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Abstract The paper provides a computational technique that allove®topare all linear
methods for PDE solving that use the same input data. Thisng dy writing them as
linear recovery formulas for solution values as linear comations of the input data, and
these formulas are continuous linear functionals on Setsgaces. Calculating the norm of
these functionals on a fixed Sobolev space will then servegaslity criterion that allows a
fair comparison of all linear methods with the same inputsluding standard, extended or
generalized finite—element methods, finite—differenced-raashless local Petrov—Galerkin
techniques. The error bound is computable and yields a stangi—case bound in the form
of a percentage of the Sobolev norm of the true solution. ismgbnse, the paper replaces
proven error bounds by calculated error bounds. A numbdiustiative examples is pro-
vided. As a byproduct, it turns out that a unique error—optimethod exists. It necessarily
outperforms any other competing technique using the samae elg. those just mentioned,
and it is necessarily meshless, if solutions are writtertifely in terms of nodes” (Be-
lytschko et. al. 1996 [6]). On closer inspection, it turnsg that it coincides wittsymmetric
meshless collocatiooarried out with the kernel of the Hilbert space used forreesalua-
tion, e.g. with the kernel of the Sobolev space used. Thisnigae is around since at least
1998, but its optimality properties went unnoticed, so Eatamples compare the optimal
method with several others listed above.
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1 Introduction

For simplicity, consider a standard problem

Lu=f inQ
u=g inl:=0Q (1)

with a linear elliptic differential operatdr and Dirichlet boundary values, posed on a do-
mainQ. It will be clear in section 3 how this generalizes to otheeér differential operators
and other boundary conditions that are lineaunif\ssume that the amount of available in-
formation is fixed and limited, namely to values

f(xj) in points xj € Q, 1<j<m, @
g(yk) inpoints yyel :=0Q,1<k<n.

Under all methods for solving such problems, we ask for the with smallest error that
uses this information and not more. To make this more prewisdix a single poink € Q
and assume existence of a true solutidrof the problem. Any method# using the above
information will produce some numerical solutiar),; and we want to single out methods
that make the errqu*(x) — 0 4 (x)| small for all problems posed that way. We achieve this
by looking at error bounds

|u*(X) — G 4 (X)| <C z||u*||n forall u* € H, (3)

where the problems and their solutions are allowed to varguich a way that the true
solutions lie in some fixed reproducing kernel Hilbert spidaaf functions onQ, e.g. a fixed
Sobolev space. Note that the literature on partial diffeaéequations provides theorems
about existence and uniqueness for scales of Sobolev deHg§paces, see e.g. [18,15].

In the sense of (3), the consta@t, describes the worst—case error behavior of the
method.# on all problems with solutions ikl using the same data, and the error is given
as a percentage ¢fr*||, which is the only unknown quantity here. We shall show how to
evaluateC , numerically, and this will allow fair comparisons betweepthods using the
same data. A few examples including important methods likigefielements, gerneralized
finite differences, and meshless collocation in variousn®are provided at the end. Note
that this paper does not define a new solver. It comparesrexisblvers, and it does not
compete for efficiency. The comparison will not be cheapantthe solving.

But one can also ask for a method’' that make<C , minimal over all linear methods
using the same data. This problem is rewritten as one of aptiectovery of functions,
and it is proven that the optimal solution exists uniquetycdn be calculated explicitly,
takes the form of a recovery method in reproducing kernddettlspaces, and isaeshless
method Since it is optimal in the above sense, it outperforms ®iis® any other competing
technique using the same data, may it use finite elements, iifierences, or local Petrov—
Galerkin technigues. Upon closer inspection, it turns oube nothing new, because it is
a special case afymmetric meshless collocatiacomputed using the kernel that was used
for error assessment. This method relies on Hermite—Bifkhterpolation in reproducing
kernel Hilbert spaces [31] and its application to PDE sa@wivas first analyzed in [12,13].



2 Recovery Problems

To keep the presentation simple, we stay with the problemAfy linear method that
provides an approximate solution valug) for a fixed pointx and uses exclusively the data
(2), must necessarily satisfy a formula of the form

n

() = in—(x)f(x,-) -3 Sg, @
=

k=1

whatever the weights;(x) ands(x) are. We call this alirect linear recoveryof the value
G(x) from the data on the right—hand side. The existence of (#jvisl from linearity and the
restriction to the admitted data, but in general it will needne effort to rewrite a classical
method in this form. We come back to this in section 5 on speriéthods.

Clearly, the error in (4) is

U (x) — G(x) = u™(x) — lfj CILU™(xj) — kisk(x)u* (Vi)

where we now have connected the data functibagdg back to the true solution*. The
map

3
>

Eirs U= U (X) =) rj(x)Lu(x) — ) sc(¥)u(yk) (5)
1 K=1

is a linear functional iu*, and if it is bounded on some Hilbert spadewe have an error
bound

U™ (X) = G(X)| < || &xr s

If the norm||&x s||n+ is evaluated, it precisely describes the worst—case esloaior for

all problems with solutions i, because the inequality is sharp by definition of the norm
of the functional. In other words, one can express the estpliatly in percent of||u*||H,

and this is what we shall do in the rest of the paper. Note thrat bounds of the form (6)
need no special theoretical proof, just the calculatiorhefactual value off &, s||n+ by the
computer. In that sense, finding error bounds of that formotsammatter of proof anymore,
but a matter of explicit computation. The usual theoretazguments likeconsistency and
stability imply convergencare not relevant for this a-posteriori error evaluatior;ehese
the calculated value of the norjigy, s||1+ precisely describes the actual error behavior, and
it will be large if the design of the PDE solving method behthé recovery formula has
flaws like instability or bad consistency, in whatever sense

he |lu*]|y for all u* € H. (6)

Furthermore, one can ask for a choicéx) ands*(x) of the coefficient vectors that make
the norm minimal, and this will later lead to an optimal mettor the given reconstruction
problem.

Note that we do not consider the way numerical solutionsiwithe considered methods
are actually calculated. They are usually not obtained viecavery formula (4), though
the latter is hidden behind the scene. The amount of nuniéniesgration needed for weak
methods, the error committed in integration subroutined,any multigrid solver techniques
are contained implicitly in the discrete recovery format not appearing explicitly. Dif-

ferent numerical strategies within the same class of meathad. finite element solvers with



different ways of integration or with different element fdlies will lead to variations of re-
covery formulas that can be compared directly. The onlyirequent is that the method is
rewritten in direct linear recovery form (4), and then th@t@rror is evaluated, containing
all method—specific internal features of the technique mstjon.

3 Error Evaluation

Fortunately, it is easy to evaluate such norms in reprodu&grnel Hilbert spaces, and
Sobolev spaces are examples. In such spaces, the innecpasdlthe kernek : Q — Q
have the properties

f(x) = (f,K(x,-))n forall f eH, xe Q
K(xy) = (K(x,-),K(y,))n forall x,y € Q

and for all linear and continuous functiondisy € H*,

()‘7U)H* = ()‘XK(XV)vlJyK(y»'))H (7)
= A" K(X,Y),

where the upper index at the functionals denotes the varthll is acted upon. Details are
in the literature on kernels, with [30] being a fairly comgle@eference and [25, 26] being
open access compilations for teaching purposes. A gooctcesdar MATLAB programs
within kernel methods and their background is [11]. A somatwhore theoretical book is

(8.

Global Sobolev spaceas"(RY) in d dimensions and for ordem > d/2 in the standard
Fourier transform definition have the radMhtérn reproducing kernel

K%)= 2 ) yIE K a2l Yl). Xy € RE ®)
) r(m) 2 m—d/2 2), %
with the modified Bessel functioky,_q,, of the second kind. Local Sobolev spavé3(Q)
for domainsQ ¢ RY are norm—equivalent to the global spaces, as long as domaEmon—
pathological, i.e. they satisfy a Whitney extension proper a have a piecewise smooth
boundary with a uniform interior cone condition. We shak tise above kernels for evalua-
tion of errors in Sobolev space.

To avoid double sums and to pave the way for generalizativasshall calculate the error
norms after rewriting (5) in terms of functionals as

N
&xc =0~ Y (¥)A 9)
&1

with
Aj(U) =Lu(xj), 1< j<m andAmii(u) =u(y;), 1<i<n N=m+n (10

in our special case. It should be clear that other diffeaémperators and other boundary
conditions will just change the functionals here.



Then (7) implies that we can calculate the quadratic form

N
el = K(x.x) *Z_ZICi(XV\iZK(X»Z)
N = (11)

+ 3 GG (NAAK (.2
j,i=1

explicitly, if the kernel is known and the functionals aretinuous, in particular on Sobolev
spaces of sufficient regularity. For instance, i§ a second—order elliptic operator, this poses
the restrictiorm— 2 > d/2 on the Sobolev ordenwe can use. But this is no surprise, since
we focus on methods that use= Lu* pointwise, forcingf to be inW2k with k > d/2 and
thusu* € WJ" with m> 2+ d/2, by the Sobolev embedding theorem. All methods that use
these data are implicitly making this smoothness assumpgieen if their users think that
they are working in in less regular spaces. Plenty of papedsb@oks miss this point. In
particular, the standard FEM method is usually formulated analyzed in low-regularity
spaces like4 or H?, but when it comes to using data like (2), it neét8 with m> 3 in R?

to let the data functionals be continuous. Since this argiiseems to ignore that the FEM
can perfectly handle problems statedHif or HZ, we explain the situation in more detail in
section 7. Our numerical comparison technigue works al$loanimit m= 3 for dimension

2, as the examples in section 6 show.

All methods based on the daia(u*),...,An(u*) and brought into the recovery form
N
() = > Gi(x)Ai(u7)
5500

generalizing (2) and (5) can now be plugged into (11) to show bood the reproduction
quality atx is, because (6) generalizes accordingly. Note that there imear system to be
solved once the recovery formula is known. But since the @bars inserted into the positive
definite quadratic form (11), a small final value will nece8gaontain quite some amount
of numerical cancellation. The computational complexdyriorm evaluation ig7(N?) for

a total ofN data.

This allows a fair comparison of all such methods using timeesdata, and we shall provide
examples below. The comparison can be made pointwise, aswwebat for small prob-
lems one can plot the function— ||&c[|3- to see where a method works badly and needs
more data. This gives direct information for refinement ef discretization, for all kinds of
methods.

4 Optimal Methods

Since (11) is a quadratic form with a positive semidefiniterirait can be minimized. The
optimal solution coefficients’ (x) solve the system

k(A AK (Y. 2) = AfK(x2), 1< J <N, (12)

Mz

=~
Il

1



and the system can be proven to be solvable [31]. Clearlyctibice of coefficients in the
generalized discrete recovery formula (9) will then oufipen all other competitors error—
wise. We shall show examples later. The minimal value of {thiéh is

P4

lexe B = KO6X) = 5 6()"AK(x,2) > 0

and does not contain any matrix.

The system (12) reveals the nature of this method. Indeedytictionsck are necessarily
linear combinations of the functiom§’K(-,z), and application o\ to the above system
shows the Lagrange properfyy(ck) = ik, 1 < i,k < N. This means that the, are the
Lagrange basis for general Hermite—Birkhoff interpolatid the given data by the functions
)\iZK(-,z),,and this is the well-known method symmetric meshless collocatibased on
[31] and analyzed thoroughly in [12, 13]. The optimality béttechnique in the sense of this
paper should have been known at least since 1997, but it wenticed because [25, p.82,
(4.2.2)] was not applied to PDE solving at that time. Notelfjnténat the optimal method
inherits any proof of any convergence rate for any methodsdeser using the same data.

5 Special Methods

We now provide some details on how to evaluate recovery £fmrspecial PDE solution
techniques. This will be useful for the examples in the firgdtion, and we specialize to
L = —A here, because generalizations are easy to work out.

5.1 Finite Elements

The simplest possible 2D finite—element code uses piecdinisar elements on the trian-
gles of a triangulation of a domain with piecewise linear tdary, and require$—values
only at the barycenters of the triangles, if numerical irddign is performed by the midpoint
rule. These are the points in (2) in the FEM version that we denote by FEMBary below.
But since usually there are more triangles than vertices,ocam also prescribé-values at
all interior and boundary vertices to calculate approxenalues at the barycenters. This
usually needs lesé-values at the same order of accuracy, but the data pointdcaer to
the evaluation points, which usually are the vertices ofttlamgulation that are not carry-
ing Dirichlet data. We call this method FEMNode below. These FEM variations have
different recovery formulas (4) and different error funcials (5) to be compared, because
their integration strategy is different.

To get the recovery formulas in the form needed here, usdifsavie to check carefully what
their FEM code does. We used the MATLARetool setting, which does the following. It
uses allN triangle vertices, .. .,zy for setting up the standard piecewiese linear test and
trial functionsvy. . .., vy with vj(z) = djx and builds theéN x N stiffness matrix with entries
(Owi, Ovj)L, in the usual way. The right-hand sideS vj)L,, 1 < j < N are certain linear
combinations off-values either at triangle barycenters or at vertices ofnsighboring
triangles. These linear combinations form a spansegration matrixB with entriesbjy



such that the stiffness system without boundary conditimsvith some form of numerical
integration is

N

Zl(Dv,,Dv, LU Z by f(x), 1< j<N.

i=

The FEMBary and FEMNode variations have differ&tnatrices and usé at different
pointsxg, but the stiffness matrices are the same. The study of andused by numerical
integration [4] can be studied by using various integrati@atrices, for all methods using a
weak approach to the PDE.

If we single out the seb of indices of the boundary vertices, the unknowa(g), i € D C
{1,...,N} are known Dirichlet values, and thus

Z(DVHDVJ LU z bjkf %(DVI»DVJ)Lz (z),i¢D

i¢D i€

is the system to be actually solved. Since tlig) with i € D areg-values, the system has
the matrix—vector form

Au = Bf + Cg (13)

under adequate notation, and each row of
=A"1Bf+AICg

provides one instance of (4) for each of the poits x;, i ¢ D. If we focus on the origin
as one of these points, as we do later in our examples, we nsedrje row. Note that the
sparsity of the stiffness matrik gets lost after the transition to a recovery formula.

If users want the error at a non—nodal painthey have to add a piecewise linear inter-
polation on a triangle containing and then the discrete reconstruction formula is a linear
combination of three rows of the above system. This illusgdow numerical integration
and interpolatory post—processing both enter expliciitg iour version of a complete and
explicit error analysis. We applied this additional linéaterpolation when preparing Fig-
ures 6 and 7, where we needed the error norms for evaluatiamdpoints of edges.

5.2 Symmetric Kernel-Based Collocation

This method works on the two point sésandY from (2) and uses linear combinations

m

u(x) = ZCJAK X, Xj) + Z akK (X, Yk) (14)
=

of basis functions derived from a smooth kerKelThe argument in Section 4 shows that
this yields optimal errors in the Hilbert spaces in whichithernels are reproducing. In
case of Sobolev spaces, we thus get the error—optimal meth@&bbolev spaces this way.



But, again, the numerical process for solving the PDE iediffit from a recovery formula
(4). The standard algorithm collocates these trial fumstiat Dirichlet and PDE vertices,
forming the block system

m n
Z CjAXAYK (%, Xj) + z AKX, ¥k) = f(x), 1<i<m,
=1 k=1

3

n
CiAK(Yi,Xj) + > deK(¥iyi) = g(¥i), 1<i<n
1 k=1

The inverse of the coefficient matrix recovers the coeffisien andd from the f andg
data, and the numerical solutionais just a linear combination (14) of those coefficients.
Consequently, the discrete recovery (4) is furnished byirtherse of the above “stiffness”
matrix, premultiplied by the row vector of the kernel value$14).

Of course. one can use a special kerketb calculate the discrete recovery, and then use
another kernel, e.g. one generating a Sobolev space, far@raluation on that space. We
shall do this in the final section, for the methods called H@Bad HONode there, HO
standing for “high order”.

5.3 Unsymmetric Kernel-Based Collocation

In contrast to the previous section, this class of methddsstan additional s&={zy,...,zy}
of usuallyN = m+ n points and works on linear combinations

N
ux) = 3 cK(x,2) (15)
k=1

of basis functions, while still using collocation in the pbsetsX andY from (2). This
method dates back to early papers of Ed Kansa [16, 17] andallas 8ILSQ2 as a variation
of the Meshless Local Petrov—Galerkin method [1,2] of S.Murhand collaborators. The
linear system for the coefficients now is

dAK(Xi,z) = f(x), L<i<m,

M

k=1

n
> dK(¥i,z) = g(yi), 1<i<n,
=

and the inverse of the coefficient matrix (if it exists, sed][for a counterexample), pre-
multiplied by the vector of valueK(x,z) of (15) will yield a row vector for the discrete
recovery formula (4). IN is chosen larger tham+ n to increase stability, a pseudoinverse
of the system coefficient matrix can replace the inverses Was done in the examples of
the final section, for the methods called KansaBary and Kéoda there.

5.4 Meshless Lagrange Methods

Here, asef = {z,...,zy} of trial nodes is chosen, and there ahape functionsy. .., uy
such thatrial functions



can be written “entirely in terms of nodes” [6]. Usually, gshimplies Lagrange conditions
uj(z) = o, and in many cases the shape functions are defined via MowagtISquares.
We do not care here for details, and allow such techniquesrteedn weak or strong form.
The strong case collocates in s¥tandY like above, forming a system

z

Au(xu(z) = f(xj), 1<j<m,

=
Il

1

N

kZ U(yi)u(z) = g(vi), 1<i<n
=1

and the weights of the discrete recoveryzawill be a row of the preudoinverse of the
coefficient matrix of this system.

The weak cases form stiffness matrices and right—hand Elgeim the FEM situation, and
then we get the coefficients of the discrete recovery in timeesaay, involving a special
matrix B caring for the numerical integration.

We have omitted examples for these methods and postponettharfollow—up paper. It
might also include the effect of numerical integration [8]such techniques.

5.5 Generalized Finite—Difference Methods

Here, there are no trial functions, but everything is skpressed in terms of values at nodes
Z={z,...,zy}. In the strong situation, PDE operator values are appraxeichiay formulas

like
N

Au(xj) ~ Zlajku(zk)a (16)
i=
with localized weightsxj, and this can be done with minimal error in a reproducing é&ern
Hilbert space using the logic of section 4. See [9,27] for endetails. The linear system

then is
N

f(xj) = Zlaij(Zk),

I
f(xj) — EDOIij(Zk) = g ajku(z),
i€ igD
if we use a subsdd of Dirichlet nodes like in the FEM case. This is of the form Y a8d we
already know how to derive the recovery formulas in such a.dass interesting to see that
the matrix with coefficientsrjx plays the role of a stiffness matrix here, and it is the place
where sparsity can be implemented to yield local methodk sparse matrices. This was
very successfully done in various application papers of Cl&n, B. Sarler, and G.M. Yao
[23,33,32,34,29]. We shall present a simple numerical gtarn the final section.

The Direct Meshless Local Petrov Galerkin methods of [1PA26 weak cases of this ap-
proach, with other functionals than (16) being directly mpgmated in terms of values at
nodes, and with integrations involvirlg matrices again, like in all other weak methods.
We leave this for a future paper dealing with all variants tifuA's Meshless Local Petrov
Galerkin technique, and comparing them to FEM and kernethatst, optimal or not, sparse
or not.
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5.6 General Methods

If a linear PDE solver of unknown type and unknown source é®@déhand as an executable
program, one can retrieve its hidden recovery formula bfigeftly many runs. In the
context of (4), this needm+ n runs of the black—box algorithm on Kronecker data, i.e.
setting all input data to zero except for one datum set to d,danthis for allm+ n input
data in turn. If the evaluation pointis kept fixed, the results of the runs will yield the values
ri(x), 1< j <mands(x), 1 <k <n. Then the black—box algorithm can be compared error—
wise to others. Though computationally inefficient, thiginogl may be used to test doubtful
solvers provided by dubious sources, even if the code isezdad.

6 Numerical Examples

To avoid overloading this expository paper, we present lgiseries of examples. They all
work on the unit disk for simplicity, and in order to includeife elements, we have to use
triangulations, even if they are not needed for meshleshadst We start with the standard
discretization of the unit disk roughly into 8 triangles rtieg at the origin, followed by
three standard finite—element refinement steps halvingdgese The problem (1) is posed
with L = —A, and Dirichlet boundary values are always provided in thendary vertices,
which are theyy in (2). In all cases, the non—boundary vertices of the tlemgre the
vertices where we want to know the solution, but in the sefig)aand for simplicity we
only evaluate the recovery error at the origis: 0.

As the FEM variations show, one can work withvalues either in barycenters of triangles
or in vertices of the triangulation. We shall evaluate ad@ples in both situations, denoting
the methods by either *Bary or *Node. Details on the unit dicretizations we call CO to
C4 are in Table 1:

n: number of Dirichlet boundary data points fgpralues,

Meary: NUMber of triangles and barycentric data pointsffaalues,

Mnode NUMber of vertices and vertex data points foralues, including the Dirichlet
boundary vertices,

DOF: degrees of freedom number of unknowns- mygge— N,

h: fill distancein the sense of kernel discretizations, describing the makdistance of
an arbitrary point of the domain to one of the vertices.

Case N | Mgary | Myode | DOF h
Co 8 8 9 1| 0.2706
C1 16 32 25 9 | 0.1515

c2 32 128 81 49 | 0.0768
C3 64 512 289 225 | 0.0389
C4 128 | 2048 | 1089 | 961 | 0.0197

Table 1 Discretization data for the examples on the unit disk

The plots in Figures 1 to 5 show the errors of various method®obolev space of order 3
to 7, with order 3 being somewhat out of the theoretical beunéntioned in section 3, and
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the data for the fine discretization C4 being polluted bycitirditioning in various cases. In

each figure, the Sobolev space for error evaluation is fixed tlus also the kernel in that

Sobolev space, called the “evaluation kernel” in what feoBut kernel-based meshless
methods use their own “construction kernels” to impleméaatrtsolution procedure. These
are independent from the “evaluation kernels” tied to thbdbev spaces in which the com-

parison takes place. However, the optimal methods in theesefhsection 4 must use the
evaluation kernel as their construction kernel.

The methods are

FEMBary: piecewise linear FEM witlfi data in barycenters

FEMNode: same FEM with data in nodes

KansaBary: Unsymmetric collocation with data in barycenters, using the order 7
Sobolev kernel at scale 0.5 for construction

KansaNode: same with node data, at scale 1

HOBary: symmetric high-order collocation withdata in barycenters, using the order
7 Sobolev construction kernel at scale 1

HONode: same with data in vertices. These two coincide vhighaptimal methods, if
evaluated on Sobolev space of order 7, see Figure 5, bedarséhe construction and
evaluation kernels coincide

OptBary: optimal method in the Sobolev space used for exauation, withf data in
barycenters

OptNode: same with data in nodes

LocNode: a bandwidth 15 method like in section 5.5, constidiaising the order 7
Sobolev kernel, data in nodes, with scale 1.

There are serious instabilities in the figures that needasgtion. They could have been
avoided in all cases by choosing a smaller kernel scale éoxahstruction kernels, usually at
the expense of a larger error norm. The evaluation kernelsatde scaled without changing
the Sobolev norm, and thus the kernel scale for Sobolev spageevaluation was fixed at
1.0 throughout. This does not seriously affect the errotuateon, because the latter just
consists of a calculation of a quadratic form.

But instability affects the calculation of recovery forraslby kernel methods, including
the optimal ones. In particular, increasing the smoothiéshe construction kernel will
increase the instability, if no precautions like precoiodiing [5, 7] are taken. We chose the
KansaNode and the HO* kernel methods to work with the kerh&labolev space of order
7 at scale 1, and the scale of the kernel for KansaBary to hebO0tSmaller scales would
have been more stable. Users can easily try different keara scales for construction and
then evaluate in a fixed Sobolev space at a fixed scale to se@ abmstruction scale gives
best results.

The numerical results support quantitatively what is kndsem experience and partly sup-
ported by theory. The piecewise linear FEM technique is sdhfp low—regularity prob-
lems, and it shows its second—order convergence in allcgpé Sobolev spaces from order
4 on. Of course, it is somewhat unfair to use only-&ype FEM with linear elements here,
but since thep—FEM is hard to implement, we have to leave comparisons t@HrEM to

a follow—up paper, which should also deal with the MLPG teghe for higherp.

Due to being limited to piecewise linear elements, the FENésrly inferior when eval-
uated in all higher—order Sobolev spaces, but it is surgigiclose to the optimum when
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evaluated irH*. The error—optimal method is symmetric collocation. areldiference to
the FEM must get larger for increasing Sobolev order, bezthesoptimal method increases
its convergence rate automatically with the Sobolev ordkis effect is well-known and
proven in the interpolation case, and a proof for the PDE tsaset necessary, because the
method outperforms ang-FEM technique error—wise. Unfortunately, the optimal noek
suffers from severe ill-conditioning if no precautions taken, and it does not allow spar-
sity. However, it should serve as a standard reference toaeserror performances of all
other methods using the same data.

We now list some observations concerning comparisons. ptienal method HO* for a
fixed high Sobolev order performs well also for lower Sobaeder. It adapts automatically
to lower regularity. Again, this effect is well-known in tapproximation and interpolation
case [24,21]. Other competing methods, like Kansa* for omagtric collocation, behave in
the same way. Our results for the Kansa method can very pisobabmproved by playing
around with other construction kernels and scales, but weeglao stick to Sobolev kernels
at scale 1 as far as possible. If sparsity is enforced by ilnglmeshless collocation [23,
33,32,34,29], one gets a competitive method LocNode thateshsparsity with FEM tech-
niques, but also yields high convergence orders dependirigeobandwidth chosen. Since
the bandwidth limits the attainable order in such cases,camesacrifice order—adaptivity
and use a variable scale for construction, in this casegdifill distanceh. At this point, it
should be noted that meshless methods depend on variousqdara, e.g. the kernel choice,
the scaling, and the point distribution. Follow—up papésutd use the comparison tool of
this paper to investigate the effect of changes in the paemsa much more detail.

We now leave the situation where we compare methods witleot$ptheir error at a single
point. As was mentioned at the end of section 3, one can po¢tfor norm as a function.
Figures 6 and 7 show the error on Sobolev space of order 4ddfEM working on the C2
discretization, and the error evaluated on the C3 disatétiz of Table 1. Such functions
can be used for deciding about refinement, and they provitdg stror bounds rather than
error estimators.

The optimal method on Sobolev spaces can be rungreadyway. If the method is con-
sidered on a fixed data set, one can evaluate the error nornfiloa discrete point set and
select a new data point on the boundary or the interior wHegeetror norm is maximal.
This was started with just one point on the boundary and ttegior, and run up to a total
of 120 data points, with results in Figures 8 and 9 for Soboleler 4. The plot of the error
decrease in Figure 9 as a function of the total nunmbafrdata was done in double logarith-
mic scale, but as a function @fn to show a fixed convergence rate for a 2D problem. This
is a generalization of the method described in [10] to PDE.dahe comparison method
of this paper opens the quest for finding optimal data looatfor PDE solving. While the
above technique works independent of the data and provided discretizations for all
problems in the same setting, there also is a data—depegidaly technique [28] designed
for interpolation. It should be extended to PDE solving bprifcoming paper.

MATLAB programs for generating the examples can be dowrgdgidom the author’s web-
site.
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7 Extension to weak data

One of the referees correctly pointed out that Dirichlethfgans on domains in 2D with
incoming corners do not seem to fit into the framework of trapey, since the regular-
ity of the solution is of order smaller than 3. In particulan the L-shaped domai@ =
(—1/2,1/2) x (-1/2,1,2)\ [0,1/2) x [0,1/2), the solution to a Laplace problem is given
by u(r, @)) = r¥2sin((2¢ — 1) /3) in polar coordinates. This function is clearly continuous
on the boundary of2, the right-hand side of Au= 0 is clearly aC* function, but the so-
lution belongs only tdH5(Q) with s< 1+ 3/2. We use this example as a starting point for
dealing with problems working on weak input data.

The comparison tool of this paper relies on the fact that thmitted solvers work on data
f; that are interpreted af§ = Aj(u) := —Au(x;) with the functionalsA; being continuous
on the Sobolev space used for comparison. This is clearlgatified ifHS(Q) with s <
1+ 3/2 is chosen, and consequently all methods using these &8tdata in this way have
recovery formulas that are unbounded on that space, nomhattethey are obtained by the
linear algebra formulas of the method’s definition, andudatg all linear FEM codes that
work on these data, e.g. via numerical integration. Notettiia is a statement about linear
PDE solver codes based on data (2) and yielding a recovemyufarof the type (4), not a
statement about a single example.

But, on the contrary, it is well-known that the FEM can haridkeexample, and problems of
low regularity in general. This seems to be a contradictiom|t isn’t, and it can be resolved
by looking at what the FEM does in case of low regularity, agcptoperly defining what
the input data are and how the error is measured.

The FEM handles problems of low regularity by going over to eawformulation. The
input data, at least in theory, are not pointwise value$, dfut inner product$f,v;), of f
against (not necessarily piecewise linear or continutest)functions ye H(Q), and they
have the semantidd, vj)2 = (0u, 0V} )2 suppy;), Not the semantics dff, vj)2 = (—Au,vj)2
when played back to the solutian Thus the FEM works with dat& := A;(u) = (f,vj)2
and with functionals\ (u) := (Ou, V)2 supyy,) that are continuous odl(Q). If defined in
that form, the FEM belongs to a class of methods that is diffefrom the one considered so
far in this paper, because it uses different input data agldyidifferent recovery formulas.

We shall now have a closer look at all linear PDE solvers basedieak datad;(u) :=
(Ou, DVj)z,supgv,-) plus boundary data. The theory of this paper in its generah foased

on (9) applies to all cases in a Hilbert space, as long as tiaifunals are continuous. The
above functionals are continuousldh(Q). If the data on the boundary are given pointwise,
this restricts us té1° with s> 1 by the trace theorem in 2D, and this will cover the example.
The kernel orHS in 2D is rS1Ks_1(r), and the optimal method will again be symmetric
collocation using that kernel, now using the new functisnahich in turn depend on pre—
selected test functiong. In particular, the trial functions of the optimal methodlvpartly

be

Wi (y) = AfK(xY) = (O(Ix=YI3 Ks-1(lIx = Yll2)), Bvj)2-

Summarizing, this means that the FEMHt regularity withs > 1 can be treated with the
methods of this paper, but with different data functionals.
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The lowest possible regularity, however, arises when thiel Rbrks in H}(Q) with zero
boundary conditions. Then the FEM calculates values of anoxpmationuto the solution
at the vertices of the triangulation, and these results @tees of continuous functionals on
H&(Q), using recovery formulas that are given by the rows of therise of the stiffness
matrix, like in (13), but just using = A~1f, where now thé vector contains the weak data

Aj(u) = (f,vj)2 = (Ou, DV])Z,SUp[:(Vj) = f,1<j<N.

The calculation of the values ofdt the triangulation vertices thus is a continuous map on
the data. But the valug®(x;) of the true solutioru® at an inner vertex; is undefined for

u* € H3(Q) in 2D. Thus one cannot write down a pointwise error bound,even on the
vertices, though the FEM providég}(Q)—continuous result values there.

All of this is in line with the usual FEM theory. The standagdtig is inH}(Q), and there
the method is optimal because it realizes a Hilbert spageqiar, but it has only, or H!
convergence and consequently no pointwise error bound@iken 2D. For the latter one
has to go tdH® for s> 1.

This discussion shows the peculiarities when dealing waithregularity. Any method must
work on data supplied by continuous functionals, i.e. thia dianctionalsA; must match
the low regularity, forcing to pose weak problems insteadtofng problems. If the data
functionals are continuous, the general theory of thisieeetpplies, but only for evaluation
functionalsd, that are continuous as well.

In a similar way problems can be treated that need highevatems of the solution, e.g.
elasticity problems. If derivative values are to be recedethese derivative evaluations must
be continuous on the Hilbert space used for evaluatiomguut problems with extremely
low regularity.

However, if numerical integration based on pointwise extiin is used for providing val-
uesfj ~ (f,vj)2, we are back to the old situation requiring higher regufasit f than the
minimumH ~* regularity of the standard FEM.

8 Conclusion and Outlook

The paper provides a tool that allows an explicit and fullyjnpoitational assessment of the
error behavior of all linear solvers for all linear PDE pretis based on a finite and fixed
set of input data. The exact solution can be unknown, andrtoe is expressed as a factor
of the unknown Sobolev norm of the true solution. This toabidd be applied in many
more circumstances, e.g. on special and awkward domainsndce general differential
operators including those of Computational Mechanics,fandnany other linear solvers,
e.g. generalized or extended finite elemeptdijnite element techniques, MLPG methods
and boundary—oriented approaches like the DRM [22]. Thigep#s experimental in the
sense that it deals with only a very restricted number of gasso far, but the main result
consists of the general comparison tool based on the cowéeptovery formulas. Any
application—oriented paper can, in principle, apply thishhique and thus provide a strict
pointwise worst—case error bound in terms of the Sobolemraithe true solution. Exam-
ples of single cases with known solutions can never be cdeiplsatisfactory, but they are
the usual practice in application papers, unfortunately.
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The comparison method itself just inserts a given recovemnfila into a quadratic form.

This evaluation needs no linear system to be solved, anddhekatively stable, in particular

if compared to solving PDEs with the optimal method. But iéde a reliable evaluation of
the coefficients of the recovery problem, which is part ofrtrethod to be compared, not of
the comparison technique. Its only source of instabilitthis numerical cancellation in the
guadratic form, if the resulting norm is very small.

The comparison method is not intended to replace a solver opmpete for numerical
effectivity. It only compares existing solvers error-wiaéan expense that is not smaller than
the computational expense of the solvers themselves.dtamtire, the pointwise form of the
error comparison is rather a feature than a bug. Users castamutd pick an evaluation point
or an evaluation functional that can be expected to havega knror that needs control, and
this opens the way to localized error control and adaptivity

Methods based on smooth kernels are adaptive with resptet tegularity of the problem
and they perform well error-wise on small and regular pnoisiebut they need precondi-
tioning [5,7] to enhance stability. They usually do not uparsity unless when working
with compactly supported kernels, but they can be localiaad then they combine sparsity
and order—adaptivity.

The unusual way of writing a PDE solver as a recovery formblaufd be investigated
further, in particular towards using it at different scal@snimic multigrid methods.

Finally, this paper shows that there is a method that alwagbzes the optimal error, but
it needs further work to enhance numerical stabilizatiodd eomputational efficiency. All

other methods should be compared to it error-wise, and it imt@resting research chal-
lenge to see how close one can come to the optimal method spdesity and efficiency
restrictions.
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Errors in Sobolev space of order 7
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Fig. 6 FEM Errors on refined nodes
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Error on refined nodes
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Fig. 8 Greedy optimal method in Sobolev space of order 4. Seleaigdsp error on boundary and error in
the interior
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Maximum efror norm as functon of sqrt(n)
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