
Approximation by Positive De�nite KernelsRobert Shabak and Holger WendlandTEXed on February 18, 2002AbstratThis ontribution extends earlier work [16℄ on interpolation/approximation by positive de�nite basis fun-tions in several aspets. First, it works out the relations between various types of kernels in more detail andmore generality. Seond, it uses the new generality to exhibit the �rst example of a disontinuous positivede�nite funtion. Third, it establishes the �rst link from (radial) basis funtion theory to n{widths, and�nally it uses this link to prove quasi{optimality results for approximation rates of interpolation proessesand deay rates for eigenvalues of integral operators having smooth kernels.1 Kernel FuntionsLet 
 be a domain in IRd. We want to work with large{dimensional data{dependent spaes of funtions on 
.A simple way to do this is to onsider funtions of the forms�;X := MXj=1 �j�(xj ; �) (1)for \data sets" X = fx1; : : : ; xMg � 
 � IRd, oeÆients � 2 IRM and a \kernel" funtion� : 
� 
! IR; 
 � IRd: (2)We start with a short review of the basi features of kernels, but we do not follow the standard path. Thefuntions (1) form a �nite{dimensional spaeSX;� := span f�(x; �) : x 2 Xg (3)of dimension at most M . These spaes are the ones we want to work with. The union of these spaes isS� := span f�(x; �) : x 2 
g: (4)Of ourse, everything is useless if � = 0, and at least one would like to have linear independene of funtions�(x; �) for x 2 
.De�nition 1 We all a kernel (2) nondegenerate on 
, if for all �nite data sets X = fx1; : : : ; xMg the funtions�(xj ; �); xj 2 X = fx1; : : : ; xMg are linearly independent over 
.There are plenty of suh kernels, e.g. �(x; y) := exp(xT y); x; y 2 IRd is nondegenerate on every subset of IRdthat ontains at least an interior point.But we also want to have a norm struture on the spae (4). The simplest axiomati way to do this is to usethe kernel itself:De�nition 2 A funtion (2) on 
 � IRd that generates an inner produt of the form(�(x; �);�(y; �))� = �(x; y) for all x; y 2 
 (5)on the spae S� will be alled a reproduing kernel on 
.1



Clearly, a reproduing kernel has simple properties like�(x; x) � 0 for all x 2 
;�(x; y) = �(y; x) for all x; y 2 
;�(x; y)2 � �(x; x)�(y; y) for all x; y 2 
;but we just note them in passing. Equation (5) turns S� into a pre{Hilbert spae, and it allows to write(f(�);�(y; �))� := f(y) for all y 2 
; f 2 S�;beause the equation holds for all funtions fx(y) := �(x; y) and thus on the whole spae S�.The formal losure N� of S� under the inner produt (:; :)� will be a Hilbert spae, and an abstrat element fof N� an be interpreted as a funtion on 
 by(f;�(y; �))� =: f(y) for all y 2 
; f 2 N�; (6)beause the left{hand side makes sense on the losure. Equation (6) is the reason why a kernel � is usuallyalled reproduing with respet to a spei� Hilbert spae of funtions: it allows to reover the funtion valuesof an element f of the Hilbert spae by (6). Standard soures for results on reproduing kernel Hilbert spaesare [1, 8℄, while results on native spaes are ompiled in [7, 15℄.De�nition 3 If � is a reproduing kernel on 
 � IRd, we all the spaeN� := los (:;:)�S� := los (:;:)� span f�(x; �) : x 2 
gthe native spae for �.If the kernel is just reproduing and possibly degenerate or even zero, we annot get a rih native Hilbert spae.But in many situations we have both properties, and then we get another useful notion:Theorem 1 If a kernel (2) is reproduing and nondegenerate on 
 � IRd, it is (stritly) positive de�nite there.This means that for all �nite data sets X = fx1; : : : ; xMg the matriesAX;� := (�(xj ; xk))1�j;k�Mare symmetri and positive de�nite. The onverse is also true: a positive de�nite kernel is nondegenerate andreproduing.Proof: If we have a reproduing kernel �, the matries AX;� are Gramians and thus positive semide�nite. Ifthe kernel is nondegenerate, the matries must be positive de�nite, beause Gramians of linearly independentfuntions are positive de�nite.For the onverse, we start with a positive de�nite kernel � and onsider funtions s�;X of the form (1). Wehave s�;X(xk) = �TAX;�ek; 1 � k �Musing the k{th unit vetor ek 2 IRM . By positive de�niteness we an onlude that suh a funtion an onlyvanish on X if the oeÆients are zero. This proves that the kernel is nondegenerate, and it implies that �nitelygenerated funtions s�;X from (4) are uniquely determined by � and X . Thus we an de�ne a bilinear form by(5) on the funtions �(x; �) that generate S� and use (1) again to write�TAX;�� = MXj;k=1�j�k�(xj ; xk) = 0� MXj=1 �j�(xj ; �); MXk=1�k�(xk; �)1A� = ks�;Xk2� � 0for all � 2 IRM ; X = fx1; : : : ; xMg � 
 � IRd to onlude the de�niteness of the bilinear form. 2There are other equivalent formulations for positive de�niteness of a kernel � on 
 � IRd:Theorem 2 If a kernel � is reproduing on 
 � IRd, then the following properties are equivalent:2



1. The funtions �(xj ; �) are linearly independent on 
 for all �nite data sets X = fx1; : : : ; xMg � 
.2. For all �nite data sets X = fx1; : : : ; xMg the matries AX;� are positive de�nite.3. All point evaluation funtionals for distint points in 
 are linearly independent in the dual of N�.4. The native spae N� separates points of 
, i.e. for all �nite data sets X = fx1; : : : ; xMg � 
 and allpoints xj 2 X there is a funtion fj 2 N� suh that fj(xk) = Æjk ; 1 � j; k �M .Proof: We already know the equivalene of properties 1 and 2. In the dual of the native spae, we an use (6)to see that the Riesz representer of the point evaluation funtional Æx : f 7! f(x) is the funtion �(x; �), andthus (Æx; Æy)N�� = �(x; y) for all x; y 2 
holds in the dual of the native spae. Thus the matries AX;� are Gramians of the point evaluation funtionalsÆxj ; xj 2 X in the dual of the native spae, and linear independene of the funtionals is equivalent to positivede�niteness of the matrix.If we have property 4, we an easily see that the point evaluation funtionals for any �nite point set are linearlyindependent, sine for a vanishing linear ombination we get0 =  MXk=1�kÆxk! fj = MXk=1�kfj(xk) = �j ; 1 � j �M:Conversely, property 4 follows from property 2 by interpolation. We de�ne vetors and funtionsaj := A�1X;�ej ; fj := saj ;X ; 1 � j �Mvia (1). This givesfj(xk) = saj ;X(xk) = aTj AX;�ek = eTj A�1X;�AX;�ek = eTj ek = Æjk; 1 � j; k �M: 2For ompleteness, we add a standard observation that goes the other way round:Theorem 3 If H is a Hilbert spae of funtions on 
 suh that all point evaluation funtionals for distintpoints in 
 are linearly independent in the dual of H, then H is the native spae of a nondegenerate reproduingkernel.Proof: We de�ne � as the Riesz representer for the point evaluation funtionals, i.e. by (6) for all f 2 H.Then we get (5) by putting fx(�) := �(x; �) into (6), and the previous theorems yield that � is a positive de�nitereproduing kernel on 
 with its native spae N� being neessarily a losed subspae of H. But we an use (6)to show that an element f of H whih is orthogonal to all �(y; �) must vanish on 
, and thus the spaes H andN� oinide. 2This result shows that reproduing positive de�nite kernels are not exoti. They automatially arise for anyHilbert spae of funtions where point evaluation is a ontinuous and nondegenerate operation.We list a series of important speial forms of kernels:Radial Basis Funtions �(x; y) = �(kx� yk2) for all x; y 2 IRdTranslation{invariant Kernels on IRd �(x; y) = 	(x� y) for all x; y 2 IRdZonal Kernels on Spheres �(x; y) = �(xT y) for all x; y 2 Sd�1Periodi Kernels on Tori �(x; y) = 	(x� y) for all x; y 2 [0; 2�℄dConvolution Kernels �(x; y) = Z�	(x; s)	(y; s)d�(s) for all x; y 2 
	 : 
� �! IRHilbert{Shmidt Kernels �(x; y) = Xi2I �i'i(x)'i(y) for all x; y 2 
'i : 
! IR; �i > 0 for all i 2 I3



This paper fouses on Hilbert{Shmidt kernels, beause it turns out that they are quite general, though theylook rather speial. This will be topi of the next setion. But we should add some remarks on the other ases.Translation{invariant kernels our as reproduing kernels of translation{invariant Hilbert spaes of funtionson IRd. They allow Fourier transform methods and are positive de�nite in IRd, if their Fourier transform existsand is positive almost everywhere. Radial basis funtions additionally have rotational symmetry. By replaingFourier transforms by other transforms, one an deal with the other ases. Zonal kernels �(xT y) are positivede�nite, if their symmetrized spherial transform, i.e. their expansion into Legendre polynomials as funtionsof the osine of the angle � between x and y has positive oeÆients. For periodi kernels on tori, one simplyuses positivity of the oeÆients of the Fourier series representation.These observations immediately show that many kernels have series expansions with positive oeÆients, andthus they ome lose to the Hilbert{Shmidt kernel form that we want to study in the next setion.2 Hilbert{Shmidt KernelsBefore we delve into the standard way of looking at those kernels, i.e. by introduing an integral operator inL2(
), we want to fous on a somewhat more abstrat view that does not require a link to embeddings into L2spaes.De�nition 4 For eah index i from a ountable index set I let there be a positive weight �i and a funtion'i : 
! IR suh that for all x 2 
 the onditionXi2I �i'2i (x) <1 (7)is satis�ed and suh that any �nite subset of the 'i is linearly independent over 
. Then the funtion�(x; y) =Xi2I �i'i(x)'i(y) : 
� 
! IR (8)is alled a Hilbert{Shmidt kernel.Theorem 4 Any Hilbert{Shmidt kernel � is a reproduing kernel on the native spaeN� := (Xi2I i'i : i 2 IR; Xi2I 2i�i <1): (9)Proof: Note �rst that our summability ondition (7) implies that the kernel series is summable. Furthermore,the funtions in N� are well{de�ned beause ofXi2I ji'i(x)j =Xi2I jijp�ip�ij'i(x)jj �vuutXi2I 2i�isXi2I �i'2i (x):By our assumption on linear independene, all �nite linear ombinations of the 'i have unique oeÆients, andwe an de�ne the inner produt ('i; 'j)� := Æij�i0�Xi2I i'i;Xj2I dj'j1A� := Xi2I idi�ion these funtions. We get a pre{Hilbert spae whose losure is N�. By easy alulations, all �(x; �) are in N�and both (6) and (5) hold. 2Unfortunately, the linear independene assumptions of De�nitions 1 and 4 di�er, and we annot onludethat a Hilbert{Shmidt kernel is nondegenerate in general. For example, if all 'i have a ommon zero, thenondegeneray fails. 4



Theorem 5 If the spae of all �nite linear ombinations of the generating funtions 'i of a Hilbert{Shmidtkernel � of the form (8) separates points of 
 in the sense of assertion 4 of Theorem 2, the kernel is nondegen-erate.Proof: Assume there is a vanishing linear ombination s�;X for some X = fx1; : : : ; xMg � 
. Then0 = ks�;Xk2� = MXj;k=1�j�k�(xj ; xk) =Xi2I �i0� MXj=1 �j'i(xj)1A2implies that all sums PMj=1 �j'i(xj) are zero. Taking linear ombinations with the oeÆients of point{separating funtions, we an onlude that � vanishes. 2We now know that under mild assumptions all Hilbert{Shmidt kernels are positive de�nite reproduing kernelsof some Hilbert spae. We now assert the onverse, but we need some tool to proeed from a fairly generalkernel �, e.g. a radial basis funtion on IRd, to ertain funtions 'i and positive weights �i that allow to rewrite� in the form (8). This will be done by going bak to the origin of Hilbert{Shmidt theory, i.e. eigenfuntionexpansions of kernels of ompat integral operators.De�nition 5 Let � : 
� 
! IR be a kernel. If the integral operatorI�(f) := Z
 f(t)�(t; �)dt (10)maps L2(
) into itself and is ompat, injetive, positive, and selfadjoint, we say that � is a CIPS kernel onL2(
).Theorem 6 Any CIPS kernel on L2(
) has an absolutely and uniformly onvergent representation (8) withI := INand �1 � �2 � : : : > 0 and �i ! 0 for i!1and a omplete orthonormal system f'igi2IN in L2(
) of eigenfuntions, i.e.I�('i) = �i'i for all i 2 IN:Proof: The existene of the eigenfuntions and the series representation is a onsequene of standard ([12℄)spetral theory of selfadjoint ompat operators on L2(
). Uniform onvergene of the series follows from thetheorem of Merer, and we get (7). 2De�nition 6 A Hilbert{Shmidt kernel on 
 that has the properties asserted in Theorem 6 will be alled apositive Hilbert{Shmidt kernel (PHS) on L2(
).Note that positivity and injetivity of the integral operator means that(f; g)I� := (I�(f); g)2 = (f; I�(g))2 for all f; g 2 L2(
)is an inner produt on L2(
). The notion of positive de�niteness of a kernel is di�erent, and it does not seemeasy to onnet these properties. We further note that for PHS kernels we also have(f; I�(g))� = (f; g)2 for all f 2 N�; g 2 L2(
); (11)and the native spae (9) is embedded into L2(
) asN� = (f 2 L2(
) : Xi2IN (f; 'i)22�i <1) (12)with the inner produt taking the form(f; g)� = Xi2IN (f; 'i)2(g; 'i)2�i for all f; g 2 N�: (13)5



Theorem 7 The following are equivalent:1. The kernel � is PHS in L2(
):2. The kernel � is reproduing on 
 with the above native spae N� � L2(
) and a omplete L2{orthonormalsystem of funtions 'i suh that (7) holds.3. The kernel � is a CIPS kernel on L2(
).Proof sketh: The impliation 3 ) 1 is Theorem 6, while the impliation 1 ) 2 follows from Theorem 4. If 2holds, the integral operator is the limit of integral operators whose kernels are the �nite partial sums of �, andthus is ompat. Injetivity and positivity follow easily, beause all �i are positive. 2Theorem 8 If � is a reproduing kernel on 
 suh thatZ
�(y; y)dy < 1Z
 Z
�(x; y)2dxdy < 1Z
�(x; y)f(y)dy = 0 for all x 2 
 implies f = 0 in L2(
)then � is a CIPS kernel on L2(
).Proof sketh: The �rst additional hypothesis guarantees that the native spae of � an be embedded intoL2(
). The seond ensures ompatness of the integral operator in L2(
). Then spetral theory [12℄ allowsto onlude the existene of an expansion (8) with L2{orthogonal 'i and rather general weights, but thereprodution property implies that the weights are nonnegative. The third additional hypothesis guaranteesinjetivity of the integral operator, positivity of all weights, and ompleteness of the system of orthogonaleigenfuntions. Details are in [16℄. 2Note that injetivity of I� is essential here, but the nondegeneray of the kernel and the separation property arenot mentioned at all. Theorem 8 shows that very many kernels have a positive Hilbert{Shmidt form, and thismotivates our onentration on those kernels in the remaining setions. We lose this setion by noting that weare still laking useful onditions that allow to relate properties of � like positive de�niteness or nondegenerayto properties of I� like positivity or injetivity.3 A Disontinuous ExampleThe tehniques of the previous setion allow to onstrut new kernels from expansions. These expansions maybe based on a omplete set of L2{orthonormal funtions, but they an also be quite general as in De�nition 4and Theorem 4. So far, all known kernels are at least ontinuous, but we an use the new tehnique to presenta disontinuous ase as an example. We modify an approah due to Fabien Hinault (private ommuniation,2000).Let us mimi part of a Haar basis on IR by taking saled and shifted harateristi funtionsHjk(x) := �[0;1) �2jx� k� = �[k2�j ;(k+1)2�j )(x) for all k 2 ZZ; j � 0; x 2 IR:They have the properties Hjk(x) = 1 i� k = b2jx else = 0;Hjk(x)Hjk(y) = 1 i� k = b2jx = b2jy else = 0:With a summable sequene of positive weights �j ; j � 0 we de�ne�(x; y) := 1Xj=0 �j 1Xk=�1Hjk(x)Hjk(y)= 1Xj = 0b2jx = b2jy �j6



for all x; y 2 IR. Note now that b2jx = b2jy for some j � 0 an hold only if x and y are of the same sign anddo not di�er by 1 or more. Moreover, the identity b2jx = b2jy means that x and y oinide in their binaryexpansions in all of the pre{period digits and in the �rst j post{period digits. This means�(x; y) = 8><>: mXj=0 �j x; y oinide in sign and all leading binary digits up to the m{th after the period0 elseand in partiular �(x; x) = 1Xj=0 �j :Thus the kernel is pieewise onstant and has a �nite evaluation sheme, if the sum over the �j has a knownvalue.Theorem 9 The kernel � is positive de�nite.Proof: In view of Theorems 4 and 5 we only have to show that the funtions Hjk separate points. Take a setX = fx1; : : : ; xMg � IR, pik an arbitrary index s 2 f1; : : : ;Mg and a j > 0 suh thatjxr � xsj > 2�j for all r 6= s; 1 � r �M:This implies b2jxs 6= b2jxr for all r 6= s. Then we pik k = b2jxs and �nd that Hjk(xs) = 1 while Hjk(xr) = 0for all r 6= s, and we get the separation. 2
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Figure 1: The ase �j = 2�j�1We remark that one an onstrut plenty of other examples using other bases, in partiular wavelet bases. Wehope to �nd time to follow the open road towards \re�nable kernels" elsewhere.4 Native Spae and RangeFrom here on we always assume a positive de�nite kernel � that is a positive Hilbert{Shmidt kernel on L2(
),and in partiular we onsider the native spae (12) and the inner produt (13) there. Note that the ation of theintegral operator I� of (10) on a funtion f with expansion oeÆients (f; 'i)2 just onsists of a multipliationof the oeÆients by �i. 7



The range of the integral operator I� of (10) then isR� := (f 2 L2(
) : Xi2IN (f; 'i)22�2i <1) ;and it is the native spae of the onvolution kernel(� ��)(x; y) := Z
�(x; t)�(y; t)dt= 1Xi=1 �2i'i(x)'i(y)Consequently we have the inlusionsR� = N��� � N� � L2(
):The subspae R� of the native spae N� is of quite some importane. For ompleteness, we add a result from[16℄ that generalizes [14℄:Theorem 10 The onvergene order of interpolants to funtions from R� is twie the onvergene order offuntions from the native spae N�.Proof: The interpolant sf;X;� 2 SX;� of (3) to a funtion f from N� in data loations X = fx1; : : : ; xMg with�ll distane hX := supx2
 min1�j�M kx� xjk2has a standard [13℄ error boundkf � sf;X;�k22 � F�(hX)kf � sf;X;�k2N� � F�(hX)kfk2N� (14)for all x 2 
 with a ertain funtion F� that depends on the smoothness of �. We assert that for f = I�(g) 2 R�there is an improved bound kf � sf;X;�k22 � F�(hX)2kfk2��� = F�(hX)2kgk22:To this end, we use the standard [15℄ orthogonality relation(f � sf;X;�; sf;X;�)N� = 0and the property (11) of I� for f = I�(g) 2 R� = N��� to �ndkf � sf;X;�k2N� = (f � sf;X;�; f)N�= (f � sf;X;�; I�(g))N�= (f � sf;X;�; g)2� kf � sf;X;�k2kgk2� pF�(hX)kf � sf;X;�kN�kgk2kf � sf;X;�kN� = pF�(hX)kgk2and we an plug this into the standard error bound (14) to arrive atkf � sf;X;�k22 � F�(hX)kf � sf;X;�k2N�� F�(hX)2kgk22with kgk22 = (g; g)2 = (I�(g); g)N� = (I�(g); I�(g))��� = kfk2���: 2If we ask somewhat more than (7), i.e. Xi2I p�i'2i (x) <1 (15)8



we an de�ne the onvolution square{root of � by the kernelp�(x; y) := 1Xi=1p�i'i(x)'i(y)and get R� = N��� � Rp� = N� � Np� � L2(
):5 n{WidthsFrom now on we let � be a positive Hilbert{Shmidt kernel on L2(
) and assume (15) to play safe. We makeuse of the fat that we have integral operators related to p�(x; y) or �(x; y) that map L2(
) into N� or R�.This opens the road for appliations of the theory of n{widths [11℄. For the onveniene of the reader, we willreview that part that is of interest for us. For a subset A of a Hilbert spae H , the Kolmogorov n{width isde�ned by dn(A;H) := infVn supf2H infs2Vn kf � skH :Here, the outer in�mum is taken over all n-dimensional subspaes Vn of H . An n-dimensional spae V �n is alledoptimal if E(A;V �n ) := supf2A infs2V �n kf � skH = dn(A;H):In our ase, the Hilbert spae H will always be H = L2(
) and the set A will essentially be either N� or R�.Atually, to avoid problems with saling we will take A rather to be the unit ball in that spae, i.e. A = S(N�)or A = S(R�), where we used the general notation S(H) = fh 2 H : khk2 � 1g. This perfetly �ts into thetheory of n{width of ompat operators, where A is the image of the unit ball of the linear spae H under aontinuous mapping T . In our ase, the mapping is given by Ip� and I�, respetively.Lemma 1 The unit ball of the native spae N� is the image of the unit ball of L2(
) under the operator Ip�,i.e. S(N�) = Ip�(S(L2(
))). Similarly, we have for R� that S(R�) = I�(S(L2(
))).Proof: If f = Ip�v with v 2 S(L2(
)), then, by de�nition of the native spae norm, kfk� = kvk2. The sameholds in the seond ase. 2The results of Pinkus' book [11℄, in partiular, Corollary 2.6 of Chapter IV yield:Theorem 11 Let � be a positive Hilbert{Shmidt kernel on L2(
) with (15). Then, the n{widths for the unitball in N� and R� are given by dn(S(N�);L2(
)) = p�n+1;dn(S(R�);L2(
)) = �n+1;respetively. In both ases, the subspae V �n := span f'1; : : : ; 'ngis optimal. The assoiated optimal data funtionals have the form �k(f) := (f; 'k)2 for all f 2 L2(
):As said before, the proof an be found in Pinkus' book, but it is also not too diÆult. For example, to see thatV �n is optimal for S(N�) we simply use fn =Pnj=1(f; 'j)2'j 2 V �n as the approximant to f 2 S(N�) to getkf � fnk22 = 1Xj=n+1(f; 'j)22 = 1Xj=n+1 �j (f; 'j)22�j � �n+1 1Xj=n+1 (f; 'j)22�j �p�n+1;sine kfk� =P (f;'j)22�j � 1. 2The good news here is that we have found best rates for n{term approximation. The bad news is that forstandard radial ases neither the 'i nor the �i are known. Furthermore, the optimal funtionals are not easilyaessible numerially. Thus the next setion tries to ompare the optimal n{width errors with the behaviourof standard interpolation in n data loations or with simple approximation shemes.9



6 Quasi{optimal ProessesHere, we shall look at approximation or interpolation shemes to see whether they realize the optimal behaviouroutlined in Theorem 11 or not. Sine the eigenfuntions are not aessible in many ases, and sine the innerproduts with eigenfuntions are not pratially relevant as data funtionals, we have to be satis�ed withquasi-optimal subspaes instead of optimal subspaes.De�nition 7 An n dimensional subspae Vn � H is alled quasi{optimal for A � H if there exists a onstantC > 0, independent of n, suh that E(A;Vn) � Cdn(A;H):Sine E(A;Vn) � dn(A;H) is always satis�ed, both quantities are equivalent, whih we will also denote byE(A;Vn) � dn(A;H).We now look at some speial ases from the literature, and we start with approximation on the sphereSd�1 = fx 2 IRd : kxk2 = 1g. Here, things are generally presented upside down, i.e. one starts with afamily of orthonormal funtions, namely spherial harmonis and de�nes the kernel � by its expanding series sothat the eigenvalues of the orresponding integral operator are the Fourier oeÆients of the kernel. To be morepreise, let fY`;k : 1 � k � N(d; `)g denote the usual orthonormal basis for the spae of spherial harmonis ofdegree ` (f. [10℄), whereN(d; 0) = 1; and N(d; `) = 2`+ d� 2` �`+ d� 3`� 1 �; ` > 0:Then the kernel has an expansion of the form�(p; q) = 1X̀=0 N(d;`)Xk=1 a`;kY`;k(p)Y`;k(q): (15)For simpliity, we will assume that the kernel is radial or zonal, whih is equivalent to the fat that for a �xed` all oeÆients a`;k, 1 � k � N(d; `), are the same, i.e. a` := a`;k, 1 � k � N(d; `).Under this assumption, it is atually more natural to look at the spae of spherial harmonis up to order `,V` := spanfY�;k : 0 � � � `; 1 � k � N(d; �)g;whih is the restrition of the spae of d-variate polynomials of degree at most ` to the sphere and has dimensiondimV` = N(d+ 1; `). The n{width theory givesCorollary 1 If the oeÆients �` = �`;k, 1 � k � N(d; `), of the kernel (15) form a suÆiently fast deaying,noninreasing, and positive sequene, thendn(S(N�); L2(Sd�1)) = pa`;for N(d+ 1; `) � n < N(d+ 1; `+ 1).This is the result to whih we have to ompare the known estimates for interpolation by positive de�nite kernels.In the latter ontext it is usual to assume thatN(d; `)a` � C(1 + `)��whih is, sine N(d; `) grows like O(`d�2), equivalent to a` = O(`���d+2). The reason for looking at N(d; `)a`rather than a` is that this number appears naturally for \radial" kernels, sine the addition theorem (f. [10℄)yields �(p; q) = 1X̀=0 N(d; `)a`!d�1 P`(p � q);where !d�1 denotes the surfae area of Sd�1 and P` is the Legendre polynomial of degree ` in d dimensions,normalized by P`(1) = 1.In ase of interpolation by positive de�nite kernels it is usual to measure the approximation orders in terms ofthe so-alled �ll distane, whih is in this ontext hX := supx2Sd�1 minxj2X dist(x; xj). Here, dist is the usualspherial distane.The following result omes from Dyn/Narowih/Ward [4℄, Jetter/St�okler/Ward [6℄, and Morton/Neamtu [9℄.10



Theorem 12 Suppose � is a radial positive de�nite kernel on the sphere with a` = O(`��), ` ! 1, with� > d. Then, the interpolation error an be bounded bykf � sf;Xk1 � Ch��12X kfk�:The L1-error bound leads immediately to an L2-error bound, whih we now want to ompare with the resultsfrom n{width theory. To ahieve this, we have to relate hX to `, sine by Corollary 1 the n{width is ratherrelated to ` than to n in this situation,dn(S(N�);L2(Sd�1)) = O(`���d�22 ):This is hopeless in the general ase, but the situation hanges in ase of quasi-uniform data sets. A set X � Sd�1of n points is said to be quasi-uniform if hd�1X � 1=n. Sine we also know that n � N(d + 1; `) � `d�1 we anonlude kf � sf;Xk2 = O(`���12 ):Corollary 2 Interpolation of funtion values in quasi-uniform data loations by positive de�nite \radial" kernelson the sphere may fail to be quasi{optimal by order at most d�12 if the kernel has eigenvalues with algebraideay.Our formulation of the orollary just poses an upper bound on the deviation from quasi{optimality, but wethink that we atually have a quasi{optimal approximation sheme. The reason for our optimisti point of viewis the following. We gained the L2 approximation error simply by integrating the L1-error. In the light of theIRd theory, this seems to be too naive. In the IRd ase it is, in a similar situation, possible to gain an additionald=2 in the order by using a loalization trik, whih dates bak to Duhon's initial work on thin-plate splines(f. [2, 3℄). This trik should also work in the sphere setting, but so far nobody has ever tried it.Note that in the just desribed situation the native spae is atually the Sobolev spae Hs(Sd�1) with s =�+d2 � 1.For Eulidean spae IRd and bounded domains 
 therein, we usually do not know the orthogonal Hilbert{Shmidt expansions in L2(
). Thus we annot assess the optimality of the known error bounds. The state{of{the{art in results on optimality of rates of approximation provided by interpolation is in [17, 20℄. Insteadof optimality results for approximations, we here get upper bounds on the deay of the unknown eigenvalues.Curiously enough, this means that approximation theory provides results on the spetrum of integral operators.On IRd we make the following assumptions:� the kernel �(x; y) = �(x � y) is symmetri and Fourier{transformable,� we onsider interpolation by translates of � on n asymptotially quasi-uniform data loations in a boundeddomain 
 � IRd, whih has a suÆiently smooth boundary.Let us look at the ase of limited smoothness (e.g. [13℄) �rst. For�̂(!) � (1 + k!k2)�d�� ; k!k2 !1; (16)there is an error bound kf � sf;Xk1 � Ch�=2kfk�This error bound an be improved by Duhon's loalization trik as mentionened earlier (see for example [19℄)to kf � sf;Xk2 � Ch(�+d)=2kfk�;provided that the boundary of 
 is suÆiently smooth.In ase of quasi-uniform data, whih now beomes hdX;
 � 1=n, the latter means in terms of n,kf � sf;Xk2 � Cn�(�+d)=2dkfk�:The error of the optimal proess must be asymptotially smaller, and this implies11



Theorem 13 The eigenvalues of the Hilbert{Shmidt operator I� with kernel � on L2(
) and Fourier trans-form satisfying (16) for a bounded domain 
 � IRd satisfy�n+1 � Cn�(�+d)=dfor n!1. 2Again, as in the ase of the sphere, the native spae is a Sobolev spae Hs(
), s = (� + d)=2. For Sobolevspaes, the optimal n{widths are known (Jerome 1970 [5℄):dn(S(Hs(
);L2(
)) =p�n+1 = O(n�s=d) for n!1and we an ompare with the interpolation error bounds for Hs(
) with 
 � IRd. They have the form (14)with s = (� + d)=2 > 0; and we getTheorem 14 Interpolation in quasi-uniform loations by translates of reproduing kernels that generate Sobolevspaes is quasi{optimal.Sine Sobolev kernels and Wendland funtions [18, 19℄ reprodue spaes that are norm{equivalent to Sobolevspaes, we haveCorollary 3 Interpolation in asymptotially regular data loations by translates of Sobolev kernels or Wendlandfuntions is quasi{optimal. 2Generalizations to other radial basis funtions are not known, but would be welome.The ase of unlimited smoothness ours for inverse multiquadris and Gaussians, and it leads to Fouriertransforms with a deay like �̂(!) � C exp(�k!k2); k!k2 !1: (17)Then there is an error bound [13℄kf � sf;nk1 � C exp(�=h)kfk� � C exp(�n1=d)kfk�:Theorem 15 For a kernel � with exponential deay (17) of its Fourier transform, the eigenvalues of the integraloperator I� in L2(
) for a bounded domain 
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