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Abstract This paper considers a large class of linear operator equations, including

linear boundary value problems for partial differential equations, and treats them as

linear recovery problems for functions from their data. Well-posedness of the prob-

lem means that this recovery is continuous. Discretization recovers restricted trial

functions from restricted test data, and it is well-posed or stable, if this restricted

recovery is continuous. After defining a general framework for these notions, this

paper proves that all well-posed linear problems have stable and refinable compu-

tational discretizations with a stability that is determined by the well-posedness of

the problem and independent of the computational discretization, provided that suffi-

ciently many test data are used. The solutions of discretized problems converge when

enlarging the trial spaces, and the convergence rate is determined by how well the

data of the function solving the analytic problem can be approximated by the data

of the trial functions. This allows new and very simple proofs of convergence rates

for generalized finite elements, symmetric and unsymmetric Kansa-type collocation,

and other meshfree methods like Meshless Local Petrov–Galerkin techniques. It is

also shown that for a fixed trial space, weak formulations have a slightly better con-

vergence rate than strong formulations, but at the expense of numerical integration.

Since convergence rates are reduced to those coming from Approximation Theory,

and since trial spaces are arbitrary, this also covers various spectral and pseudospec-

tral methods. All of this is illustrated by examples.
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1 Introduction and Summary

This paper focuses on mathematical problems that have solutions u in some normed

linear space U over R satisfying infinitely many linear conditions that we write as

λ (u) = fλ for all λ ∈ Λ ⊆U∗ (1)

with given real numbers fλ and continuous linear functionals λ on U collected into

a set Λ ⊂ U∗. We call the real numbers { fλ}λ∈Λ the data that hopefully allow to

identify the object u, which will in most cases be a multivariate function on some

domain. Solving (1) for u from given data { fλ}λ∈Λ is a recovery problem, and we

view it as posed in an abstract mathematical setting that is not directly accessible for

computation. It can be called an analytical problem in contrast to the computational

problems that will be introduced in Section 7. The transition from an analytical prob-

lem to a computational problem will be called discretization, and we deal with this in

detail in Section 4.

Typical special cases arise when solving partial differential equations (PDEs).

The function u to be recovered is always an element of some space U of real-valued

functions on a domain Ω , but weak and strong formulations of PDEs use very differ-

ent types of data, namely either integrals against test functions or derivative values at

evaluation points, plus boundary conditions of various forms. If two problems use dif-

ferent data to identify the same function, we consider the problems as different here.

In particular, weak and strong PDE formulations for the same equation are different

problems. For illustration, see Example 1 and sections 13.3 and 13.4 below.

The PDE applications of (1) suggest to view the evaluation of the functionals λ ∈
Λ on u as testing the trial function u. Discretization will then fix a finite-dimensional

trial subspace UM ⊂U and a finite set ΛN of test functionals from Λ . We pursue this

distinction between the trial and the test side of (1) throughout this paper.

If a problem in Mathematical Analysis is well-posed, it should have a discretiza-

tion in Numerical Analysis that is also well-posed. This requires to derive some sort

of numerical stability of well-chosen discretizations from the well-posedness prop-

erty of the underlying analytical problem. This paper proves the above statement

under mild additional assumptions after stating clearly in Section 2 and 4 what is to

be understood by well-posedness of a problem and its discretization. It turns out in

Section 5 that one can choose refinable discretizations that have stability properties

depending only on the well-posedness of the given problem, not on the discretizations

chosen. This depends crucially on what we call a monotone refinable dense (MRD)

discretization strategy in Section 4.

Note that the classical theory concluding convergence from consistency and sta-

bility usually assumes solvability of the arising square linear systems. Since this

does not hold for meshfree methods in general [23], a new discretization theory is

needed that deals with overdetermined linear systems and introduces suitable sta-

bility concepts. Otherwise, unsymmetric collocation or the MLPG method cannot
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be treated. Our older discretization theory [42,43,11] served that purpose. However,

error bounds and convergence results depended there on stability inequalities that

needed complicated proofs [39], while this paper shows that one can always enforce

uniform stability by sufficiently thorough testing, provided that the analytic problem

is well-posed.

The resulting discretized linear problems will be overdetermined due to this sta-

bilization, and should be solved approximately by minimizing residuals. Section 7

deals with this, and shows that the final error bounds and convergence rates are de-

termined by how well the data of the true solution can be approximated by the data

of elements of the trial space. We call this Trial Space Data Approximation, and it

can be seen as a variation of consistency. In particular, error bounds and convergence

rates are independent of the details of testing, provided that testing is done sufficiently

thoroughly, in the sense of Section 5.

Summarizing, the link of this paper to the classical notions of consistency, stabil-

ity, and convergence is that here uniform stability is a proven consequence of well-

posedness of the underlying analytical problem, and then convergence follows from

consistency. The latter is reformulated here in terms of the Trial Space Data Approx-

imation.

Section 8 extends the previous results to ill-posed problems and noisy data, while

Section 9 and 10 specialize to recovery in Hilbert spaces, where uniformly stable and

sometimes optimal discretizations are readily available. These generalize the Ritz-

Galerkin technique for weak problems and symmetric collocation for strong prob-

lems, as will be explained in Section 13.2 when it comes to examples.

Stability can be spoiled by bad bases. Therefore this paper ignores bases and

focuses on spaces instead, with the exception of Section 11 where the influence of

bases on the trial and the test side is studied. A very common class of bases are the

nodal bases used in classical piecewise linear finite elements and various meshfree

methods. They parametrize trial spaces of functions entirely in terms of function

values at nodes [10]. Many application papers report good stability properties of these

bases, and Section 12 provides a fairly general mathematical proof, showing that

convergence in the nodes can be derived from convergence of the Trial Space Data

Approximation.

Reducing the error analysis of PDE solvers to the analysis of approximation er-

rors is not new. The standard situation in finite elements does this via a lemma of

“Cea type” that allows to bound the error of a PDE solution by the error of its ap-

proximation from the trial space. In various papers on meshfree methods, e.g. [22,35,

25] the error analysis of PDE solving is done that way, namely considering errors of

interpolants or approximations, and stability is not addressed at all or in a different

sense [9]. But in general one needs additional arguments to justify working solely

with approximation errors, and this paper bridges the gap in quite some generality.

The paper closes with a number of examples that apply the above theory:

1. Polynomial interpolation in Section 13.1 shows that the stabilization results of

this paper may imply quite some overtesting , i.e. oversampling on the test side

to guarantee uniform stability. Furthermore, it points out how spectral methods

are covered and why weak formulations yield slightly faster convergence than
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strong formulations, though for weaker norms and at the expense of numerical

integration.

2. Section 13.2 deals with the standard setting for finite elements for homogeneous

boundary conditions, showing that it fits perfectly into the framework, including

extension to other trial spaces and a Petrov–Galerkin treatment.

3. The remaining examples address the standard Poisson problem with Dirichlet

boundary conditions, for simplicity.

(a) Section 13.3 focuses on collocation as a typical strong problem. This covers

various kinds of meshfree methods, including Kansa’s unsymmetric colloca-

tion, and it is shown how to derive specific convergence rates depending on

the trial spaces chosen.

(b) The weak Dirichlet case is handled in Section 13.4, and a comparison of

convergence rates for the strong and weak formulations, using the same trial

spaces, is provided in Section 13.5.

(c) Finally, the Meshless Local Petrov Galerkin (MLPG) scheme [5] is treated in

Section 13.6. This includes error bounds and convergence rates for different

variations of the method, but it was necessary to include a first proof of well-

posedness of the local weak problem behind MLPG.

In the cases (a) and (c) we get a new and much simpler approach to error analysis

and convergence, and this approach is applicable to a large class of meshfree

methods.

4. In addition, Section 14 provides a numerical example that shows how overtesting

improves stability, and two examples checking the theoretical convergence rates

for unsymmetric collocation of a Dirichlet problem in strong form.

On the downside, the test strategies guaranteeing uniform stability are only shown

to exist, they are not constructed. Future work needs explicit sufficient conditions on

specific test strategies to guarantee uniform stability. An adaptive improvement of

stability can be done by greedy testing as touched in earlier papers on adaptivity [47,

24,33,45].

Finally, emphasis so far is only on errors, convergence rates, and stability of al-

gorithms, but not on computational efficiency. It is a major challenge to relate the

achievable convergence rates and stability properties to computational efficiency.

Anyway, this paper provides a starting point towards these goals.

2 Problems, Data, and Well-Posedness

Behind (1) there is a linear data map D : U 7→R
Λ =: V that takes each u∈U into the

set of values {λ (u)}λ∈Λ in the data space V . This allows to rewrite (1) as an operator

equation

D(u) = f (2)

for some given f in the data space V . Each operator equation can be formally inter-

preted this way, e.g. by defining Λ as the set of all functionals µ ◦D when µ varies

in the unit sphere of V ∗.
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For the rest of this paper, we assume existence of a solution u∗ to (2), i.e. the

data f = D(u∗) are assumed to be in the range of the data map. We shall relax this

assumption in Section 8.

Example 1 As an illustration, consider the standard Dirichlet problem

−∆u = f in Ω ⊂ R
d

u = g in Γ := ∂Ω
(3)

where f and g are given functions on Ω and Γ . A strong formulation writes it in the

form (1) with functionals

λx : u 7→ −∆u(x), x ∈ Ω
µy : u 7→ u(y), y ∈ Γ

on some space U where both types of functionals are continuous. The standard FEM

algorithms use weak functionals

λv : u 7→ (∇u,∇v)L2(Ω) for all v ∈ H1
0 (Ω)

and add the functionals µy for points on the boundary. We postpone further details

to Section 13.3 and 13.4, but remark that the data maps differ considerably. Conse-

quently, the strong and weak reformulations of (3) are two fundamentally different

analytic problems in the sense of this paper. �

We give the data space a norm structure by requiring that

‖Du‖V := sup
λ∈Λ

|λ (u)| for all u ∈U (4)

is a norm on D(U) that we assume to be extended to V , if not V = D(U). We shall

call this the data norm, and note that it leads to a seminorm

‖u‖D := ‖Du‖V = sup
λ∈Λ

|λ (u)| for all u ∈U (5)

on the function space U . This is well-defined if all functionals in Λ are uniformly

bounded. We assume existence of the data norm from now on, but remind the reader

that renormalization of functionals changes the data norm and all issues depending

on it, like the well-posedness conditions that we introduce later.

Definition 1 An analytic problem in the sense of this paper consists of

1. a linear normed function space U ,

2. a set Λ of linear continuous functionals on U leading to a data map D as in (2)

3. with values in a normed data space V such that

4. (4) holds and is a norm on V .

Unique solvability of the problem (1) or (2) requires that u ∈ U vanishes if all data

λ (u) for all λ ∈ Λ vanish, or that D is injective, or that ‖.‖D is a norm. A somewhat

stronger and quantitative notion is well-posedness:
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Definition 2 An analytic problem in the sense of Definition 1 is well-posed with

respect to a well-posedness norm ‖.‖WP on U if there is a constant C such that a

well-posedness inequality

‖u‖WP ≤C‖Du‖V =C‖u‖D for all u ∈U (6)

holds.

This means that D−1 is continuous as a map D(U) → U in the norms ‖.‖V and

‖.‖WP, and (6) thus reformulates the standard notion of well–posedness as introduced

by Hadamard. The well-posedness norm ‖.‖WP on U will often be weaker than the

norm ‖.‖U on U needed to let the data be well-defined.

Example 2 In the context of Example 1, the strong problem leads to well-posedness

with ‖.‖WP = ‖.‖∞,Ω due to the inequality

‖u‖∞,Ω ≤ ‖u‖∞,∂Ω +C‖∆u‖∞,Ω for all u ∈U :=C2(Ω)∩C(Ω), (7)

see e.g. [12, (2.3), p. 14]. In contrast to this, the boundary-homogeneous weak prob-

lem has ‖.‖WP = ‖.‖L2(Ω) due to the Poincaré-Friedrichs inequality

‖u‖L2(Ω) ≤C‖∇u‖L2(Ω) for all u ∈U := H1
0 (Ω), (8)

see e.g. [12, 1.5, p. 30].

Details will follow in Section 13.3 and 13.4, but we remark here that deriving compu-

tationally useful well-posedness inequalities is a serious issue that is not satisfactorily

addressed by theoreticians, because they do not use computationally useful norms

on the data space. For instance, the continuous dependence of solutions of elliptic

problems on the boundary data is often expressed by taking Sobolev trace spaces of

fractional order on the boundary, and these spaces are far from being accessible for

computation. The examples in Section 13 will shed some light on this issue.

Future research in Applied Mathematics should target practically useful well-

posedness results based on norms that are closer to computation.

3 Trial Space Data Approximation

We now perform the first step of discretization by choosing a finite-dimensional trial

space UM ⊂U . This allows us to approximate the data f = D(u∗) ∈V by data D(uM)
for all trial elements uM ∈ UM in the data norm ‖.‖V . From Approximation Theory

we require an error bound

‖Du∗−Du∗M‖V ≤ ε(u∗,UM,D) (9)

for some approximation u∗M ∈ UM that we call a comparison trial function in what

follows. It may be the best data approximation in the sense

‖Du∗−Du∗M‖V = min
uM∈UM

‖Du∗−DuM‖V ,
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but in most cases one has a standard approximation process in a norm on U with

‖u∗− u∗M‖ ≤ ε(u∗,UM)

and applies the data map afterwards. We shall rely on Approximation Theory to pro-

vide the upper bounds ε(u∗,UM,D) in (9) and convergence rates for ε(u∗,UM,D)→ 0

if the spaces UM get larger and larger. These rates will crucially depend on the

smoothness of u∗, the trial spaces UM , and the data map D. For trial spaces in spectral

methods, these convergence rates may be very large, and there may even be exponen-

tial convergence. We call (9) the Trial Space Data Approximation, but we shall never

calculate the comparison trial function u∗M . We just obtain it from Approximation

Theory as an existing good approximation to the true solution u∗ including as many

derivatives as necessary for the data map, and we later compare our approximate

solutions of (2) to it.

Theorem 1 If the analytic problem is well-posed in the sense of Definition 2, the

error bounds and convergence rates of the Trial Space Data Approximation immedi-

ately carry over to error bounds and convergence rates in the well-posedness norm

via

‖u∗− u∗M‖WP ≤C‖Du∗−Du∗M‖V ≤Cε(u∗,UM,D),

and the constant C is independent of the chosen trial space.

This means that Approximation Theory provides convergence rates for certain ap-

proximate solutions of certain well-posed analytic problems, but these approximate

solutions are computationally inaccessible.

Example 3 In the context of Example 1, the functions of the trial space have to ap-

proximate function values on the boundary in both the strong and the weak case. But

for the strong form we have to approximate second derivatives, while the weak form

only has to approximate first derivatives. Furthermore, the well-posedness norms are

different. This will lead to different convergence rates for strong and weak formula-

tions in Section 13.5.

4 MRD Discretizations

We now show how to discretize the test side of an analytic problem in the sense of

Definition 1 in such a way that a uniformly stable and finite computational strategy

exists that provides approximations ũM ∈UM with

‖u∗− ũM‖WP ≤ 2‖u∗− u∗M‖WP ≤ 2C‖Du∗−Du∗M‖V ≤ 2Cε(u∗,UM,D).

This implies that Approximation Theory will yield convergence rates for certain

finitely and stably computable approximate solutions of certain well-posed ana-

lytic problems. The convergence will take place in U under the well-posedness norm

‖.‖WP, and the convergence rate will be the convergence rate of the Trial Space Data

Approximation. Our main tool will be a monotonic refinable dense (MRD) discretiza-

tion of the data space V that we describe now.
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No matter what the data map is, the data space V should allow some form of

discretization for computational purposes. We model this by restriction maps

RN : { fλ}λ∈Λ 7→ { fλ}λ∈ΛN
∈VN = R

|ΛN |

that map V into finite-dimensional data spaces VN over R. The discretizations use

restricted data belonging to finite subsets ΛN of Λ , and these data enter practical

computation.

On the spaces VN we introduce the norm

‖RN{ fλ}λ∈Λ‖VN
= ‖{ fλ}λ∈ΛN

‖VN
:= max

λ∈ΛN

| fλ |

and we get the monotonicity property

‖RMv‖VM
≤ ‖RNv‖VN

for all v ∈V and all ΛM ⊆ ΛN .

Refinement of two discretizations defined by sets ΛM and ΛN works by taking the

union ΛM ∪ΛN , and by the monotonicity property this will weakly increase the dis-

crete norms. Finally, we have

‖v‖V := sup
RN ,VN

‖RNv‖VN
for all v ∈V, (10)

following from (4).

But there are applications where restrictions are not defined by taking all possible

finite subsets of functionals. They might require background triangulations, e.g. for

finite elements, and their refinement does not simply involve taking a union of two fi-

nite sets of functionals. We can generalize the above notions by ignoring functionals:

Definition 3 An MRD discretization of a data space V consists of a set of pairs

(RN ,VN) called restrictions with the properties

1. VN is a normed linear space with dimVN < ∞ and norm ‖.‖VN
,

2. RN : V →VN is linear,

3. there is a partially defined refinement relation � on the restrictions such that

4. (RM,VM)� (RN ,VN) implies ‖RMv‖VM
≤ ‖RNv‖VN

for all v ∈V ,

5. for each two admissible restrictions (RM,VM), (RN ,VN) there is a restriction (RP,VP)
such that (RM,VM)� (RP,VP) and (RM,VM)� (RP,VP),

6. (10) is a norm, when the sup is taken over all admissible restrictions.

This axiomatic framework is open for further discussion, of course, but we assume

it in what follows. We refer to the last three properties as monotonicity, refinement,

and density, using the term MRD discretization for all six properties. Note that the

norm arising in the density property must be the data norm that is used in the well-

posedness inequality (6).

The discussion preceding Definition 3 proved

Theorem 2 Each analytical problem of the form (1) in the sense of Definition 1 has

a MRD discretization via taking finite subsets of functionals. �
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For Example 1, it is clear that one can focus on finitely many functionals when it

comes to finite computations, but it is by no means clear which and how many are

to be taken to allow a uniformly stable computational method. The refinement in the

FEM case is not quite standard, but will satisfy Definition 3, because it still uses finite

subsets of functionals.

5 Well-Posedness of Discretized Problems

If we use a MRD restriction (RN ,VN) on the data together with a chosen trial space

UM, we can pose the discretized problem as the linear system

RNDuM = RNDu∗ (11)

to be solved for uM ∈ UM , where the computational input data are provided by the

restriction RNDu∗ of the data of an exact solution u∗. Such systems will usually be

overdetermined.

Since the well-posedness condition (6) also holds on the trial space, the dis-

cretized problem (11) is automatically well-posed or stable in the sense

‖uM‖WP ≤C(UM,VN)‖RNDuM‖VN
for all uM ∈UM

if we can prove

‖DuM‖V ≤C(UM,VN)‖RNDuM‖VN
for all uM ∈UM (12)

for some stability constant C(UM,VN). Similar stability inequalities were already

treated in [42] for proving convergence of unsymmetric collocation and other meth-

ods [39].

We now can state our central result, to be proven later in a somewhat more general

form.

Theorem 3 Assume an analytic problem (2) with an MRD discretization. If UM is

an arbitrary finite-dimensional subspace of U, there always is a restriction (RN ,VN)
such that

‖uM‖D ≤ 2‖RND(uM)‖VN
for all uM ∈UM. (13)

This holds without assuming well-posedness. If the latter is assumed by (6), we have

‖uM‖WP ≤ 2C‖RND(uM)‖VN
for all uM ∈UM (14)

with the constant C from (6).

In contrast to (12), the constants in (13) and (14) are independent of UM and VM,

proving a uniform well-posedness or stability of the discretized problem for a rather

sensible choice of VN after an arbitrary selection of UM. Section 13.1 will show that

this uniformity may require some hidden amount of oversampling, i.e. the dimension

of VN may be much larger than the dimension of UM . We call this overtesting, because

it occurs on the test side of the problem. Theorem 3 does not give any practical

hints how to care for uniformly stable testing, it just proves existence. The necessary

amount of overtesting to achieve uniform stability is left open.



10 Robert Schaback

6 Well-Posedness of Data Discretizations

Inspection of (13) shows that the analytic problem and its well-posedness are not

relevant for (13), because the actual well-posedness condition (6) enters only into the

trivial transition from (13) to (14). In fact, everything follows already from the notion

of a monotone refinable dense (MRD) discretization. Well-posedness is a later add-

on.

Lemma 1 Consider a data space V and associated MRD restrictions (RN ,VN) satis-

fying the assumptions of Section 4. Then for each finite-dimensional subspace WM of

V there always is a restriction (RN ,VN) such that

‖wM‖V ≤ 2‖RNwM‖VN
for all wM ∈WM.

Proof: Define K ⊂WM as the unit sphere of WM defined via the norm ‖.‖V . By com-

pactness, for each ε > 0 we can cover K by finitely many ε-neighborhoods

Uε(y j) := {y ∈ K : ‖y− y j‖V ≤ ε}, 1 ≤ j ≤ n

with elements y1, . . . ,yn ∈ K. By the density property (10) we can find restrictions

RN1
, . . . ,RNn with associated spaces VN1

, . . . ,VNn such that

‖y j‖V ≤ ‖RN j
y j‖VNj

+ ε, 1 ≤ j ≤ n

and by repeated application of the refinement property we can define RN and VN as

the “union” of these, and then

‖RN j
v‖VNj

≤ ‖RNv‖VN
for all v ∈V, 1 ≤ j ≤ n

by monotonicity.

We now take an arbitrary wM ∈ K and get some j, 1≤ j ≤ n with ‖wM −y j‖V ≤ ε
via the covering. This implies ‖RNwM −RNy j‖VN

≤ ε by the density property, and

then
‖RNwM‖VN

≥ ‖RNy j‖VN
− ε

≥ ‖RN j
y j‖VNj

− ε

≥ ‖y j‖V − 2ε
≥ ‖wM‖V − 3ε
= 1− 3ε

proving

‖RNwM‖VN
≥ (1− 3ε)‖wM‖V

for all wM ∈WM, and the assertion follows for ε = 1/6.

The proof of Theorem 3 now follows by setting WM = D(UM) with an arbitrary

data map D. �

If the space WM in the proof has dimension M, Lemma 1 says nothing about the

dimension of VN . The proof uses a covering argument, not a dimension argument. It

uses Topology, not Linear Algebra. See Section 13.1 for an application where N ≥ M

ranges from N = M to N = O(M2).
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7 Solving Discretized Problems

After choosing a trial space UM and getting a suitable data restriction (RN ,VN) for

Theorem 3, the discretized recovery problem (11) requires computation of some uM ∈
UM from the data RNDu∗, where u∗ is the true solution to the analytical problem. This

will usually lead to an overdetermined linear system after choosing bases, but we do

not want to consider bases unless absolutely necessary.

The simplest basis-free computational method we can propose is to minimize the

residual norm ‖RND(u∗ − uM)‖VN
over all uM ∈ UM, which is a finite-dimensional

approximation problem. But this would not nicely connect to Approximation Theory.

Instead, we refer to the comparison trial approximation u∗M from (9) of the solution

u∗, and we are satisfied with computing an element ũM ∈UM with

‖RND(u∗− ũM)‖VN
≤CA‖RND(u∗− u∗M)‖VN

, (15)

however it is calculated, with a fixed constant CA ≥ 1 that makes computational life

easier when chosen not too close to one. Due to the monotonicity and density prop-

erties, we also have

‖RND(u∗− ũM)‖VN
≤CA‖RND(u∗−u∗M)‖VN

≤CA‖D(u∗−u∗M)‖V ≤CAε(u∗,UM,D),

such that the error of the Trial Space Data Approximation in (9) is always an upper

bound, up to a uniformly bounded factor.

Now (15) implies

‖ũM − u∗M‖D ≤ 2‖RND(ũM − u∗M)‖VN

≤ 2‖RND(ũM − u∗)‖VN
+ 2‖RND(u∗− u∗M)‖VN

≤ (2CA + 2)‖RND(u∗− u∗M)‖VN

≤ (2CA + 2)‖D(u∗− u∗M)‖V

= (2CA + 2)ε(u∗,UM,D)

and
‖ũM − u∗‖D ≤ ‖ũM − u∗M‖D + ‖u∗M − u∗‖D

≤ (2CA + 3)ε(u∗,UM,D),

proving that the error of the computational solution ũM is up to a factor the same as

the error of the comparison trial function u∗M , evaluated in the data norm.

Theorem 4 Assume an MRD discretization of an analytic problem along the lines

of the previous sections. Then each computational technique to solve the discretized

problem approximatively by an element ũM ∈UM such that (15) holds, will guarantee

‖ũM − u∗‖D ≤ (2CA + 3)ε(u∗,UM,D).

Corollary 1 Adding well-posedness to Theorem 4 yields

‖ũM − u∗‖WP ≤C(2CA + 3)ε(u∗,UM,D)

proving that convergence rates in the data norm transfer to the same convergence

rates in the norm ‖.‖WP on U arising in the well-posedness condition (4). �
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We summarize what we have so far, for easy reference in the examples.

Theorem 5 Assume a well-posed analytic problem with an MRD discretization as

in Definitions 1, 2, and 3. Then for arbitrary trial spaces one can choose uniformly

stable test discretizations to get uniformly stable computational methods based on

some form of residual minimization. The convergence rates, measured in the well-

posedness norm, are given by the convergence rate of the Trial Space Data Approx-

imation, i.e. the rate in which the data of the true solution are approximated by the

data of comparison trial functions, measured in the data norm. �

This will be applied in the following way. First, one assumes additional regular-

ity of the solution function u∗ and fixes a well-known approximation process in U

that provides good comparison trial functions u∗M for these trial spaces, and with a

very good convergence rate u∗M → u∗ that may even be spectral in a weak norm like

‖.‖WP. Then these approximations are used for comparison in the above theory, and

the convergence rate in the data norm is calculated from what is known about the ap-

proximation process. Then we know that this rate is the one that arises when solving

the analytic problem, and it arises in the well-posedness norm. This may even yield

spectral convergence, and we shall provide examples. But note that the rate of con-

vergence of our discretized solutions of the analytical problems is only the rate the

convergence obtained after the data map is applied, and it involves the norm ‖.‖WP

used in the well-posedness condition.

The above approach applies to a large variety of well-posed analytic problems,

and shows that for properly chosen scales of trial spaces UM and properly chosen test

strategies depending on each UM one gets uniformly stable and convergent computa-

tional methods with convergence rates that can be derived from results of Approxima-

tion Theory. These rates normally improve with the smoothness of the true solution,

but they also depend on the data map and the well-posedness norm. For a given PDE

problem like in Example 1, the convergence rates of strong and weak formulations

will be different, even if the trial spaces are the same. This is due to the fact that the

data maps, data norms, and well-posedness norms are different. Details will follow

in Section 13.5.

If the true solution necessarily has certain singularities of a known type, like in

elliptic PDE problems on domains with incoming corners, one should always add

the correct singular functions to the trial space. Then the approximation quality of

the singular solution in the augmented trial space is the same as the approximation

quality of a regular solution in the original trial space, and this quality will improve

with the smoothness of the regular solution. In this sense, going over to extended trial

spaces like in the XFEM or GFEM [7,1,48,8] does not need a change in our theory.

But we bypass a complicated stability analysis by requiring an unspecified amount of

overtesting here.

Practitioners usually do not care about stability or well-posedness of discretized

problems. They go for square stiffness matrices in meshless methods though it is

known that those might be singular [23], and all related instability risks are ignored.

The upshot of this paper is that sufficient testing brings uniform stability, at the price

of non-square overdetermined systems. But it is questionable whether hardcore prac-

titioners will change their hazardous computations.
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8 Noisy Data

Corollary 1 showed that ill-posed problems can be treated, if one is satisfied with

reproducing the data well. But so far we always have assumed that the input data

are given exactly as data of an existing solution. If this is not true, a few changes

are necessary. We assume that the data map D is always exact, but the input data

for computations are assumed to be polluted by either noise or errors in evaluating

the data functionals. This also handles the error committed by numerical integration

when the data functionals of weak PDE problems are considered.

The data now consist of a general element v∗ of the data space V , and we assume

that there is an function u∗ ∈ U such that ‖D(u∗)− v∗‖V is small, and we want to

recover this function well, or others with a similarly good data reproduction. We

choose a trial space UM ⊂ U as before, and we define WM := D(UM) ⊂ V as at the

end of Section 6. Clearly, (15) now has to be replaced by

‖RNv∗−RNDũM‖VN
≤CA‖RNv∗−RNDu∗M‖VN

, (16)

because there are no other data at hand. Then

Theorem 6 Assume an MRD discretization of an analytic problem along the lines

of the previous sections. Then each computational technique to solve the discretized

problem approximatively by an element ũM ∈UM such that (16) holds, will guarantee

‖ũM − u∗‖D ≤ (2CA + 3)ε(u∗,UM,D)+ (2CA + 2)‖v∗−Du∗‖V (17)

for any u∗ ∈U.

Proof. We proceed like above, via

‖ũM − u∗M‖D ≤ 2‖RND(ũM − u∗M)‖VN

≤ 2‖RNDũM −RNv∗‖VN
+ 2‖RNv∗−RNDu∗M‖VN

≤ (2CA + 2)‖RNv∗−RNDu∗M‖VN

≤ (2CA + 2)(‖RNv∗−RNDu∗‖VN
+ ‖RNDu∗−RNDu∗M‖VN

)
≤ (2CA + 2)(‖v∗−Du∗‖V + ‖D(u∗− u∗M)‖V )
≤ (2CA + 2)(‖v∗−Du∗‖V + ε(u∗,UM,D))

and get

‖ũM − u∗‖D ≤ ‖ũM − u∗M‖D + ‖u∗M − u∗‖D

≤ (2CA + 3)ε(u∗,UM,D)+ (2CA + 2)‖v∗−Du∗‖V .

The inequality (17) shows that errors in the data values, e.g. integration errors for

weak data, can spoil the convergence unless they are at least as small as the error

committed by the comparison function u∗M in the data norm. For trial spaces that allow

fast convergence, the admissible errors in the data functionals are severely restricted

by this observation. This generalizes the well-known fact that high-order solvers of

weak problems require highly accurate integration.

One can go into (16) by choosing u∗M as the minimizer of ‖v∗−D(uM)‖V over all

uM ∈UM . Then

‖RNv∗−RND(ũM)‖VN
≤CA‖RNv∗−RND(u∗M)‖VN

≤CA‖v∗−Du∗M‖V ,
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and the proof of Theorem 6 yields

‖ũM − u∗M‖D ≤ (2CA + 2)‖RNv∗−RNDu∗M)‖VN

≤ (2CA + 2)‖v∗−Du∗M)‖V ,
‖v∗−DũM‖D ≤ ‖v∗−Du∗M‖D + ‖Du∗M −DũM‖D

≤ (2CA + 3)‖v∗−Du∗M‖D.

Corollary 2 Assume an analytic problem that has a MRD discretization without be-

ing well-posed, and assume that the given data do not necessarily come from some

solution u∗. Then there is a uniformly stable computational strategy that provides

trial elements that reproduce the given data at the quality of the Trial Space Data Ap-

proximation. This reduces the error and convergence analysis to an approximation

problem for a data element v∗ ∈ V by a data subspace D(UM) in V under the norm

in V . �

If there is no well-posedness, there still is a backward error analysis. Instead of

solving the problem with data v∗, which may be unsolvable or ill-posed, one can

come up with an element ũM from the trial space which has data that are close to the

given data, and roughly as close as possible for the given trial space. For PDE solving,

this usually means that one has an exact solution of a PDE with perturbed boundary

data and a perturbation in the inhomogeneity of the PDE. If these perturbations are

calculated and turn out to be tolerable, the user might be satisfied with ũM . Many

application papers proceed this way, unfortunately, but users should always keep in

mind that there may be very different trial elements that reproduce the data nicely, if

there is no well-posedness.

9 Discretization in Hilbert Spaces

We now assume that U is a Hilbert space with inner product (., .)U and that the

data map is composed of continuous functionals λ ∈ Λ ⊂ U∗ like in the begin-

ning of Section 4. The Riesz map allows a transition from functionals to functions,

and thus we can fix a finite subset ΛN = {λ1, . . . ,λN} ⊂ Λ and take the Riesz rep-

resenters u1, . . . ,uN ∈ U of these functionals as trial functions. If linear indepen-

dence is assumed, we have N-dimensional spaces LN ⊂ U∗ and UN ⊂ U by taking

the spans, and the space VN is R
N as the range of the restriction RN with RNDu =

(λ1(u), . . . ,λN(u))
T which just is the usual projection from V :=R

Λ to VN :=R
ΛN =

R
N . If orthonormal bases are chosen, we have the 2-norm of coefficients as ‖u‖U for

all u ∈ U , but in order to comply with Section 4, we have to take the sup-norm in

the range of the data map, which is the identity if discretized in that basis. But then

the identity map is not well-posed, due the choice of norms which is not adequate for

Hilbert spaces.

We thus have to change the setting, taking the norms in VN = R
N as 2-norms,

assuming Λ to be countable and total, taking orthonormal bases, and the restrictions

as projections focusing on finite subsets of indices in the expansions. For the choice

of UN and VN as above, we then have (13) and (14) with the constant 1.

This is the standard situation in Rayleigh–Ritz–Galerkin methods. It might be

surprising that everything is perfectly well-conditioned here, but this is no miracle
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because we focused on spaces, not on bases, and used an optimal basis for the theo-

retical analysis.

10 Optimal Recovery in Hilbert Spaces

When starting from a finite set ΛN of functionals providing restricted data λ j(u
∗) of

a true solution of the analytic problem, the above choice of a trial space as the space

spanned by the representers of the functionals is optimal under all other choices of

trial spaces. This is a standard result in the theory of Reproducing Kernel Hilbert

Spaces, but we include it here in a general form, because of its central importance

within the context of studying all possible discretizations. We shall come back to it

in Section 13.2.

Theorem 7 Assume that we have a computational problem posed in a Hilbert space

U, and the only available data are of the form λ1(u
∗), . . . ,λN(u

∗) for N linearly in-

dependent data functionals in U∗ and an unknown function u∗ ∈ U. Then, for any

linear functional µ ∈ U∗, consider all possible linear computational procedures for

calculating good approximations of µ(u∗) using only the above values. Then there is

a unique error-optimal strategy that works as follows:

1. Use the representers u1, . . . ,uN ∈U of the functionals λ1, . . . ,λN ∈U∗.

2. Calculate the interpolant ũ to u∗ in the span of the representers, i.e. solve the

system

λk(u
∗) =

N

∑
j=1

c jλk(u j) =
N

∑
j=1

c j(uk,u j)U =
N

∑
j=1

c j(λk,λ j)U∗ , 1 ≤ k ≤ N

and define

ũ =
N

∑
j=1

c ju j.

3. For each data functional µ ∈U∗, use the value

µ(ũ) =
N

∑
j=1

c jµ(u j)

as an approximation to µ(u∗).

This approximation has minimal error under all other linear computational proce-

dures using the same data for calculating approximations of µ(u∗), in the sense that

the error functional has minimal norm in U∗. �

This technique is independent of well-posedness and makes optimal use of the

available data, error-wise. From the previous sections we conclude that it is uniformly

stable when considered in terms of spaces, not bases. If applied to PDE solving,

it is realized by symmetric collocation in the strong case and by the Rayleigh-Ritz

procedure for the weak case [44]. It can also be applied to numerical integration and

numerical differentiation, see e.g. [16,46].
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In the context of this paper, the above result shows that the quest for good trial

spaces and well-posed discretizations has a simple solution in the Hilbert space sit-

uation. We shall come back to this in Section 13.5 when we look at the differences

between weak and strong formulations.

11 Bases

We now assume that we have a well-posed analytic problem in the sense of Section 2

with an MRD discretization, and by a proper choice of restrictions (RN ,VN) according

to Theorem 3, we have uniform stability in the form of (14). We specialize here to

the case of Theorem 2 where we have functionals λ ∈ Λ and restrictions working via

subsets ΛN ⊂Λ selecting finitely many data. We now choose a basis u1, . . . ,uM of UM

and take the functionals λ1, . . . ,λN from the set ΛN . Then we consider the discretized

system
M

∑
j=1

a jλk(u j)≈ fλk
= λk(u

∗), 1 ≤ k ≤ N (18)

that we solve approximatively by residual minimization like in Section 7. Clearly, a

bad choice of bases will spoil stability, but we want to study this effect in detail. We

quantify the stability of the object basis by norm equivalence

cM‖ua‖WP ≤ ‖a‖M ≤ CM‖ua‖WP for all a ∈ R
M,

with an unspecified norm ‖.‖M on R
M that is used in computation. With the N ×M

matrix A = (λk(u j))1≤ j≤M,1≤k≤N . and the basis representation

ua :=
M

∑
j=1

a ju j

with coefficient vectors a ∈R
M , we see that Aa = RNDua holds. and get

‖a‖M ≤ CM‖ua‖WP

≤ CCM‖ua‖D

≤ 2CCM‖RNDua‖VN

= 2CCM‖Aa‖VN

by (6), and (13).

Theorem 8 Under the above assumptions, the system (18) has the stability property

‖a‖M ≤ 2CCM‖Aa‖VN
for all a ∈ R

M. �

In Section 7, we minimized ‖RN(Du∗−DuM)‖VN
over all uM ∈UM. After introducing

a basis in UM, this is the same as minimization of ‖ f −Aa‖VN
with f := RNDu∗ =

(λ1(u
∗), . . . ,λN(u

∗))T ∈ R
N over all a ∈ R

M. We are satisfied with a vector ã ∈ R
M

such that

‖ f −Aã‖VN
≤ min

a∈RM
‖ f −Aa‖VN

≤CA‖ f −Aa∗‖VN
, (19)
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where a∗ is a good coefficient vector for the direct approximation of the true solution

u∗ by elements of the trial space UM. We use a∗ in the way we used u∗M in Section 7

as a competitor that may come from some special approximation technique. Then we

form the elements ũM := uã, u∗M = ua∗ ∈UM and see that (15) is satisfied.

This lets us arrive at Theorem 4, implying that the convergence rate is the same as

the rate for the Trial Space Data Approximation, but this does not yield error bounds

in terms of coefficients. However, we can proceed by

1

2CCM

‖a∗− ã‖M ≤ ‖A(a∗− ã)‖VN

≤ ‖Aa∗− f‖VN
+ ‖ f −Aã‖VN

≤ (1+CA)‖Aa∗− f‖VN

and get

‖a∗− ã‖M ≤ (1+CA)(2CCM)‖Aa∗− f‖VN
.

The norm in VN must be chosen to comply with Section 4, and this works for the

discrete sup norm. But if users do not want to minimize f −Aa in the sup norm, an

additional norm equivalence comes into play, now on VN , and this will often depend

on dimVN . In detail, norm equivalence in VN is assumed as

cN‖RNv‖VN
≤ ‖RNv‖N ≤CN‖RNv‖VN

for all v ∈V.

and minimization in the new norm ‖.‖N will replace (19) by

‖ f −Aã‖N ≤ min
a∈RM

‖ f −Aa‖N ≤CA‖ f −Aa∗‖N ,

and our above argumentation now yields

‖a∗− ã‖M ≤
(1+CA)(2CCM)

cN

‖Aa∗− f‖N . (20)

If bases are chosen badly, the quotient CM/cN can be extremely large and will spoil

the uniformity that we had so far.

Users can check their stiffness matrices A computationally for stability, but The-

orem 8 indicates that there may be a strong influence due to a bad choice of the trial

basis. Even a calculation of a Singular Value Decomposition will not be completely

basis-independent, since it only eliminates orthogonal basis transformations in the

domain and range of A.

12 Nodal Bases

In meshfree methods [10,21,7,31,35,51,48,34,38,30], it is customary to write ev-

erything “entirely in terms of nodes” [10], which means that the functions uM in the

trial space UM are parametrized by their values at certain nodes x1, . . . ,xM , i.e.

uM(x) =
M

∑
j=1

s j(x)uM(x j) for all uM ∈UM
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with shape functions s j that are usually localized around x j and have the Lagrange

property s j(xk) = δ jk, 1 ≤ j,k ≤ M. We prefer the term nodal basis, because there is

nothing meshfree in the above representation, and the standard finite elements, which

nobody would call meshfree, are nodal as well in the above sense. Many application

papers report experimentally that these bases have favorable stability properties, and

we shall now show why.

Theorem 9 Assume a well-posed problem in the sense of (6), where U is a space of

functions on some domain Ω . Furthermore, assume that the point evaluation func-

tionals δx are uniformly bounded by γ > 0 in the norm ‖.‖WP. Finally, assume that the

data space V and the restrictions VN are normed via supremum norms, as mentioned

in Section 4 and Theorem 2 as a special case. Then for each trial space UM ⊂ U

with a nodal basis s1, . . . ,sM using nodes x1, . . . ,xM ∈ Ω one can find a finite set of

functionals λ1, . . . ,λN such that the N ×M stiffness matrix A with entries λ j(sk) has

the uniform stability property

‖a‖∞ ≤ 2γC‖Aa‖∞ for all a ∈R
M. (21)

Proof: We apply Theorem 3. Then

|uM(x j)| ≤ γ‖uM‖W P ≤ 2γC‖RND(uM)‖VN
= 2γC max

λk∈ΛN

∣

∣

∣

∣

∣

M

∑
j=1

λk(s j)uM(x j)

∣

∣

∣

∣

∣

and if we denote the vector of nodal values by uX ∈ R
M , we see that

‖uX‖∞ ≤ 2γC‖AuX‖∞

with the stiffness matrix A with entries λk(s j).

This means that all trial spaces with nodal bases can be uniformly stabilized by

taking good and large selections of test functionals, but note that the required continu-

ity of the point evaluation functionals restrict the applicability to strong formulations

with ‖.‖WP = ‖.‖∞.

We can now go over to the error of nodal values. To this end, let a∗ be the vector

of nodal values of the true solution u∗, and a∗M be the vector of nodal values of the

comparison trial function u∗M. We then have

‖a∗− a∗M‖∞ ≤ γ‖u∗− u∗M‖∞

= γ‖u∗− u∗M‖W P

≤ 2Cγ(2CA + 3)ε(u∗,UM,D)

by Corollary 1.

Corollary 3 Under the assumptions of Theorem 9, the error of a computational pro-

cedure as in Section 7, evaluated on the nodes, is pointwise bounded by the error of

the Trial Space Data Approximation, i.e. the approximation of the data of the true

solution by the data of trial elements, measured in the data norm. �
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This means that using a nodal basis transfers the results of Theorem 5 directly to a

convergence on the nodes. This is a very useful result for many meshfree methods

using nodal bases, e.g. when applying Moving Least Squares techniques. Section 7

will provide convergence proofs and convergence rates for such techniques.

Readers might wonder how uniform stability is possible for general trial spaces

with nodal bases, though it is well-known that standard stiffness matrices for a mesh-

width h and a standard second-order Poisson problem have a condition that blows up

like O(h−2) for h → 0. But the point is that this paper does not look at condition.

And, since it aims at meshless methods that may have singular “stiffness” matrices if

no overtesting is done, the matrices considered here will be non-square and the linear

systems will be overdetermined, making the standard notion of condition inadequate.

Looking back at (21) shows that we do not consider the “forward” matrix A that maps

nodal values to PDE data, but rather the inverse process that maps PDE data to nodal

values. And then well–posedness as in (7) or (8) yields the chance to get uniform

stability by sufficient overtesting.

To be more specific, consider the trivial discretization that recovers the Laplacian

at the origin from the four values in the corners of [−h,+h]2. The forward map, if

implemented as the standard five-point star, behaves like O(h−2), but the reverse

process just takes a mean with fixed weights 1/4 and does not degenerate for small

h. Considering condition would yield O(h−2), but the inverse process is uniformly

stable if norms are properly chosen and if the basis is nodal.

13 Analytic Examples

For simplicity, we focus here on interpolation and PDE solving, omitting other linear

operator equations that can be handled.

13.1 Interpolation

We start with the rather simple case of recovering a function u on some compact

domain Ω ⊂ R
d from data of u that do not involve derivatives. A strong formulation

takes Λ = {δx : x ∈ Ω} on a space U on which these functionals are continuous,

e.g. U = C(Ω) under the sup norm. A weak formulation uses different data, e.g.

functionals

λv(u) := (u,v)L2(Ω) for all u,v ∈U := L2(Ω)

and

Λ := {λv : ‖v‖L2(Ω) = ‖λv‖L∗2(Ω) = 1}.

The strong case takes V :=C(Ω) =U under the sup norm, while the weak case uses

V := L2(Ω) =U under the L2 norm. In both cases, the data map is the identity, and we

have well-posedness in the norms ‖.‖WP = ‖.‖U in both cases, but the norms differ.

The restrictions can work by selection of finitely many functionals in both cases,

and all axioms of Section 4 are satisfied.
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We now fix an arbitrary finite-dimensional trial space UM ⊂ U , and Theorem 3

yields that there is a restriction that makes the linear system (11) uniformly stable in

the sense (14) with C = 1.

The computational procedures of Section 7 can use a comparison trial function

u∗M that is the best approximation to the true solution u∗ in the norm ‖.‖U = ‖.‖WP =
‖.‖D, and Theorem 4 then shows that the computational solution ũM has the same

convergence rate as the best approximation u∗M.

The computational solution ũM is obtained via (15) from a stably discretized

linear system, and we assume that we perform inexact minimization of the norm

‖RN(u
∗− uM)‖VN

.

In the strong case, this is best linear discrete Chebyshev approximation on suffi-

ciently many points, i.e. a linear optimization problem. In the univariate case with UM

being a trial space of polynomials of degree M − 1 on an interval I, a discretization

on N ≥ M test points forming a set PN will always have a stability inequality

‖u‖∞,I ≤C(M,N)‖u‖∞,PN

of the form (12), but the stability constant varies. For M = N equidistant points, the

constant C(M,M) grows exponentially with M, and for Chebyshev–distributed test

points it still grows like logM. Uniform stability holds for N = O(M2) equidistant

points, as follows from a standard argument going back to the notion of norming

sets [26] and using Markov’s inequality [56, Ch. 3.3]. Theorem 3 only proves exis-

tence of a uniformly stable discretization, but this example shows that there may be

a considerable amount of oversampling or overtesting behind the scene.

If stability is uniform, nodal bases written in terms of values at M nodes x j will

trivially lead to |u(x j)| ≤ ‖u‖∞,I ≤C‖u‖∞,PN
for all u ∈UM , which is (21).

The weak case discretizes by N well-chosen normalized test functionals λv j
with

normalized Riesz representers v j ∈ L2(Ω), and the quantity ‖RN(u
∗− uM)‖VN

to be

minimized is

max
1≤ j≤N

|(v j,u
∗− uM)L2(Ω)|.

Our theory shows that the test functionals can be chosen to render uniform stabil-

ity, but there is a trivial standard choice via the M functionals represented by an

orthonormal basis v1, . . . ,vM of UM. Then the above minimization produces the best

approximation u∗M to u∗ from UM without any oversampling. See [15] for the stability

of L2 recovery for random data points.

In both cases, Theorem 5 is applicable, and we see that the L∞ or L2 convergence

rates of the non-discrete best approximations carry over to the discrete approxima-

tions.

To compare the difference of convergence rates between weak and strong formu-

lations for a given fixed trial space UM , we see immediately that the L2 convergence

rate is never worse than the L∞ rate, but it is taken in a weaker norm. If users insist

on the best possible convergence rate in L2, they should take a weak form, at the ex-

pense of a sufficiently good numerical integration. But the L∞ error of their solution

will clearly not have a better L∞ convergence rate than the strong solution.

Both computational approximations, weak or strong, converge like the best ap-

proximations in the respective data norm, and this is a fair deal. Convergences can
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be spectral in certain cases, e.g. in case of univariate functions on an interval I that

have a complex extension that is analytic in a region of the complex plane containing

I in its interior. This shows how the theory applies to spectral convergence situations

without change.

But, of course, there is the extreme case where the solution is only in L2 and not in

C(Ω). Then the strong technique is undefined. But then the weak technique is forced

to have the weak data given directly, without numerical integration, because the latter

is as unfeasible as the strong technique.

All other examples will show a very similar behavior, differing only in their data

maps.

13.2 Standard Homogeneous Weak Poisson Problem

We fix a bounded Lipschitz domain Ω ⊂R
d and consider the weak Dirichlet problem

−∆u = f with homogeneous boundary conditions. This works on the Hilbert space

U := H1
0 (Ω) with the inner product

(u,v)1 :=

∫

Ω
∇T u(x)∇v(x)dx for all u,v ∈U,

and the standard (global) weak formulation asks for a function u ∈U with

(u,v)1 = ( f ,v)L2(Ω) for all v ∈U = H1
0 (Ω).

In the sense of this paper, the functionals are

λv : u 7→ λv(u) = (u,v)1 for all u,v ∈U

and the problem takes the form (1) with

Λ := {λv : v ∈U, ‖v‖U = 1} ⊂U∗

fλv
= (u∗,v)1 = ( f ,v)L2(Ω) for all λv ∈ Λ

where u∗ ∈U is the true solution.

To check the well-posedness in the sense of Section 2, we get

‖Du‖V = sup
λv∈Λ

|λv(u)|= sup
v∈U,‖v‖U=1

|(u,v)U |= ‖u‖U =: ‖u‖WP

proving well-posedness, and the data map D is an isometry.

We now consider arbitrary trial spaces UM ⊂ U = H1
0 (Ω) to allow standard or

extended or generalized finite elements, or even certain spectral methods of Galerkin

type. Theorem 5 is applicable, and we see that we get the convergence rate of ap-

proximations to the true solution in U = H1
0 (Ω). This is well-known from finite

elements, but it holds in general, provided that MRD testing is done. It applies to

Petrov–Galerkin methods and spectral techniques of Galerkin type. The rate mainly

depends on the smoothness of the solution and on the trial space chosen.

For the standard finite-element situation with piecewise linear elements, this yields

O(h) convergence in H1
0 (Ω), as usual for that regularity. To reach O(h2) convergence
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in L2(Ω) under H2(Ω) regularity, the Aubin–Nitsche trick is used, and it is an add-on

that is not covered by our theory. But it follows from the fact that the best approx-

imation to u∗ in H1
0 (Ω) automatically has O(h2) convergence in L2 under H2(Ω)

regularity. This is independent of PDE solving, it is a property of Approximation

Theory.

But it should be mentioned that general solutions on domains with incoming

corners may only have H1(Ω) regularity, while special solutions may have any reg-

ularity. Domain properties determine the minimal regularity of possible solutions,

but not the maximal regularity. The theory of this paper, like Approximation Theory,

uses the specific regularity of the approximated function or PDE solution to derive

convergence rates, without considering properties of the domain.

13.3 Collocation Methods

We now assert that all linear PDE or ODE problems can be numerically solved by

collocation in sufficiently many points in such a way that the convergence rate in the

well-posedness norm is at least the rate of the trial space data approximation. This,

of course, includes pseudospectral methods. But we have to add more details to show

how it follows from Theorem 5. We only have to show that collocation is an MRD

discretization and pick a suitable form of well-posedness.

The space U should be a normed linear space of functions on a domain Ω with

boundary Γ , for instance a Sobolev space. To keep things simple, we assume that the

analytic problem is posed in strong form by evaluating a linear elliptic second-order

differential operator L on points of the domain and a linear boundary operator B on

the boundary, i.e.

Lu(x) = f (x), for all x ∈ Ω
Bu(y) = g(y), for all y ∈ Γ

(22)

where f and g are given functions on Ω and Γ . Introducing continuous functionals

λx(u) := Lu(x) = δx ◦L and µy(u) := Bu(y) = δy ◦B on U one gets a problem of the

form (1) with

Λ := {λx : x ∈ Ω}∪{µy : y ∈ Γ } (23)

and it should be clear that one can allow more than two operators, and combinations

of different boundary conditions.

From here there are different ways to proceed towards well-posedness, but we

shall ignore well-posedness for a moment. We normalize all functionals as elements

of U∗ and pose the problem in the form (1) with fλ := λ (u∗) for all λ ∈ Λ . Then

|λ (u)| ≤ ‖u‖U for all u ∈ U, λ ∈ Λ , and there is no problem to define the space V

and the restrictions via taking suprema. We can apply Theorems 3 and 4 without

assuming well-posedness, and we see that we can work on any trial space UM, but all

results only hold in the data norm. Comparing with any existing good approximation

u∗M to u∗ from UM , we get some ũM ∈ UM by a discrete computational method such

that

sup
λ∈Λ

|λ (ũM − u∗)| ≤ (2CA + 3) sup
λ∈Λ

|λ (u∗M − u∗)| ≤ (2CA + 3)‖u∗M − u∗‖U
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due to normalization of the functionals, and if we use some u∗M with small ‖u∗M −
u∗‖U , we get the above statement. The backward error analysis of Section 8 will be

applicable here.

In the above setting, the most natural well-posedness condition would be of the

form

‖u‖WP ≤C max(‖Lu‖∞,Ω ,‖Bu‖∞,Γ ) (24)

for a suitable norm ‖.‖WP on U . This holds for U := C2(Ω)∩C(Ω ) with the sup

norm in U [12, (2.3), p. 14] for uniformly elliptic operators L and Dirichlet boundary

data. This implies by Theorem 5 that for such problems the convergence rate of the

Trial Space Data Approximation carries over to the convergence rate of collocation

in the sup norm.

As a special example we consider unsymmetric collocation [28] by translates of

the kernel K of a Hilbert space U , applied to a Dirichlet problem of the form (22)

on a domain Ω ⊂ R
d . The trial space UM is spanned by kernel translates of the form

v j := K(·,x j), 1 ≤ j ≤ M for nodes x1, . . . ,xM ∈ Ω , but this is not a stable basis.

A nodal basis in the sense of Section 12 consists of the Lagrange basis u1, . . . ,uM

spanning the same trial space. Collocation is done via the functionals defined for

(23), and to make them continuous we can take a space like U := Hm(Ω) with some

m > 2+ d/2. We have well-posedness in the sense of (24) in the sup-norm.

Theorem 10 Unsymmetric collocation in the sense of E. Kansa [28] has the property

that for each possible trial space spanned by kernel translates there is a selection of

test functionals such that the stiffness matrix, when written in terms of the nodal

basis, has a uniform stability property (21). If solved by residual minimization along

the lines of Section 7, error bounds follow from Corollary 1. Convergence rates in the

sup norm are obtained from the rate of convergence of second derivatives in the sup

norm of interpolants of the true solution by the trial space. �

This provides many explicit convergence rates via standard results on interpola-

tion by translates of kernels [56, Chapter 11]. For instance, the L∞ convergence for un-

symmetric collocation using the Whittle–Matérn kernel reproducing Hm(Rd) for m>
2+ d/2 is like O(hm−2−d/2) in terms of the fill distance h := supy∈Ω min1≤ j≤M ‖y−
x‖2, while the convergence is exponential for kernels like the Gaussian or multi-

quadrics [14].

The functionals in (23) are a mixture of two kinds, but Theorem 3 and Lemma

1 do not say how to achieve a uniformly stable balance between testing B on the

boundary and testing L in the interior. Future work should address this problem, and

Section 13.1 suggests that there might be quite some overtesting needed for uniform

stability. Square collocation systems can even be singular [23], such that overtesting

is necessary in general.

All of this readily generalizes to plenty of other linear well-posed PDE problems,

and readers can use the tools of this paper to assemble what they need. See [32] for a

very extensive treatment of collocation and plenty of references.

Note that unsymmetric collocation is a pseudospectral method in the sense of the

literature (see e.g. [20,19,13]) on spectral methods, and this paper provides a general

way to assess convergence of pseudospectral methods. Since we write the analytic
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and the computational problems in terms of arbitrary functionals, this approach also

covers spectral methods in Tau form.

The interplay between collocation and Galerkin methods, and the way to choose

the collocation points to get stability has a long history for ODEs, see e.g. [17,54,

53], but the PDE case still needs a lot of future work.

13.4 Weak Dirichlet Problems

The standard finite element procedures for solving Dirichlet problems for the Laplace

operator on bounded domains Ω ⊂R
d use strong data on the boundary and weak data

in the interior. The data functionals are

Λ1 := {λv : u 7→ (∇u,∇v)L2(Ω) for all v ∈ H1
0 (Ω), ‖∇v‖L2(Ω) = 1},

Λ2 := {δy : y ∈ Γ := ∂Ω},
Λ := Λ1 ∪Λ2.

This leads to the data norm

‖u‖D = max(‖u‖∞,Γ ,‖∇u‖L2(Ω))

if we take the sup over all functionals as in Section 4. It is well-defined on the space

U := H1(Ω)∩C(Ω ). Using the Poincaré inequality and the Maximum Principle [27]

after splitting u into a harmonic part with boundary conditions and a function in

H1
0 (Ω) satisfying the differential equation, we get a well-posedness inequality

‖u‖L2(Ω) ≤C‖u‖D =C max(‖u‖∞,Γ ,‖∇u‖L2(Ω)) for all u ∈U.

Note that the Sobolev inequality forbids to use the sup norm on the left-hand side for

space dimension d > 1.

Whatever the chosen trial spaces in U are, Theorem 5 shows that the convergence

rate in L2 of uniformly stabilized computational methods will be the convergence rate

of the Trial Space Data Approximation, i.e. with respect to ‖u‖∞,Γ and ‖∇u‖L2(Ω).

If the trial space is spanned by translates of the Whittle–Matérn kernel reproducing

Hm(Rd) for m > 1+ d/2, the L2 convergence rate is O(hm−1) in terms of the fill

distance h of the trial nodes [56].

For standard finite elements, the above approach yields O(h) convergence in L2.

This is without the Aubin–Nitsche trick, and it does not use H2 regularity.

The Aubin–Nitsche trick has nothing to do with finite elements and weak prob-

lems. It is a feature of Approximation Theory, doubling a convergence rate for cer-

tain nested approximations in Hilbert spaces under additional regularity assumptions.

This is well-known from splines [2, 5.10] and kernel-based methods [41]. In the con-

text of this paper, one considers the best approximation to the true solution in H1
0 (Ω),

and it will automatically yield O(h2) convergence under H2 regularity, but only for

zero boundary conditions.
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13.5 Weak-Strong Comparison

If we compare with what we had in the strong case, the situation for fixed trial spaces

is roughly as follows:

1. The weak case has L2 convergence at the convergence rate for first derivatives,

2. the strong case has L∞ convergence at the convergence rate for second derivatives.

This usually yields a better rate for the weak case, as we saw when comparing

O(hm−1) in L2 with O(hm−2−d/2) in L∞ for the trial space spanned by translates

of the Whittle–Matérn kernel. On the downside, weak methods usually have to per-

form numerical integration at an accuracy that complies with the convergence rate,

and they converge in a weaker norm. However, numerical examples in Section 14 in-

dicate that the convergence rate of nodal values for unsymmetric collocation solving

strong problems might be higher than predicted by Theorem 10 and be comparable

to the L∞ convergence rate predicted for weak methods.

With the exception of Sections 9 and 10, this paper fixed a trial space UM and

then cared for stable testing. If one fixes the available finite data first and then asks for

an optimal trial space, Section 10 makes the above discussion about differences be-

tween strong and weak methods obsolete, because the input data and the trial spaces

are different. The optimal solution is always the one described in Section 10, and it

is furnished by taking Riesz representers as trial functions. This is symmetric collo-

cation [44] in the strong case and the Rayleigh-Ritz method in the weak case. Since

this paper allows arbitrary evaluation functionals µ in Theorem 7, it is pointwise and

L∞-optimal by taking functionals µ = δx, and L2-optimal by taking all functionals

µ = λv = (.,v)L2(Ω). See [44] for details, including comparisons of convergence rates

between finite elements and various collocation methods, showing the superiority of

symmetric collocation, error-wise, under all methods that use strong data.

13.6 MLPG

We stay with the Dirichlet problem for the Laplacian, for simplicity, and describe

the standard variation of the Meshless Local Petrov–Galerkin [6,5] method. The dif-

ference to the standard weak formulation is that the integrals are localized and the

boundary integrals are kept. This means that on small subdomains Ωh ⊂ Ω with

boundaries Γh ⊂ Ω the strong equation −∆u = f is integrated against a test function

vh to define functionals of the form

u 7→ λΩh,vh
(u) =

−1

vol(Ωh)

∫

Ωh

vh ·∆u

that are continuous on U :=C2(Ω)∩C(Ω ), and the problem (22) takes the form (1)

via

λΩh,vh
(u) =

1

vol(Ωh)

∫

Ωh
vh · f for all Ωh ⊂ Ω , vh ∈C(Ωh)

δy(u) = g(y) for all y ∈ Γ
(25)



26 Robert Schaback

for given continuous functions f on Ω and g on Γ . One can restrict the domains

Ωh and the test functions vh further, and allow other ways of handling the boundary

conditions. Furthermore, the above functionals are usually transformed by integration

by parts before they are implemented, but we deal with this later.

This variation of Example 1 defines a new analytic problem in the sense of this

paper, because the data map is different from what we had in the strong and the global

weak case. Therefore we need to prove some form of well-posedness for it, and this

seems to be missing completely in the rich literature on the MLPG method. On the

space U =C2(Ω)∩C(Ω ) we know that (24) holds for ‖.‖WP = ‖.‖∞,Ω , and we assert

the well-posedness inequality

‖u‖∞,Ω ≤C

(

sup
Ωh,vh

|λΩh,vh
(u)|+ ‖u‖∞,Γ

)

for all u ∈U. (26)

But this follows from (24) by setting f := ∆u in

Lemma 2 For each continuous function f on some compact domain Ω ⊂ R
d the

norms

‖ f‖∞,Ω = ‖ f‖I := sup
Ωh⊂Ω

1

vol(Ωh)

∣

∣

∣

∣

∫

Ωh

f

∣

∣

∣

∣

coincide, where the diameter of the admissible sets Ωh can be bounded above by

some arbitrary r > 0, if required. One can also restrict the subdomains Ωh to balls

or cubes intersected with Ω .

Proof. Clearly ‖ f‖I ≤ ‖ f‖∞,Ω holds. To prove ‖ f‖I ≥ ‖ f‖∞,Ω , assume f 6= 0

with ‖ f‖∞,Ω = f (x̃) > 0 for some x̃ ∈ Ω . Then pick an arbitrary ε < f (x̃)/2 and an

arbitrary r > 0 and choose Ωh to be a subdomain of the set of points x ∈ Ω with

0 < (1− ε) f (x̃)≤ f (x) ≤ f (x̃), ‖x− x̃‖2 ≤ r.

For instance, one can take the intersection of sufficiently small balls or cubes around x̃

with the domain Ω , or if x̃ is on the boundary, one may move slightly into the interior

and ensure Ωh to be in the interior of the domain. Then

(1− ε)‖ f‖∞,Ω = (1− ε) f (x̃)≤
1

vol(Ωh)

∫

Ωh

f ≤ f (x̃) = ‖ f‖∞,Ω .

Note that this proves well-posedness only on U = C2(Ω)∩C(Ω ), not on a larger

space, but for all possible test functions and domain shapes and sizes. The boundary

conditions can be rephrased by weak functionals taking means, using Lemma 2 again,

now setting f := g and working on the boundary.

Any a-priori renormalization of all available functionals will possibly spoil this

argument. But as soon as finitely many functionals are selected for computation, one

can renormalize for the computational procedure.

If integration by parts is applied to the functionals, they change their computa-

tional form without changing their value, and this is used in the known variations of
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the MLPG technique. For instance,

λΩh,vh
(u) =

1

vol(Ωh)

∫

Ωh
∇T vh ·∇u−

1

vol(Ωh)

∫

Γh
vh

∂u

∂n

=
−1

vol(Ωh)

∫

Ωh
∆vh ·u+

1

vol(Ωh)

∫

Γh
u

∂vh

∂n
−

1

vol(Ωh)

∫

Γh
vh

∂u

∂n

are two ways to rewrite the functionals, and one can insert different admissible test

functions. The basic well-posedness on U = C2(Ω)∩C(Ω ) will stay as is, because

the sup of all these functionals will be bounded above by ‖∆u‖∞,Ω , as long as there

are no other upper bounds proven.

The special method called MLPG5 uses constant test functions like in Lemma 2.

Then the functionals take the extremely simple form

λΩh,vh
(u) =−

1

vol(Ωh)

∫

Γh

∂u

∂n
,

i.e. they are only integrals of the normal derivative on subdomain boundaries. Nev-

ertheless, Lemma 2 holds, and there is well-posedness in the sup norm on U =
C2(Ω)∩C(Ω ). It is an open problem to prove other well-posedness inequalities after

fixing a special form of the functionals. The above technique via Lemma 2 always

goes back to (24), whatever the form of the functionals is after integration by parts.

Therefore the convergence theory for given trial spaces will be the same as for the

strong collocation methods in Section 13.3.

Theorem 11 If the Meshless Local Petrov–Galerkin method is carried out

1. for a well-posed second-order elliptic problem,

2. using sufficiently many well-chosen test functionals (25) along the lines of Theo-

rem 3,

3. and applying a residual minimization algorithm as in Section 7 for solving the

overdetermined system approximatively,

the algorithm is convergent with uniform stability, and the convergence rate in the

sup norm is the rate of the Trial Space Data Approximation. This rate is at least as

good as for strong collocation using the same trial spaces. �

Depending on the PDE problem, the smoothness of the true solution, and the trial

space chosen, this yields various convergence results, up to spectral convergence. In

most applications, the trial functions are shape functions provided by Moving Least

Squares, and raising the degree of the local polynomials will increase the convergence

rate appropriately [29,55,3,4] if the solution is smooth enough. Readers are encour-

aged to apply the framework of this paper to derive special convergence results for

various trial spaces and different variations of the MLPG technique. In particular, an

extension to elasticity problems should be quite useful.
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14 Numerical Examples

To demonstrate how additional testing stabilizes unsymmetric collocation of a Pois-

son problem, consider the Dirichlet problem for −∆ on the unit square. The trial

space is chosen to consist of M = 25 regularly placed translates of the radial Whittle-

Matérn-Sobolev kernel r6K6(r) generating a Hilbert space that is norm-equivalent to

Sobolev space H7(R2). Testing was done on N = 25, 36, 49, . . . regular points, using

function values on the boundary points and Laplacian values on the interior points.

The third column of Table 1 shows how the stability improves with overtesting. Note

that the M = N case cannot be shown to have a nonsingular matrix [23], but applica-

tions have never reported a single singular example, so far.

DOF Trial DOF Test ‖A†‖∞ ‖B†‖∞

25 25 30.4933 5128.49

25 36 27.8728 7677.07

25 49 5.1670 758.83

25 64 4.6046 573.91

25 81 4.1675 527.35

25 100 4.3014 465.59

25 121 4.2553 476.51

Table 1 Stabilization results

The stability constant for an N ×M matrix A with rank M ≤ N can be calculated

as the row-sum norm of the pseudoinverse A†, see Table 1. Note that the stability con-

stant was evaluated for the nodal basis. Using the standard non-nodal unsymmetric

collocation matrix B instead, the instability is much worse, see the final column in

Table 1.

To check the convergence rates for unsymmetric collocation as given in Theorem

10, we take the toy Dirichlet problem for the Laplacian with exact solution u(x,y) =
x2 + y2 on the unit square. The collocation setup is as in the context of Theorem 10,

a nodal basis is used, and the error is evaluated at the nodes. The smoothness of the

solution is no restriction of the convergence rate, and thus the trial space and the

required derivatives determine the convergence rate.

As a first case, we take the radial Whittle-Matérn kernel Km−d/2(r)r
m−d/2 gener-

ating Sobolev space Hm(Rd) and the trial space spanned by its translates. For m = 6

and d = 2, the convergence rate in terms of powers of the meshwidth h and proven

by Theorem 10 is m− 2− d/2 = 6− 2− 1 = 3 in L∞, but the observed rate in Fig.

1 is about 4.3, leading to the hypothesis that the true order is 4. The weak case as

described in Section 13.4 will have a convergence in L2 with rate m−1 = 5, and this

will normally lead to an L∞ rate of 5−d/2 = 4 that is comparable to the strong case.

Choosing the C6 Wendland kernel φ3,3 from [56] shows in Fig. 2 an observed rate

of ≈ 3, while the rate proven by Theorem 10 is 4.5−2−d/2= 1.5 in L∞ because the

kernel generates Hd/2+k+1/2(Rd) = H5(R3) with traces in H4.5(R2). Again, it can be

hypothesized that the true rate is 4.5− 1− d/2 = 2.5, while the expected L2 rate for
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the weak formulation is 4.5−1= 3.5 which is comparable to a rate of 3.5−d/2= 2.5
in L∞ as in the strong case.
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Fig. 1 Errors for Sobolev space H6 , order ≈ 4.3
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Fig. 2 Errors for C6 Wendland kernel, order ≈ 3

These results suggest that Theorem 10 does not provide optimal convergence

rates, and the rates for L∞ convergence might be the same for weak and strong prob-

lem formulations.

The above convergence rates were evaluated for errors of solution values on the

trial nodes. Since the nodes were regularly placed. the rates carry over to the error in
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the whole domain, if the nodal values are interpolated using translates of a suitable

kernel of finite smoothness. This follows from the fact that nodal Lagrange basis

functions are uniformly bounded for regular node distributions [18].

As a numerical example for a meshless method in weak form, we take a case from

[37] concerning convergence of the MLPG5 method as described and analyzed in

Section 13.6. The three tables of [37] show convergence in L∞ of the MLPG5 method

based on Moving Least Square trial spaces using polynomials of degree m = 2,3,4,
and the estimated convergence rates are roughly 1.7, 2.1, and 3.6, respectively, taken

without overtesting, but with no visible instability effect [36]. In [37], the functionals

were defined via integrals over normal derives along subdomain boundaries, and thus

the rates of trial space approximation are 2,3, and 4, respectively, for these first-order

data. But the theory in Section 13.6 works with a MRD discretization that leads to a

data norm involving second derivatives, and thus the rates predicted by this paper are

1,2, and 3, respectively. Like in the strong case with kernel-based trial spaces, this is

not too far from the observations, but needs further investigation.

15 Outlook

Summarizing, the theoretical part of this paper shows that under mild hypotheses

1. all well-posed problems have uniformly stable discretizations made possible by

sufficiently extensive testing, and

2. convergence rates for such discretizations can be played back to known conver-

gence rates of Trial Space Data Approximation, i.e. the approximation of the data

of the true solution by the data of the trial elements. These rates depend on what

“data” means and are taken in the norm arising in the well-posedness condition.

3. Weak and strong formulations of a given background problem will have different

definitions of “data” and will need different versions of well-posedness, and these

differences enter into the previous item and influence the convergence rates, even

when trial spaces are the same for both formulations.

4. For a given fixed trial space, it is shown that in standard applications the weak

formulation converges slightly faster than the strong formulation.

5. Nodal bases have a stability advantage over other bases.

But there are also some open problems:

– The paper only proves existence of a uniformly stable discretization via sufficient

overtesting, but it is open how much overtesting is actually needed. This is a

difficult task to be handled for each specific case. If the dimension of the trial

space is M and if N ≥ M functionals are used for testing, Section 13.1 shows that

one may need N = O(M2) for securing uniform stability, if test functionals are

chosen naively. In other cases [43], one can get away with N =O(M), and in case

of optimal recovery in the sense of Section 10 by e.g. the Rayleigh-Ritz method,

one can work with N = M.

– The examples in Section 14 suggest that observed convergence rates for unsym-

metric collocation are larger than the proven ones. This definitely needs further

investigation.
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– The methods of this paper always assume the functionals to be given exactly, not

approximately. Only their values can be noisy, as in Section 8. This excludes vari-

ous interesting applications, namely Finite Differences, the Direct Meshless Local

Petrov Galerkin (DMLPG) technique [37], and localized kernel-based methods

that provide sparse stiffmess matrices [50,40,52,49,57].

– Since the convergence rates are determined by how well the PDE data of the

solution can be approximated from the trial space, one can adaptively enlarge

trial spaces to design adaptive PDE solvers. In Approximation Theory and Image

Reconstruction there are plenty of adaptive methods, and they will be applicable

to PDE solving, if they are able to approximate derivatives. This opens many

possibilites for new research towards adaptive methods.
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