
Charaterization and onstrution of radialbasis funtionsRobert Shabak and Holger WendlandMarh 17, 2000AbstratWe review haraterizations of (onditional) positive de�nitenessand show how they apply to the theory of radial basis funtions. Wethen give omplete proofs for the (onditional) positive de�nitenessof all pratially relevant basis funtions. Furthermore, we show howsome of these haraterizations may lead to onstrution tools forpositive de�nite funtions. Finally, we give new onstrution teh-niques based on disrete methods whih lead to non-radial, even non-translation invariant, loal basis funtions.1 IntrodutionRadial basis funtions are an eÆient tool for solving multivariate sattereddata interpolation problems. To interpolate an unknown funtion f 2 C(
)whose values on a set X = fx1; : : : ; xNg � 
 � IRd are known, a funtion ofthe form sf;X(x) = NXj=1�j�(x; xj) + p(x) (1)is hosen, where p is a low degree polynomial and � : 
� 
! IR is a �xedfuntion. The numerial treatment an be simpli�ed in the speial situations1. �(x; y) = �(x� y) with � : IRd ! IR (translation invariane),2. �(x; y) = �(kx� yk2) with � : [0;1)! IR (radiality),and this is how the notion of radial basis funtions arose. The most prominentexamples of radial basis funtions are:�(r) = r�; � > 0; � 62 2IN;1



�(r) = r2k log(r); k 2 IN (thin-plate splines);�(r) = (2 + r2)�; � < 0; (inverse multiquadris)�(r) = (2 + r2)�; � > 0; � 62 IN (multiquadris)�(r) = e��r2 ; � > 0 (Gaussians);�(r) = (1� r)4+(1 + 4r):All of these basis funtions an be uniformly lassi�ed using the onept of(onditionally) positive de�nite funtions:De�nition 1.1 A ontinuous funtion � : 
 � 
 ! C is said to be on-ditionally positive (semi{) de�nite of degree m on 
 if for all N 2 IN , alldistint x1; : : : ; xN 2 
, and all � 2 CN n f0g satisfyingNXj=1�jp(xj) = 0 (2)for all polynomials p of degree less than m the quadrati formNXj=1 NXk=1�j�k�(xj; xk) (3)is positive (nonnegative). The funtion � is positive de�nite if it is ondi-tionally positive de�nite of order m = 0.Note that in ase of a positive de�nite funtion the onditions (2) are emptyand hene (3) has to be positive for all � 2 CN n f0g. Finally, if � is asymmetri real-valued funtion, it is easy to see that it suÆes to test onlyreal �.The use of this onept in the ontext of multivariate interpolation problemsis explained in the next theorem, whih also shows the onnetion betweenthe degree of the polynomial p in (1) and the order m of onditional positivede�niteness of the basis funtion �. We will denote the spae of d-variatepolynomials of degree at most m by �m(IRd).Theorem 1.2 Suppose � is onditionally positive de�nite of oder m on
 � IRd. Suppose further that the set of enters X = fx1; : : : ; xNg � 
is �m�1(IRd) unisolvent, i.e. the zero polynomial is the only polynomial from�m�1(IRd) that vanishes on X. Then for given f1; : : : ; fN there is exatlyone funtion sf;X of the form (1) with a polynomial p 2 �m�1(IRd) suh thatsf;X(xj) = fj, 1 � j � N and PNj=1 �jq(xj) = 0 for all q 2 �m�1(IRd).It is the goal of this paper to give full proofs for the onditional positivede�niteness of all aforementioned radial basis funtions and to use the ideasbehind these proofs to onstrut new ones. We only rely on ertain analytialtools that are not diretly related to radial basis funtions.2



2 The Shoenberg-Mihelli CharaterizationGiven a ontinuous univariate funtion � : [0;1) ! IR we an form thefuntion �(x; y) := �(kx � yk2) on IRd � IRd for arbitrary spae dimensiond. Then we an say that � is onditionally positive de�nite of order m onIRd, i� � is onditionally positive de�nite of order m on IRd in the sense ofDe�nition 1.1.Taking this point of view, we are immediately led to the question ofwhether a univariate funtion � is onditionally positive de�nite of someorder m on IRd for all d � 1. This question was fully answered in the positivede�nite ase by Shoenberg [16℄ in 1938 in terms of ompletely monotonefuntions. In the ase of onditionally positive de�nite funtions Mihelli[12℄ generalized the suÆient part of Shoenberg's result, suspeting that itwas also neessary. This was �nally proved by Guo, Hu and Sun [9℄.De�nition 2.1 A funtion � : (0;1) ! IR is said to be ompletely mono-tone on (0;1) if � 2 C1(0;1) and(�1)`�(`)(r) � 0; ` 2 IN0; r > 0: (4)A funtion � : [0;1)! IR is said to be ompletely monotone on [0;1) if itis ompletely monotone on (0;1) and ontinuous at zero.Theorem 2.2 (Shoenberg) Suppose � : [0;1) ! IR is not the onstantfuntion. Then � is positive de�nite on every IRd if and only if the funtiont 7! �(pt), t 2 [0;1) is ompletely monotone on [0;1).Shoenberg's haraterisation of positive de�nite funtions allows us to provepositive de�niteness of Gaussians and inverse multiquadris without diÆ-ulty:Theorem 2.3 The Gaussians �(r) = e��r2 , � > 0, and the inverse multi-quadris �(r) = (2 + r2)�,  > 0, � < 0, are positive de�nite on IRd for alld � 1.Proof: For the Gaussians note thatf(r) := �(pr) = e��rsatis�es (�1)`f (`)(r) = �`e��r > 0 for all ` 2 IN0 and �; r > 0. Similarly, forthe inverse multiquadris we �nd with f(r) := �(pr) = (2 + r)�j�j that(�1)`f (`)(r) = (�1)2`j�j(j�j+ 1) � : : : � (j�j+ `� 1)(r + 2)�j�j�` > 0:3



Sine in both ases � is not the onstant funtion, the Gaussians and inversemultiquadris are positive de�nite. 2There are several other haraterizations of ompletely monotone fun-tions (see [19℄), whih by Shoenberg's theorem also apply to positive de�nitefuntions. The most important is the following one by Bernstein (see Widder[19℄). It implies that the proper tool to handle positive de�nite funtions onIRd for all d � 1, is the Laplae transform.Theorem 2.4 (Bernstein) A funtion � is positive de�nite on IRd for alld � 1, if and only if there exists a nonzero, �nite, nonnegative Borel measure�, not supported in zero, suh that � is of the form�(r) = Z 10 e�r2td�(t): (5)Note that the suÆient part of Bernstein's theorem is easy to prove, if weknow that the Gaussians are positive de�nite. For every � 2 IRN n f0g andevery distint x1; : : : ; xN 2 IRd the quadrati form is given byNXj;k=1�j�k�(kxj � xkk2) = Z 10 ������ NXj=1�je�tkxj�xkk22 ������2 d�(t):Another onsequene of this theory is the following.Theorem 2.5 Suppose � : [0;1) ! IR is positive de�nite on IRd for alld � 1. Then � has no zero. In partiular, there exists no ompatly supportedunivariate funtion that is positive de�nite on IRd for all d � 1.Proof: Sine � is positive de�nite on IRd for all d � 1, there exists a �nite,nonzero, nonnegative Borel measure � on [0;1) suh that (5) holds. If r0 isa zero of � this gives 0 = Z 10 e�r20td�(t):Sine the measure is non-negative and the weight funtion e�r20t is positivewe �nd that the measure must be the zero measure. 2Thus the ompatly supported funtion �(r) = (1�r)4+(1+4r) given in theintrodution annot be positive de�nite on IRd for all d � 1, and it is atuallyonly positive de�nite on IRd, d � 3. If one is interested in onstruting basisfuntions with ompat support, one has to take the above negative resultinto aount. We shall see in the next setion that the Fourier transform is4



the right tool to handle positive de�nite translation{invariant funtions onIRd with a presribed d. But before that, let us have a look at onditionallypositive de�nite funtions. We will state only the suÆient part as providedby Mihelli [12℄.Theorem 2.6 (Mihelli) Given a funtion � 2 C[0;1), de�ne f = �(p�).If there exists an m 2 IN0 suh that (�1)mf (m) is well{de�ned and ompletelymonotone on (0;1), then � is onditionally positive semi-de�nite of orderm on IRd for all d � 1. Furthermore, if f is not a polynomial of degree atmost m, then � is onditionally positive de�nite.This theorem allows us to lassify all funtions from the introdution,with the sole exeption of the ompatly supported one. However, to omplywith the notion of onditional positive de�niteness, we shall have to adjustthe signs properly. To do this we denote the smallest integer greater than orequal to x by dxe .Theorem 2.7 The multiquadris �(r) = (�1)d�e(2+r2)�, ; � > 0, � 62 IN ,are onditionally positive de�nite of order m � d�e on IRd for all d � 1.Proof: If we de�ne f�(r) = (�1)d�e(2 + r)�, we �ndf (k)� (r) = (�1)d�e�(� � 1) � : : : � (� � k + 1)(2 + r)��k;whih shows that (�1)d�ef (d�e)� (r) = �(�� 1) � : : : � (� �d�e+1)(2+ r)��d�eis ompletely monotone, and that m = d�e is the smallest possible hoie ofm to make (�1)mf (m) ompletely monotone. 2Theorem 2.8 The funtions �(r) = (�1)d�=2er�, � > 0, � 62 2IN , areonditionally positive de�nite of order m � d�=2e on IRd for all d � 1.Proof: De�ne f�(r) = (�1)d�2 er �2 to getf (k)� (r) = (�1)d�2 e�2 (�2 � 1) � � � (�2 � k + 1)r �2�k:This shows that (�1)d�2 ef (d�2 e)� (r) is ompletely monotone and m = d�2 e is thesmallest possible hoie. 2Theorem 2.9 The thin{plate or surfae splines �(r) = (�1)k+1r2k log(r)are onditionally positive de�nite of order m = k + 1 on every IRd.5



Proof: Sine 2�(r) = (�1)k+1r2k log(r2) we set fk(r) = (�1)k+1rk log(r).Then it is easy to see thatf (`)k (r) = (�1)k+1k(k � 1) � � � (k � `+ 1)rk�` log(r) + p`(r); 1 � ` � k;where p` is a polyonmial of degree k � `. This means in partiularf (k)k (r) = (�1)k+1k! log(r) + and �nally (�1)k+1f (k+1)k (r) = k!r�1 whih is obviously ompletely monotoneon (0;1). 23 Bohner's CharaterizationWe saw in the last setion that the Laplae transform is the right tool foranalyzing positive de�niteness of radial funtions for all spae dimensionsd. However, we did not prove Shoenberg's and Mihelli's theorems. Wealso saw that the approah via Laplae transforms exludes funtions withompat support, whih are desirable from a numerial point of view. Tooverome this problem and to work around these theorems, we shall nowlook at translation{invariant positive de�nite funtions on IRd for some �xedd. We shall give the famous result of Bohner [2, 3℄, whih haraterizestranslation{invariant positive de�nite funtions via Fourier transforms. Inthe next setion we generalize this result to handle also translation{invariantonditionally positive de�nite funtions, following an approah of Madyhand Nelson [11℄. Of ourse, we de�ne a ontinuous funtion � : IRd ! Cto be a translation{invariant onditionally positive (semi{) de�nite funtionof order m on IRd i� �0(x; y) := �(x � y) is onditionally positive (semi{)de�nite of order m on IRd.Theorem 3.1 (Bohner) A ontinuous funtion � : IRd ! C is a translation{invariant positive semi-de�nite funtion if and only if it is the inverse Fouriertransform of a �nite non-negative Borel measure � on IRd, i.e.,�(x) = �_(x) = (2�)�d=2 ZIRd eixT!d�(!); x 2 IRd: (6)Again, the suÆient part is easy sineNXj;k=1�j�k�(xj � xk) = ZIRd ������ NXj=1�jeixTj !������2 d�(!); (7)6



and later we shall use this argument repeatedly to prove positive de�nitenessof ertain funtions without referring to Bohner's theorem. In the Fouriertransform setting it is not straightforward to separate positive de�nite frompositive semi-de�nite funtions as it was in Shoenberg's haraterization.But sine the exponentials are linear independent on every open supset ofIRd, we haveCorollary 3.2 Suppose that the arrier of the measure � of Theorem 3.1ontains an open subset of IRd. Then � is a translation{invariant positivede�nite funtion.For a omplete lassi�ation of positive de�nite funtions via Bohner'stheorem see [7, 8℄. Here, we want to ite a weaker formulation, whih weshall not use for proving positive de�niteness of speial funtions. A proofan be found in [18℄.Theorem 3.3 Suppose � 2 L1(IRd) is a ontinuous funtion. Then � isa translation{invariant positive de�nite funtion if and only if � is boundedand its Fourier transform is nonnegative and not identially zero.Sine a non{identially zero funtion annot have an identially zeroFourier transform, we see that an integrable, bounded funtion that is notidentially zero � is translation{invariant and positive de�nite if its Fouriertransform is nonnegative. This an be used to prove the positive de�nitenessof the Gaussian along the lines of the suÆieny argument for Theorem 3.1.Sine this is easily done via (7), we skip over the details and only remarkthat �(x) = e��kxk22has the Fourier transformb�(!) = (2�)�d=2 ZIRd �(x)e�ixT!dx = (2�)�d=2e�k!k22=(4�): (8)This allows us to irumvent Shoenberg's and Bohner's theorem for a diretproof of the positive de�niteness of the Gaussians (see also Powell [13℄).Now let us have a loser look at the Fourier transform of the inversemultiquadris. To do this let us reall the de�nition of the modi�ed Besselfuntions. For z 2 C with jarg(z)j < �=2 they are given byK�(z) := Z 10 e�z osh t osh �tdt:7



Theorem 3.4 The funtion �(x) = (2 + kxk22)�, x 2 IRd, with  > 0 and� < �d=2 is a translation{invariant positive de�nite funtion with Fouriertransform b�(!) = 21+��(��)  k!k2 !��� d2 K d2+�(k!k2):Proof: Sine � < �d=2 the funtion � is in L1(IRd). From the representationof the Gamma funtion for �� > 0 we see that�(��) = Z 10 t���1e�tdt= s�� Z 10 u���1e�suduby substituting t = su with s > 0. Setting s = 2 + kxk22 this implies�(x) = 1�(��) Z 10 u���1e�2ue�kxk22udu: (9)Inserting this into the Fourier transform and hanging the order of integra-tion, whih an be easily justi�ed, leads tob�(x) = (2�)�d=2 ZIRd �(!)e�ixT!d!= (2�)�d=2 1�(��) ZIRd Z 10 u���1e�2ue�k!k22ue�ixT!dud!= (2�)�d=2 1�(��) Z 10 u���1e�2u ZIRd e�k!k22ue�ixT!d!du= 1�(��) Z 10 u���1e�2u(2u)�d=2e� kxk224u du= 12d=2�(��) Z 10 u��� d2�1e�2ue� kxk224u du; (10)where we have used (8). On the other hand we an onlude from the de�-nition of the modi�ed Bessel funtion that for every a > 0K�(r) = 12 Z 1�1 e�r osh te�tdt= 12 Z 1�1 e� r2 (et+e�t)e�tdt= a�� 12 Z 10 e� r2 ( sa+as )s��1ds8



by substituting s = aet. If we now set r = kxk2, a = kxk2=(2), and� = �� � d=2 we deriveK��� d2 (kxk2) = 12  kxk22 ! d2+� Z 10 e�s2e� kxk224s s��� d2�1ds= 2���1�(��) kxk2 !d2+� b�(x);whih leads to the stated Fourier transform usingK�� = K� . Sine the modi-�ed Bessel funtion is non-negative and non-vanishing, the proof is omplete.2 Note that this result is somewhat weaker than the result given in Theorem2.3, sine we require � < �d=2 for integrability reasons. Furthermore, wean read o� from (9) the representing measure for � in the sense of Theorem2.4.4 The Madyh{Nelson approahSo far, we have seen that the Shoenberg-Mihelli approah is an elegantway to prove onditional positive de�niteness of basis funtions for all spaedimensions. But these haraterization theorems are rather abstrat, hardto prove, and restrited to globally supported and radial basis funtions.On the other hand, Bohner's haraterization provides diret proofs fortranslation{invariant and possibly nonradial funtions, but is not appliableto onditionally positive de�nite funtions.Thus in this setion we follow Madyh and Nelson [11℄ to generalize theapproah of Bohner to the ase of onditionally positive de�nite translation{invariant funtions. It will turn out that the proof of the basi result isquite easy, but it will be tehnially diÆult to apply the general resultto spei� basis funtions. But our e�orts will pay o� by yielding expliitrepresentations of generalized Fourier transforms of the lassial radial basisfuntions, and these are important for further study of interpolation errorsand stability results.Reall that the Shwartz spae S onsists of all C1(IRd)-funtions thattogether with all their derivatives, deay faster than any polynomial.De�nition 4.1 For m 2 IN0 the set of all funtions  2 S whih satisfy(!) = O(k!k2m2 ) for k!k2 ! 0 will be denoted by Sm.9



Reall that a funtion � is alled slowly inreasing if there exists aninteger ` 2 IN0 suh that j�(!)j = O(k!k2̀) for k!k2 !1.De�nition 4.2 Suppose � : IRd ! C is ontinuous and slowly inreasing.A ontinuous funtion b� : IRd nf0g ! C is said to be the generalized Fouriertransform of � if there exists an integer m 2 IN0 suh thatZIRd �(x)b(x)dx = ZIRd b�(!)(!)d!is satis�ed for all  2 Sm. The smallest of suh m is alled the order of b�.We omit the proof that the generalized Fourier transform is uniquely de�ned,but rather give a �rst nontrivial example:Proposition 4.3 Suppose � = p is a polynomial of degree less than 2m.Then for every test funtion  2 Sm we haveZIRd �(x)b(x)dx = 0:Proof: Suppose � has the representation �(x) = Pj�j<2m �x�. ThenZIRd �(x)b(x)dx = Xj�j<2m �i�j�j ZIRd(ix)�b(x)dx= Xj�j<2m �i�j�j ZIRd  �j�j�x� !^ dx= (2�)d=2 Xj�j<2m �i�j�j�j�j�x� (0)= 0sine  2 Sm. 2Note that the above result implies that the \inverse" generalized Fouriertransform is not unique, beause one an add a polynomial of degree less than2m to a funtion � without hanging its generalized Fourier transform. Notefurther that there are other de�nitions of generalized Fourier transforms, e.g.in the ontext of tempered distributions.The next theorem shows that the order of the generalized Fourier trans-form, whih is nothing but the order of the singularity of the generalizedFourier transform at the origin, determines the minimal order of a ondition-ally positive de�nite funtion, provided that the funtion has a nonnegativeand nonzero generalized Fourier transform. We will state and prove only thesuÆient part, but point out that the reverse diretion also holds. We needthe following auxiliary result: 10



Lemma 4.4 Suppose that distint x1; : : : ; xN 2 IRd and � 2 CN n f0g aregiven suh that (2) is satis�ed for all p 2 �m�1(IRd). ThenNXj=1�jeixTj ! = O(k!km2 )holds for k!k2 ! 0.Proof: The expansion of the exponential funtion leads toNXj=1�jeixTj ! = 1Xk=0 ikk! NXj=1�j(xTj !)k:For �xed ! 2 IRd we have pk(x) := (xT!)k 2 �k(IRd). Thus (2) ensures thatthe �rst m� 1 terms vanish:NXj=1�jeixTj ! = 1Xk=m ikk! NXj=1�j(xTj !)k;whih yields the stated behaviour. 2Theorem 4.5 Suppose � : IRd ! C is ontinuous, slowly inreasing, andpossesses a generalized Fourier transform b� of order m whih is non-negativeand non-vanishing. Then � is a translation{invariant onditionally positivede�nite funtion of order m.Proof: Suppose that distint x1; : : : ; xN 2 IRd and � 2 CN n f0g satisfy (2)for all p 2 �m�1(IRd). De�nef(x) := NXj;k=1�j�k�(x + (xj � xk))and `(x) = ������ NXj=1�jeixTxj ������2 bg`(x) = NXj;k=1�j�keixT (xj�xk)bg`(x);where g`(x) = (`=�)d=2e�`kxk22 . On aount of ` 2 S and Lemma 4.4 we have` 2 Sm. Furthermore,b`(x) = (2�)�d=2 ZIRd NXj;k=1�j�kei!T (xj�xk)bg`(!)e�ixT!d!= NXj;k=1�j�k(2�)�d=2 ZIRd bg`(!)e�i!T (x�(xj�xk))d!= NXj;k=1�j�kg`(x� (xj � xk));11



sine bbg` = g`. Colleting these fats gives together with De�nition 4.2ZIRd f(x)g`(x)dx = ZIRd �(x) NXj;k=1�j�kg`(x� (xj � xk))dx= ZIRd �(x)b`(x)dx= ZIRd b�(!)`(!)d!= ZIRd ������ NXj=1�jei!T xj ������2 bg`(!)b�(!)d!� 0:Sine � is only slowly inreasing, we haveNXj;k=1�j�k�(xj � xk) = lim`!1 ZIRd f(x)g`(x)dx � 0by means of approximation by onvolution. Furthermore, the quantity������ NXj=1�jei!T xj ������2 bg`(!)b�(!)is non-dereasing in ` and we already know that the limitlim`!1 ZIRd ������ NXj=1�jei!T xj ������2 bg`(!)b�(!)d!exists. Hene, the limit funtion (2�)�d=2 ���PNj=1 �jei!T xj ���2 b�(!) is integrabledue to the monotone onvergene theorem. Thus we have established theequality NXj;k=1�j�k�(xj � xk) = (2�)�d=2 ZIRd ������ NXj=1�jei!T xj ������2 b�(!)d!:This quadrati form annot vanish if b� is non-vanishing, sine the exponen-tials are linearly independent. 2
12



5 Classial Radial Basis FuntionsIn order to use this generalization of the Bohner approah we now omputethe generalized Fourier transforms of the most popular translation{invariantor radial basis funtions. Sine it will turn out that these generalized Fouriertransforms are non-negative and non-vanishing, we an read o� the orderof onditional positive de�niteness of the funtions from the order of thesingularity of their generalized Fourier transforms at the origin.We start with the positive de�nite inverse multiquadris as treated inTheorem 3.4 and use analyti ontinuation to treat the ase of the ondition-ally positive de�nite (non{inverse) multiquadris. To do this we need tworesults on the modi�ed Bessel funtions.Lemma 5.1 The modi�ed Bessel funtion K�, � 2 C , has the uniform boundjK�(r)j � s2�r e�re j<(�)j22r ; r > 0 (11)desribing its behaviour for large r.Proof: With b = j<(�)j we havejK�(r)j � 12 Z 10 e�r osh tje�t + e��tjdt� 12 Z 10 e�r osh t(ebt + e�bt)dt= Kb(r)Furthermore, from et � osh t � 1 + t22 , t � 0, we an onludeKb(r) � Z 10 e�r(1+ t22 )ebtdt� e�re b22r 1pr Z 1�bpr e�s2=2ds� p2�e�re b22rs1r : 2Lemma 5.2 For � 2 C the modi�ed Bessel funtion K� satis�esjK�(r)j � ( 2j<(�)j�1�(j<(�)j)r�j<(�)j; <(�) 6= 0;1e � log r2 ; r < 2;<(�) = 0: (12)for r > 0, desribing its behaviour for small r.13



Proof: Let us �rst onsider the ase <(�) 6= 0. We set again b = j<(�)j andalready know that jK�(r)j � Kb(r), from the proof of the preeding lemma.Furthermore, from the proof of Theorem 3.4 we getKb(r) = 12 Z 10 e� r2 ( sa+as ) �sa�b dssfor every a > 0. By setting a = r=2 we see thatKb(r) = 2b�1r�b Z 10 e�se� r24s sb�1ds � 2b�1�(b)r�b:For <(�) = 0 we use osh t � et=2 to deriveK0(r) = Z 10 e�r osh tdt� Z 10 e� r2 etdt= Z 1r2 e�u 1udu� Z 11 e�udu+ Z 1r2 1udu= 1e � log r2 : 2We are now able to ompute the generalized Fourier transform of the generalmultiquadris. The basi idea of the proof goes bak to Madyh and Nelson[11℄. It starts with the lassial Fourier transform of the inverse multiquadrisas given in Theorem 3.4, and then uses analyti ontinuation.Theorem 5.3 The funtion �(x) = (2 + kxk22)�, x 2 IRd, with  > 0 and� 2 IR n IN0 possesses the (generalized) Fourier transformb�(!) = 21+��(��)  k!k2 !��� d2 K d2+�(k!k2); ! 6= 0; (13)of order m = max(0; d�e).Proof: De�ne G = f� 2 C : <(�) < mg and denote the right{hand side of(13) by '�(!). We are going to show by analyti ontinuation thatZIRd ��(!)b(!)d! = ZIRd '�(!)(!)d!;  2 Sm; (14)14



is valid for all � 2 G, where ��(!) = (2 + k!k22)�. First, note that (14) isvalid for � 2 G with � < �d=2 by Theorem 3.4, and in ase m > 0, also for� = 0; 1; : : : ; m� 1, by Proposition 4.3 and the fat that 1=�(��) is zero inthese ases. Analyti ontinuation will lead us to our stated result, if we anshow that both sides of (14) exist and are analyti funtions in �. We willdo this only for the right{hand side, sine the left{hand side an be handledmore easily. Thus we de�nef(�) = ZIRd '�(!)(!)d!and study this funtion of �. Suppose C is a losed urve in G. Sine '� isan analyti funtion in � 2 G it has the representation'�(!) = 12�i ZC 'z(!)z � � dzfor � 2 Int C. Now suppose that we have already shown that the integrandin the de�nition of f(�) an be bounded uniformly on C by an integrablefuntion. This ensures that f(�) is well de�ned in G and by Fubini's theoremwe an onlude f(�) = ZIRd '�(!)(!)d!= 12�i ZIRd ZC 'z(!)z � � dz(!)d!= 12�i ZC 1z � � ZIRd 'z(!)(!)d!dz= 12�i ZC f(z)z � �dzfor � 2 Int C, whih means that f is analyti in G. Thus it remains to boundthe integrand uniformly.Let us �rst onsider the asymptoti behaviour in a neighbourhood of theorigin, say for k!k2 < 1=. If we set b = <(�) we an use Lemma 5.2 and 2 Sm to get in the ase b 6= �d=2:j'�(!)(!)j � C 2b+jb+d=2j�(jb + d=2j)j�(��)j b+d=2�jb+d=2jk!k�b�d=2�jb+d=2j+2m2 ;and in ase b = �d=2:j'�(!)(!)j � C 21�d=2j�(��)j  1e � log k!k22 ! k!k2m2 :15



Sine C is ompat and 1=� is analyti, this gives for all � 2 Cj'�(!)(!)j � C;m;;C  1 + k!k�d+2�2 � log k!k22 ! ; k!k2 � 1=with � = m � b > 0. For large arguments, the integrand in the de�nition off(�) an be estimated via Lemma 5.1 byj'�(!)(!)j � C 21+bp2�j�(��)j b+ d�12 k!k�b� d+122 e�k!k2e jb+ d2 j22k!k2using that  2 S is bounded. Sine C is ompat, this an be boundedindependently of � 2 C byj'�(!)(!)j � C;C;m;e�k!k2=2;ompleting the proof. 2Theorem 5.4 The funtion �(x) = kxk�2 , x 2 IRd, with � > 0, � 62 2IN hasthe generalized Fourier transformb�(!) = 2�+ d2�(d+�2 )�(��2 ) k!k���d2 ; ! 6= 0;of order m = d�=2e.Proof: Let us start with the funtion �(x) = (2 + kxk22)�2 ,  > 0. Thisfuntion possesses a generalized Fourier transform of order m = d�=2e givenby b�(!) = '(!) = 21+�=2�(��=2)k!k���d2 (k!k2)�+d2 K�+d2 (k!k2)due to Theorem 5.3. Here, we use the subsript  instead of �, sine � is�xed and we want to let  go to zero. Moreover, we an onlude from theproof of Theorem 5.3 that for  2 Sm the produt an be bounded byj'(!)(!)j � C 2�+d=2�(�+d2 )j�(��=2)j k!k2m���d2for k!k2 ! 0 and byj'(!)(!)j � C 2�+d=2�(�+d2 )j�(��=2)j k!k���d216



for k!k2 !1 independently of  > 0. Sine j�(!)b(!)j an also be boundedindependently of  by an integrable funtion, we an use the onvergenetheorem of Lebesgue twie to deriveZIRd kxk�2 b(x)dx = lim!0 ZIRd �(x)b(x)dx= lim!0 ZIRd '(!)(!)dx= 21+�2�(��2 ) ZIRd k!k���d2 (!) lim!0(k!k2)�+d2 K�+d2 (k!k2)d!= 2�+d=2�(d+�2 )�(��=2) ZIRd k!k���d2 (!)d!for  2 Sm. The last equality follows fromlimr!0 r�K�(r) = limr!0 2��1 Z 10 e�te� r24t t��1dt = 2��1�(�);see also the proof of Lemma 5.2. 2Theorem 5.5 The funtion �(x) = kxk2k2 log kxk2, x 2 IRd, k 2 IN , pos-sesses the generalized Fourier transformb�(!) = (�1)k+122k�1+ d2�(k + d2)k!k!k�d�2k2of order m = k + 1.Proof: For �xed r > 0 and � 2 (2k; 2k+ 1) we expand the funtion � 7! r�using Tayloris theorem tor� = r2k + (� � 2k)r2k log r + Z �2k (� � t)rt log rdt: (15)From Theorem 5.4 we know the generalized Fourier transform of the funtionx 7! kxk�2 of order m = d�=2e = k+1. From Proposition 4.3 we see that thegeneralized Fourier transform of order m of the funtion x 7! kxk2k2 equalszero. Thus we an onlude from (15) for any test funtion  2 Sm thatZIRd kxk2k2 log kxk2b(x)dx = 1� � 2k ZIRd �kxk�2 � kxk2k2 � b(x)dx� 1� � 2k ZIRd Z �2k (� � t)kxkt2 log kxk2b(x)dtdx= 2�+ d2�(d+�2 )(� � 2k)�(��2 ) ZIRd k!k���d2 (!)d!+O(� � 2k)17



for � ! 2k. Furthermore, we know from the property �(z)�(1 � z) =�= sin(�z) that 1�(��2 )(� � 2k) = �sin(��2 )�(1 + �2 )�(� � 2k) :Beause lim�!2k sin(��2 )� � 2k = lim�!2k �2 os(��2 )1 = �2 (�1)k;we see that lim�!2k 1�(��2 )(� � 2k) = (�1)k+1k!=2:Now we an apply the theorem of dominated onvergene to deriveZIRd kxk2k2 log kxk2b(x)dx = 22k+d=2�(k + d=2)(�1)k+1k!2 ZIRd k!k�d�2k2 (!)d!for all  2 Sm, whih gives the stated generalized Fourier transform. 2Now it is easy to deide whether the just investigated funtions are on-ditionally positive de�nite. As mentioned before, we state the minimal m.Corollary 5.6 The following funtions � : IRd ! IR are onditionally pos-itive de�nite of order m:� �(x) = (�1)d�e(2 + kxk22)�, � > 0, � 62 2IN , m = d�e,� �(x) = (2 + kxk22)�, � < 0, m = 0,� �(x) = (�1)d�=2ekxk�2 , � > 0, � 62 IN , m = d�=2e,� �(x) = (�1)k+1kxk2k2 log kxk2, k 2 IN , m = k + 1.6 Constrution via Dimension WalkSo far we have seen that radial funtions that work on IRd for all d � 1,are niely haraterized by the abstrat results of Shoenberg and Mihelli,while translation invariant funtions for �xed dimensions are best handledvia Fourier transform, yielding expliit results for further use.Here, we want to investigate radial funtions for a �xed spae dimension.Thus we have to take the Fourier transform, but we shall make use of radialitythroughout, relying on ideas of Wu and Shabak [20℄, [15℄. Our main goalwill be the onstrution of ompatly supported positive de�nite radial basisfuntions for �xed spae dimensions.18



Theorem 6.1 Suppose � 2 L1(IRd)\C(IRd) is radial, i.e., �(x) = �(kxk2),x 2 IRd. Then its Fourier transform b� is also radial, i.e., b�(!) = Fd�(k!k2)with Fd�(r) = r� d�22 Z 10 �(t)t d2J d�22 (rt)dt;and � satis�es �(t)td�1 2 L1[0;1), in partiular �(t)! 0 for t!1.Proof: The ase d = 1 follows immediately fromJ�1=2(t) = � 2�t�1=2 os t:In ase d � 2, splitting the Fourier integral, and using the representationZSd�1 eixT �dS(�) = (2�)d=2kxk� d�222 J d�22 (kxk2)of the lassial Bessel funtion J� via an integral over the sphere Sd�1 � IRdyield b�(x) = (2�)�d=2 ZIRd �(!)e�ixT!d!= (2�)�d=2 Z 10 td�1 ZSd�1 �(tk!k2)e�itxT!dS(!)dt= (2�)�d=2 Z 10 �(t)td�1 ZSd�1 e�itxT!dS(!)dt= r�(d�2)=2 Z 10 �(t)td=2J(d�2)=2(rt)dt:The seond assertion of the theorem follows from an inspetion of the on-dition � 2 L1(IRd), using the radiality of �. 2Theorem 6.1 gives us the opportunity to interpret the d{variate Fouriertransform of a radial funtion via Fd as an operator that maps univariatefuntions to univariate funtions.Now let us have a loser look at this operator with respet to the spaedimension. If we use ddzfz�J�(z)g = z�J��1(z) we get via integration byparts, for d � 3,Fd�(r) = r�d+2 Z 10 �(t)t (rt) d�22 J d�22 (rt)dt= r�d+2 �� Z 1t �(s)sds� (rt) d�22 J d�22 (rt)����t=1t=0+ r�d+2 Z 10 �Z 1t �(s)sds� r d2 t d�22 J d�42 (rt)dt= Fd�2 �Z 1� �(s)sds� (r)19



whenever the boundary terms vanish. Thus if we de�neI�(r) := Z 1r �(t)tdtD�(r) := �1r ddr�(r)we get the following result.Theorem 6.2 If � 2 C[0;1) satis�es t 7! �(t)td�1 2 L1[0;1) for somed � 3, then we have Fd(�) = Fd�2(I�). This means that � is positivede�nite on IRd if and only if I� is positive de�nite on IRd�2. On the otherhand, if � satis�es t 7! �(t)td�1 2 L1[0;1) for some d � 1 and if the evenextension of � to IR is in C2(IR), then Fd(�) = Fd+2(D�). In this situation,the funtion � is positive de�nite on IRd if and only if D� is positive de�niteon IRd+2.Sine both operators I and D are easily omputable and satisfy I =D�1 and D = I�1 wherever de�ned, this gives us a very powerful tool foronstruting positive de�nite funtions. For example, we ould start with avery smooth ompatly supported funtion on IR1 and apply the operatorD n-times to get a positive de�nite and ompatly supported funtion onIR2n+1. Before we give an example, let us remark that it is possible togeneralize the operators Fd, I;D to step through the dimensions one by oneand not two by two [15℄.Theorem 6.3 De�ne �`(r) := (1� r)+̀ and �d;k by�d;k = Ik�bd=2+k+1:Then �d;k is ompatly supported, a polynomial within its support, and posi-tive de�nite on IRd. In partiular, the funtion 20�3;1(r) = (1� r)4+(4r + 1)is positive de�nite on IR3.Proof: Sine the operator I respets the polynomial struture and ompatsupport, we only have to prove positive de�niteness. Due toFd�d;k = FdIk�bd=2+k+1 = Fd+2k�b(d+2k)=2+1it remains to show that Fd�bd=2+1 is nonnegative for every spae dimensond. We will follow ideas of Askey [1℄ to do this. Let us start with an odddimension d = 2n + 1. Then the Fourier transform is given byr3n+2F2n+1�n+1(r) = Z r0 (r � s)n+1sn+ 12Jn� 12 (s)ds:20



De�ning the right-hand side of the last equation as g(r), we see that g is theonvolution g(r) = R r0 g1(r � s)g2(s)ds of the funtions g1(s) := (s)n+1+ andg2(s) := sn+1=2Jn�1=2(s). Thus its Laplae transform Lg(r) = R10 g(t)e�rtdtis the produt of the Laplae transforms of g1 and g2. These transforms anbe omputed for r > 0 as Lg1(r) = (n+ 1)!rn+2and Lg2(r) n! 2n+1=2rp� (1 + r2)n+1 :This ombines intoLg(r) = 2n+1=2n!(n+ 1)!p� 1rn+1(1 + r2)n+1 :On the other hand, it is well known that the funtion 1�os r has the Laplaetransform 1r(1+r2) . Thus, if p denotes the n-fold onvolution of this funtionwith itself, we get Lp(r) = 1rn+1(1 + r2)n+1 :By the uniqueness of the Laplae transform this leads tog(r) = 2n+1=2n!(n+ 1)!p� p(r);whih is learly nonnegative and not identially zero. For even spae dimen-sion d = 2n we need only to remark that �b 2n2 +1 = �b 2n+12 +1. Hene �b 2n2 +1indues a positive de�nite funtion on IR2n+1 and therefore also on IR2n. Thefuntion �(r) = (1 � r)4+(4r + 1) is nothing but 20�3;1, and hene positivede�nite on IR3. 2The parameter k in the last theorem ontrols the smoothness of the basisfuntion. It an be shown [17℄ that �d;k possesses 2k ontinuous derivativesas a radial funtion on IRd and is of minimal degree under all pieewisepolynomial ompatly supported funtions that are positive de�nite on IRdand whose even extensions to IR are in C2k(IR). A di�erent tehnique forgenerating ompatly supported radial basis funtions is due to Buhmann[4℄, [5℄, [6℄.
21



7 Constrution of general funtionsSo far, we have only dealt with translation{invariant (onditionally) posi-tive de�nite funtions, and most of our work was even restrited to radialfuntions. As a onsequene, we had to work with basis funtions that are(onditionally) positive de�nite on all of IRd. In this setion we want tohoose a more general approah whih allows us to onstrut positive de�-nite funtions on loal domains 
. Consequently, we have to drop Fourierand Laplae transforms, replaing them by expansions into orthogonal sys-tems. As a byprodut, this tehnique allows us to onstrut positive de�nitefuntions on manifolds, in partiular on the sphere.Theorem 7.1 Suppose 
 � IRd is measurable. Let '1; '2; : : : be an or-thonormal basis for L2(
) onsisting of ontinuous and bounded funtions.Suppose that the point evaluation funtionals are linearly independent on thespae span f'j : j 2 INg. Suppose �n is a sequene of positive numberssatisfying 1Xn=1 �nk'nk2L1(
) <1: (16)Then �(x; y) = 1Xn=1 �n'n(x)'n(y)is positive de�nite on 
.Proof: Property (16) ensures that � is well{de�ned and ontinuous. Fur-thermore, we have for � 2 CN and distint x1; : : : ; xN 2 
 thatNXj;k=1�j�k�(xj ; xk) = 1Xn=1 �n ������ NXj=1�j'n(xj)������2 � 0:Sine the point evaluation funtionals are linear independent on the spaespan f'j : j 2 INg, the last expression an only vanish for � = 0. 2Note that the ondition on the point evaluation funtionals is somewhatunnatural for the spae L2(
). It would be more natural to de�ne � tobe positive de�nite, i� for every linear independent set � = f�1; : : : �Ng �L2(
)� and every � 2 CN n f0g the quadrati formNXj;k=1�j�k�xj�yk�(x; y)22



is positive. But we do not want to pursue this topi any further. Instead, wewant to use Theorem 7.1 to give an example of a positive de�nite funtionon a restrited domain.Our example deals with the spae L2[0; 2�℄2 whih has the bounded andontinuous orthogonal basis f�n;k(x1; x2) = ei(nx1+kx2) : n; k 2 ZZg offuntions with a 2�{periodi extension. Thus ondition (16) is satis�ed ifthe positive oeÆients �n;k have the property1Xn;k=�1 �n;k <1:In partiular, the bivariate funtions�1;`(x) = 1 + X(n;k)2ZZ2nf0g 1(n2 + k2)` ei(nx1+kx2)and�2;`(x) = 1 + 1Xn=�1n 6=0 1n2` einx1 + 1Xk=�1k 6=0 1k2` eikx2 + 1Xn=�1n 6=0 1Xk=�1k 6=0 1(nk)2` ei(nx1+kx2)generate positive de�nite 2�{periodi translation{invariant funtions �(x; y) =�(x � y) on [0; 2�℄2 for suÆiently large `. Beause of their tensor produtstruture, the latter an be omputed diretly (see [10℄). Some examples are:�2;1(x) = 2Yj=1 6� �26 + 12(xj � �)2!�2;2(x) = 2Yj=1 360� 7�4360 + �2(xj � �)212 � (xj � �)424 ! :For more examples see [10℄. Of ourse, this tensor produt approah gen-eralizes to arbitrary spae dimension, but the basi tehnique is muh moregeneral. See [14℄ for the relation to positive integral operators.Referenes[1℄ Askey, R., Radial harateristi funtions, MRC tehnial report sum:report no. 1262, University of Wisonsin, 1973.[2℄ Bohner, S., Vorlesungen �uber Fouriershe Integrale, Akademishe Ver-lagsgesellshaft, Leipzig, 1932. 23
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