the unit circle, offered 200 source
points on a circle of radius r and used 401 collocation points. The so-
lution method was the standard backslash L2 solver from MATLAB c©.
Note that the increase of condition is counteracted by the solver in a
very nice way, using fewer and fewer source points. This effect is even
more significant when using the A2 or A∞ methods.
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Figure 5: Lemniscate with source points, A2 algorithm

N M K Alg n m k L∞ L2

0 1503 751 L2 0 1503 377 6.67e-004 4.08e-005
0 1503 751 A2 0 1503 377 6.67e-004 4.08e-005
0 1503 751 A∞ 0 379 377 1.47e-003 1.90e-004

Table 9: Results for max(0, y), harmonic polynomials only
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