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Abstract

This contribution extends earlier work [16] on interpolation/approximation by positive definite basis func-
tions in several aspects. First, it works out the relations between various types of kernels in more detail and
more generality. Second, it uses the new generality to exhibit the first example of a discontinuous positive
definite function. Third, it establishes the first link from (radial) basis function theory to n—widths, and
finally it uses this link to prove quasi—optimality results for approximation rates of interpolation processes
and decay rates for eigenvalues of integral operators having smooth kernels.

1 Kernel Functions

Let Q be a domain in IR?. We want to work with large-dimensional data—dependent spaces of functions on .
A simple way to do this is to consider functions of the form

M
Sax = )0 ®(z),) (1)

for “data sets” X = {z1,...,zm} C Q C IR?, coefficients a € IRM and a “kernel” function
®:Qx0Q—- R, QCIR". (2)

We start with a short review of the basic features of kernels, but we do not follow the standard path. The
functions (1) form a finite-dimensional space

Sx,a := span {®(z,-) : z € X} (3)
of dimension at most M. These spaces are the ones we want to work with. The union of these spaces is
So := span {®(z,-) : z € Q}. (4)

Of course, everything is useless if ® = 0, and at least one would like to have linear independence of functions
®(z,-) for x € 0.

Definition 1 We call a kernel (2) nondegenerate on Q, if for all finite data sets X = {x1,...,xp} the functions
®(z;,7), zj € X ={z1,...,2m} are linearly independent over Q.

There are plenty of such kernels, e.g. ®(z,y) := exp(z”y), z,y € IR? is nondegenerate on every subset of IR?
that contains at least an interior point.

But we also want to have a norm structure on the space (4). The simplest axiomatic way to do this is to use
the kernel itself:

Definition 2 A function (2) on Q C IR? that generates an inner product of the form
((I)($,),(I)(y,))<p :(I)(f,y) fOT‘ all T,y € (5)

on the space S will be called a reproducing kernel on Q.



Clearly, a reproducing kernel has simple properties like

O(z,z) > 0 for all z € Q,
O(z,y) = P(y,x) for all z,y € Q,
B(zy) < B(z)B(yy) forallzye .

but we just note them in passing. Equation (5) turns S¢ into a pre-Hilbert space, and it allows to write

(f(),®(y,))a := f(y) forally € Q, f € Ss,

because the equation holds for all functions f,(y) := ®(z,y) and thus on the whole space Sg.

The formal closure Ng of Sp under the inner product (.,.)e will be a Hilbert space, and an abstract element f
of Mg can be interpreted as a function on Q by

(f:q)(yv'))‘t ::f(y) for allye Q,fGNcp, (6)

because the left—hand side makes sense on the closure. Equation (6) is the reason why a kernel ® is usually
called reproducing with respect to a specific Hilbert space of functions: it allows to recover the function values
of an element f of the Hilbert space by (6). Standard sources for results on reproducing kernel Hilbert spaces
are [1, 8], while results on native spaces are compiled in [7, 15].

Definition 3 If ® is a reproducing kernel on Q C IR, we call the space

Ng = clos (. ),Ss := clos (), span {®(z,") : z € Q}

e
the native space for ®.

If the kernel is just reproducing and possibly degenerate or even zero, we cannot get a rich native Hilbert space.
But in many situations we have both properties, and then we get another useful notion:

Theorem 1 If a kernel (2) is reproducing and nondegenerate on Q C IR?, it is (strictly) positive definite there.
This means that for all finite data sets X = {x1,...,xp} the matrices

Axe = (2%, 0)) 1< panr

are symmetric and positive definite. The converse is also true: a positive definite kernel is nondegenerate and
reproducing.

Proof: If we have a reproducing kernel ®, the matrices Ax ¢ are Gramians and thus positive semidefinite. If
the kernel is nondegenerate, the matrices must be positive definite, because Gramians of linearly independent
functions are positive definite.

For the converse, we start with a positive definite kernel ® and consider functions s, x of the form (1). We
have
sa,x(7r) =l Axeer, 1<k< M

using the k-th unit vector e, € IR™. By positive definiteness we can conclude that such a function can only
vanish on X if the coefficients are zero. This proves that the kernel is nondegenerate, and it implies that finitely
generated functions s, x from (4) are uniquely determined by o and X. Thus we can define a bilinear form by
(5) on the functions ®(z,-) that generate S and use (1) again to write

M M
ol Axga = Z ajop®(x;, xr) Za] (xj, ,Zakq)(mk, Il =lsaxl? >0
k=1 k=1 &
for all « € IRM X = {x1,...,2p} C Q C IR? to conclude the definiteness of the bilinear form. O

There are other equivalent formulations for positive definiteness of a kernel ® on Q C IR*:

Theorem 2 If a kernel ® is reproducing on Q C IR, then the following properties are equivalent:



1. The functions ®(x;,-) are linearly independent on Q for all finite data sets X = {x1,...,zp} C Q.

2. For all finite data sets X = {x1,...,xm} the matrices Ax & are positive definite.

3. All point evaluation functionals for distinct points in Q are linearly independent in the dual of Ng.

4. The native space Ng separates points of Q, i.e. for all finite data sets X = {z1,...,2p} C Q and all

points x; € X there is a function f; € No such that fj(zy) =05, 1 < j,k < M.

Proof: We already know the equivalence of properties 1 and 2. In the dual of the native space, we can use (6)
to see that the Riesz representer of the point evaluation functional §, : f+— f(x) is the function ®(z,-), and
thus

(02,0y)nz = ®(2,y) for all z,y €

holds in the dual of the native space. Thus the matrices Ax ¢ are Gramians of the point evaluation functionals
dz;, ; € X in the dual of the native space, and linear independence of the functionals is equivalent to positive
definiteness of the matrix.

If we have property 4, we can easily see that the point evaluation functionals for any finite point set are linearly
independent, since for a vanishing linear combination we get

M M
0= (Zakfszk) fi =Y onfilzr) =aj, 1<j < M.
k=1

k=1
Conversely, property 4 follows from property 2 by interpolation. We define vectors and functions
aj = A}}cbe]’, fi=6a;x, 1<j<M
via (1). This gives

Filzr) = sa; x (x) = a] Axper =] Ax'gAxaer =€) ep = 0jr, 1 <j,k < M.

For completeness, we add a standard observation that goes the other way round:

Theorem 3 If H is a Hilbert space of functions on Q such that all point evaluation functionals for distinct
points in ) are linearly independent in the dual of H, then H is the native space of a nondegenerate reproducing
kernel.

Proof: We define ® as the Riesz representer for the point evaluation functionals, i.e. by (6) for all f € H.
Then we get (5) by putting f,(-) := ®(z,-) into (6), and the previous theorems yield that ® is a positive definite
reproducing kernel on Q with its native space Ng being necessarily a closed subspace of H. But we can use (6)
to show that an element f of H which is orthogonal to all ®(y, ) must vanish on , and thus the spaces # and
N3 coincide. O

This result shows that reproducing positive definite kernels are not exotic. They automatically arise for any
Hilbert space of functions where point evaluation is a continuous and nondegenerate operation.

We list a series of important special forms of kernels:

Radial Basis Functions ®(z,y) = oz —yll2) for all z,y € IR?
Translation—invariant Kernels on IR? &(z,y) = V(z —y) for all z,y € IR?
Zonal Kernels on Spheres ®(z,y) = o(2Ty) for all 2,y € S 1
Periodic Kernels on Tori S(z,y) = Y(z—y) for all z,y € [0,27]¢
Convolution Kernels O(z,y) = / U(x,s)U(y,s)du(s) for all z,y € Q
b

U:OxX—>IR
Hilbert—Schmidt Kernels O(z,y) = Z Xipi(x)pi(y) for all z,y € Q

iel

i : Q= IR, \; >0 foralliel



This paper focuses on Hilbert—-Schmidt kernels, because it turns out that they are quite general, though they
look rather special. This will be topic of the next section. But we should add some remarks on the other cases.
Translation—invariant kernels occur as reproducing kernels of translation—invariant Hilbert spaces of functions
on IR?. They allow Fourier transform methods and are positive definite in IR?, if their Fourier transform exists
and is positive almost everywhere. Radial basis functions additionally have rotational symmetry. By replacing
Fourier transforms by other transforms, one can deal with the other cases. Zonal kernels ¢(27y) are positive
definite, if their symmetrized spherical transform, i.e. their expansion into Legendre polynomials as functions
of the cosine of the angle # between z and y has positive coefficients. For periodic kernels on tori, one simply
uses positivity of the coefficients of the Fourier series representation.

These observations immediately show that many kernels have series expansions with positive coefficients, and
thus they come close to the Hilbert—Schmidt kernel form that we want to study in the next section.

2 Hilbert—Schmidt Kernels

Before we delve into the standard way of looking at those kernels, i.e. by introducing an integral operator in
L»(92), we want to focus on a somewhat more abstract view that does not require a link to embeddings into Lo
spaces.

Definition 4 For each index i from a countable index set I let there be a positive weight \; and a function
i = Q= IR such that for all x € Q the condition

S Ak (a) < o0 0
el

is satisfied and such that any finite subset of the p; is linearly independent over Q2. Then the function

8(r,y) = S Nigi(@)pily) : 2x QR (8)
el

is called a Hilbert-Schmidt kernel.
Theorem 4 Any Hilbert—Schmidt kernel ® is a reproducing kernel on the native space
N3 = {iezlcigoi i ¢ € IR, ZEZI>\—l<oo} (9)

Proof: Note first that our summability condition (7) implies that the kernel series is summable. Furthermore,
the functions in Mg are well-defined because of

|ci]
Y leipi(z)] = VAilpi(z)]] <
iel 7 iel VA 7

By our assumption on linear independence, all finite linear combinations of the (; have unique coefficients, and
we can define the inner product

(‘pz,‘pj)<1> = )\_Z
Cidz
> ocipin ) de DIy
iel jer ier 7

P

on these functions. We get a pre—Hilbert space whose closure is Ng. By easy calculations, all ®(z,-) are in Ng
and both (6) and (5) hold. O

Unfortunately, the linear independence assumptions of Definitions 1 and 4 differ, and we cannot conclude
that a Hilbert—Schmidt kernel is nondegenerate in general. For example, if all ¢; have a common zero, the
nondegeneracy fails.



Theorem 5 If the space of all finite linear combinations of the generating functions ¢; of a Hilbert—Schmidt
kernel ® of the form (8) separates points of Q in the sense of assertion 4 of Theorem 2, the kernel is nondegen-
erate.

Proof: Assume there is a vanishing linear combination s, x for some X = {z1,...,zap} C Q. Then
2
M M
0=llsaxlls = Y ajar®(zj,e) =Y N | D ajeilx;)
G k=1 el j=1

implies that all sums Z]]Vil a;pi(z;) are zero. Taking linear combinations with the coefficients of point—
separating functions, we can conclude that « vanishes. O

We now know that under mild assumptions all Hilbert—Schmidt kernels are positive definite reproducing kernels
of some Hilbert space. We now assert the converse, but we need some tool to proceed from a fairly general
kernel @, e.g. a radial basis function on IR?, to certain functions ¢; and positive weights A; that allow to rewrite
® in the form (8). This will be done by going back to the origin of Hilbert—Schmidt theory, i.e. eigenfunction
expansions of kernels of compact integral operators.

Definition 5 Let ® : Q x Q — IR be a kernel. If the integral operator

Taf) = [ 0000, i (10)
maps La(Q) into itself and is compact, injective, positive, and selfadjoint, we say that ® is a CIPS kernel on
Ly ().

Theorem 6 Any CIPS kernel on L2(Q) has an absolutely and uniformly convergent representation (8) with
I:=INand
A > >...>0and \; = 0 fori— oo

and a complete orthonormal system {p;}icv in La(Q) of eigenfunctions, i.e.
Zo(pi) = Aitp; for all i € IN.

Proof: The existence of the eigenfunctions and the series representation is a consequence of standard ([12])
spectral theory of selfadjoint compact operators on Lo(2). Uniform convergence of the series follows from the
theorem of Mercer, and we get (7). O

Definition 6 A Hilbert-Schmidt kernel on Q that has the properties asserted in Theorem 6 will be called a
positive Hilbert—Schmidt kernel (PHS) on La(().

Note that positivity and injectivity of the integral operator means that

(fa g)IQ = (I<I>(f)ag)2 = (fan>(g))2 for all fag € L2(Q)

is an inner product on Ly (f2). The notion of positive definiteness of a kernel is different, and it does not seem
easy to connect these properties. We further note that for PHS kernels we also have

(f, Zo(9))e = (f,9)2 for all f € Ng, g € La(), (11)

and the native space (9) is embedded into L() as

with the inner product taking the form

(f,9)e = Z o oi)a(g: i) for all f,g € Ng. (13)

: i
i€eIN



Theorem 7 The following are equivalent:
1. The kernel ® is PHS in Ly(Q).

2. The kernel ® is reproducing on Q with the above native space No C Lo(Q) and a complete Ls—orthonormal
system of functions p; such that (7) holds.

3. The kernel ® is a CIPS kernel on Ly(f).

Proof sketch: The implication 3 = 1 is Theorem 6, while the implication 1 = 2 follows from Theorem 4. If 2
holds, the integral operator is the limit of integral operators whose kernels are the finite partial sums of ®, and
thus is compact. Injectivity and positivity follow easily, because all \; are positive. a

Theorem 8 If ® is a reproducing kernel on Q such that

/‘P(y,y)dy < 00

Q
//<I>(:L‘ y)?dzdy
QJo

®(x,y)f(y)dy

AN

o0

0 for all z € Q implies f =0 in Ly(Q)
Q

then ® is a CIPS kernel on Lo(92).

Proof sketch: The first additional hypothesis guarantees that the native space of ® can be embedded into
Ly(Q). The second ensures compactness of the integral operator in L2(€). Then spectral theory [12] allows
to conclude the existence of an expansion (8) with Lo—orthogonal ; and rather general weights, but the
reproduction property implies that the weights are nonnegative. The third additional hypothesis guarantees
injectivity of the integral operator, positivity of all weights, and completeness of the system of orthogonal
eigenfunctions. Details are in [16]. i

Note that injectivity of Zg is essential here, but the nondegeneracy of the kernel and the separation property are
not mentioned at all. Theorem 8 shows that very many kernels have a positive Hilbert—Schmidt form, and this
motivates our concentration on those kernels in the remaining sections. We close this section by noting that we
are still lacking useful conditions that allow to relate properties of ® like positive definiteness or nondegeneracy
to properties of Zg like positivity or injectivity.

3 A Discontinuous Example

The techniques of the previous section allow to construct new kernels from expansions. These expansions may
be based on a complete set of Lo—orthonormal functions, but they can also be quite general as in Definition 4
and Theorem 4. So far, all known kernels are at least continuous, but we can use the new technique to present
a discontinuous case as an example. We modify an approach due to Fabien Hinault (private communication,
2000).

Let us mimic part of a Haar basis on IR by taking scaled and shifted characteristic functions
H]i(aj) = XJo,1) (ij — k) = X[kQ—j7(k+1)2—j)(ZL’) for all k € Z,j Z 0, z € IR.

They have the properties

. Hi(z) = 1iffk= 2z else =0,
Hl(z)H{(y) = 1iff k= |2'z] =|2/y] else =0.
With a summable sequence of positive weights p;, j > 0 we define
o0 o0 . .
O(z,y) = > p Y, Hi(x)H{(y)
j=0 k=—00

o0
= > p;
=0

[2z] = [27y]



for all 2,3 € IR. Note now that [2/2] = |2/y| for some j > 0 can hold only if 2 and y are of the same sign and
do not differ by 1 or more. Moreover, the identity |2/2] = |2/y| means that 2 and y coincide in their binary
expansions in all of the pre—period digits and in the first j post—period digits. This means

Z pj =,y coincide in sign and all leading binary digits up to the m-th after the period
Jj=0
0 else

®(z,y) =

and in particular
b(z,z) = Z pj-
=0

Thus the kernel is piecewise constant and has a finite evaluation scheme, if the sum over the p; has a known
value.

Theorem 9 The kernel ® is positive definite.

Proof: In view of Theorems 4 and 5 we only have to show that the functions H ,{ separate points. Take a set
X ={z1,...,2m} C IR, pick an arbitrary index s € {1,..., M} and a j > 0 such that

|z, — x| >277 forallr #s, 1 <7 < M.

This implies |22, | # |2/, for all » # 5. Then we pick k = |2/2,] and find that H,g(xs) = 1 while H,i(x,,)

=0
for all r # s, and we get the separation. a
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Figure 1: The case p; = 27971

We remark that one can construct plenty of other examples using other bases, in particular wavelet bases. We
hope to find time to follow the open road towards “refinable kernels” elsewhere.

4 Native Space and Range

From here on we always assume a positive definite kernel ® that is a positive Hilbert—Schmidt kernel on L, (Q),
and in particular we consider the native space (12) and the inner product (13) there. Note that the action of the

integral operator Z¢ of (10) on a function f with expansion coefficients (f, ;)2 just consists of a multiplication
of the coefficients by A;.



The range of the integral operator Zg of (10) then is

2
R = {f e L)« 3 L8R oo},
and it is the native space of the convolution kernel

(@ % B)(z,y) = / B, 1) B (y, 1)t

I
i
>
<
5
5
S

Consequently we have the inclusions

Re = Nawd C N C L2(Q).

The subspace R of the native space N is of quite some importance. For completeness, we add a result from
[16] that generalizes [14]:

Theorem 10 The convergence order of interpolants to functions from Re is twice the convergence order of
functions from the native space Ng.

Proof: The interpolant sy x ¢ € Sx,e of (3) to a function f from N in data locations X = {zq,..., 2y} with
fill distance

hx := i — T
X ilelglg}lganlw |2

has a standard [13] error bound

If = sr.x0ll3 < Folhx)|f = srxalli, < Fo(hx)llflii, (14)

for all z € Q with a certain function Fg that depends on the smoothness of ®. We assert that for f = Zs(g9) € Ra
there is an improved bound

1f = spx.ell3 < Fo(hx)*[|fll3ee = Fao(hx)*llgll3.

To this end, we use the standard [15] orthogonality relation

(f —s1,x,8,57,x,8)Ns =0

and the property (11) of Zg for f = Zg(g) € Re = Naxe to find

If=spxolli, = (f—srxa fns
= (f—stx,9,Z0(9))Ns
(f = s£.x,8,9)2

Ilf = sz.x.all2llgll2
VFe(hx)|f = spxellnvallgll2
V Fa(hx)llgll2

and we can plug this into the standard error bound (14) to arrive at

AN IA

If = sz.x.ellnve

If=spxolls < Fa(hx)lf —srxall},
< Fs(hx)?||gl3
with
lgll3 = (9,9)2 = (Za(9), 9 ns = Za(9),Zo(9))oxa = || f |30

If we ask somewhat more than (7), i.e.

S VRiga) < o0 (15

i€l



we can define the convolution square—root of ® by the kernel
o0
Vo(z,y) =Y VAipi(@)ei(y)
i=1

and get

Re = Nz C R\/qj = N C N\/@ C Lg(ﬂ).

5 n—Widths

From now on we let ® be a positive Hilbert—Schmidt kernel on Ls(Q) and assume (15) to play safe. We make
use of the fact that we have integral operators related to v/®(z,y) or ®(z,y) that map L»(Q) into N or Re.
This opens the road for applications of the theory of n—widths [11]. For the convenience of the reader, we will
review that part that is of interest for us. For a subset A of a Hilbert space H, the Kolmogorov n—width is
defined by

dn(A; H) == inf sup Jnf [1f = sll

Here, the outer infimum is taken over all n-dimensional subspaces V,, of H. An n-dimensional space V,* is called
optimal if
E(A; V) = sup inf ||f —s|lu = dun(A; H).
feASEVy

In our case, the Hilbert space H will always be H = L3(Q2) and the set A will essentially be either Ng or Re.
Actually, to avoid problems with scaling we will take A rather to be the unit ball in that space, i.e. A = S(Ng)
or A = S(Rs), where we used the general notation S(H) = {h € H : ||h||2 < 1}. This perfectly fits into the
theory of n—width of compact operators, where A is the image of the unit ball of the linear space H under a
continuous mapping T'. In our case, the mapping is given by Z & and Zg, respectively.

Lemma 1 The unit ball of the native space Ng is the image of the unit ball of L2(Q) under the operator T /%
i.e. S(Na) =T /5(S(L2(9))). Similarly, we have for Ra that S(Ra) = Ta(S(L2(52))).

Proof: If f =7 /v with v € S(L2(f2)), then, by definition of the native space norm, [|f[|¢ = ||v||2. The same
holds in the second case. |
The results of Pinkus’ book [11], in particular, Corollary 2.6 of Chapter IV yield:

Theorem 11 Let ® be a positive Hilbert-Schmidt kernel on L2 () with (15). Then, the n—widths for the unit
ball in N3 and Re are given by

dn(SWNa); La(Q) = v Anga,
dn(S(Ra); L2())

2

Ant1,
respectively. In both cases, the subspace
Vo= span {p1,...,0n}
is optimal. The associated optimal data functionals have the form pr(f) := (f, pr)2 for all f € Ly(9).

As said before, the proof can be found in Pinkus’ book, but it is also not too difficult. For example, to see that
V,r is optimal for S(Ng) we simply use f, = 37 (f, 9;)2¢; € V' as the approximant to f € S(Ns) to get

2 _ S 2 _ S (f, i)} — (f,¢))3
If=fali= Y (hep)i= Y, AT S Ak > o S VAn,
j=n+1 j=n+1 J j=n+1 7
since [|flla = = U552 < 1. 0

The good news here is that we have found best rates for n—term approximation. The bad news is that for
standard radial cases neither the ¢; nor the A; are known. Furthermore, the optimal functionals are not easily
accessible numerically. Thus the next section tries to compare the optimal n—width errors with the behaviour
of standard interpolation in n data locations or with simple approximation schemes.



6 Quasi—optimal Processes

Here, we shall look at approximation or interpolation schemes to see whether they realize the optimal behaviour
outlined in Theorem 11 or not. Since the eigenfunctions are not accessible in many cases, and since the inner
products with eigenfunctions are not practically relevant as data functionals, we have to be satisfied with
quasi-optimal subspaces instead of optimal subspaces.

Definition 7 An n dimensional subspace V,, C H is called quasi—optimal for A C H if there exists a constant
C > 0, independent of n, such that

E(A;Vy,) < Cdy(A; H).
Since E(A;V,) > d,(A; H) is always satisfied, both quantities are equivalent, which we will also denote by
E(A; V) ~dn(A; H).

We now look at some special cases from the literature, and we start with approximation on the sphere
S?-1 = {z € IR? : ||z|]|] = 1}. Here, things are generally presented upside down, i.e. one starts with a
family of orthonormal functions, namely spherical harmonics and defines the kernel ® by its expanding series so
that the eigenvalues of the corresponding integral operator are the Fourier coefficients of the kernel. To be more
precise, let {Yp 1 : 1 < k < N(d,¢)} denote the usual orthonormal basis for the space of spherical harmonics of
degree ¢ (cf. [10]), where

2 -2 -
N(@,0) =1, and N(do)=2Fd=2(EFd=3)
l (-1
Then the kernel has an expansion of the form

0o N(d,6)

®(p,q) = > arsYer(p)Ver(a). (15)

=0 k=1
For simplicity, we will assume that the kernel is radial or zonal, which is equivalent to the fact that for a fixed
¢ all coefficients agr, 1 <k < N(d,{), are the same, i.e. a;:=arg, 1 <k < N(d,?).

Under this assumption, it is actually more natural to look at the space of spherical harmonics up to order ¢,
Ve = Span{Y/\,k 0<AL Ea]- <k< N(daA)}a

which is the restriction of the space of d-variate polynomials of degree at most £ to the sphere and has dimension
dimVy; = N(d + 1,¢). The n—width theory gives

Corollary 1 If the coefficients ap = aup g, 1 < k < N(d,¥), of the kernel (15) form a sufficiently fast decaying,
nonincreasing, and positive sequence, then

d (S(Ne), L2(S171)) = va,
for N(d+1,0) <n < N(d+1,{+1).

This is the result to which we have to compare the known estimates for interpolation by positive definite kernels.
In the latter context it is usual to assume that

N(d, O)a; < C(1 + )

which is, since N(d, £) grows like O(¢?~2), equivalent to a; = O(£~* 9*2). The reason for looking at N (d, {)a,
rather than ay is that this number appears naturally for “radial” kernels, since the addition theorem (cf. [10])
yields

= N(d,0)a
2p.g) =Y Mg ),
-0 d—1

where wy_; denotes the surface area of S¢~! and P, is the Legendre polynomial of degree £ in d dimensions,
normalized by P,(1) = 1.

In case of interpolation by positive definite kernels it is usual to measure the approximation orders in terms of
the so-called fill distance, which is in this context hx := sup,¢ga—1 ming, cx dist(x,z;). Here, dist is the usual
spherical distance.

The following result comes from Dyn/Narcowich/Ward [4], Jetter/Stockler/Ward [6], and Morton/Neamtu [9)].

10



Theorem 12 Suppose ® is a radial positive definite kernel on the sphere with ap = O(~%), { — oo, with
a > d. Then, the interpolation error can be bounded by

a1
1f = ss.xlloc < Chx® [[flla-

The Ly-error bound leads immediately to an Ls-error bound, which we now want to compare with the results
from n—width theory. To acchieve this, we have to relate hx to ¢, since by Corollary 1 the n—width is rather
related to £ than to m in this situation,

a—d—2

dn(S(N3); La(S971)) = O(6~ =),

This is hopeless in the general case, but the situation changes in case of quasi-uniform data sets. A set X C S¢~!
of n points is said to be quasi-uniform if A% ~ 1/n. Since we also know that n ~ N(d + 1,£) ~ ¢4~! we can
conclude

I1f = sp.x|la = O ).

Corollary 2 Interpolation of function values in quasi-uniform data locations by positive definite “radial” kernels
on the sphere may fail to be quasi—optimal by order at most % if the kernel has eigenvalues with algebraic
decay.

Our formulation of the corollary just poses an upper bound on the deviation from quasi—optimality, but we
think that we actually have a quasi—optimal approximation scheme. The reason for our optimistic point of view
is the following. We gained the Ly approximation error simply by integrating the Loo-error. In the light of the
IR? theory, this seems to be too naive. In the IR? case it is, in a similar situation, possible to gain an additional
d/2 in the order by using a localization trick, which dates back to Duchon’s initial work on thin-plate splines
(cf. [2, 3]). This trick should also work in the sphere setting, but so far nobody has ever tried it.

Note that in the just described situation the native space is actually the Sobolev space H*(S¢™!) with s =
atd 4
5 .

For Euclidean space IR? and bounded domains Q therein, we usually do not know the orthogonal Hilbert—
Schmidt expansions in Ly(€2). Thus we cannot assess the optimality of the known error bounds. The state—
of-the—art in results on optimality of rates of approximation provided by interpolation is in [17, 20]. Instead
of optimality results for approximations, we here get upper bounds on the decay of the unknown eigenvalues.
Curiously enough, this means that approximation theory provides results on the spectrum of integral operators.

On IR? we make the following assumptions:
e the kernel ®(z,y) = ¢(z — y) is symmetric and Fourier—transformable,

e we consider interpolation by translates of ¢ on n asymptotically quasi-uniform data locations in a bounded
domain Q C IR?, which has a sufficiently smooth boundary.

Let us look at the case of limited smoothness (e.g. [13]) first. For
(w) ~ (14 [lwll) ™7, Jlwlls = oo, (16)

there is an error bound
If = s.xllo < CRP2||f]|o

This error bound can be improved by Duchon’s localization trick as mentionened earlier (see for example [19])

to
1f = sp.xlla < CRETD| flg,

provided that the boundary of €2 is sufficiently smooth.
In case of quasi-uniform data, which now becomes hg(’Q ~ 1/n, the latter means in terms of n,

I1f = sp.xlle < On= D2 £l

The error of the optimal process must be asymptotically smaller, and this implies
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Theorem 13 The eigenvalues of the Hilbert—Schmidt operator e with kernel ® on L2(Q) and Fourier trans-
form satisfying (16) for a bounded domain Q C IR? satisfy

Ant1 < Cn~(B+d)/d
for n — co. a

Again, as in the case of the sphere, the native space is a Sobolev space H*(f), s = (8 + d)/2. For Sobolev
spaces, the optimal n—widths are known (Jerome 1970 [5]):

dp(S(H*(Q); Ly (Q)) = / Apg1 = O(n~*/%) for n — oo

and we can compare with the interpolation error bounds for H*(Q) with Q C IR?. They have the form (14)
with s = (8 +d)/2 > 0, and we get

Theorem 14 Interpolation in quasi-uniform locations by translates of reproducing kernels that generate Sobolev
spaces is quasi—optimal.

Since Sobolev kernels and Wendland functions [18, 19] reproduce spaces that are norm—equivalent to Sobolev
spaces, we have

Corollary 3 Interpolation in asymptotically reqular data locations by translates of Sobolev kernels or Wendland
functions is quasi—optimal. O

Generalizations to other radial basis functions are not known, but would be welcome.

The case of unlimited smoothness occurs for inverse multiquadrics and Gaussians, and it leads to Fourier
transforms with a decay like

$(w) < Cexp(—cllwllz), [[wll2 — . (17)

Then there is an error bound [13]

1f = sgnlloo < Cexp(=c/B)lIfle < Cexp(=cn'/?)||f|a-

Theorem 15 For a kernel ® with exponential decay (17) of its Fourier transform, the eigenvalues of the integral
operator Ty in Lo(Q) for a bounded domain Q C IR? satisfy

Ani1 < Cexp(—cn'/?)

for n — co. O
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