
Convergence of Planar Curve Interpolation SchemesRobert SchabackAbstractThis note provides convergence orders for a number of paramet-ric interpolation schemes for planar curves. The methods use piece-wise quadratic or cubic polynomials and are globally GC1 or GC2.The data are either of Lagrange or of Hermite type; convergenceorders range between 4 and 6.x1. IntroductionLet f : [0; L]! IR2 be a smooth planar curve, parametrized by arclength.We consider interpolation processes using datafi := f(ti); 0 � i � N; (1)f 0i := f 0(ti); 0 � i � N; (2)�i := �f (ti); 0 � i � N (3)at unknown parameter values0 = t0 < t1 < : : : < tN = L; (4)where �f denotes the curvature of f . We employ the notation Hj for valuesj = 0; 1; 2 to describe the situation of Hermite interpolation of order j; i.e.,when equation (i + 1) is required to hold for 0 � i � j � 2.The interpolants should be piecewise polynomials p of degree k = 2 ork = 3 having breakpoints at the data. The polynomial pieces are written inBernstein{Bezier (BB) representation as pi(t); 1 � i � N; t 2 [0; 1]; betweenf(ti�1) and f(ti). Continuity should be of class GC l with l = 1 or l = 2. Sothe interpolation processes considered here are roughly described by the threenumbers j; k; and l.The error is measured either as in [1] or (equivalently) using the maximumdeviation between f and p taken on lines perpendicular to the lines joiningadjacent interpolation points f(ti�1) and f(ti).Approximation Theory VIC. K. Chui, L. L. Schumaker and J. D. Ward (eds.)Copyright, Academic Press, New York, 1989, 1{ 4.ISBN 0-12-17585-6: All rights of reproduction in any form reserved.



2 Robert SchabackWe consider the limit h ! 0; h := max1�i�N (ti � ti�1); and derive theorder m of the error with respect to h! 0. Table 1 summarizes a number ofresults for quick reference.Hj GC l @p O(hm) Remarks, references, andj l k m additional assumptions2 2 3 6 if �f 6= 0, see [1]2 2 3 4 if �f � 0, see [1]1 1 2 4 if �f 6= 0, see 2.11 1 3 4 see 2.21 2 3 4 see 2.31 2 3 6=4 2) under H2{conditions1), see 33)0 2 2 4 if �f 6= 0, global scheme, see [2]3)0 1 2 4 if �f 6= 0, local scheme, see 2.43)0 1 3 4 see 2.53)0 2 3 4 see 2.63)1) under assumptions of the two cases of cubic H2{interpolation2) the two possible convergence ordersof cubic H2{interpolation3) under assumption of a uniformly bounded mesh ratio,0 < c � hi�1=hi � C <1; hi := ti � ti�1:Table 1. Approximation orders.x2. Fourth{order interpolation methodsThe rest of this short note consists of comments to some of the table en-tries. The proof of the stated convergence orderm always follows the techniqueof deBoor, H�ollig, and Sabin in [1]. Therefore only some hints concerning thede�nition of the methods and certain variations in the standard convergenceproof are necessary.2.1 Quadratic GC1 interpolation to H1 dataJust take the polynomial piece pi(t) as the quadratic polynomial in BBform with control points fi�1; Zi; fi, where Zi is the intersection of tangentsTi�1 and Ti at fi�1 and fi.2.2 Cubic GC1 interpolation to H1 dataLet pi(t) be the cubic polynomial in BB form de�ned by control pointsfi�1; Z+i�1; Z�i ; fi, where the points Z�i and Z+i lie on the \left" and \right" off(ti) on the tangent Ti at f(ti) at a distance of kfi�1�fik=3 and kfi�fi+1k=3to f(ti), respectively.



Planar Curve Interpolation 32.3 Cubic GC2 interpolation to H1 dataFirst use the method of 2.2 and evaluate the curvature (or the mean overthe jump of the curvature) of the GC1 interpolant at the interpolation points.This gives O(h2) estimates for �i that can be used to calculate a GC2 solutionto the corresponding H2 problem, and the standard technique of [1] gives anerror of O(h4).2.4 Quadratic GC1 interpolation to H0 dataThe methods of [2] allow an expansion
(h1; h2)h1 � h2 = 12�1 + 13�2(h1 + h2) +O(h21) +O(h22) (5)for the angle 
(h1; h2) between the chords f(t+h1)�f(t) and f(t+h2)�f(t),where �1 = �f (t) and �2 = �0f (t). Using four successive values of f near t andsubstituting chord length dn := sgnhnkf(t + hn) � f(t)k for the unknownarclength hn between f(t + hn) and f(t) yields two equations of type (5).Solving these will provide an O(h2) estimate for �1 = �f (t) and an O(h)estimate for �2 = �0f (t), if the mesh ratio is uniformly bounded. Putting theseinto the expansion (see [2])�(h) = 12�1h+ 13�2h2 +O(h3) (6)for the angle �(h) between the tangent at f(t) and the chord f(t + h) � f(t)gives an O(h3) approximation to �(h). The estimated H1 data values can beused to calculate a solution along the lines of 2.1. Substitution of arclengthh by chordlength d is feasible as long as the asymptotic behavior d(h) =h + O(h3) is su�cient for the required approximation order. Note that weregard curvature, arclength, chordlength, and angles as signed quantities.2.5 Cubic GC1 interpolation to H0 dataProceed as in 2.4 to get third order accurate data for the H1 problem,and then apply 2.2.2.6 Cubic GC2 interpolation to H0 dataUse 2.5, 2.2, and 2.3 in a suitable way.x3. A \bootstrapping" sixth{order method for H1 dataThe methods of 2.2 and 2.3 gave fourth order accuracy by use of a second{order approximation of curvature values �i. To raise the overall error orderto 6 in a parametrization{independent way, one has to provide fourth{orderaccurate estimates of �i. This can be done using an expansion�(h) = 4Xi=1 �ihi +O(h5) (7)



4 Robert Schabackas in [1], where �(h) is the angle between tangents at f(t) and f(t + h).Furthermore, the curvature �f (t+h) is �0(t+h). Now, for �ve consecutive H1data points around t, four angles of the form �(hi) are given and one is temptedto solve a simple polynomial interpolation problem for data (hi; �(hi)) to getestimates of order O(h5�i) for �i; i = 1; : : : ; 4.Unfortunately, the values hi are unknown arclengths which can no morebe substituted by chordlengths di, because the required accuracy is too high.Thus, we employ a \bootstrapping" technique to gradually raise the accuracyof estimates of hi:Step 1: Set h(1)n := dn; �3 = �4 = 0 and use (7) to calculate approxima-tions �(1)i of order O(h3�i) for i = 1; 2 with the three \nearest " values of fto f(t).Step 2: Put the chordlengths d = dn; n = 1; 2; 3; 4 and the resultingapproximations �(1)i ; i = 1; 2 into the expansionh(d) = d+ d3 �2124 + d4 �1�212 +O(d5) (8)of the arclength h between f(t+ h) and f(t) as a function of the chordlengthd = kf(t+h)�f(t)k. Such an expansion can easily be calculated by REDUCE,taking all nonlinearities into account. This gives new values h(2)n = hn+O(h5),and now the arclength values are accurate enough to apply polynomial inter-polation of (hi; �(hi)) to get estimates of order O(h5�i) for �i; i = 1; : : : ; 4, ifthe mesh ratio is uniformly bounded.The standard error analysis in [1] then yields an overall interpolationerror of O(h6) for f with �f 6= 0, and of O(h4) for f with �f � 0.References1. deBoor, C., K. H�ollig, and M. Sabin, High Accuracy Geometric HermiteInterpolation, Computer-Aided Geom. Design 4 (1987), 269{2782. Schaback, R., Interpolation with piecewise quadratic visually C2 Bezierpolynomials, to appear in Computer-Aided Geom. Design3. Schaback, R., On Global GC2 Convexity Preserving Interpolation, inMathematical Methods in Computer Aided Geometric Design, T. Lycheand L. L. Schumaker (eds.), Academic Press, New York, 1989Special thanks go to Klaus H�ollig for a number of valuable discussions inSeptember 1988.


