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; (1.1)where 
 is a domain in IRd and L is a linear operator, acting on complex valuedfunctions on 
. The function f is given (\data") and each equation should havea nonempty space of solutions. 1



2 1. Introduction1.1 Collocation Method for Single EquationsCollocation is a well-known method to approximate the solution of equationsof the form (1.1). The idea is to approximate the requested solution u by afunction su = nXj=1�j �j 2 span f�jgj=1;:::;n ; (1.1.1)where the �j : 
 ! C are certain linearly independent basis functions. Theconnection between u and su shall be the pointwise equality(Lsu)(x) = (Lu)(x) = f(x) for all x 2 X
or in short form (Lsu)(X
) = f(X
) (1.1.2)on a �nite, ordered set X
�
 of centers. Since X
 is ordered, f(X
) is avector.The set (1.1.2) of generalized interpolation conditions leads to the linearinterpolation system� (L�j)(x) �x2X
; j=1;:::;n � � = f(X
) ; (1.1.3)using (1.1.1) for collocation. Now there are two main questions:� Does the inverse of the interpolation matrix � (L�j)(x) �x2X
; j=1;:::;n ex-ist?� Are there any upper bounds for jjsu � ujj or jjLsu � Lujj ?Both questions will be answered here, with focus on the last one.1.2 Extension to Systems of Linear EquationsJust a few modi�cations are necessary to treat a system of linear equations bycollocation. Let L� be a linear operator, acting on complex valued functionsde�ned on 
� . Let N[�=1
� = 
 (1.2.1)be a decomposition of the closure 
 of 
. Overlap is permitted. We supposethe system L�u = f� on 
� ; � = 1; : : : ;N (1.2.2)



1.2. Extension to Systems of Linear Equations 3to have a solution for the given set ff�g of data functions. We shall see thatthere is no essential di�erence between problems with N = 2 or N > 2. Atypical example of the �rst case is the boundary value problemLu = f
 on 
1 := 
B u = f@
 on 
2 := @
 : (1.2.3)We mainly focus on systems of this form, comprising several operators of di�er-ent type. In general, we do not need to restrict the types of operators involved;in particular we are not con�ned to elliptic boundary value problems.Let X
 denote the collection of all ordered sets X
� , for � = 1; : : : ;N. Wesubsequently can allow a point x to appear in several of the X
� , such thatdi�erent collocation conditions L�u(x) = f�(x) can be imposed at a single point.Now the interpolation system (1.1.3) takes the form of the N simultaneousequation systems( (L��j)(X
� ) )j=1;:::;n � � = f�(X
� ) for � = 1; : : : ;N : (1.2.4)Several ideas exist to choose the basis functions �j , j = 1; : : : ; n dependingon X
 and the operators L� , � = 1; : : : ;N. The theory of interpolation byradial basis functions has good reasons to let every �j depend on a centerxj 2 X
. Kansa had numerical success using no dependence on the L� andusing multiquadrics for �j (cf. [11]). But since the resulting matrix is notsymmetric, no one has been able to prove its nonsingularity so far. Severalauthors (cf. [8, 19] and [4]) suggest the following method, which lets the basisfunctions also depend on the operators. It yields a symmetric interpolationmatrix at the expense of a second application of the linear operators to thebasis functions. This method will be used here.Let �(x; y) be a feasible basis function (see the precise de�nition in sec-tion 2). Then we de�ne the set of basis functions via�j(x) := �yxj � L�y�(x; y) for xj 2 X
� ; � = 1; : : : ;N :For a �xed x, �x denotes the linear functional mapping a function f to f(x).For a given map T , the complex conjugate map T is de�ned by T (f) := T (f),and the superscript y of T y denotes the application of T to �(x; y) with respectto the variable y.To simplify the notation, and to connect the theory with Hermite-Birkho�interpolation, we de�ne the functionals�j := �xj �L� for xj 2 X
� ; � = 1; : : : ;N ;



4 2. Error Analysis and Native Spacesand denote the ordered set of all of these by� := ��X
� � L���=1;:::;N : (1.2.5)Next we de�ne the vector on the right hand side of the interpolation sys-tem (1.2.4) to be z := ( f�(X
� ) )�=1;:::;N. Now this system takes the simpleform �x�y�(x; y) � � = z : (1.2.6)Since � is semisymmetric, the interpolation matrix �x�y�(x; y) is Hermitian.In [19], Theorem 3.1, it is shown to be positive de�nite under reasonable con-ditions, and then it is invertible. We will reuse parts of the proof of the above-mentioned theorem in an extended context. To express the dependence of theapproximating function su on � and �, we subsequently denote it by su;�;�. Ittakes the form su;�;�(x) = NX�=1 Xxj2X
� ��xj � L��y �(x; y)�jor short su;�;�(x) = �y�(x; y) � � : (1.2.7)Here, �y�(x; y) is regarded as a 1� n matrix of functions in x.2 Error Analysis and Native SpacesLet L be a linear space of complex valued functionals, being de�ned for functionson 
. For exampleL := span � f �x � L gx2
 [ f �x �B gx2@
 �is useful in the case of the boundary value problem (1.2.3).De�nition 2.1 (Feasible Basis Functions and Native Spaces) A feasible basisfunction with respect to L is a function � : 
� 
! C, being� semisymmetric: �(x; y) = �(y; x) for all x; y 2 
� positive de�nite: for every �nite, nonempty, linearly independent orderedset ��L, � 6= 0, the matrix �x�y�(x; y) is positive de�nite and� su�ciently smooth to apply two functionals �; � of L to each variable andto let the functionals commute: �x�y �(x; y) = �y�x�(x; y).



5For any feasible basis function �, the termh� jj�iF�� := �x �y �(x; y) (2.1)de�nes a scalar product on the dual native spaceF�� := n � : h� jj�iF�� <1 o with L�F�� : (2.2)Subsequently it is assumed to be a Hilbert space. The dual F��� of F�� is iden-ti�ed with the native spaceF� := n f : jjf jjF� <1 o (2.3)of (generalized) functions f which allow to be evaluated by all � 2 F��. Thenorm is de�ned by jjf jjF� := sup�2F��;�6=0 j�(f)jjj�jjF�� : (2.4)Since F�� is a Hilbert space, so is F�.Remark 2.2 The term �x�y�(x; y) in equation (2.1) de�nes a scalar product,since it is sesquilinear and � is assumed to be positive de�nite. Methods forproving the positive de�niteness and examples are given in section 3.Remark 2.3 We assumed F�� to be a Hilbert space, i.e. it has to be complete.The construction of the maximal dual native space to a given class L of func-tionals and a basis function having a Fourier transform is described in [10]. Inaddition, conditionally positive de�nite basis functions are allowed there.Remark 2.4 The approximating function su;�;� is an element of F�, since wehave �(su;�;�) = h� jj� � �iF�� for every � 2 F��.Theorem 2.5 Let � be a feasible basis function, ��F�� be linearly indepen-dent and u 2 F�. Let su;�;� 2 span �y�(�; y) be the reconstruction of u, i.e.�(su;�;�) = �(u). Then the boundj�(u)� �(su;�;�)j � P�;�(�) � jju � su;�;�jjF� (2.5)for the reconstruction error j�(u)� �(su;�;�)j holds for every � 2 F��, whereP�;�(�) := inf�2span � jj�� �jjF�� (2.6)is called the power function of �. Optimization theory yieldsjju � su;�;�jjF� = infs2span �y�(�;y) jju� sjjF� ; (2.7)cf. [20], Theorem 1 and [13], Theorem 4.1.



6 2. Error Analysis and Native SpacesProof. Since we have �(su;�;�) = �(u), we know � (u� su;�;�) = 0 for all� 2 span �. Therefore we can estimatej�(u)� �(su;�;�)j = j(�� �)(u� su;�;�)j � jj�� �jjF�� � jju� su;�;�jjF� :The equations (2.5){(2.7) show how the inuences of a test functional �and of the function u on the error are separable. This separation results in twoapproximation errors: The power function is the error of approximation of � inspan �, while the second factor is the error concerning u and span �y�(�; y).This factor is independent of �.To adapt the previous theorem to systems of linear equations, we needsome information about the behaviour of the power function concerning orderedsubsets �0 of �, which contain functionals of the same type.Theorem 2.6 (Splitting Theorem) The inclusion �0���F�� impliesP�;�(�) � P�;�0(�) for all � 2 F��and jju � su;�;�jjF� � ����u� su;�0 ;�����F� for all u 2 F� :Proof. �0�� implies span �0� span �. Therefore we �ndinf�2span �0 jj�� �jjF�� � inf�2span � jj�� �jjF��for the in�ma. The second assertion is proved analogously, using equation (2.7).The Splitting Theorem allows us to focus our attention on just one 
�(denoted by 
 to save subscripts), its centers X := X
� and its operator L :=L� , as they are given in section 1.2.Theorem 2.7 (Transformation Theorem) Let �(x; y) be a feasible basis func-tion. Let the linear functionals (�z � L)x and �y applied to Ly�(x; y) commutefor all z 2 
 and � 2 F��. If	L(x; y) := (�x � L)u (�y �L)v �(u; v) (2.8)is also a feasible basis function, and F�	L, F	L and P	L;� are de�ned for itaccording to de�nition 2.1 and equation (2.6), thenjj�jjF�	L = jj� � LjjF�� (2.9)



7for all � 2 F�	L. The equationP	L ;�(�) = P�;��L(� � L) (2.10)holds for every �nite ��F�	L and � 2 F�	L .If the operator L : F� ! F� has a norm jjLjj� < 1, and if all involvedfunctionals � and � are in F�� \ F�	L, thenP�;��L(� � L) � P�;�(�) � jjLjj� : (2.11)But note that in general, di�erential operators will not map the native space F�into itself.Proof. Since �y and (�x �L)u commute, the equations (2.8) and (2.1) yield forall �; � 2 F�	L h� jj�iF�	L = �x �y (�x � L)u (�y �L)v �(u; v)= (� � L)u (� � L)v �(u; v)= h� � L jj� � LiF�� :Equation (2.9) follows immediately. Moreover, we see (���) �L 2 F�� for � 2F�	L and � 2 span �. Therefore P	L;�(�) is well-de�ned. Using equation (2.6),we calculateP	L;�(�) = inf�2span � jj�� �jjF�	L= inf�2span � jj� �L� � � LjjF��= inf�2span ��L jj� � L� �jjF�� = P�;��L(� � L) :Inequality (2.11) is proved byP�;��L(� � L) = inf�2span � jj� � L� � � LjjF��� inf�2span � jj�� �jjF�� � jjLjj� :



8 2. Error Analysis and Native SpacesIn the important example (1.2.3), using � = �x and � = �X , the bene�t ofthis theorem is to reduce the unknown power function P�;�X�L(�x�L) accordingto the basis function � to the classical power function P	L;�X(�x) of 	L.Now we compare two di�erent approximations. First, there is the one wehave been dealing with, namely:su;�X�L;�(x) = Ly�(x;X) � � satisfying Lsu;�X�L;�(X) = Lu(X)is a recovery of u from its data �X � Lu. Here, � is given viaLxLy�(X;X) � � = Lu(X) :But on the other hand, we have the reconstruction of Lu with respect to 	L bysLu;�X ;	L(x) = 	L(x;X) � �0 satisfying sLu;�X ;	L(X) = Lu(X) :The corresponding interpolation system is	L(X;X) � �0 = Lu(X) :Using the de�nition (2.8) of 	L, we �nd �0 = �, and therefore we get thefollowing theorem:Theorem 2.8 The identityL su;�X�L;� = sLu;�X ;	L (2.12)holds for any u which allows the operation L.To demonstrate the use of the theorems of this section, we give a typicalapplication. Regard � and � as given. The ordered subsets �� of � shouldhave the form of (1.2.5), i.e. �� = �X� � L� with X� := X
� �
� �nite. Thenfrom Theorem 2.5 and the Splitting Theorem 2.6, we get the error boundj� (u� su;�;�)j � P�;�(�) � jju� su;�;�jjF�� min�=1;:::;NP�;�� (�) � min�=1;:::;N jju� su;�� ;�jjF� (2.13)for any � 2 F��. Taking � := �x�L� as test functionals at x 2 
� , we can use theTransformation Theorem 2.7 to treat the �rst factor: P�;�� (�) = P	L� ;�X� (�x).Using equation (2.11), they can also be bounded by P�;�X� (�x) � jjL� jj�, which isa multiple of the classical power function. We use the Primal TransformationTheorem 3.5 below and Theorem 2.8 to rewrite the last factor of equation (2.13)in the form������u� su;�X� �L� ;�������F� = ������L�u� L�su;�X� �L� ;�������F	L = ������L�u � sL�u;�X� ;	L������F	L :The right hand side is the classical approximation error of L�u in F	L .



93 Applications of Fourier TransformsSubsequently, we assume the basis function � not only to be feasible, but to betranslation invariant, i.e.�(x; y) = �(x� z; y � z) for all x; y 2 
 and z 2 IRd :This condition is equivalent to the existence of a function �0 with�(x; y) = �0(x� y) for all x; y 2 
 : (3.1)Moreover, we assume �0 to be the inverse Fourier transform of some ':�0(x) = FT�1(')(x) := (2�)�d ZIRd '(!) ei!trx d! : (3.2)Under certain circumstances one has to resort to the generalized distributionalFourier transform, but we omit these technical details here. Further we willassume that ' is nonnegative and positive almost everywhere. This ensures �to be positive de�nite with respect to �x-functionals, cf. [2]. To take advantageof the representation of � by (3.1) and (3.2), we have to restrict the dual nativespace F�� to functionals commuting with the Fourier transform. That means,we assumeF�� � � � : �x�Z �(!) ei!trx d!� = Z �(!) sym�(!) d! � (3.3)for � = ' and � = ' � sym�, � 2 F�� arbitrary, wheresym�(!) := �x �ei !trx� (3.4)is called the symbol function of the functional �. It may even be a generalizedfunction, de�ned by the equality in (3.3). In addition, we require any functionf in F� to have a representation via the inverse Fourier transform:For any f 2 F� there is a function bf such that f = FT�1 � bf � : (3.5)Where necessary, we assume bf = FT(f) that is: the Fourier transform is bijec-tive on F�. Apparently this is a lot of assumptions, but we know several kindsof feasible basis functions which allow our construction.Remark 3.1 It is also common to de�ne the symbol function by �! �e�i !trx�,using the negative sign in the exponent. If � is a regular distribution, i.e. a



10 3. Applications of Fourier Transformsfunctional of the form �l(g) = R l(!) g(!) d! with a representing function l,the so de�ned symbol function coincides with the representer of the Fouriertransform FT(�l)(f) := �l(FT(f)) = Z f(x)�!l �e�i !trx� dxof �l by the use of Fubini's Theorem. Therefore, this de�nition of the symbolfunction justi�es to denote it by b�. But we will not use this notation, becauseit requires � to be regular or to use generalized Fourier transforms.Assuming (3.3), we calculate the scalar producth� jj�iF�� = �x�y (2�)�d ZIRd '(!) ei!tr(x�y) d!= (2�)�d ZIRd '(!)�xei !trx �yei !try d!= (2�)�d ZIRd '(!) sym�(!) sym�(!)d! ; (3.6)and �nd jj�jj2F�� = (2�)�d ZIRd '(!) jsym�(!)j2 d! : (3.7)To prove the feasibility of a given � (in particular the positive de�niteness,which has been stated in de�nition 2.1), it su�ces to show that the integrand'(!) jsym�(!)j2 is nonnegative and positive almost everywhere (cf. a classicalresult from [2]).Theorem 3.2� The equations (3.3) and (3.5) yield�(f) = (2�)�d ZIRd bf(!) � sym�(!) d! (3.8)for all � 2 F�� and f 2 F�.� If the linear operator L is translation invariant, i.e.Lx( f(x� z) ) = (Lf)(x� z) (3.9)for all z 2 IRd and f in the domain of L, we havesym�x�L(!) = sym�0�L(!) � ei !trx for all x; ! 2 IRd : (3.10)



11Proof. Only equation (3.10) requires a proof:sym�x0+z�L(!) = �Lx �ei !trx�� (x0 + z)= �Lx �ei !tr(x+z)�� (x0) using (3.9)= �Lx �ei !trx � ei !trz�� (x0) = �Lx �ei !trx�� (x0) � ei !trz= sym�x0�L(!) � ei !trz :Now we substitute x0 by 0 and z by x.We now want to represent native space norms via Fourier Transforms.Lemma 3.3 Let F�� and F� satisfy the equations (3.3) and (3.5), respectively.Then for every f 2 F�, the equationbf (!) = '(!) � sym�f (!)is valid, where �f 2 F�� is the Riesz representer of the function f .Proof. Due to the Theorem of Riesz, for any given f 2 F�, there is a unique�f 2 F�� satisfying �(f) = h� jj�f iF�� for all � 2 F�� : Using the equations (3.6)and (3.8), we �nd� �FT�1 � bf �� = �(f) = h� jj�f iF��= (2�)�d ZIRd '(!) sym�(!) sym�f (!)d!= � �FT�1 �' sym�f��for every � 2 F��. Thus FT�1 � bf � = FT�1 �' sym�f�.Theorem 3.4 Let � be a feasible basis function which has a representationvia the equations (3.1) and (3.2). Let F�� and F� satisfy the equations (3.3)and (3.5), respectively. Then the equationhf jj g iF� = (2�)�d ZIRd bf(!) bg(!)= '(!) d! (3.11)holds for every f; g 2 F�. Recall that ' can only vanish on a set of measure 0.



12 3. Applications of Fourier TransformsEquation (3.11) is the analog of equation (3.6) for the scalar product in F�.More about this representation is found in [20], section 4.Proof. Due to Lemma 3.3, we know sym�f (!) = bf (!)='(!) almost every-where for any given function f , where �f 2 F�� is the Riesz representer of f .We use its property h�g jj�f iF�� = hf jj g iF� and equation (3.6) to calculatehf jj g iF� = h�g jj�f iF�� = (2�)�d ZIRd sym�g(!) sym�f (!) � '(!) d!= (2�)�d ZIRd bg(!) bf(!)='(!) d! :As we saw above, the symbol function is an essential tool for proving pos-itive de�niteness of the basis functions � and 	L. Moreover, we will use it toestablish a connection between the norms of their native spaces F� and F	Land between their power functions, respectively. For this reason, we assumethe operator L to be translation invariant. Since � is translation invariant, sois 	L, and a function 	L;0 with 	L(x; y) = 	L;0(x � y) exists. If in additionthere is a function  L with 	L;0 = FT�1( L), we �nd with equation (3.3) foralmost every x; y in IRdZ  L(!) � ei !tr(x�y) d! = Z '(!) � Lx �ei !trx� � Ly �ei !try�d! ;where Lx �ei !trx� := �zxLz �ei !trz� = sym�x�L(!)denotes the symbol function for functionals of the form � = �x �L with a linearoperator L. Using equation (3.10), we calculateLx �ei !trx� � Ly �ei !try� = ��sym�0�L(!)��2 ei !tr(x�y) :Therefore, the functions  L and ' are connected by L(!) = '(!) � ��sym�0�L(!)��2 for a. e. ! 2 IRd : (3.12)If ��sym�0�L(!)��2 is positive almost everywhere like ', so is  L. Then 	L ispositive de�nite, and it is a feasible basis function. The following theorem isthe analog of the Transformation Theorem 2.7.



13Theorem 3.5 (Primal Transformation Theorem) Let L be translation invari-ant and let it commute with the Fourier transform integral for f 2 F�. Let �and 	L be feasible basis functions. Let F�� and F� satisfy the equations (3.3)and (3.5), respectively. Then the connection between jj�jjF	L and jj�jjF� isjjf jjF� = jjLf jjF	L for all f 2 F� : (3.13)This equation is the dual of equation (2.9). For � = �X �L we get the equationinfs2span �y�(�;y) jju� sjjF� = infs2span �yX	L(�;y) jj(Lu)� sjjF	L : (3.14)The right hand term is the `classical' approximation error of Lu. If F��F	Land L : F	L ! F	L is bounded by jjLjj	L <1, we �nd moreoverinfs2span �y�(�;y) jju� sjjF� � infs2span �y�(�;y) jju � sjjF	L � jjLjj	L : (3.15)Proof. With the equations (3.8) and (3.10), we calculate for f 2 F�:L(f)(x) = (2�)�d ZIRd bf(!) � sym�0�L(!) � ei !trx d!= FT�1 � bf � sym�0�L� (x) :The equations (3.11) and (3.12) yieldjjf jj2F� = (2�)�d ZIRd ��� bf(!)���2 = '(!) d!= (2�)�d ZIRd ��� bf(!) � sym�0�L(!)���2 =  L(!) d!= ������FT�1 � bf � sym�0�L�������2F	L :The combination of these results prove (3.13). To prove the second assertion,we use (3.13) to calculateinfs2span �y�(�;y) jju� sjjF� = infs2span �y�(�;y) jjLu� LsjjF	L= infs02span L��y�(�;y) ����Lu� s0����F	L= infs2span �yX	L(�;y) jjLu� sjjF	L :The last assertion follows from the �rst line of this equation.



14 4. Application to Mixed Linear ProblemsWe give two simple, but typical examples for translation invariant linearoperators L:Example 3.6 Let L := p(D) be a partial di�erential operator with constantcoe�cients, i.e. p is a polynomial on i � IRd and D := (@=@xj)j=1;:::;d. Then we�nd 	L(x; y) = p(D)x p(D)y�(x; y)and sym�x�L(!) = p(i!) � ei !trx (3.16)for every x 2 
. With equation (3.7), this impliesjj�xjj2F�	L = jj�x �Ljj2F�� = (2�)�d ZIRd jp(i!)j2 �'(!) d! :Example 3.7 LetL(f)(x) := ZIRd K(x� x0) f(x0) dx0 = (K � f)(x)be an integral operator of convolution type. We calculate	L(x; y) = ZIRd K(x� x0) ZIRdK(y � y0) �(x0; y0) dy0 dx0and sym�x�L(!) = FT(K)(!) � ei !trx (3.17)for every x 2 
. With equation (3.7), we getjj�xjj2F�	L = (2�)�d ZIRd jFT(K)(!)j2 �'(!) d! :Remark 3.8 The paper [6] shows a general technique to apply the above ab-stract results to general problems involving partial di�erential equations. How-ever, [6] does not produce explicit convergence orders, and thus we add a sectionto demonstrate how the technique works for elliptic boundary value problems.4 Application to Mixed Linear ProblemsIn the following example, we need the classical theory of partial di�erentialequations, which uses Sobolev spaces. There are two common versions of suchspaces, de�ned byHl(IRd) := �� 2 �S(IRd)�0 : ZIRd jFT(�)(!)j2 �1 + jj!jj22�l d! <1�



15and Wlp(
) := n f 2 Lp(
) : D�f exists for all � 2 lNd0; j�j � lo :Since we need domains 
 with su�cient smooth boundaries, for exampleLipschitz-boundaries, Theorem 5.3 of [18] implies Wl2(
) �= Hl(
) for all l � 0.We shall use the notation Hl(
). (The sign �= denotes norm isomorphy.)We treat the problemL1u := p(D) u = f1 on 
1L2u := K � u = f2 on 
2L3u := u = f3 on 
3 = @
1 (4.1)as an example, where 
 = 
1 [ 
2 [ 
3� IRd is bounded, p is a polynomial oforder m and K 2 L2(IRd). In addition, we want the polynomial p to have nozeros in i � IRd, for example p(x) = �xtrx+ 1. We assume there is a solution uin the Sobolev space H�(IRd). Moreover, we need u 2 Cm(IRd), since the �rstcondition of (4.1) shall be satis�ed pointwise. Due to the Sobolev imbeddingtheorems we have to assume � > m+ d=2 to ensure H�(IRd)�Cm(IRd), cf. [18],Corollary 6.1. To satisfy equation (2.2), we needL := span �f �x � L1 gx2
1 [ f �x � L2 gx2
2 [ f �x gx2
3� � F�� :We �rst have to choose a feasible basis function �(x; y) which allows theapplication and commutation of any pair of the above functionals with respectto x and y. The following theorem shows that it is possible to choose � withF� �= H�(IRd), where � � �. Since u 2 H�(IRd), we then know u 2 F�. Toensure the above-mentioned commutation property, it su�ces to increase � asneeded.Theorem 4.1 We assume @
 to be Lipschitz continuous. If a function �0 2L1(IRd) has a Fourier transform ' satisfyingc1 (1 + jj!jj2)�2� � '(!) � c2 (1 + jj!jj2)�2� for all ! 2 IRd (4.2)with certain constants 0 < c1 � c2 and 2 � 2 lN, � � 2, its correspondingfunction �(x; y) = �0(x� y) = FT�1(')(x� y)is a feasible basis function with respect to L� := span f �xgx2IRd. The nativespace F� is norm isomorphic to the Sobolev space H�(IRd), i.e.: F� �= H�(IRd).



16 4. Application to Mixed Linear ProblemsThis is a re-formulation of [16], Theorem 2.1, which is based on [20]. Forexample, Wendland's compactly supported radial basis functions satisfy equa-tion (4.2), cf. [16], Theorem 3.6.Now, we examine the Properties of F	L1 . Due to example 3.6, we knowthat if �0 2 C2m(IRd) induces a feasible basis function with respect to L�, then	L1(x; y) = L1xL1y �(x; y) = 	L1;0(x� y)is feasible with respect to �x-functionals, too. Therefore � is feasible withrespect to �x- and �x �L1-functionals. With the equations (3.12) and (3.16), we�nd c1 (1 + jj!jj2)�2� jp(i!)j2 �  L1(!) � c2 (1 + jj!jj2)�2� jp(i!)j2for  L1 = FT(	L1;0) and for all ! 2 IRd. Since p is a polynomial of orderm and does not vanish anywhere, we get with new constants c2 � c1 > 0 theinequalitiesc1 (1+jj!jj2)�2(��m) �  L1(!) � c2 (1+jj!jj2)�2(��m) for all ! 2 IRd ; (4.3)which imply F	L1 �= H��m(IRd) by use of equation (4.2). We need 	L1;0 2C0(IRd), therefore we have to assume � � m+ d=2.Since K 2 L2(IRd), we �nd L2 : F� ! F� to be bounded by the normof K, i.e. jjL2jj� � jjKjjL2(IRd). We can set F	L2 :�= F�, but we have to obeyequation (3.13), which says jjf jjF� = jjL2f jjF	L2 . This F� may not be themaximal possible native space of 	L2 , but we do not need the maximal spacehere.We choose �nite sets X� �
� , � = 1; : : : ; 3 of centers and construct su;�;�according to the equations (1.2.6) and (1.2.7). The centers are to be distributednicely, i.e. there exists an h0 > 0 withhX;
 := supx2
 minx02X ����x� x0����2 < h0 ; (4.4)and � from (1.2.5) has to be linearly independent.To proceed towards error bounds, we have to use the uniform ellipticityof the partial di�erential operator. The following theorem requires m = 2,but there are similar and slightly more complicated theorems for di�erentialoperators of higher orders, cf. [18], Theorem 12.12 and Theorem 13.1.Theorem 4.2 (cf. [7], Theorem 3.7) Let the polynomial according to L1 havethe form p(x) = Pdi;j=1 ai;j xi xj + btrx + c, where A := (ai;j)i;j=1;:::;d , b and



17c � 0 are real valued and constant. The operator L1 shall be elliptic in thesense of A = Atr and  � xtrx � xtrAx � M � xtrxfor every x 2 IRd with constants M �  > 0. The domain 
1 shall be bounded.If the functions eu 2 C2(
1) \ C0(
1) and ef 2 C0(
1) satisfy L1eu = ef on 
1,then supx2
1 jeu(x)j � supx2@
1 jeu(x)j + c supx2
1 ��� ef(x)��� (4.5)holds, where the constant c depends only on diam 
 and jjbjj2 =.We apply this theorem to eu := u� su;�;� and ef := L1(eu) to getsupx2
1 ju(x)� su;�;�(x)j � supx2
3 j�x(u� su;�;�)j+ c supx2
1 j�x � L1(u� su;�;�)j : (4.6)We can use the theorem, since � � � > m+d=2, u 2 H�(IRd) and su;�;� 2 F� �=H�(IRd) implies eu 2 H�(IRd)�C2(IRd) and ef 2 C0(IRd). Due to Theorem 2.5,we knowj�x(u� su;�;�)j � P�;�(�x) � jju� su;�;� jjF� for all x 2 
3 ;j�x � L1(u� su;�;�)j � P�;�(�x � L1) � jju� su;�;�jjF� for all x 2 
1 ;j�x � L2(u� su;�;�)j � P�;�(�x � L2) � jju� su;�;�jjF� for all x 2 
2 :(4.7)Combining this with the Splitting Theorem 2.6, we �ndj�x(u� su;�;�)j � P�;�X3 (�x) � ������u� su;�X3 ;�������F� for all x 2 
3 ;j�x � L�(u� su;�;�)j � P�;�X� �L� (�x � L�) � ������u� su;�X� �L� ;�������F� (4.8)for all x 2 
� , � = 1; 2. The �rst line allows the application of the `classical'theory of interpolation with radial basis function, while the second line stillneeds some work. We use the Transformation Theorem 2.7 and seeP�;�X� �L� (�x � L�) = P	L� ;�X� (�x) for all x 2 
� ; � = 1; 2 : (4.9)The Primal Transformation Theorem 3.5 yields������u� su;�X� �L� ;�������F� = ������L�u� L�su;�X� �L� ;�������F	L�= ������L�u� sL�u;�X� ;	L� ������F	L� for � = 1; 2 ; (4.10)



18 4. Application to Mixed Linear Problemswhere we know that its hypotheses (3.3) and (3.5) are satis�ed, since eu 2H�(IRd). The second equality is due to Theorem 2.8. It contains the approxi-mation error of L�u instead of u's. Note that L�u = f� on 
� .Let us collect our error bounds now. We foundju(x)� su;�;�(x)j � P�;�X3 (�x) � ������u� su;�X3 ;�������F� (4.11)for all x 2 
3 from (4.8),ju(x)� su;�;�(x)j � supx2
3 P�;�X3 (�x) � ������u� su;�X3 ;�������F�+ c supx2
1 P	L1 ;�X1 (�x) � ������f1 � sf1;�X1 ;	L1 ������F	L1(4.12)for all x 2 
1 using (4.6), (4.8), (4.9) and (4.10), and �nally we sawjL2(u� su;�;�)(x)j � P�;�X2�L2(�x � L2) � ������f2 � sf2;�X2 ;	L2 ������F	L2for all x 2 
2 from (4.8), and (4.10). Applying the equation (2.11), we canbound the last item byjL2(u� su;�;�)(x)j � P�;�X2 (�x) jjL2jj� � ������f2 � sf2;�X2 ;	L2 ������F	L2 (4.13)for all x 2 
2.If � = �X , then a �ner distribution X 0�X of centers implies a decrease ofP�;�(�x) by means of the Splitting Theorem 2.6. This e�ect shall be used nowto establish convergence orders in terms of powers of hX;
. We recall Theorem 5of [20]. It says that for � and � satisfying condition (4.2) there exist constantsh0; C > 0 with P�;�X (x) � C h��d=2X;
 (4.14)for any distribution X �
 of centers with hX;
 < h0 and any x 2 
.Corollary 4.3 We recall F	L2 :�= F� �= H�(IRd) and F	L1 �= H��m(IRd). Weassumed u 2 H�(
) with � � � > m+d=2. Below, C denotes a generic constant.Using equation (4.11), we �ndju(x)� su;�;�(x)j � C ������u� su;�X3 ;�������H�(IRd) � h��d=2X3;
3



19for all x 2 
3. From equation (4.12) and using f1 2 H��m(IRd), we getju(x)� su;�;�(x)j � C ������u � su;�X3 ;�������H�(IRd) � h��d=2X3 ;
3+ C c ������f1 � sf1;�X1 ;	L1 ������H��m(IRd) � h��m�d=2X1 ;
1for all x 2 
1. Finally, we take equation (4.13) to calculatejL2(u� su;�;�)(x)j � C ������f2 � sf2;�X2 ;	L2 ������H�(IRd) � h��d=2X2;
2for all x 2 
2. Here, we assumed f2 2 H�(
).Remark 4.4 The L1-norm can be replaced by the L2-norm to gain an addi-tional factor hd=2X , cf. [17], Theorem 5. Since every sf;�X� ;	L� is the result of aminimization, the norms on the right hand side can be bounded by jjujjH�(IRd),jjf1jjH��m(IRd) and jjf2jjH�(IRd), respectively.5 ConclusionThe theory of �nite element methods (FEM) yields the following bound ofapproximation error.Theorem 5.1 (cf. [9], Satz 4.2) Let the domain 
� IRd have a polyhedral boun-dary and a quasi-uniform decomposition T into �nite elements, which are a�neimages of a common reference element. Let the maximal diameter of all �niteelements be 2h.The order m of the given di�erential operator L shall be even. Let V be asubspace of Hm=2(
). Partial integration is used to de�ne the continuous andV -elliptical bilinear form a(u; v) := hLu jj v iV on V �V . Let f be a continuouslinear form on V . We assume there is a solution u 2 V \H�(
) of the problema(u; v) = f(v) for all v 2 V with the higher regularity � = qFEM + 1 > m=2.Let the span Vh�V of basis and test functions contain the space of on Tpiecewise polynomial functions of degree at most qFEM.Then the conforming �nite element problem a(uh; vh) = f(vh) for all vh 2 Vhhas a unique solution uh which satis�esjju� uhjjHm=2(
) � C jujH�(
) h��m=2 : (5.1)Comparing the error bound (5.1) of the FEM with the error bounds of Corol-lary 4.3 for collocation, we note several points:



20 5. Conclusion� The collocation method requires a very regular solution u 2 H�(
) with� > m + d=2. It constructs an approximation of smoothness order � >m + d=2 and approximation order � � m � d=2. The FEM needs only� � m=2. Its approximating function has smoothness order ��1 � m=2�1and approximation order ��m=2.But our method yields an L1-error bound, while FEM yields a Hm=2 one.There is an additional hd=2 convergence factor, if our estimate is rewrittento an L2-norm.The additional regularity required by our method clearly limits its directapplicability. However, current research along the directions of e.g. [3]shows that there are promising techniques to handle cases of low regu-larity in such a way that the core solution method has to deal only withthe regular part of the solution. Combined with such techniques, theregularity requirements are much less serious.� Collocation as a meshless method needs no geometric information. Thusthe main impact of our approach will be towards high-dimensional prob-lems with high regularity.� We recall that Wendland's functions produce sparse systems due to theircompact support. Therefore the complexity of the collocation methodcan possibly be reduced to O(#centers), cf. [14]. However, the underly-ing theory is di�cult and still incomplete. In this direction, multileveltechniques are currently under investigation, cf. [5, 12].� The FEM can treat operators L which are not translation invariant. Weexpect that the collocation method can be extended to such problems,too.� The smoothness of the boundary @
 does not inuence our method, ex-cept that we need the existence of a solution of su�cient high regularity.Altogether we see: The collocation method is feasible for problems with veryregular solutions in high space dimensions or with many di�erent operators.This roughly complements the set of problems where the FEM has proven tobe an extremely e�ective tool.AcknowledgementWe gratefully acknowledge help by P. H�ahner, G. Lube and H. Wendland.This work was supported by a grant of the `Deutsche Forschungsgemein-schaft (DFG)'.
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