
Adaptive Rational SplinesRobert SchabackAbstract. The classical interpolation problems for cubic and rational splines are mergedto get an \adaptive" rational interpolating spline which automatically uses cubic pieces tomodel unavoidable inection points and retains convexity/concavity elsewhere. An existenceproof, a numerical method, and a series of examples are presented. Furthermore, the two{dimensional case is discussed.Keywords. Rational functions, convexity{preserving splines.1 IntroductionFor a partition a = x0 < x1 < ::: < xn+1 = b; n � 0 (1)of a real interval [a; b] into subintervals Ij = [xj; xj+1]; 0 � j � n, we want to construct atwice di�erentiable function f on [a; b] that is either a cubic polynomial or a rational functionof the form fj(x) = aj + bjx+ cjx21 + djx (2)on Ij and which satis�es the interpolation conditionsf(xj) = yj 0 � j � nfor given data values y0; :::; yn at x0; :::; xn. In addition, we impose a boundary condition ofthe type�) f 0(x) = y0 or�) f 00(x) = y00on each of the endpoints x0 = a; xn+1 = b. Note that the parameters dj are allowed to varyfreely. This distinguishes our approach to rational splines from others (see e.g. [5]).Due to the special form of (2), f 00(x) can have zeros only on intervals Ij where f(x) = fj(x) isa cubic polynomial. We call such intervals cubic, the others rational. To avoid unnecessaryinection points, we make the number of cubic intervals as small as possible and place themwhere inection points are necessarily induced by the data.Mixed type nonlinear spline interpolation problems were treated by [3], but an existenceproof was given there only for the case of su�ciently large n, using convergence of rationalsplines to cubic splines. This paper gives a general proof and a series of numerical examples.Approximation by rational splines is treated in [1], [4], and [7].1



2 Basic equationsFollowing [2] and [3] we write the interpolation problem as a system of equations in terms ofthe second derivatives Mj := f"(xj); 0 � j � n + 1; at the knots, involving the given datahj := xj+1 � xj (0 � j � n)�1j := 1hj (yj+1 � yj) (0 � j � n)Dj := �1j ��1j�1 (1 � j � n):The quantities Dj ; 0 � j � n + 1, are positive multiples of f 00. Therefore we use them todetermine the type of the local interpolant from properties of the data alone:De�nition 2.1 A subinterval Ij = [xj; xj+1] is called rational i�Dj �Dj+1 > 0and cubic otherwise. A knot xj is called rational if it is the boundary point of at least onerational subinterval. Furthermore, letR := fxj j 0 � j � n+ 1; xj is rational gdenote the set of rational knots; the other knots will be called cubic.We require the interpolant to be rational in rational subintervals and cubic in cubic subinter-vals. Strict convexity or concavity of the interpolant will thus be conserved as far as possible;inection points will occur only in cubic intervals which will be placed near to points wherethe second derivative necessarily must have a zero for any C2 interpolant of the data.We now express �rst{order derivatives f 0j(xj); f 0j(xj+1) by the data and the unknowns Mj :=f"(xj) :a) For rational intervals Ij = [xj; xj+1] we getf 0j(xj) = �1j � 12 hjM2=3j M1=3j+1f 0j(xj+1) = �1j + 12 hjM1=3j M2=3j+1; (3)using (2) as a representation of fj in Ij and after elimination of the parameters aj; bj; cj;and dj in favor of the data and Mj; Mj+1 (see e.g. [2]).b) For cubic intervals we getf 0j(xj) = �1j � 16 hjMj+1 � 13 hjMjf 0j(xj+1) = �1j + 16 hjMj + 13 hjMj+1; (4)if fj is written as a cubic polynomial in Ij.2



Reference [3] contains a general treatment of interpolating C2 spline functions composed ofpieces from certain 4{parameter nonlinear families. Equations (3) and (4) are special casesof a general formula given in [3].We have to enforce continuity of the �rst derivative on the boundary point xj betweenintervals Ij�1 = [xj�1; xj]; Ij = [xj; xj+1]; 1 � j � n. Combining two equations of the form(3) or (4) we get the following equations for the unknowns Mj := f"(xj) :Case 1 Ij�1; Ij rational 12 hj�1M1=3j�1M2=3j + 12 hjM1=3j+1M2=3j = Dj (5)Case 2 Ij�1 cubic, Ij rational (or vice versa, analogously)16 hj�1Mj�1 + 13 hj�1Mj + 12 hjM1=3j+1M2=3j = Dj (6)Case 3 Ij�1; Ij cubic16 hj�1Mj�1 + 13 (hj�1 + hj)Mj + 16 hjMj+1 = Dj (7)Boundary conditions are treated as follows:�) f 00(x0) = y00 implies an equation16 h0M1 + 13 h0M0 = D0 := �11 � y00for I0 cubic and 12 h0M20M1 = D0 := �11 � y00for I0 rational. These can easily be incorporated by setting h�1 := 0 and neglectingthe corresponding terms in an additional equation at x = x0. Obviously, the resultingequation has one of the above forms.�) f 000 (x0) = y000 = M0 simply �xes M0 but leaves the rest as it was. We formally de�neD0 :=M0 in this case.In each case the form of the equations is not changed.3 Cubic sectionsFor the proof of the main existence theorem in the next section we have to impose anadditional restriction on \cubic sections"; i.e., maximal sequences of adjoining cubic intervals[xi; xi+1]; [xi+1; xi+2]; :::; [xj�1; xj]; 0 � i � j � 1 � n: (8)3



On such a cubic section C := [xi; xj] the inequalitiesDk �Dk+1 � 0 (i � k � j � 1) (9)hold, and the \local boundary points" xk 2 @C are either boundary points of the originalproblem (i.e., i = k = 0 or j = k = n + 1) or rational points (i.e., boundary points to aneighbouring rational interval, xk 2 @C \R).De�nition 3.1 Let sM be a cubic spline on a cubic section C of the form (8) satisfying1. sM(xk) = yk; i � k � j;2. standard boundary conditions on non{rational boundary points of C,3. boundary conditions s00M (xk) = Mk on rational boundary points xk of C, using a bound-ary derivative value Mk with sgnMk = sgnDk:A cubic section C of the form (8) is called nondegenerate if for any spline sM de�ned asabove the inequalities Mi sgn s00M (xi+1) � 0 if xi 2 @C \RMj sgn s00M (xj�1) � 0 if xj 2 @C \R (10)hold.This makes sure that the second derivative actually changes sign when going from a rationalboundary point to a cubic neighbor. A su�cient criterion for nondegeneracy is given byTheorem 3.1 If the data in a cubic section (8) satisfy(�1)k�iDkDi � 0 for i � k � j (11)(i.e., weak alternation of Dk), the cubic section is nondegenerate.Proof: We consider the Gauss{Seidel iteration on the standard system of equations (7) forthe cubic spline in terms of second derivatives. If started with Mk = Dk, it will satisfy(�1)k�iMkMi � 0 for i � k � jfor all iterates, if (11) holds.Sign distributions of Di; :::;Dj like (+; 0; 0;+) are not covered by Theorem 3.1. They haveto be removed by slight changes of the data in order to make our theory applicable, althoughthey do not seem to cause problems in practical computations.We shall need the following bound of the second derivatives of the solution at the knots incubic sections: 4



Theorem 3.2 There is a constant C1 = C1(Di; . . . ;Dj) such thatjs00M (xk)j � C1 + 12 max8<:jMmj ������ m = i or j;xm a rationalboundary point 9=; ; i < k < j;for the cubic interpolant sM from De�nition 3.1.Proof: Let sM = gD + gM , where gD interpolates for homogeneous boundary valueson rational boundary points and inhomogeneous data values Di; :::;Dj, while gM interpo-lates for inhomogeneous boundary values and homogeneous data values. Then for C1 :=maxi�k�j jg00D(xk)j we havejs00M (xk)j � C1 + jg00M (xk)j (i � k � j):From the equations (see (7) )16 hk�1g00M (xk�1) + 13 (hk�1 + hk)g00M (xk) + 16 hkg00M(xk+1) = 0at interior points xk we get�g00M (xk) = hkhk�1 + hk 12 g00M(xk+1) + hk�1hk�1 + hk 12 g00M(xk�1)and this convex combination impliesjg00M(xk)j � 12 max(jg00M(xk+1)j; jg00M (xk�1)j):Extending this inequality recursively to the local boundary yields the assertion.4 Existence of adaptive rational splinesThe main result of this paper isTheorem 4.1 There exists a unique interpolating twice di�erentiable adaptive rational s-pline, if all cubic sections determined by the data via Di are nondegenerate.Proof: We solve the equation at xj for Mj and thus get a nonlinear Gauss{Seidel iterationscheme as a mapping T : K �! K which will be proven to satisfy the hypothesis of Brouwer's�xed point theorem on a suitable compact convex domain K. To de�ne the latter we needsome notation and a series of a{priori estimates.The iteration will ensure thatsgn s00(xj) = sgn Mj = sgn Dj 6= 05



on rational points; i.e., for j 2 R. Using constants satisfying0 < d � jDj j � D for all j 2 R0 < h � hj � H 0 � j � n;h � 6Dwe set c := d2h2DH2 C = max�4D2Hdh2 ; 4hD + 23C1; 6hD�choosing the constant C1 appearing in Theorem 3 large enough for all cubic sections.Now let K be the compact convex set containing all vectors M = (M0; :::;Mn+1)T withc � jMjj � C for j 2 R;sgn Mj = sgn Dj for j 2 R;jMjj � C1 + 12 C for j =2 R:The iteration mapping T : K ! K to be de�ned will combine a Gauss{Seidel iteration ofMj on rational points with the standard solution method on cubic sections using secondderivative local boundary values on the rational boundary points:Case a) Let xj be a rational point between two rational intervals or on the boundary (incase of a boundary condition of type �). Then we set in accordance with (5)Tj(M)2=3 := 2Dj(hj M1=3j+1 + hj�1M1=3j�1)�1sgn Tj(M) := sgnDj :Case b) Let [xj�1; xj] be a cubic, [xj; xj+1] be a rational interval, respectively. Then we use(6) to de�ne Tj(M) as the (unique) sign{correct solution of16 hj�1Mj�1 + 13 hj�1Tj(M) + 12 hjM1=3j+1Tj(M)2=3 = Dj(for details see below).Case c) On non{rational points xk of cubic sections we de�ne Tk(M) := s00(xk) for the cubicspline interpolating the given data and the values Mi on rational boundary pointsxi of the section.In case a) the sign of Tj(M) will be correct since Dj ;Mj�1;Mj+1 are all of the same sign.The nondegeneracy condition for cubic sections guarantees that in case b) we haveDjMj�1 � 0; sgn Dj = sgn Mj+1 6= 0:6



Then (Tj(M))1=3 solves an equation of the formx3 + b2x2 = b0 = Dj � 16 hj�1Mj�1 6= 0 (12)with sgn b0 = sgn b2 and should have the signsgn Tj(M) = sgn Dj = sgn b0 = sgn b2:Since b0x+b0b2 intersects b20=x2 in exactly one point x with sgn x = sgn b0, the cubic equation(12) has precisely one (simple) sign{correct solution depending smoothly on the data. Atthis point the e�ect of nondegeneracy of cubic sections is clearly visible: if Dj � 16 hj�1Mj�1has the wrong sign, Tj(M) will get the wrong sign, too.Now T is well{de�ned and continuous on K; we still have to prove that T (K) � K holds.In case a) we havedH�1C�1=3 � Tj(M)2=3 � 2 Djh�1j M�1=3j+1 � 2 Dh�1c�1=3;where we allowed a possible boundary point and assumed j < n without loss of generality.Then c2 = d3H�3C�1 � Tj(M)2 � 8 D3h�3c�1 = C2;as required. Case c) implies jTk(M)j � C1 + 12 C for k =2 Rvia Theorem (3.2) and we are left with case b). To get upper bounds we rewrite Tj(M) asTj(M) = 3hj�1 Dj � 12 Mj�11 + 3hj2hj�1 � Mj+1Tj(M)�1=3and get jTj(M)j � 3h D + 12 jMj�1j � C:If j � 1 =2 R, then jTj(M)j � 3h D + 12 �C1 + 12 C�� 3h D + 12 C1 + 14 C � C;while for j � 1 2 R we concludejTj(M)j � 3h D + 12 C � C:7



To estimate jTj(M)j from below we can assume jTj(M)j � 1 and write the equation ashj�13 jTj(M)j + hj2 ���M1=3j+1��� jTj(M)j2=3 = ����Dj � hj�12 Mj�1���� � d;taking the sign distribution into account. Thend � H3 jTj(M)j+ H2 C1=3Tj(M)2=3� �H3 + H2 C1=3�Tj(M)2=3;Tj(M)2=3 � dH�1 �13 + 12 C1=3��1 � dH�1C�1=3�12 + 13 C�1=3��1� dH�1C�1=3;and �nally T 2j (M) � d3H�3C�1 = c2:Uniqueness follows from a simple argument counting the zeros of the di�erence of two solu-tions (see [3]).Remark. Under the hypothesis (11) of Theorem 3.1 a pure Gauss{Seidel iteration can beemployed. This will streamline the proof of Theorem 4.1. However, the following examplewill show that (11) is not necessary for nondegeneracy.Example. Consider a symmetric problem with n = 9; xi = i � 5; 0 � i � 10, anddata given in condensed form as D0;D1; 0;D3; 0;D5; 0;D7 = D3; 0;D9 = D1;D10 = D0 withsgnD0 = sgnD1 = 1. If a solution exists, it is unique (see [3]) and therefore it must besymmetric. The data for the cubic section [x1; x9] satisfy (11) in case D3 � 0;D5 � 0, butnot if D3 < 0;D5 > 0. Direct elimination of unknowns Mi = s00(xi) yields the equation�97M2 = 26M1 + 42D3 + 3D5and nongeneracy occurs if and only if42D3 + 3D5 � 0;because then any choice of M1 > 0 implies M2 < 0. This shows that the condition (11) isnot necessary for nondegeneracy.Furthermore, nondegeneracy is not necessary for solvability of the interpolation problem,because the �nal equation for M4 is16897 M4 + 3(2D0)1=6pM4 = 6D1 + 4297D3 + 397D5;having a positive solution, i� 582D1 + 42D3 + 3D5 > 0:8



5 Numerical methodsThe iteration de�ned in the previous section can be used to calculate the solution numerically,but we propose to use a stabilized Newton{Raphson method for reasons of computationale�ciency. Since results of [3] yield uniqueness of the interpolating adaptive spline, thenonlinear system to be solved does not have other solutions in the domain K. We have usedNewton's method with a simple stepsize control assuring that� iterates stay in K and� kF (M)k22 decreases, if the equations are written as F (M) = 0.The computational cost of solving the adaptive rational spline interpolation problem wasobserved to stay proportional to n. Thus it does not exceed the computational cost of cubicspline interpolation by more than a constant factor.Each Newton step involves a tridiagonal system of linear equations. For single precision andthe starting values Mj := 2hj�1 + hj Dj = s00(�j) � s00(xj)normally 5 { 6 Newton iterations are su�cient. Stabilization is required for small n and near{singular problems, but even in those cases 15 iterations are rarely exceeded. The values of acubic spline solution can not be used to start the Newton iteration, because they may havewrong signs due to the fact that cubic splines do not preserve convexity.6 Numerical examplesFigures 1, 2, and 3 show plots of interpolating adaptive rational splines (dashed lines) tocertain functions (dotted lines) over the interval [0; 1]. The cubic interpolating splines (andthe cubic pieces within adaptive rational splines) are represented by solid lines.The convexity preserving feature of the adaptive rational spline cuts o� the parasitic wigglesof the cubic spline near singularities or at the foot of sharp peaks. For large numbers ofknots it shows the same asymptotics as cubic splines (see [3] and [6] for the convergenceof rational splines to cubic splines), but it is inferior to the cubic spline by a certain factor(about 10 in most examples). The adaptive rational spline is superior to the cubic spline forsmall numbers of knots and if the problem has nearby singularities or sharp bends.7 Two{dimensional rational splinesOn a rectangular grid de�ned by the partitions (1) andc = z0 < z1 < ::: < zn+1 = d m � 09



we construct a function s 2 C2([a; b]� [c; d]) which interpolates the tensor product datayij = f(xi; zj); 0 � i � n+ 1; 0 � j � m+ 1;y0ij = @f@x (xi; zj); i = 0; i = n+ 1; 0 � j � m+ 1;z0ij = @f@z (xi; zj); 0 � i � n+ 1; j = 0; j = m+ 1;y00ij = @2f@x@z (xi; zj); i = 0; i = n+ 1; j = 0; j = m+ 1:Though the formalism of tensor product interpolation fails here due to the nonlinearity, wewant to use the one{dimensional rational interpolation process wherever possible.A straighforward method to do this is the following:1) Interpolate data yij at (xi; zj), 0 � j � m+ 1, for each �xed value xi, 0 � i � n + 1,using the one{dimensional process.2) Interpolate derivatives y00i0; y0i0; y0i1; . . . ; y0i;m+1; y00i;m+1 for i = 0 and i = m+ 1 using theone{dimensional process.3) For each of these interpolations, take z{derivatives at grid points and store these only.4) Then for a �xed z 2 [zj; zj+1] � [c; d] the values wi at (xi; z) for interpolation alongthe line z = const can be calculated easily from the stored Hermite data of step 1 at(xi; zj) and (xi; zj+1). This Hermite interpolation is possible by solving equations ofthe form (3) for Mj and Mj+1.5) The same local Hermite interpolation is applied for @@x{values at (xi; z) for i = 0 andi = m+ 1, but using the derivative data of step 2.6) Application of the one{dimensional process to the data generated by steps 4 and 5 for�xed z yields a C2 function sz(x) which interpolates at (xi; z) for 0 � i � n+ 1.7) Repeat steps 4 { 6 for the required number of z{values to evaluate the functions(x; z) := sz(x) wherever needed. Each z{value requires the solution of a nonlinearone{dimensional interpolation problem in step 6. Therefore it is highly recommendedto proceed along the lines with z = const:This process leads to an interpolant s(x; z) with the following properties:� If all one{dimensional interpolants are purely rational, the solution sz(x) 2 C2[a; b]depends smoothly on the data which vary twice continuously di�erentiable with z.Then we have s(x; z) 2 C2([a; b]� [c; d]).� If all one{dimensional interpolants are purely rational, s(x; z) = sz(x) is a purelyconcave/convex function of x for each z.10



� If adaptive rational splines are used for local one{dimensional interpolation, therewill be small jumps in the solution where the type of the interpolant changes. Theseare eliminated when the type of interpolation does not vary for successive applicationsof step 6. This means that the local type of interpolation with respect to x for �xedvalues of z must be independent of z.� So far no local representation of s(x; z) is known.� Consequently, it is an open question whether s reproduces convexity/concavity.The main di�erence to tensor product interpolation with bicubic splines is that here thetensor product structure is con�ned to the data and not shared by the interpolating familyof functions. Consequently, successive rational interpolation processes along x and z gridlines do not commute and there is no linear local superposition of the one{dimensionalinterpolation processes, allowing one to construct values of the interpolant s together with@s@x; @s@z ; and @2s@x@z at each grid point for a subsequent local Hermite{type interpolation oneach subrectangle. When interpolation is carried out along z �rst, the construction of thetwo{dimensional rational interpolant at a certain point requires calculation of a non{localinterpolant along a complete x{line. If the interpolant has to be evaluated successively alongcomplete x{ or z{lines, the nonlinear scheme is not much inferior to the linear bicubic tensorproduct scheme.Figure 4 shows the rational interpolant to the major part of a half{sphere over [0; 1]2 on a5�5{grid, while the nonconvex cubic interpolant appears in Figure 5. Furthermore, a sharp(Runge{type rational) peak is interpolated by an adaptive rational spline on an 11�11{grid(see Fig. 6), and Fig. 7 shows the corresponding bicubic solution. No precautions to ensureC2 di�erentiability were taken for Fig. 6.References[1] D. Braess, H. Werner, Tschebysche�{Approximation mit einer Klasse rationalerSpline{Funktionen II, J. Approx. Theory 10, 1974, pp. 379{399.[2] R. Schaback, Spezielle rationale Splinefunktionen , J. Approx. Theory 7, No. 3, 1973,pp. 281{292.[3] R. Schaback, Interpolation mit nichtlinearen Klassen von Spline{Funktionen, J. Ap-prox. Theory 8, No. 2, 1973, pp. 173{188.[4] R. Schaback, Calculation of best approximations by rational splines, in: G.G. Lorentz,C.K. Chui, and L.L. Schumaker (eds): Approximation Theory II, Academic Press, 1976,pp. 533{547.[5] H. Sp�ath, Spline{Algorithmen zur Konstruktion glatter Kurven und Fl�achen, 2. Auf-lage, Oldenbourg{Verlag, 1978.[6] H. Werner, Interpolation and Integration of Initial Value Problems of Ordinary Dif-ferential Equations by Regular Splines, SIAM J. Numer. Anal. 12 (1975), pp. 255{271.11
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