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Abstract The paper provides a computational technique that allows tocompare all linear
methods for PDE solving that use the same input data. This is done by writing them as
linear recovery formulas for solution values as linear combinations of the input data, and
these formulas are continuous linear functionals on Sobolev spaces. Calculating the norm of
these functionals on a fixed Sobolev space will then serve as aquality criterion that allows a
fair comparison of all linear methods with the same inputs, including standard, extended or
generalized finite–element methods, finite–difference– and meshless local Petrov–Galerkin
techniques. The error bound is computable and yields a sharpworst–case bound in the form
of a percentage of the Sobolev norm of the true solution. In this sense, the paper replaces
proven error bounds by calculated error bounds. A number of illustrative examples is pro-
vided. As a byproduct, it turns out that a unique error–optimal method exists. It necessarily
outperforms any other competing technique using the same data, e.g. those just mentioned,
and it is necessarily meshless, if solutions are written “entirely in terms of nodes” (Be-
lytschko et. al. 1996 [6]). On closer inspection, it turns out that it coincides withsymmetric
meshless collocationcarried out with the kernel of the Hilbert space used for error evalua-
tion, e.g. with the kernel of the Sobolev space used. This technique is around since at least
1998, but its optimality properties went unnoticed, so far.Examples compare the optimal
method with several others listed above.
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1 Introduction

For simplicity, consider a standard problem

Lu = f in Ω
u = g in Γ := ∂ Ω (1)

with a linear elliptic differential operatorL and Dirichlet boundary values, posed on a do-
mainΩ . It will be clear in section 3 how this generalizes to other linear differential operators
and other boundary conditions that are linear inu. Assume that the amount of available in-
formation is fixed and limited, namely to values

f (x j) in points x j ∈ Ω , 1≤ j ≤ m,
g(yk) in points yk ∈ Γ := ∂ Ω , 1≤ k≤ n.

(2)

Under all methods for solving such problems, we ask for the one with smallest error that
uses this information and not more. To make this more precise, we fix a single pointx∈ Ω
and assume existence of a true solutionu∗ of the problem. Any methodM using the above
information will produce some numerical solution ˜uM , and we want to single out methods
that make the error|u∗(x)− ũM (x)| small for all problems posed that way. We achieve this
by looking at error bounds

|u∗(x)− ũM (x)| ≤CM ‖u∗‖H for all u∗ ∈ H, (3)

where the problems and their solutions are allowed to vary insuch a way that the true
solutions lie in some fixed reproducing kernel Hilbert spaceH of functions onΩ , e.g. a fixed
Sobolev space. Note that the literature on partial differential equations provides theorems
about existence and uniqueness for scales of Sobolev or Hölder spaces, see e.g. [18,15].

In the sense of (3), the constantCM describes the worst–case error behavior of the
methodM on all problems with solutions inH using the same data, and the error is given
as a percentage of‖u∗‖H , which is the only unknown quantity here. We shall show how to
evaluateCM numerically, and this will allow fair comparisons between methods using the
same data. A few examples including important methods like finite elements, gerneralized
finite differences, and meshless collocation in various forms are provided at the end. Note
that this paper does not define a new solver. It compares existing solvers, and it does not
compete for efficiency. The comparison will not be cheaper than the solving.

But one can also ask for a methodM that makesCM minimal over all linear methods
using the same data. This problem is rewritten as one of optimal recovery of functions,
and it is proven that the optimal solution exists uniquely. It can be calculated explicitly,
takes the form of a recovery method in reproducing kernel Hilbert spaces, and is ameshless
method. Since it is optimal in the above sense, it outperforms errorwise any other competing
technique using the same data, may it use finite elements, finite differences, or local Petrov–
Galerkin techniques. Upon closer inspection, it turns out to be nothing new, because it is
a special case ofsymmetric meshless collocation, computed using the kernel that was used
for error assessment. This method relies on Hermite–Birkhoff interpolation in reproducing
kernel Hilbert spaces [31] and its application to PDE solving was first analyzed in [12,13].
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2 Recovery Problems

To keep the presentation simple, we stay with the problem (1). Any linear method that
provides an approximate solution value ˜u(x) for a fixed pointx and uses exclusively the data
(2), must necessarily satisfy a formula of the form

ũ(x) =
m

∑
j=1

r j(x) f (x j)+
n

∑
k=1

sk(x)g(yk), (4)

whatever the weightsr j(x) andsk(x) are. We call this adirect linear recoveryof the value
ũ(x) from the data on the right–hand side. The existence of (4) follows from linearity and the
restriction to the admitted data, but in general it will needsome effort to rewrite a classical
method in this form. We come back to this in section 5 on specific methods.

Clearly, the error in (4) is

u∗(x)− ũ(x) = u∗(x)−
m

∑
j=1

r j(x)Lu∗(x j)−
n

∑
k=1

sk(x)u
∗(yk),

where we now have connected the data functionsf andg back to the true solutionu∗. The
map

εx,r ,s : u∗ 7→ u∗(x)−
m

∑
j=1

r j(x)Lu∗(x j)−
n

∑
k=1

sk(x)u
∗(yk) (5)

is a linear functional inu∗, and if it is bounded on some Hilbert spaceH, we have an error
bound

|u∗(x)− ũ(x)| ≤ ‖εx,r ,s‖H∗‖u∗‖H for all u∗ ∈ H. (6)

If the norm‖εx,r ,s‖H∗ is evaluated, it precisely describes the worst–case error behavior for
all problems with solutions inH, because the inequality is sharp by definition of the norm
of the functional. In other words, one can express the error explicitly in percent of‖u∗‖H ,
and this is what we shall do in the rest of the paper. Note that error bounds of the form (6)
need no special theoretical proof, just the calculation of the actual value of‖εx,r ,s‖H∗ by the
computer. In that sense, finding error bounds of that form is not a matter of proof anymore,
but a matter of explicit computation. The usual theoreticalarguments likeconsistency and
stability imply convergenceare not relevant for this a-posteriori error evaluation, because
the calculated value of the norm‖εx,r ,s‖H∗ precisely describes the actual error behavior, and
it will be large if the design of the PDE solving method behindthe recovery formula has
flaws like instability or bad consistency, in whatever sense.

Furthermore, one can ask for a choicer∗(x) ands∗(x) of the coefficient vectors that make
the norm minimal, and this will later lead to an optimal method for the given reconstruction
problem.

Note that we do not consider the way numerical solutions within the considered methods
are actually calculated. They are usually not obtained via arecovery formula (4), though
the latter is hidden behind the scene. The amount of numerical integration needed for weak
methods, the error committed in integration subroutines, and any multigrid solver techniques
are contained implicitly in the discrete recovery formula,but not appearing explicitly. Dif-
ferent numerical strategies within the same class of methods, e.g. finite element solvers with
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different ways of integration or with different element families will lead to variations of re-
covery formulas that can be compared directly. The only requirement is that the method is
rewritten in direct linear recovery form (4), and then the total error is evaluated, containing
all method–specific internal features of the technique in question.

3 Error Evaluation

Fortunately, it is easy to evaluate such norms in reproducing kernel Hilbert spaces, and
Sobolev spaces are examples. In such spaces, the inner product and the kernelK : Ω → Ω
have the properties

f (x) = ( f ,K(x, ·))H for all f ∈ H, x∈ Ω
K(x,y) = (K(x, ·),K(y, ·))H for all x,y∈ Ω

and for all linear and continuous functionalsλ ,µ ∈ H∗,

(λ ,µ)H∗ = (λ xK(x, ·),µyK(y, ·))H

= λ xµyK(x,y),
(7)

where the upper index at the functionals denotes the variable that is acted upon. Details are
in the literature on kernels, with [30] being a fairly complete reference and [25,26] being
open access compilations for teaching purposes. A good source for MATLAB programs
within kernel methods and their background is [11]. A somewhat more theoretical book is
[8].

Global Sobolev spacesWm
2 (Rd) in d dimensions and for orderm> d/2 in the standard

Fourier transform definition have the radialMatérn reproducing kernel

K(x,y) =
21−m

Γ (m)
‖x−y‖m−d/2

2 Km−d/2(‖x−y‖2), x,y∈ Rd (8)

with the modified Bessel functionKm−d/2 of the second kind. Local Sobolev spacesWm
2 (Ω )

for domainsΩ ⊂ Rd are norm–equivalent to the global spaces, as long as domainsare non–
pathological, i.e. they satisfy a Whitney extension property or a have a piecewise smooth
boundary with a uniform interior cone condition. We shall use the above kernels for evalua-
tion of errors in Sobolev space.

To avoid double sums and to pave the way for generalizations,we shall calculate the error
norms after rewriting (5) in terms of functionals as

εx,c = δx−
N

∑
k=1

ck(x)λk (9)

with

λ j(u) = Lu(x j), 1≤ j ≤ m, andλm+i(u) = u(yi), 1≤ i ≤ n, N = m+n (10)

in our special case. It should be clear that other differential operators and other boundary
conditions will just change the functionals here.
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Then (7) implies that we can calculate the quadratic form

‖εx,c‖2
H∗ = K(x,x)−2

N

∑
i=1

ci(x)λ z
i K(x,z)

+
N

∑
j,i=1

ci(x)c j(x)λ y
i λ z

j K(y,z)
(11)

explicitly, if the kernel is known and the functionals are continuous, in particular on Sobolev
spaces of sufficient regularity. For instance, ifL is a second–order elliptic operator, this poses
the restrictionm−2> d/2 on the Sobolev ordermwe can use. But this is no surprise, since
we focus on methods that usef = Lu∗ pointwise, forcingf to be inWk

2 with k > d/2 and
thusu∗ ∈Wm

2 with m> 2+d/2, by the Sobolev embedding theorem. All methods that use
these data are implicitly making this smoothness assumption, even if their users think that
they are working in in less regular spaces. Plenty of papers and books miss this point. In
particular, the standard FEM method is usually formulated and analyzed in low–regularity
spaces likeH1 or H2, but when it comes to using data like (2), it needsHm with m> 3 in R2

to let the data functionals be continuous. Since this argument seems to ignore that the FEM
can perfectly handle problems stated inH1 or H2, we explain the situation in more detail in
section 7. Our numerical comparison technique works also inthe limit m= 3 for dimension
2, as the examples in section 6 show.

All methods based on the dataλ1(u∗), . . . ,λN(u∗) and brought into the recovery form

ũ(x) =
N

∑
i=1

ci(x)λi(u
∗)

generalizing (2) and (5) can now be plugged into (11) to show how good the reproduction
quality atx is, because (6) generalizes accordingly. Note that there isno linear system to be
solved once the recovery formula is known. But since the formula is inserted into the positive
definite quadratic form (11), a small final value will necessarily contain quite some amount
of numerical cancellation. The computational complexity for norm evaluation isO(N2) for
a total ofN data.

This allows a fair comparison of all such methods using the same data, and we shall provide
examples below. The comparison can be made pointwise, as we saw, but for small prob-
lems one can plot the functionx 7→ ‖εx,c‖2

H∗ to see where a method works badly and needs
more data. This gives direct information for refinement of the discretization, for all kinds of
methods.

4 Optimal Methods

Since (11) is a quadratic form with a positive semidefinite matrix, it can be minimized. The
optimal solution coefficientsc∗i (x) solve the system

N

∑
k=1

c∗k(x)λ
y
j λ z

kK(y,z) = λ z
j K(x,z), 1≤ j ≤ N, (12)
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and the system can be proven to be solvable [31]. Clearly, this choice of coefficients in the
generalized discrete recovery formula (9) will then outperform all other competitors error–
wise. We shall show examples later. The minimal value of (11)then is

‖εx,c∗‖2
H∗ = K(x,x)−

N

∑
i=1

ci(x)
∗λ z

i K(x,z)≥ 0

and does not contain any matrix.

The system (12) reveals the nature of this method. Indeed, the functionsck are necessarily
linear combinations of the functionsλ z

i K(·,z), and application ofλ x
i to the above system

shows the Lagrange propertyλi(ck) = δik, 1 ≤ i,k ≤ N. This means that theck are the
Lagrange basis for general Hermite–Birkhoff interpolation of the given data by the functions
λ z

i K(·,z),,and this is the well–known method ofsymmetric meshless collocationbased on
[31] and analyzed thoroughly in [12,13]. The optimality of the technique in the sense of this
paper should have been known at least since 1997, but it went unnoticed because [25, p.82,
(4.2.2)] was not applied to PDE solving at that time. Note finally that the optimal method
inherits any proof of any convergence rate for any method whatsoever using the same data.

5 Special Methods

We now provide some details on how to evaluate recovery errors for special PDE solution
techniques. This will be useful for the examples in the final section, and we specialize to
L =−∆ here, because generalizations are easy to work out.

5.1 Finite Elements

The simplest possible 2D finite–element code uses piecewiselinear elements on the trian-
gles of a triangulation of a domain with piecewise linear boundary, and requiresf –values
only at the barycenters of the triangles, if numerical integration is performed by the midpoint
rule. These are the pointsx j in (2) in the FEM version that we denote by FEMBary below.
But since usually there are more triangles than vertices, one can also prescribef –values at
all interior and boundary vertices to calculate approximate values at the barycenters. This
usually needs lessf –values at the same order of accuracy, but the data points arecloser to
the evaluation points, which usually are the vertices of thetriangulation that are not carry-
ing Dirichlet data. We call this method FEMNode below. Thesetwo FEM variations have
different recovery formulas (4) and different error functionals (5) to be compared, because
their integration strategy is different.

To get the recovery formulas in the form needed here, users will have to check carefully what
their FEM code does. We used the MATLABpdetool setting, which does the following. It
uses allN triangle verticesz1, . . . ,zN for setting up the standard piecewiese linear test and
trial functionsv1. . . . ,vN with v j(zk) = δ jk and builds theN×N stiffness matrix with entries
(∇vi ,∇v j)L2 in the usual way. The right–hand sides( f ,v j)L2, 1≤ j ≤ N are certain linear
combinations off –values either at triangle barycenters or at vertices of theneighboring
triangles. These linear combinations form a sparseintegration matrixB with entriesb jk
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such that the stiffness system without boundary conditionsbut with some form of numerical
integration is

N

∑
i=1

(∇vi ,∇v j)L2u(zi) =
N

∑
k=1

b jk f (xk), 1≤ j ≤ N.

The FEMBary and FEMNode variations have differentB matrices and usef at different
pointsxk, but the stiffness matrices are the same. The study of errorsinduced by numerical
integration [4] can be studied by using various integrationmatrices, for all methods using a
weak approach to the PDE.

If we single out the setD of indices of the boundary vertices, the unknownsu(zi), i ∈ D ⊂
{1, . . . ,N} are known Dirichlet values, and thus

∑
i /∈D

(∇vi ,∇v j)L2u(zi) =
N

∑
k=1

b jk f (xk)− ∑
i∈D

(∇vi ,∇v j)L2u(zi), j /∈ D

is the system to be actually solved. Since theu(zi) with i ∈ D areg–values, the system has
the matrix–vector form

Au = Bf+Cg (13)

under adequate notation, and each row of

u = A−1Bf+A−1Cg

provides one instance of (4) for each of the pointsx = xi , i /∈ D. If we focus on the origin
as one of these points, as we do later in our examples, we need just one row. Note that the
sparsity of the stiffness matrixA gets lost after the transition to a recovery formula.

If users want the error at a non–nodal pointx, they have to add a piecewise linear inter-
polation on a triangle containingx, and then the discrete reconstruction formula is a linear
combination of three rows of the above system. This illustrates how numerical integration
and interpolatory post–processing both enter explicitly into our version of a complete and
explicit error analysis. We applied this additional linearinterpolation when preparing Fig-
ures 6 and 7, where we needed the error norms for evaluation onmidpoints of edges.

5.2 Symmetric Kernel–Based Collocation

This method works on the two point setsX andY from (2) and uses linear combinations

u(x) =
m

∑
j=1

c j ∆K(x,x j)+
n

∑
k=1

dkK(x,yk) (14)

of basis functions derived from a smooth kernelK. The argument in Section 4 shows that
this yields optimal errors in the Hilbert spaces in which their kernels are reproducing. In
case of Sobolev spaces, we thus get the error–optimal methods in Sobolev spaces this way.
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But, again, the numerical process for solving the PDE is different from a recovery formula
(4). The standard algorithm collocates these trial functions at Dirichlet and PDE vertices,
forming the block system

m

∑
j=1

c j∆x∆yK(xi ,x j)+
n

∑
k=1

dk∆K(xi ,yk) = f (xi), 1≤ i ≤ m,

m

∑
j=1

c j ∆K(yi ,x j)+
n

∑
k=1

dkK(yi ,yk) = g(yi), 1≤ i ≤ n.

The inverse of the coefficient matrix recovers the coefficients c j anddk from the f andg
data, and the numerical solution atx is just a linear combination (14) of those coefficients.
Consequently, the discrete recovery (4) is furnished by theinverse of the above “stiffness”
matrix, premultiplied by the row vector of the kernel valuesin (14).

Of course. one can use a special kernelK to calculate the discrete recovery, and then use
another kernel, e.g. one generating a Sobolev space, for error evaluation on that space. We
shall do this in the final section, for the methods called HOBary and HONode there, HO
standing for “high order”.

5.3 Unsymmetric Kernel–Based Collocation

In contrast to the previous section, this class of methods takes an additional setZ= {z1, . . . ,zN}
of usuallyN = m+n points and works on linear combinations

u(x) =
N

∑
k=1

dkK(x,zk) (15)

of basis functions, while still using collocation in the point setsX andY from (2). This
method dates back to early papers of Ed Kansa [16,17] and was called MLSQ2 as a variation
of the Meshless Local Petrov–Galerkin method [1,2] of S.N. Atluri and collaborators. The
linear system for the coefficients now is

n

∑
k=1

dk∆K(xi ,zk) = f (xi), 1≤ i ≤ m,

n

∑
k=1

dkK(yi,zk) = g(yi), 1≤ i ≤ n,

and the inverse of the coefficient matrix (if it exists, see [14] for a counterexample), pre-
multiplied by the vector of valuesK(x,zk) of (15) will yield a row vector for the discrete
recovery formula (4). IfN is chosen larger thanm+n to increase stability, a pseudoinverse
of the system coefficient matrix can replace the inverse. This was done in the examples of
the final section, for the methods called KansaBary and KansaNode there.

5.4 Meshless Lagrange Methods

Here, a setZ = {z1, . . . ,zN} of trial nodes is chosen, and there areshape functions u1, . . . ,uN

such thattrial functions

u(x) =
N

∑
k=1

uk(x)u(zk)
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can be written “entirely in terms of nodes” [6]. Usually, this implies Lagrange conditions
u j(zk) = δ jk, and in many cases the shape functions are defined via Moving Least Squares.
We do not care here for details, and allow such techniques to come in weak or strong form.
The strong case collocates in setsX andY like above, forming a system

N

∑
k=1

∆uk(x j)u(zk) = f (x j), 1≤ j ≤ m,

N

∑
k=1

uk(yi)u(zk) = g(yi), 1≤ i ≤ n

and the weights of the discrete recovery atzk will be a row of the preudoinverse of the
coefficient matrix of this system.

The weak cases form stiffness matrices and right–hand sideslike in the FEM situation, and
then we get the coefficients of the discrete recovery in the same way, involving a special
matrix B caring for the numerical integration.

We have omitted examples for these methods and postpone themto a follow–up paper. It
might also include the effect of numerical integration [3] on such techniques.

5.5 Generalized Finite–Difference Methods

Here, there are no trial functions, but everything is still expressed in terms of values at nodes
Z = {z1, . . . ,zN}. In the strong situation, PDE operator values are approximated by formulas
like

∆u(x j)≈
N

∑
i=1

α jku(zk), (16)

with localized weightsα jk, and this can be done with minimal error in a reproducing kernel
Hilbert space using the logic of section 4. See [9,27] for more details. The linear system
then is

f (x j) =
N

∑
i=1

α jku(zk),

f (x j)− ∑
i∈D

α jku(zk) = ∑
i /∈D

α jku(zk),

if we use a subsetD of Dirichlet nodes like in the FEM case. This is of the form (13) and we
already know how to derive the recovery formulas in such a case. It is interesting to see that
the matrix with coefficientsα jk plays the role of a stiffness matrix here, and it is the place
where sparsity can be implemented to yield local methods with sparse matrices. This was
very successfully done in various application papers of C.S. Chen, B. Sarler, and G.M. Yao
[23,33,32,34,29]. We shall present a simple numerical example in the final section.

The Direct Meshless Local Petrov Galerkin methods of [19,20] are weak cases of this ap-
proach, with other functionals than (16) being directly approximated in terms of values at
nodes, and with integrations involvingB matrices again, like in all other weak methods.
We leave this for a future paper dealing with all variants of Atluri’s Meshless Local Petrov
Galerkin technique, and comparing them to FEM and kernel methods, optimal or not, sparse
or not.
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5.6 General Methods

If a linear PDE solver of unknown type and unknown source codeis at hand as an executable
program, one can retrieve its hidden recovery formula by sufficiently many runs. In the
context of (4), this needsm+ n runs of the black–box algorithm on Kronecker data, i.e.
setting all input data to zero except for one datum set to 1, and do this for allm+n input
data in turn. If the evaluation pointx is kept fixed, the results of the runs will yield the values
r j(x), 1≤ j ≤mandsk(x), 1≤ k≤ n. Then the black–box algorithm can be compared error–
wise to others. Though computationally inefficient, this method may be used to test doubtful
solvers provided by dubious sources, even if the code is concealed.

6 Numerical Examples

To avoid overloading this expository paper, we present a simple series of examples. They all
work on the unit disk for simplicity, and in order to include finite elements, we have to use
triangulations, even if they are not needed for meshless methods. We start with the standard
discretization of the unit disk roughly into 8 triangles meeting at the origin, followed by
three standard finite–element refinement steps halving the edges. The problem (1) is posed
with L = −∆ , and Dirichlet boundary values are always provided in the boundary vertices,
which are theyk in (2). In all cases, the non–boundary vertices of the triangles are the
vertices where we want to know the solution, but in the sense of (5) and for simplicity we
only evaluate the recovery error at the originx= 0.

As the FEM variations show, one can work withf values either in barycenters of triangles
or in vertices of the triangulation. We shall evaluate all examples in both situations, denoting
the methods by either *Bary or *Node. Details on the unit diskdiscretizations we call C0 to
C4 are in Table 1:

n: number of Dirichlet boundary data points forg values,
mBary: number of triangles and barycentric data points forf values,
mNode: number of vertices and vertex data points forf values, including then Dirichlet
boundary vertices,
DOF: degrees of freedom= number of unknowns= mNode−n,
h: fill distancein the sense of kernel discretizations, describing the maximal distance of
an arbitrary point of the domain to one of the vertices.

Case n mBary mNode DOF h
C0 8 8 9 1 0.2706
C1 16 32 25 9 0.1515
C2 32 128 81 49 0.0768
C3 64 512 289 225 0.0389
C4 128 2048 1089 961 0.0197

Table 1 Discretization data for the examples on the unit disk

The plots in Figures 1 to 5 show the errors of various methods in Sobolev space of order 3
to 7, with order 3 being somewhat out of the theoretical bounds mentioned in section 3, and
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the data for the fine discretization C4 being polluted by ill–conditioning in various cases. In
each figure, the Sobolev space for error evaluation is fixed, and thus also the kernel in that
Sobolev space, called the “evaluation kernel” in what follows. But kernel–based meshless
methods use their own “construction kernels” to implement their solution procedure. These
are independent from the “evaluation kernels” tied to the Sobolev spaces in which the com-
parison takes place. However, the optimal methods in the sense of section 4 must use the
evaluation kernel as their construction kernel.

The methods are

FEMBary: piecewise linear FEM withf data in barycenters
FEMNode: same FEM withf data in nodes
KansaBary: Unsymmetric collocation withf data in barycenters, using the order 7
Sobolev kernel at scale 0.5 for construction
KansaNode: same with node data, at scale 1
HOBary: symmetric high-order collocation withf data in barycenters, using the order
7 Sobolev construction kernel at scale 1
HONode: same with data in vertices. These two coincide with the optimal methods, if
evaluated on Sobolev space of order 7, see Figure 5, because then the construction and
evaluation kernels coincide
OptBary: optimal method in the Sobolev space used for error evaluation, with f data in
barycenters
OptNode: same with data in nodes
LocNode: a bandwidth 15 method like in section 5.5, constructed using the order 7
Sobolev kernel, data in nodes, with scale 1.

There are serious instabilities in the figures that need explanation. They could have been
avoided in all cases by choosing a smaller kernel scale for the construction kernels, usually at
the expense of a larger error norm. The evaluation kernels cannot be scaled without changing
the Sobolev norm, and thus the kernel scale for Sobolev spaceerror evaluation was fixed at
1.0 throughout. This does not seriously affect the error evaluation, because the latter just
consists of a calculation of a quadratic form.

But instability affects the calculation of recovery formulas by kernel methods, including
the optimal ones. In particular, increasing the smoothnessof the construction kernel will
increase the instability, if no precautions like preconditioning [5,7] are taken. We chose the
KansaNode and the HO* kernel methods to work with the kernel of Sobolev space of order
7 at scale 1, and the scale of the kernel for KansaBary to be 0.5, but smaller scales would
have been more stable. Users can easily try different kernels and scales for construction and
then evaluate in a fixed Sobolev space at a fixed scale to see which construction scale gives
best results.

The numerical results support quantitatively what is knownfrom experience and partly sup-
ported by theory. The piecewise linear FEM technique is adapted to low–regularity prob-
lems, and it shows its second–order convergence in all applicable Sobolev spaces from order
4 on. Of course, it is somewhat unfair to use only ah–type FEM with linear elements here,
but since thep–FEM is hard to implement, we have to leave comparisons to thep–FEM to
a follow–up paper, which should also deal with the MLPG technique for higherp.

Due to being limited to piecewise linear elements, the FEM isclearly inferior when eval-
uated in all higher–order Sobolev spaces, but it is surprisingly close to the optimum when
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evaluated inH4. The error–optimal method is symmetric collocation. and the difference to
the FEM must get larger for increasing Sobolev order, because the optimal method increases
its convergence rate automatically with the Sobolev order.This effect is well–known and
proven in the interpolation case, and a proof for the PDE caseis not necessary, because the
method outperforms anyp-FEM technique error–wise. Unfortunately, the optimal method
suffers from severe ill–conditioning if no precautions aretaken, and it does not allow spar-
sity. However, it should serve as a standard reference to evaluate error performances of all
other methods using the same data.

We now list some observations concerning comparisons. The optimal method HO* for a
fixed high Sobolev order performs well also for lower Sobolevorder. It adapts automatically
to lower regularity. Again, this effect is well–known in theapproximation and interpolation
case [24,21]. Other competing methods, like Kansa* for unsymmetric collocation, behave in
the same way. Our results for the Kansa method can very probably be improved by playing
around with other construction kernels and scales, but we wanted to stick to Sobolev kernels
at scale 1 as far as possible. If sparsity is enforced by localizing meshless collocation [23,
33,32,34,29], one gets a competitive method LocNode that shares sparsity with FEM tech-
niques, but also yields high convergence orders depending on the bandwidth chosen. Since
the bandwidth limits the attainable order in such cases, onecan sacrifice order–adaptivity
and use a variable scale for construction, in this case 10h for fill distanceh. At this point, it
should be noted that meshless methods depend on various parameters, e.g. the kernel choice,
the scaling, and the point distribution. Follow–up papers should use the comparison tool of
this paper to investigate the effect of changes in the parameters in much more detail.

We now leave the situation where we compare methods with respect to their error at a single
point. As was mentioned at the end of section 3, one can plot the error norm as a function.
Figures 6 and 7 show the error on Sobolev space of order 4 for the FEM working on the C2
discretization, and the error evaluated on the C3 discretization of Table 1. Such functions
can be used for deciding about refinement, and they provide strict error bounds rather than
error estimators.

The optimal method on Sobolev spaces can be run in agreedyway. If the method is con-
sidered on a fixed data set, one can evaluate the error norm on afine discrete point set and
select a new data point on the boundary or the interior where the error norm is maximal.
This was started with just one point on the boundary and the interior, and run up to a total
of 120 data points, with results in Figures 8 and 9 for Sobolevorder 4. The plot of the error
decrease in Figure 9 as a function of the total numbern of data was done in double logarith-
mic scale, but as a function of

√
n to show a fixed convergence rate for a 2D problem. This

is a generalization of the method described in [10] to PDE data. The comparison method
of this paper opens the quest for finding optimal data locations for PDE solving. While the
above technique works independent of the data and provides good discretizations for all
problems in the same setting, there also is a data–dependentgreedy technique [28] designed
for interpolation. It should be extended to PDE solving by a forthcoming paper.

MATLAB programs for generating the examples can be downloaded from the author’s web-
site.
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7 Extension to weak data

One of the referees correctly pointed out that Dirichlet problems on domains in 2D with
incoming corners do not seem to fit into the framework of this paper, since the regular-
ity of the solution is of order smaller than 3. In particular,on the L-shaped domainΩ =
(−1/2,1/2)× (−1/2,1,2) \ [0,1/2)× [0,1/2), the solution to a Laplace problem is given
by u(r,φ)) = r3/2sin((2φ −π)/3) in polar coordinates. This function is clearly continuous
on the boundary ofΩ , the right-hand side of−∆u= 0 is clearly aC∞ function, but the so-
lution belongs only toHs(Ω ) with s< 1+3/2. We use this example as a starting point for
dealing with problems working on weak input data.

The comparison tool of this paper relies on the fact that the admitted solvers work on data
f j that are interpreted asf j = λ j(u) := −∆u(x j) with the functionalsλ j being continuous
on the Sobolev space used for comparison. This is clearly notsatisfied ifHs(Ω ) with s<
1+3/2 is chosen, and consequently all methods using these “strong” data in this way have
recovery formulas that are unbounded on that space, no matter how they are obtained by the
linear algebra formulas of the method’s definition, and including all linear FEM codes that
work on these data, e.g. via numerical integration. Note that this is a statement about linear
PDE solver codes based on data (2) and yielding a recovery formula of the type (4), not a
statement about a single example.

But, on the contrary, it is well–known that the FEM can handlethe example, and problems of
low regularity in general. This seems to be a contradiction,but it isn’t, and it can be resolved
by looking at what the FEM does in case of low regularity, and by properly defining what
the input data are and how the error is measured.

The FEM handles problems of low regularity by going over to a weak formulation. The
input data, at least in theory, are not pointwise values off , but inner products( f ,v j)2 of f
against (not necessarily piecewise linear or continuous)test functions vj ∈ H1(Ω ), and they
have the semantics( f ,v j)2 = (∇u,∇v j)2,supp(v j ), not the semantics of( f ,v j)2 = (−∆u,v j)2

when played back to the solutionu. Thus the FEM works with dataf j := λ j(u) = ( f ,v j)2

and with functionalsλ j(u) :=(∇u,∇v j)2,supp(v j ) that are continuous onH1(Ω ). If defined in
that form, the FEM belongs to a class of methods that is different from the one considered so
far in this paper, because it uses different input data and yields different recovery formulas.

We shall now have a closer look at all linear PDE solvers basedon weak dataλ j(u) :=
(∇u,∇v j)2,supp(v j ) plus boundary data. The theory of this paper in its general form based
on (9) applies to all cases in a Hilbert space, as long as the functionals are continuous. The
above functionals are continuous onH1(Ω ). If the data on the boundary are given pointwise,
this restricts us toHs with s> 1 by the trace theorem in 2D, and this will cover the example.
The kernel onHs in 2D is rs−1Ks−1(r), and the optimal method will again be symmetric
collocation using that kernel, now using the new functionals which in turn depend on pre–
selected test functionsv j . In particular, the trial functions of the optimal method will partly
be

w j(y) = λ x
j K(x,y) = (∇x(‖x−y‖s−1

2 Ks−1(‖x−y‖2)),∇v j)2.

Summarizing, this means that the FEM atHs regularity withs> 1 can be treated with the
methods of this paper, but with different data functionals.
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The lowest possible regularity, however, arises when the FEM works in H1
0(Ω ) with zero

boundary conditions. Then the FEM calculates values of an approximationũ to the solution
at the vertices of the triangulation, and these results are values of continuous functionals on
H1

0(Ω ), using recovery formulas that are given by the rows of the inverse of the stiffness
matrix, like in (13), but just usingu = A−1f, where now thef vector contains the weak data

λ j(u) = ( f ,v j)2 = (∇u,∇v j)2,supp(v j ) =: f j , 1≤ j ≤ N.

The calculation of the values of ˜u at the triangulation vertices thus is a continuous map on
the data. But the valueu∗(x j) of the true solutionu∗ at an inner vertexx j is undefined for
u∗ ∈ H1

0(Ω ) in 2D. Thus one cannot write down a pointwise error bound, noteven on the
vertices, though the FEM providesH1

0(Ω )–continuous result values there.

All of this is in line with the usual FEM theory. The standard setting is inH1
0(Ω ), and there

the method is optimal because it realizes a Hilbert space projector, but it has onlyL2 or H1

convergence and consequently no pointwise error bound like(6) in 2D. For the latter one
has to go toHs for s> 1.

This discussion shows the peculiarities when dealing with low regularity. Any method must
work on data supplied by continuous functionals, i.e. the data functionalsλ j must match
the low regularity, forcing to pose weak problems instead ofstrong problems. If the data
functionals are continuous, the general theory of this section applies, but only for evaluation
functionalsδx that are continuous as well.

In a similar way problems can be treated that need higher derivatives of the solution, e.g.
elasticity problems. If derivative values are to be recovered, these derivative evaluations must
be continuous on the Hilbert space used for evaluation, ruling out problems with extremely
low regularity.

However, if numerical integration based on pointwise evaluation is used for providing val-
ues f j ≈ ( f ,v j)2, we are back to the old situation requiring higher regularity of f than the
minimumH−1 regularity of the standard FEM.

8 Conclusion and Outlook

The paper provides a tool that allows an explicit and fully computational assessment of the
error behavior of all linear solvers for all linear PDE problems based on a finite and fixed
set of input data. The exact solution can be unknown, and the error is expressed as a factor
of the unknown Sobolev norm of the true solution. This tool should be applied in many
more circumstances, e.g. on special and awkward domains, for more general differential
operators including those of Computational Mechanics, andfor many other linear solvers,
e.g. generalized or extended finite elements,p–finite element techniques, MLPG methods
and boundary–oriented approaches like the DRM [22]. This paper is experimental in the
sense that it deals with only a very restricted number of examples so far, but the main result
consists of the general comparison tool based on the conceptof recovery formulas. Any
application–oriented paper can, in principle, apply this technique and thus provide a strict
pointwise worst–case error bound in terms of the Sobolev norm of the true solution. Exam-
ples of single cases with known solutions can never be completely satisfactory, but they are
the usual practice in application papers, unfortunately.
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The comparison method itself just inserts a given recovery formula into a quadratic form.
This evaluation needs no linear system to be solved, and thusis relatively stable, in particular
if compared to solving PDEs with the optimal method. But it needs a reliable evaluation of
the coefficients of the recovery problem, which is part of themethod to be compared, not of
the comparison technique. Its only source of instability isthe numerical cancellation in the
quadratic form, if the resulting norm is very small.

The comparison method is not intended to replace a solver or to compete for numerical
effectivity. It only compares existing solvers error-wise, at an expense that is not smaller than
the computational expense of the solvers themselves. Furthermore, the pointwise form of the
error comparison is rather a feature than a bug. Users can andshould pick an evaluation point
or an evaluation functional that can be expected to have a large error that needs control, and
this opens the way to localized error control and adaptivity.

Methods based on smooth kernels are adaptive with respect tothe regularity of the problem
and they perform well error–wise on small and regular problems, but they need precondi-
tioning [5,7] to enhance stability. They usually do not use sparsity unless when working
with compactly supported kernels, but they can be localized, and then they combine sparsity
and order–adaptivity.

The unusual way of writing a PDE solver as a recovery formula should be investigated
further, in particular towards using it at different scalesto mimic multigrid methods.

Finally, this paper shows that there is a method that always realizes the optimal error, but
it needs further work to enhance numerical stabilization and computational efficiency. All
other methods should be compared to it error–wise, and it is an interesting research chal-
lenge to see how close one can come to the optimal method undersparsity and efficiency
restrictions.
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