
Approximation by Positive De�nite KernelsRobert S
haba
k and Holger WendlandTEXed on February 18, 2002Abstra
tThis 
ontribution extends earlier work [16℄ on interpolation/approximation by positive de�nite basis fun
-tions in several aspe
ts. First, it works out the relations between various types of kernels in more detail andmore generality. Se
ond, it uses the new generality to exhibit the �rst example of a dis
ontinuous positivede�nite fun
tion. Third, it establishes the �rst link from (radial) basis fun
tion theory to n{widths, and�nally it uses this link to prove quasi{optimality results for approximation rates of interpolation pro
essesand de
ay rates for eigenvalues of integral operators having smooth kernels.1 Kernel Fun
tionsLet 
 be a domain in IRd. We want to work with large{dimensional data{dependent spa
es of fun
tions on 
.A simple way to do this is to 
onsider fun
tions of the forms�;X := MXj=1 �j�(xj ; �) (1)for \data sets" X = fx1; : : : ; xMg � 
 � IRd, 
oeÆ
ients � 2 IRM and a \kernel" fun
tion� : 
� 
! IR; 
 � IRd: (2)We start with a short review of the basi
 features of kernels, but we do not follow the standard path. Thefun
tions (1) form a �nite{dimensional spa
eSX;� := span f�(x; �) : x 2 Xg (3)of dimension at most M . These spa
es are the ones we want to work with. The union of these spa
es isS� := span f�(x; �) : x 2 
g: (4)Of 
ourse, everything is useless if � = 0, and at least one would like to have linear independen
e of fun
tions�(x; �) for x 2 
.De�nition 1 We 
all a kernel (2) nondegenerate on 
, if for all �nite data sets X = fx1; : : : ; xMg the fun
tions�(xj ; �); xj 2 X = fx1; : : : ; xMg are linearly independent over 
.There are plenty of su
h kernels, e.g. �(x; y) := exp(xT y); x; y 2 IRd is nondegenerate on every subset of IRdthat 
ontains at least an interior point.But we also want to have a norm stru
ture on the spa
e (4). The simplest axiomati
 way to do this is to usethe kernel itself:De�nition 2 A fun
tion (2) on 
 � IRd that generates an inner produ
t of the form(�(x; �);�(y; �))� = �(x; y) for all x; y 2 
 (5)on the spa
e S� will be 
alled a reprodu
ing kernel on 
.1



Clearly, a reprodu
ing kernel has simple properties like�(x; x) � 0 for all x 2 
;�(x; y) = �(y; x) for all x; y 2 
;�(x; y)2 � �(x; x)�(y; y) for all x; y 2 
;but we just note them in passing. Equation (5) turns S� into a pre{Hilbert spa
e, and it allows to write(f(�);�(y; �))� := f(y) for all y 2 
; f 2 S�;be
ause the equation holds for all fun
tions fx(y) := �(x; y) and thus on the whole spa
e S�.The formal 
losure N� of S� under the inner produ
t (:; :)� will be a Hilbert spa
e, and an abstra
t element fof N� 
an be interpreted as a fun
tion on 
 by(f;�(y; �))� =: f(y) for all y 2 
; f 2 N�; (6)be
ause the left{hand side makes sense on the 
losure. Equation (6) is the reason why a kernel � is usually
alled reprodu
ing with respe
t to a spe
i�
 Hilbert spa
e of fun
tions: it allows to re
over the fun
tion valuesof an element f of the Hilbert spa
e by (6). Standard sour
es for results on reprodu
ing kernel Hilbert spa
esare [1, 8℄, while results on native spa
es are 
ompiled in [7, 15℄.De�nition 3 If � is a reprodu
ing kernel on 
 � IRd, we 
all the spa
eN� := 
los (:;:)�S� := 
los (:;:)� span f�(x; �) : x 2 
gthe native spa
e for �.If the kernel is just reprodu
ing and possibly degenerate or even zero, we 
annot get a ri
h native Hilbert spa
e.But in many situations we have both properties, and then we get another useful notion:Theorem 1 If a kernel (2) is reprodu
ing and nondegenerate on 
 � IRd, it is (stri
tly) positive de�nite there.This means that for all �nite data sets X = fx1; : : : ; xMg the matri
esAX;� := (�(xj ; xk))1�j;k�Mare symmetri
 and positive de�nite. The 
onverse is also true: a positive de�nite kernel is nondegenerate andreprodu
ing.Proof: If we have a reprodu
ing kernel �, the matri
es AX;� are Gramians and thus positive semide�nite. Ifthe kernel is nondegenerate, the matri
es must be positive de�nite, be
ause Gramians of linearly independentfun
tions are positive de�nite.For the 
onverse, we start with a positive de�nite kernel � and 
onsider fun
tions s�;X of the form (1). Wehave s�;X(xk) = �TAX;�ek; 1 � k �Musing the k{th unit ve
tor ek 2 IRM . By positive de�niteness we 
an 
on
lude that su
h a fun
tion 
an onlyvanish on X if the 
oeÆ
ients are zero. This proves that the kernel is nondegenerate, and it implies that �nitelygenerated fun
tions s�;X from (4) are uniquely determined by � and X . Thus we 
an de�ne a bilinear form by(5) on the fun
tions �(x; �) that generate S� and use (1) again to write�TAX;�� = MXj;k=1�j�k�(xj ; xk) = 0� MXj=1 �j�(xj ; �); MXk=1�k�(xk; �)1A� = ks�;Xk2� � 0for all � 2 IRM ; X = fx1; : : : ; xMg � 
 � IRd to 
on
lude the de�niteness of the bilinear form. 2There are other equivalent formulations for positive de�niteness of a kernel � on 
 � IRd:Theorem 2 If a kernel � is reprodu
ing on 
 � IRd, then the following properties are equivalent:2



1. The fun
tions �(xj ; �) are linearly independent on 
 for all �nite data sets X = fx1; : : : ; xMg � 
.2. For all �nite data sets X = fx1; : : : ; xMg the matri
es AX;� are positive de�nite.3. All point evaluation fun
tionals for distin
t points in 
 are linearly independent in the dual of N�.4. The native spa
e N� separates points of 
, i.e. for all �nite data sets X = fx1; : : : ; xMg � 
 and allpoints xj 2 X there is a fun
tion fj 2 N� su
h that fj(xk) = Æjk ; 1 � j; k �M .Proof: We already know the equivalen
e of properties 1 and 2. In the dual of the native spa
e, we 
an use (6)to see that the Riesz representer of the point evaluation fun
tional Æx : f 7! f(x) is the fun
tion �(x; �), andthus (Æx; Æy)N�� = �(x; y) for all x; y 2 
holds in the dual of the native spa
e. Thus the matri
es AX;� are Gramians of the point evaluation fun
tionalsÆxj ; xj 2 X in the dual of the native spa
e, and linear independen
e of the fun
tionals is equivalent to positivede�niteness of the matrix.If we have property 4, we 
an easily see that the point evaluation fun
tionals for any �nite point set are linearlyindependent, sin
e for a vanishing linear 
ombination we get0 =  MXk=1�kÆxk! fj = MXk=1�kfj(xk) = �j ; 1 � j �M:Conversely, property 4 follows from property 2 by interpolation. We de�ne ve
tors and fun
tionsaj := A�1X;�ej ; fj := saj ;X ; 1 � j �Mvia (1). This givesfj(xk) = saj ;X(xk) = aTj AX;�ek = eTj A�1X;�AX;�ek = eTj ek = Æjk; 1 � j; k �M: 2For 
ompleteness, we add a standard observation that goes the other way round:Theorem 3 If H is a Hilbert spa
e of fun
tions on 
 su
h that all point evaluation fun
tionals for distin
tpoints in 
 are linearly independent in the dual of H, then H is the native spa
e of a nondegenerate reprodu
ingkernel.Proof: We de�ne � as the Riesz representer for the point evaluation fun
tionals, i.e. by (6) for all f 2 H.Then we get (5) by putting fx(�) := �(x; �) into (6), and the previous theorems yield that � is a positive de�nitereprodu
ing kernel on 
 with its native spa
e N� being ne
essarily a 
losed subspa
e of H. But we 
an use (6)to show that an element f of H whi
h is orthogonal to all �(y; �) must vanish on 
, and thus the spa
es H andN� 
oin
ide. 2This result shows that reprodu
ing positive de�nite kernels are not exoti
. They automati
ally arise for anyHilbert spa
e of fun
tions where point evaluation is a 
ontinuous and nondegenerate operation.We list a series of important spe
ial forms of kernels:Radial Basis Fun
tions �(x; y) = �(kx� yk2) for all x; y 2 IRdTranslation{invariant Kernels on IRd �(x; y) = 	(x� y) for all x; y 2 IRdZonal Kernels on Spheres �(x; y) = �(xT y) for all x; y 2 Sd�1Periodi
 Kernels on Tori �(x; y) = 	(x� y) for all x; y 2 [0; 2�℄dConvolution Kernels �(x; y) = Z�	(x; s)	(y; s)d�(s) for all x; y 2 
	 : 
� �! IRHilbert{S
hmidt Kernels �(x; y) = Xi2I �i'i(x)'i(y) for all x; y 2 
'i : 
! IR; �i > 0 for all i 2 I3



This paper fo
uses on Hilbert{S
hmidt kernels, be
ause it turns out that they are quite general, though theylook rather spe
ial. This will be topi
 of the next se
tion. But we should add some remarks on the other 
ases.Translation{invariant kernels o

ur as reprodu
ing kernels of translation{invariant Hilbert spa
es of fun
tionson IRd. They allow Fourier transform methods and are positive de�nite in IRd, if their Fourier transform existsand is positive almost everywhere. Radial basis fun
tions additionally have rotational symmetry. By repla
ingFourier transforms by other transforms, one 
an deal with the other 
ases. Zonal kernels �(xT y) are positivede�nite, if their symmetrized spheri
al transform, i.e. their expansion into Legendre polynomials as fun
tionsof the 
osine of the angle � between x and y has positive 
oeÆ
ients. For periodi
 kernels on tori, one simplyuses positivity of the 
oeÆ
ients of the Fourier series representation.These observations immediately show that many kernels have series expansions with positive 
oeÆ
ients, andthus they 
ome 
lose to the Hilbert{S
hmidt kernel form that we want to study in the next se
tion.2 Hilbert{S
hmidt KernelsBefore we delve into the standard way of looking at those kernels, i.e. by introdu
ing an integral operator inL2(
), we want to fo
us on a somewhat more abstra
t view that does not require a link to embeddings into L2spa
es.De�nition 4 For ea
h index i from a 
ountable index set I let there be a positive weight �i and a fun
tion'i : 
! IR su
h that for all x 2 
 the 
onditionXi2I �i'2i (x) <1 (7)is satis�ed and su
h that any �nite subset of the 'i is linearly independent over 
. Then the fun
tion�(x; y) =Xi2I �i'i(x)'i(y) : 
� 
! IR (8)is 
alled a Hilbert{S
hmidt kernel.Theorem 4 Any Hilbert{S
hmidt kernel � is a reprodu
ing kernel on the native spa
eN� := (Xi2I 
i'i : 
i 2 IR; Xi2I 
2i�i <1): (9)Proof: Note �rst that our summability 
ondition (7) implies that the kernel series is summable. Furthermore,the fun
tions in N� are well{de�ned be
ause ofXi2I j
i'i(x)j =Xi2I j
ijp�ip�ij'i(x)jj �vuutXi2I 
2i�isXi2I �i'2i (x):By our assumption on linear independen
e, all �nite linear 
ombinations of the 'i have unique 
oeÆ
ients, andwe 
an de�ne the inner produ
t ('i; 'j)� := Æij�i0�Xi2I 
i'i;Xj2I dj'j1A� := Xi2I 
idi�ion these fun
tions. We get a pre{Hilbert spa
e whose 
losure is N�. By easy 
al
ulations, all �(x; �) are in N�and both (6) and (5) hold. 2Unfortunately, the linear independen
e assumptions of De�nitions 1 and 4 di�er, and we 
annot 
on
ludethat a Hilbert{S
hmidt kernel is nondegenerate in general. For example, if all 'i have a 
ommon zero, thenondegenera
y fails. 4



Theorem 5 If the spa
e of all �nite linear 
ombinations of the generating fun
tions 'i of a Hilbert{S
hmidtkernel � of the form (8) separates points of 
 in the sense of assertion 4 of Theorem 2, the kernel is nondegen-erate.Proof: Assume there is a vanishing linear 
ombination s�;X for some X = fx1; : : : ; xMg � 
. Then0 = ks�;Xk2� = MXj;k=1�j�k�(xj ; xk) =Xi2I �i0� MXj=1 �j'i(xj)1A2implies that all sums PMj=1 �j'i(xj) are zero. Taking linear 
ombinations with the 
oeÆ
ients of point{separating fun
tions, we 
an 
on
lude that � vanishes. 2We now know that under mild assumptions all Hilbert{S
hmidt kernels are positive de�nite reprodu
ing kernelsof some Hilbert spa
e. We now assert the 
onverse, but we need some tool to pro
eed from a fairly generalkernel �, e.g. a radial basis fun
tion on IRd, to 
ertain fun
tions 'i and positive weights �i that allow to rewrite� in the form (8). This will be done by going ba
k to the origin of Hilbert{S
hmidt theory, i.e. eigenfun
tionexpansions of kernels of 
ompa
t integral operators.De�nition 5 Let � : 
� 
! IR be a kernel. If the integral operatorI�(f) := Z
 f(t)�(t; �)dt (10)maps L2(
) into itself and is 
ompa
t, inje
tive, positive, and selfadjoint, we say that � is a CIPS kernel onL2(
).Theorem 6 Any CIPS kernel on L2(
) has an absolutely and uniformly 
onvergent representation (8) withI := INand �1 � �2 � : : : > 0 and �i ! 0 for i!1and a 
omplete orthonormal system f'igi2IN in L2(
) of eigenfun
tions, i.e.I�('i) = �i'i for all i 2 IN:Proof: The existen
e of the eigenfun
tions and the series representation is a 
onsequen
e of standard ([12℄)spe
tral theory of selfadjoint 
ompa
t operators on L2(
). Uniform 
onvergen
e of the series follows from thetheorem of Mer
er, and we get (7). 2De�nition 6 A Hilbert{S
hmidt kernel on 
 that has the properties asserted in Theorem 6 will be 
alled apositive Hilbert{S
hmidt kernel (PHS) on L2(
).Note that positivity and inje
tivity of the integral operator means that(f; g)I� := (I�(f); g)2 = (f; I�(g))2 for all f; g 2 L2(
)is an inner produ
t on L2(
). The notion of positive de�niteness of a kernel is di�erent, and it does not seemeasy to 
onne
t these properties. We further note that for PHS kernels we also have(f; I�(g))� = (f; g)2 for all f 2 N�; g 2 L2(
); (11)and the native spa
e (9) is embedded into L2(
) asN� = (f 2 L2(
) : Xi2IN (f; 'i)22�i <1) (12)with the inner produ
t taking the form(f; g)� = Xi2IN (f; 'i)2(g; 'i)2�i for all f; g 2 N�: (13)5



Theorem 7 The following are equivalent:1. The kernel � is PHS in L2(
):2. The kernel � is reprodu
ing on 
 with the above native spa
e N� � L2(
) and a 
omplete L2{orthonormalsystem of fun
tions 'i su
h that (7) holds.3. The kernel � is a CIPS kernel on L2(
).Proof sket
h: The impli
ation 3 ) 1 is Theorem 6, while the impli
ation 1 ) 2 follows from Theorem 4. If 2holds, the integral operator is the limit of integral operators whose kernels are the �nite partial sums of �, andthus is 
ompa
t. Inje
tivity and positivity follow easily, be
ause all �i are positive. 2Theorem 8 If � is a reprodu
ing kernel on 
 su
h thatZ
�(y; y)dy < 1Z
 Z
�(x; y)2dxdy < 1Z
�(x; y)f(y)dy = 0 for all x 2 
 implies f = 0 in L2(
)then � is a CIPS kernel on L2(
).Proof sket
h: The �rst additional hypothesis guarantees that the native spa
e of � 
an be embedded intoL2(
). The se
ond ensures 
ompa
tness of the integral operator in L2(
). Then spe
tral theory [12℄ allowsto 
on
lude the existen
e of an expansion (8) with L2{orthogonal 'i and rather general weights, but thereprodu
tion property implies that the weights are nonnegative. The third additional hypothesis guaranteesinje
tivity of the integral operator, positivity of all weights, and 
ompleteness of the system of orthogonaleigenfun
tions. Details are in [16℄. 2Note that inje
tivity of I� is essential here, but the nondegenera
y of the kernel and the separation property arenot mentioned at all. Theorem 8 shows that very many kernels have a positive Hilbert{S
hmidt form, and thismotivates our 
on
entration on those kernels in the remaining se
tions. We 
lose this se
tion by noting that weare still la
king useful 
onditions that allow to relate properties of � like positive de�niteness or nondegenera
yto properties of I� like positivity or inje
tivity.3 A Dis
ontinuous ExampleThe te
hniques of the previous se
tion allow to 
onstru
t new kernels from expansions. These expansions maybe based on a 
omplete set of L2{orthonormal fun
tions, but they 
an also be quite general as in De�nition 4and Theorem 4. So far, all known kernels are at least 
ontinuous, but we 
an use the new te
hnique to presenta dis
ontinuous 
ase as an example. We modify an approa
h due to Fabien Hinault (private 
ommuni
ation,2000).Let us mimi
 part of a Haar basis on IR by taking s
aled and shifted 
hara
teristi
 fun
tionsHjk(x) := �[0;1) �2jx� k� = �[k2�j ;(k+1)2�j )(x) for all k 2 ZZ; j � 0; x 2 IR:They have the properties Hjk(x) = 1 i� k = b2jx
 else = 0;Hjk(x)Hjk(y) = 1 i� k = b2jx
 = b2jy
 else = 0:With a summable sequen
e of positive weights �j ; j � 0 we de�ne�(x; y) := 1Xj=0 �j 1Xk=�1Hjk(x)Hjk(y)= 1Xj = 0b2jx
 = b2jy
 �j6



for all x; y 2 IR. Note now that b2jx
 = b2jy
 for some j � 0 
an hold only if x and y are of the same sign anddo not di�er by 1 or more. Moreover, the identity b2jx
 = b2jy
 means that x and y 
oin
ide in their binaryexpansions in all of the pre{period digits and in the �rst j post{period digits. This means�(x; y) = 8><>: mXj=0 �j x; y 
oin
ide in sign and all leading binary digits up to the m{th after the period0 elseand in parti
ular �(x; x) = 1Xj=0 �j :Thus the kernel is pie
ewise 
onstant and has a �nite evaluation s
heme, if the sum over the �j has a knownvalue.Theorem 9 The kernel � is positive de�nite.Proof: In view of Theorems 4 and 5 we only have to show that the fun
tions Hjk separate points. Take a setX = fx1; : : : ; xMg � IR, pi
k an arbitrary index s 2 f1; : : : ;Mg and a j > 0 su
h thatjxr � xsj > 2�j for all r 6= s; 1 � r �M:This implies b2jxs
 6= b2jxr
 for all r 6= s. Then we pi
k k = b2jxs
 and �nd that Hjk(xs) = 1 while Hjk(xr) = 0for all r 6= s, and we get the separation. 2
10.50 210-1-2210-1-2

Figure 1: The 
ase �j = 2�j�1We remark that one 
an 
onstru
t plenty of other examples using other bases, in parti
ular wavelet bases. Wehope to �nd time to follow the open road towards \re�nable kernels" elsewhere.4 Native Spa
e and RangeFrom here on we always assume a positive de�nite kernel � that is a positive Hilbert{S
hmidt kernel on L2(
),and in parti
ular we 
onsider the native spa
e (12) and the inner produ
t (13) there. Note that the a
tion of theintegral operator I� of (10) on a fun
tion f with expansion 
oeÆ
ients (f; 'i)2 just 
onsists of a multipli
ationof the 
oeÆ
ients by �i. 7



The range of the integral operator I� of (10) then isR� := (f 2 L2(
) : Xi2IN (f; 'i)22�2i <1) ;and it is the native spa
e of the 
onvolution kernel(� ��)(x; y) := Z
�(x; t)�(y; t)dt= 1Xi=1 �2i'i(x)'i(y)Consequently we have the in
lusionsR� = N��� � N� � L2(
):The subspa
e R� of the native spa
e N� is of quite some importan
e. For 
ompleteness, we add a result from[16℄ that generalizes [14℄:Theorem 10 The 
onvergen
e order of interpolants to fun
tions from R� is twi
e the 
onvergen
e order offun
tions from the native spa
e N�.Proof: The interpolant sf;X;� 2 SX;� of (3) to a fun
tion f from N� in data lo
ations X = fx1; : : : ; xMg with�ll distan
e hX := supx2
 min1�j�M kx� xjk2has a standard [13℄ error boundkf � sf;X;�k22 � F�(hX)kf � sf;X;�k2N� � F�(hX)kfk2N� (14)for all x 2 
 with a 
ertain fun
tion F� that depends on the smoothness of �. We assert that for f = I�(g) 2 R�there is an improved bound kf � sf;X;�k22 � F�(hX)2kfk2��� = F�(hX)2kgk22:To this end, we use the standard [15℄ orthogonality relation(f � sf;X;�; sf;X;�)N� = 0and the property (11) of I� for f = I�(g) 2 R� = N��� to �ndkf � sf;X;�k2N� = (f � sf;X;�; f)N�= (f � sf;X;�; I�(g))N�= (f � sf;X;�; g)2� kf � sf;X;�k2kgk2� pF�(hX)kf � sf;X;�kN�kgk2kf � sf;X;�kN� = pF�(hX)kgk2and we 
an plug this into the standard error bound (14) to arrive atkf � sf;X;�k22 � F�(hX)kf � sf;X;�k2N�� F�(hX)2kgk22with kgk22 = (g; g)2 = (I�(g); g)N� = (I�(g); I�(g))��� = kfk2���: 2If we ask somewhat more than (7), i.e. Xi2I p�i'2i (x) <1 (15)8



we 
an de�ne the 
onvolution square{root of � by the kernelp�(x; y) := 1Xi=1p�i'i(x)'i(y)and get R� = N��� � Rp� = N� � Np� � L2(
):5 n{WidthsFrom now on we let � be a positive Hilbert{S
hmidt kernel on L2(
) and assume (15) to play safe. We makeuse of the fa
t that we have integral operators related to p�(x; y) or �(x; y) that map L2(
) into N� or R�.This opens the road for appli
ations of the theory of n{widths [11℄. For the 
onvenien
e of the reader, we willreview that part that is of interest for us. For a subset A of a Hilbert spa
e H , the Kolmogorov n{width isde�ned by dn(A;H) := infVn supf2H infs2Vn kf � skH :Here, the outer in�mum is taken over all n-dimensional subspa
es Vn of H . An n-dimensional spa
e V �n is 
alledoptimal if E(A;V �n ) := supf2A infs2V �n kf � skH = dn(A;H):In our 
ase, the Hilbert spa
e H will always be H = L2(
) and the set A will essentially be either N� or R�.A
tually, to avoid problems with s
aling we will take A rather to be the unit ball in that spa
e, i.e. A = S(N�)or A = S(R�), where we used the general notation S(H) = fh 2 H : khk2 � 1g. This perfe
tly �ts into thetheory of n{width of 
ompa
t operators, where A is the image of the unit ball of the linear spa
e H under a
ontinuous mapping T . In our 
ase, the mapping is given by Ip� and I�, respe
tively.Lemma 1 The unit ball of the native spa
e N� is the image of the unit ball of L2(
) under the operator Ip�,i.e. S(N�) = Ip�(S(L2(
))). Similarly, we have for R� that S(R�) = I�(S(L2(
))).Proof: If f = Ip�v with v 2 S(L2(
)), then, by de�nition of the native spa
e norm, kfk� = kvk2. The sameholds in the se
ond 
ase. 2The results of Pinkus' book [11℄, in parti
ular, Corollary 2.6 of Chapter IV yield:Theorem 11 Let � be a positive Hilbert{S
hmidt kernel on L2(
) with (15). Then, the n{widths for the unitball in N� and R� are given by dn(S(N�);L2(
)) = p�n+1;dn(S(R�);L2(
)) = �n+1;respe
tively. In both 
ases, the subspa
e V �n := span f'1; : : : ; 'ngis optimal. The asso
iated optimal data fun
tionals have the form �k(f) := (f; 'k)2 for all f 2 L2(
):As said before, the proof 
an be found in Pinkus' book, but it is also not too diÆ
ult. For example, to see thatV �n is optimal for S(N�) we simply use fn =Pnj=1(f; 'j)2'j 2 V �n as the approximant to f 2 S(N�) to getkf � fnk22 = 1Xj=n+1(f; 'j)22 = 1Xj=n+1 �j (f; 'j)22�j � �n+1 1Xj=n+1 (f; 'j)22�j �p�n+1;sin
e kfk� =P (f;'j)22�j � 1. 2The good news here is that we have found best rates for n{term approximation. The bad news is that forstandard radial 
ases neither the 'i nor the �i are known. Furthermore, the optimal fun
tionals are not easilya

essible numeri
ally. Thus the next se
tion tries to 
ompare the optimal n{width errors with the behaviourof standard interpolation in n data lo
ations or with simple approximation s
hemes.9



6 Quasi{optimal Pro
essesHere, we shall look at approximation or interpolation s
hemes to see whether they realize the optimal behaviouroutlined in Theorem 11 or not. Sin
e the eigenfun
tions are not a

essible in many 
ases, and sin
e the innerprodu
ts with eigenfun
tions are not pra
ti
ally relevant as data fun
tionals, we have to be satis�ed withquasi-optimal subspa
es instead of optimal subspa
es.De�nition 7 An n dimensional subspa
e Vn � H is 
alled quasi{optimal for A � H if there exists a 
onstantC > 0, independent of n, su
h that E(A;Vn) � Cdn(A;H):Sin
e E(A;Vn) � dn(A;H) is always satis�ed, both quantities are equivalent, whi
h we will also denote byE(A;Vn) � dn(A;H).We now look at some spe
ial 
ases from the literature, and we start with approximation on the sphereSd�1 = fx 2 IRd : kxk2 = 1g. Here, things are generally presented upside down, i.e. one starts with afamily of orthonormal fun
tions, namely spheri
al harmoni
s and de�nes the kernel � by its expanding series sothat the eigenvalues of the 
orresponding integral operator are the Fourier 
oeÆ
ients of the kernel. To be morepre
ise, let fY`;k : 1 � k � N(d; `)g denote the usual orthonormal basis for the spa
e of spheri
al harmoni
s ofdegree ` (
f. [10℄), whereN(d; 0) = 1; and N(d; `) = 2`+ d� 2` �`+ d� 3`� 1 �; ` > 0:Then the kernel has an expansion of the form�(p; q) = 1X̀=0 N(d;`)Xk=1 a`;kY`;k(p)Y`;k(q): (15)For simpli
ity, we will assume that the kernel is radial or zonal, whi
h is equivalent to the fa
t that for a �xed` all 
oeÆ
ients a`;k, 1 � k � N(d; `), are the same, i.e. a` := a`;k, 1 � k � N(d; `).Under this assumption, it is a
tually more natural to look at the spa
e of spheri
al harmoni
s up to order `,V` := spanfY�;k : 0 � � � `; 1 � k � N(d; �)g;whi
h is the restri
tion of the spa
e of d-variate polynomials of degree at most ` to the sphere and has dimensiondimV` = N(d+ 1; `). The n{width theory givesCorollary 1 If the 
oeÆ
ients �` = �`;k, 1 � k � N(d; `), of the kernel (15) form a suÆ
iently fast de
aying,nonin
reasing, and positive sequen
e, thendn(S(N�); L2(Sd�1)) = pa`;for N(d+ 1; `) � n < N(d+ 1; `+ 1).This is the result to whi
h we have to 
ompare the known estimates for interpolation by positive de�nite kernels.In the latter 
ontext it is usual to assume thatN(d; `)a` � C(1 + `)��whi
h is, sin
e N(d; `) grows like O(`d�2), equivalent to a` = O(`���d+2). The reason for looking at N(d; `)a`rather than a` is that this number appears naturally for \radial" kernels, sin
e the addition theorem (
f. [10℄)yields �(p; q) = 1X̀=0 N(d; `)a`!d�1 P`(p � q);where !d�1 denotes the surfa
e area of Sd�1 and P` is the Legendre polynomial of degree ` in d dimensions,normalized by P`(1) = 1.In 
ase of interpolation by positive de�nite kernels it is usual to measure the approximation orders in terms ofthe so-
alled �ll distan
e, whi
h is in this 
ontext hX := supx2Sd�1 minxj2X dist(x; xj). Here, dist is the usualspheri
al distan
e.The following result 
omes from Dyn/Nar
owi
h/Ward [4℄, Jetter/St�o
kler/Ward [6℄, and Morton/Neamtu [9℄.10



Theorem 12 Suppose � is a radial positive de�nite kernel on the sphere with a` = O(`��), ` ! 1, with� > d. Then, the interpolation error 
an be bounded bykf � sf;Xk1 � Ch��12X kfk�:The L1-error bound leads immediately to an L2-error bound, whi
h we now want to 
ompare with the resultsfrom n{width theory. To a

hieve this, we have to relate hX to `, sin
e by Corollary 1 the n{width is ratherrelated to ` than to n in this situation,dn(S(N�);L2(Sd�1)) = O(`���d�22 ):This is hopeless in the general 
ase, but the situation 
hanges in 
ase of quasi-uniform data sets. A set X � Sd�1of n points is said to be quasi-uniform if hd�1X � 1=n. Sin
e we also know that n � N(d + 1; `) � `d�1 we 
an
on
lude kf � sf;Xk2 = O(`���12 ):Corollary 2 Interpolation of fun
tion values in quasi-uniform data lo
ations by positive de�nite \radial" kernelson the sphere may fail to be quasi{optimal by order at most d�12 if the kernel has eigenvalues with algebrai
de
ay.Our formulation of the 
orollary just poses an upper bound on the deviation from quasi{optimality, but wethink that we a
tually have a quasi{optimal approximation s
heme. The reason for our optimisti
 point of viewis the following. We gained the L2 approximation error simply by integrating the L1-error. In the light of theIRd theory, this seems to be too naive. In the IRd 
ase it is, in a similar situation, possible to gain an additionald=2 in the order by using a lo
alization tri
k, whi
h dates ba
k to Du
hon's initial work on thin-plate splines(
f. [2, 3℄). This tri
k should also work in the sphere setting, but so far nobody has ever tried it.Note that in the just des
ribed situation the native spa
e is a
tually the Sobolev spa
e Hs(Sd�1) with s =�+d2 � 1.For Eu
lidean spa
e IRd and bounded domains 
 therein, we usually do not know the orthogonal Hilbert{S
hmidt expansions in L2(
). Thus we 
annot assess the optimality of the known error bounds. The state{of{the{art in results on optimality of rates of approximation provided by interpolation is in [17, 20℄. Insteadof optimality results for approximations, we here get upper bounds on the de
ay of the unknown eigenvalues.Curiously enough, this means that approximation theory provides results on the spe
trum of integral operators.On IRd we make the following assumptions:� the kernel �(x; y) = �(x � y) is symmetri
 and Fourier{transformable,� we 
onsider interpolation by translates of � on n asymptoti
ally quasi-uniform data lo
ations in a boundeddomain 
 � IRd, whi
h has a suÆ
iently smooth boundary.Let us look at the 
ase of limited smoothness (e.g. [13℄) �rst. For�̂(!) � (1 + k!k2)�d�� ; k!k2 !1; (16)there is an error bound kf � sf;Xk1 � Ch�=2kfk�This error bound 
an be improved by Du
hon's lo
alization tri
k as mentionened earlier (see for example [19℄)to kf � sf;Xk2 � Ch(�+d)=2kfk�;provided that the boundary of 
 is suÆ
iently smooth.In 
ase of quasi-uniform data, whi
h now be
omes hdX;
 � 1=n, the latter means in terms of n,kf � sf;Xk2 � Cn�(�+d)=2dkfk�:The error of the optimal pro
ess must be asymptoti
ally smaller, and this implies11



Theorem 13 The eigenvalues of the Hilbert{S
hmidt operator I� with kernel � on L2(
) and Fourier trans-form satisfying (16) for a bounded domain 
 � IRd satisfy�n+1 � Cn�(�+d)=dfor n!1. 2Again, as in the 
ase of the sphere, the native spa
e is a Sobolev spa
e Hs(
), s = (� + d)=2. For Sobolevspa
es, the optimal n{widths are known (Jerome 1970 [5℄):dn(S(Hs(
);L2(
)) =p�n+1 = O(n�s=d) for n!1and we 
an 
ompare with the interpolation error bounds for Hs(
) with 
 � IRd. They have the form (14)with s = (� + d)=2 > 0; and we getTheorem 14 Interpolation in quasi-uniform lo
ations by translates of reprodu
ing kernels that generate Sobolevspa
es is quasi{optimal.Sin
e Sobolev kernels and Wendland fun
tions [18, 19℄ reprodu
e spa
es that are norm{equivalent to Sobolevspa
es, we haveCorollary 3 Interpolation in asymptoti
ally regular data lo
ations by translates of Sobolev kernels or Wendlandfun
tions is quasi{optimal. 2Generalizations to other radial basis fun
tions are not known, but would be wel
ome.The 
ase of unlimited smoothness o

urs for inverse multiquadri
s and Gaussians, and it leads to Fouriertransforms with a de
ay like �̂(!) � C exp(�
k!k2); k!k2 !1: (17)Then there is an error bound [13℄kf � sf;nk1 � C exp(�
=h)kfk� � C exp(�
n1=d)kfk�:Theorem 15 For a kernel � with exponential de
ay (17) of its Fourier transform, the eigenvalues of the integraloperator I� in L2(
) for a bounded domain 
 � IRd satisfy�n+1 � C exp(�
n1=d)for n!1. 2Referen
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