Convergence of Planar Curve Interpolation Schemes

Robert Schaback

Abstract

This note provides convergence orders for a number of paramet-
ric interpolation schemes for planar curves. The methods use piece-
wise quadratic or cubic polynomials and are globally GC' or GC?.
The data are either of Lagrange or of Hermite type; convergence
orders range between 4 and 6.

§1. Introduction

Let f : [0, L] — IR? be a smooth planar curve, parametrized by arclength.
We consider interpolation processes using data

fi:=f(ti), 0<i:<N, (1)
fi=f(t), 0<i<N, (2)
ki=kre(t;), 0<i<N (3)

at unknown parameter values
O=tg<ti <...<ty=1L, (4)

where k¢ denotes the curvature of f. We employ the notation Hj for values
J = 0,1.2 to describe the situation of Hermite interpolation of order j; i.e.,
when equation (¢ + 1) is required to hold for 0 <7 < j < 2.

The interpolants should be piecewise polynomials p of degree k = 2 or
k = 3 having breakpoints at the data. The polynomial pieces are written in
Bernstein—Bezier (BB) representation as p;(t), 1 <i < N, t € [0, 1], between
f(ti—1) and f(¢;). Continuity should be of class GC! with [ =1 or [ = 2. So
the interpolation processes considered here are roughly described by the three
numbers 7, k, and [.

The error is measured either as in [1] or (equivalently) using the maximum
deviation between f and p taken on lines perpendicular to the lines joining
adjacent interpolation points f(#,—1) and f(t;).
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We consider the limit  — 0,k := maxi<j<n(t; — t;—1), and derive the
order m of the error with respect to h — 0. Table 1 summarizes a number of
results for quick reference.

H

O(h™) Remarks, references, and
additional assumptions
if Ky # 0, see [1]

if Ky >0, see [1]

if kp#0, see 2.1

see 2.2

see 2.3

6/42) under H2-conditions'), see 3%)

4 if Ky # 0, global scheme, see [2]?)
if kK # 0, local scheme, see 2.4%)
see 2.5%)
see 2.6%)
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under assumptions of the two cases of cubic H2-interpolation

the two possible convergence orders
of cubic H2-interpolation

) under assumption of a uniformly bounded mesh ratio,
O0<e< hi—l/hi <C< o0, hy i=t; —t;_1.

Table 1. Approximation orders.

§2. Fourth—order interpolation methods

The rest of this short note consists of comments to some of the table en-
tries. The proof of the stated convergence order m always follows the technique
of deBoor, Héllig, and Sabin in [1]. Therefore only some hints concerning the
definition of the methods and certain variations in the standard convergence
proof are necessary.

2.1 Quadratic GC'! interpolation to H1 data

Just take the polynomial piece p;(t) as the quadratic polynomial in BB
form with control points f;_1, Z;, f;, where Z; is the intersection of tangents

T;—1 and T; at f;_; and f;.

2.2 Cubic GC! interpolation to H1 data

Let p;(t) be the cubic polynomial in BB form defined by control points
fi—1, Z;"_l, Z., fi, where the points Z,” and Z;" lie on the “left” and “right” of
f(t;) on the tangent T; at f(¢;) at a distance of || fi—1 — fi||/3 and || f; — fix1]|/3
to f(t;), respectively.
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2.3 Cubic G(C? interpolation to H1 data

First use the method of 2.2 and evaluate the curvature (or the mean over
the jump of the curvature) of the GC' interpolant at the interpolation points.
This gives O(h?) estimates for x; that can be used to calculate a GC? solution
to the corresponding H2 problem, and the standard technique of [1] gives an
error of O(h*).

2.4 Quadratic GC! interpolation to H0 data

The methods of [2] allow an expansion

White) Ly Ly he) + 0002 + 0(R2) (5)
Iy — ho 2 3

for the angle v(hq, hy) between the chords f(t+hy)— f(t) and f(t+ ha)— f(1),
where 6 = k¢(t) and 6, = /ilf(t). Using four successive values of f near t and
substituting chord length d,, := sgnh,||f(t + hn) — f(t)| for the unknown
arclength h, between f(t 4+ h,) and f(t) yields two equations of type (5).
Solving these will provide an O(h?) estimate for 6; = ky(t) and an O(h)
estimate for 6, = x'(1), if the mesh ratio is uniformly bounded. Putting these
into the expansion (see [2])

a(h) = %M + %ezfﬂ +O(h%) (6)
for the angle a(h) between the tangent at f(¢) and the chord f(t + h) — f(t)
gives an O(h*) approximation to a(h). The estimated H1 data values can be
used to calculate a solution along the lines of 2.1. Substitution of arclength
h by chordlength d is feasible as long as the asymptotic behavior d(h) =
h + O(h?) is sufficient for the required approximation order. Note that we
regard curvature, arclength, chordlength, and angles as signed quantities.

2.5 Cubic GC' interpolation to H0 data
Proceed as in 2.4 to get third order accurate data for the H1 problem,
and then apply 2.2.

2.6 Cubic G(C? interpolation to H0 data
Use 2.5, 2.2, and 2.3 in a suitable way.

63. A “bootstrapping” sixth—order method for H1 data

The methods of 2.2 and 2.3 gave fourth order accuracy by use of a second—
order approximation of curvature values x;. To raise the overall error order
to 6 in a parametrization—independent way, one has to provide fourth—order
accurate estimates of x;. This can be done using an expansion

0(h) =Y 6:h' + O(1°) (7)

=1
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as in [1], where 6(h) is the angle between tangents at f(t) and f(t + h).
Furthermore, the curvature s s(t4h)is (¢t + h). Now, for five consecutive H1
data points around ¢, four angles of the form 6(h; ) are given and one is tempted
to solve a simple polynomial interpolation problem for data (h;,0(h;)) to get
estimates of order O(h°~%) for 6;, i = 1,...,4.

Unfortunately, the values h; are unknown arclengths which can no more
be substituted by chordlengths d;, because the required accuracy is too high.
Thus, we employ a “bootstrapping” technique to gradually raise the accuracy
of estimates of h;:

Step 1: Set B = dpn, 03 = 64 =0 and use (7) to calculate approxima-
tions 951) of order O(h37*) for i = 1,2 with the three “nearest ” values of f
to f(t).

Step 2: Put the chordlengths d = d,,, n = 1,2,3,4 and the resulting

approximations 951), 1 = 1,2 into the expansion

6% 616

h(d)y=d+d* L +d* d’
(d) = d+d* L+ a 212 4 o) (8)

of the arclength h between f(t+ ) and f(¢) as a function of the chordlength
d =|f(t+h)—f(t)||. Such an expansion can easily be calculated by REDUCE,

taking all nonlinearities into account. This gives new values hﬁf) = hn+O(R),
and now the arclength values are accurate enough to apply polynomial inter-
polation of (h;,8(h;)) to get estimates of order O(h*~") for 6;, i = 1,...,4, if
the mesh ratio is uniformly bounded.

The standard error analysis in [1] then yields an overall interpolation

error of O(h®) for f with ky # 0, and of O(h*) for f with x; > 0.
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