
reliable starting vectors for curve calculation. So far we did not try any algorithm to handle

these patch pairs; we just kept their diameter " smaller than the display precision and treated

these pairs as single points of the intersection. Since the numerical derivative information is

not su�cient to handle these cases, there is some need for derivative{free algorithms around

such degenerations.

and test for 

disjointness and

uniqueness.

Global divide--and-

Subdivide, test for

disjointness, and

find starting point.

small pairs

disjoint

pairs

input

input

Resulting

curve

  pieces

Waste-

basket

Resulting

small pairs

Pairs with

curve piece or

startng point

Pairs with no

starting point

pairs
disjoint

unresolved

unresolved,
no curve piece

unresolved,
with curve 

piece

with
starting

   point

small pairs

L

L

R

Subdivide,

Local algorithm 5.1

conquer algorithm 2.1.

P

march,

1

2

Figure 4 Data ow within multistage algorithm.

Table 2 contains data for an example with two intersection curves that have distance� 10". The

local behavior of the intersection curves was similar to that in Figure 2 in the previous section,

but the approximate singularity was so severe that the marching algorithm could not proceed

along the bottleneck as it did in Figure 2. The notation of Table 2 is the same as for Table 1, but

the new column P denotes the number of curve points generated by the marching method, while

the column labeled \unique" gives the number of patch pairs which could be discarded because

of being contained in uniqueness balls. The iteration cycle of the multistage method performed
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Example 2 Oriented parallelepipeds

Iterations / Routines
L

1

L

2

P R unique disjoint

0
Subdivision and Boxing 39 { { { { 187

1
Subdivision and Boxing 52 { { { { 572

Marching method 44 8 520 { { {

Uniqueness criterion 44 128 { 0 0 0

Test of box diameter 44 { { 0 { {

2
Subdivision and Boxing 45 { { { { 659

Marching method 45 128 0 { { {

Uniqueness criterion 45 512 { 0 0 96

Test of box diameter 45 { { 0 { {

3
Subdivision and Boxing 27 { { { { 693

Marching method 27 512 0 { { {

Uniqueness criterion 27 2960 { 0 22 305

Test of box diameter 27 { { 0 { {

4
Subdivision and Boxing 14 { { { { 418

Marching method 14 2960 0 { { {

Uniqueness criterion 14 5648 { 0 171 2436

Test of box diameter 14 { { 0 { {

5
Subdivision and Boxing 14 { { { { 210

Marching method 14 5648 0 { { {

Uniqueness criterion 14 5520 { 0 555 4748

Test of box diameter 14 { { 0 { {

6
Subdivision and Boxing 19 { { { { 205

Marching method 19 5520 0 { { {

Uniqueness criterion 19 4800 { 0 713 4507

Test of box diameter 19 { { 0 { {

7
Subdivision and Boxing 13 { { { { 291

Marching method 13 4800 0 { { {

Uniqueness criterion 13 544 { 0 1102 3664

Test of box diameter 13 { { 0 { {

8
Subdivision and Boxing 13 { { { { 195

Marching method 13 544 0 { { {

Uniqueness criterion 13 0 { 0 273 271

Test of box diameter 0 { { 13 { {

Table 2 Numbers of patch pairs treated by the multistage method
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a sweep over \old" bags L

1

and L

2

by �rst the divide{and{conquer algorithm followed by the

marching algorithm, generating new bags L

1

and L

2

for the next iteration. At this point we warn

the programmer to implement bags in plain C without a garbage collector. Generating new

bags as �les or arrays by each iteration overcomes this problem in a straightforward but rather

primitive way. For sequential machines, the bookkeeping of subdivided patches should better

be implemented by a quadtree structure as in [Barnhill/Kersey '90], while parallel machines

should do local bookkeeping in quadtrees and should exchange \bag data" only if necessary for

load balancing, using advanced \hot potato" routing techniques.

Note that the intersection curves of this example, as far as they were traceable at all, are

already obtained in the �rst iteration. The rest of the work is spent to guarantee that nothing

else is overlooked, which is a nontrivial task in this example. The bag L

1

of the divide{and{

conquer method stays rather small and ends up with 13 undecidable patch pairs moved into R

when getting small enough. This part of the algorithm copes with the singularity by recursive

subdivision, and it does so quite e�ectively, keeping the number of non{discarded patch pairs

approximately constant during subdivision. The bulk of the work consists of the application of

the uniqueness criterion to subdivided patches containing intersection curves. It blows the bag

L

2

up until the subdivided patch pairs are small enough to be contained in uniqueness balls, if

they are not already detected as being disjoint. Of course the algorithm is much faster when

the solution branches are further apart. The hazardous case considered here necessarily leads

to very small uniqueness boxes and many subdivision steps.

If safety is not required, the user may simply omit the last box in Algorithm 5.1. Then

the algorithm would need only two iterations in the above example. The user can adapt the

algorithm to any safety restriction by executing the last block only for certain subdivision levels.

6 Conclusions

Our numerical and theoretical experience with the multistage algorithm supports the following

general statements:

� Disjoint patch pairs should be detected and discarded as soon as possible. This means

that after each subdivision step there should be an immediate disposal of the garbage.

� Oriented parallelepiped boxes are superior for problems with medium or high accuracy

requirements (see Theorem 3.1).

� One should apply a local marching method as soon as possible (see Theorem 4.1). This

means that candidates for starting points should be calculated very early.

� The divide{and{conquer method cannot safely and e�ciently handle patches with a

known intersection curve piece and an undetected second curve piece nearby. Some ad-

ditional local uniqueness argument around a curve must be numerically exploited to deal

with such patches. Thus uniqueness boxes as provided by our marching algorithm are a

useful tool to get more safety by exclusion of further solution branches around existing

ones.

� All the degenerations and peculiarities that can possibly arise for marching methods

should be handed back to a global divide{and{conquer method. This does not lead to
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excessive computational problems, provided that the divide{and{conquer method obeys

the �rst of these rules.

� As long as doubtful cases are handed back to the divide{and{conquer method, there is

no need for utmost generality in the programming of the other routines. It su�ces to

make them work safely under well-de�ned restrictions on their inputs, for instance under

smoothness, regularity, and transversality requirements for the intersection curves. In

this sense the divide{and{conquer method makes the multistage algorithm stable and

safe even for wildly degenerate cases, while the marching method, when started early

enough, makes it fast on nondegenerate intersection curves.
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