Comparison of Radial Basis Function Interpolants

Robert Schaback

Abstract

This paper compares radial basis function interpolants on differ-
ent spaces. The spaces are generated by other radial basis functions,
and comparison is done via an explicit representation of the norm of
the error functional. The results pose some new questions for further
research.

§1. Introduction

We consider interpolation of real-valued functions f defined on a set
QC IRd, d > 1. These functions are evaluated on a set X := {xy,...,xn} of
Nx > 1 pairwise distinct points xq1,...,on, In Q. N > 2, d > 2 and Q C
R? are given with € containing at least an interior point, it is well known that
there is no N-dimensional space of continuous functions on {2 that contains a
unique interpolant for every f and every set X = {xy,...,an,} C 2 C R*
consisting of N = Nx data points.

Thus the family of interpolants must necessarily depend on X. This can
easily be achieved by using translates ®(z — 2;) of a single continuous real-
valued function ® defined on R, and further simplification is obtained by
letting ® be radially symmetric, i.e.:

®(z) := o([[x[l2) (1)

with a continuous real-valued function ¢ on Ry and the Ly norm || - ||2.
Interpolants sy to f can then be constructed via the representation

sp(v) = Z%‘I’(l‘ —xj), (2)
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where the coefficients aq,...,an, € R solve the linear system
Nx
flag) = ZOéj(I)(l'k —z;), 1<k<Nx,
1=1

provided that the symmetric Nx x Nx matrix
Dy —a1) ... Plag—any)
Ao x 1= ; i ;
Dlany —x1) ... Plany —any)
is nonsingular. This is the simplest form of radial basis function interpolation,
but for a variety of choices of ® it is necessary to add polynomials to the
interpolant (2).
So let qu denote the space of d-variate polynomials of order not exceeding

¢, and let the polynomials p1, ..., pg be a basis of qu in R?. The Q additional
degrees of freedom of the extended representation

Nx Q
sp(a) = Z%‘I’(l‘ — )+ > Bepelx) (3)

are compensated by the () additional equations

Nx
D ajpe(r;) =0, 1<L<Q. (4)
j=1
With the matrix
Pl(l'l) Pl(l'Nx)
Pl .= : - :
po(r1) ... polrny)

we can write the interpolation conditions
Nx Q
flag) = a;®(zx — ;) + Y Bepe(wr), 1<k < Ny
J=1 =1

together with (4) as a linear system

(i ) (3)=(%), ”

where the data from f form a vector fx := (f(x1),..., f(zny))T. Solvability
of this system depends on two conditions. First, the matrix Ag x should be
nonsingular on the vectors a satisfying (4). Second, polynomials in qu should
be uniquely determined by their values on X, i.e.:

Ifpe qu satisfies p(x;) = 0 for all x; € X then p = 0. (6)

The discussion of the first condition is simplified if nonsingularity is replaced
by positive definiteness:
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Definition 1. A function ® : R® — R with ®(—x) = ®(x) is conditionally
positive definite of order ¢ on IR?, if for all sets X = {z1,...,an, } C R?
with Nx distinct points and all vectors o := (ay,...,an,) € RY with (4)
the quadratic form

Nx
Z ajor®(x; —ay)

Jk=1
attains nonnegative values and vanishes only if o = 0.

In a fundamental paper C.A. Micchelli [14] related the conditional pos-
itive definiteness of functions @ of the form (1) to complete monotonicity
of derivatives of ¢, and this technique allows to prove conditional positive
definiteness for a variety of radial basis functions. We list a few examples:

Multiquadrics ¢(r) = (2 +1r2)%/2 for B € Rs_q \ 2Z and 2¢ > 3 [8],
Thin-plate splines ¢(r) = r? for 3 € Rso \ 2Z and 2¢ > 3 [3, 4, 5],
Thin-plate splines ¢(r) = (—=1)%/2T1+-8 logr for B € 2IN, 2¢ > 3 [3, 4, 5],
Gaussians ¢(r) = e~ for a > 0 and g > 0.

Our main purpose here is to study the error f(z) — s¢(x) of different
radial basis function interpolants on different spaces. Curiously enough, each
conditionally positive definite function ® does not only define an interpolation
method, but also defines an inner-product space Fg of functions. We describe
the construction of such a space in the next section and introduce the ex-
ponentially decaying positive definite radial basis functions that generate the
Sobolew spaces Wzk(IRd). Then we represent the norm of the error functional
of a general linear quasi-interpolation method on such a space by a numeri-
cally accessible power function. Finally, we evaluate the power functions that
arise from interpolation with a radial basis function ®; on a space Fg, de-
fined by a different radial basis function ®g. Inspection of the results leads to
a number of open questions for further research.

§2. Spaces Generated By Radial Basis Functions

We assume the radial basis function ® to be conditionally positive defi-
nite of order ¢ on IR? in the sense of Definition 1, and we now construct an
associated function space Fg using ideas from Madych and Nelson [11].

Let Q C R? be given, and let V be the set of all pairs (o, X') with the
following properties:

X ={z1,...,2n,} CQCRY, [X| =Ny
(o, X) satisfies (4), and
X satisfies (6).

To avoid pathological cases we assume () to be large enough to contain at
least one set X satisfying (6), to make sure that V' is non-empty. Then we
define the set

Fo =P + {fax |(a,X) €V} (7)
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with functions
fo,x(x Zoz] (r —zj), (0, X) eV (8)

defined on all of R?. Note that V depends on €, and that this fact induces
a subtle dependence of Fg on {2 which still is a mystery except for the case
Q = RY, treated in detail by Madych and Nelson in [12]. Since Fg contains all
finite linear combinations of translates of ®(a) with coefficients satisfying (4)
and X satisfying (6), the space Fg and its closures under different topologies
are very natural candidates to study radial basis function approximation and
interpolation. Here, we avoid to take closures, because they turn out to be
irrelevant to our purposes. We rather investigate (7) as it is via the following

Lemma 1. The sum in (7) is direct, and Fg is a vector space over IR. Fur-
thermore, each function f € Fg has a unique representation

f=p+ fax with (0, X)€V, pe P/

Proof: Assume that the function (8) is a polynomial p € qu. Then (4) implies

Nx
0= Zakp(l’k)
k=1
Nx
— Z OszszI)(x]‘ — l‘k)

Jk=1
and « must vanish because @ is conditionally positive definite of order g.
Let two functions fo x and fgy with (o, X), (4,Y) € V be given. With-
out loss of generality we assume
W:=XUY = {w,...,0uNy }
o2 Z:=XNY =A{w,...,wn,}
= {xlv"'vaZ} = {ylv"'vyNZ}v

where all of the sets X, Y, Z, and Wcontain pairwise distinct points. Then
we can represent the sum of f, x and fgy as

NZ NX
Z(O‘j‘|’5j)q)(x_wj)‘|‘ Z a;®(r — ;) Z Bi®(x —y;).
J=1 J=Nz+1 J=Nz+1

On all polynomials p € qu we get

NZ NX
Z(O‘j + Bi)p(w;) + Z a;p(a;) Z Bip(y;)
Jj=1 J=Nz+1 J=Nz+1

Zoqp(xj)Jr > agplei) + ) Biplyi) + Y Biplyy) =

j=Nz+1 7=1 j=Ngz+1
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which proves that the sum of f, x and f3y is representable in the form f., w
with a suitable vector v € R™ such that (v,W) € V. The last assertion
follows from a similar decomposition argument applied to the difference of
two representations of a function f € F. B

On the space Fg in (7) we now define the bilinear form

Nx Ny

(P + faxsr+ foy)e == DY aiBu®(x; — yi), (9)

j=1k=1

where p and r are arbitrary polynomials from qu. Lemma 1 makes sure that
this definition is consistent. Of course one can complete the pre-Hilbert space
F@/qu into a rather interesting space of (generalized) functions on R?, but

we refer the reader to Madych and Nelson [11,12,13] for details which are not
relevant here.

63. Radial Basis Functions for Sobolew Seminorms

We have seen that any conditionally positive definite function defines an
inner product on a space of functions on IR?. Conversely, one can ask for the
radial basis functions that possibly generate a given inner product. The most
prominent example would be the inner products generating Sobolew spaces
Wzk(IRd) of functions having generalized derivatives up to order k on R¢.

Theorem 1. For k > d/2 the inner product of Sobolew space WF(IR?) is
given by (9) and (1) with the positive definite function

QS(T) = %Kk_d/z(Qﬂ'T) . Tk_d/z (10)

defined via the Macdonalds (or spherical Bessel) function K.
Proof: The inner product of W§(IR?) can be written in the form

(Fhp ey = o FEITN1+ [l
using Fourier transforms (see Yosida [23], p. 155, eq. (30)). Now if

B(-)(w) = (14 [l2)~*, (11)

and if the inverse Fourier transform can be taken, then

Nx Ny

(fa,x, fa,y)e = Zzazﬂy T —Yj),

{=13=1
o Nx Ny
= (27r)_d/ d@(-)(w)Zagei”'wZﬂje_iyj""dw
R =1 =1

= 2n) [ s )0+ [l s
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coincides with the inner product in Sobolew space. For k > d/2 the equation
(11) has the solution (10). To prove this, combine p. 21 of Oberhettinger [16]
with p. 158 of Stein and Weiss [19]. The radial basis function in (10) decays
exponentially at infinity, behaves like a polynomial of degree 2k — d near zero,
and 1s conditionally positive definite of order zero. See e.g.: Abramowitz and
Stegun [1] for properties of Bessel functions. For spaces of odd dimension d, the
radial basis function (10) can be calculated recursively in terms of monomials
and the exponential function. In even dimensions the recursion starts at Bessel
functions of index 0 and 1, which are readily available in any software package.

At this point we do not comment on the possible closures of Fg for various
choices of 2. An additional density argument will be needed for the proof of
Fp = WF(Q), which may be difficult for peculiar cases, e.g.,  being finite,
compact, or of dimension less that d.

84. Error of Quasi-Interpolants on Radial Function Spaces

Now for any (A, Y) € V we can define a linear functional
Ny
v (F) =Y Niflyy)
j=1

that vanishes on qu by (4) and satisfies

Ny Nx
oy (fox) =D Y Nar®(zr —y;)
j=1k=1 (12)
= (fay, fa,x)o
= Ya,x(fry)
for all (a, X) € V. Thus ¢,y is a continuous linear functional on Fp with
respect to the seminorm | - |¢ induced by the bilinear form (-,-)g. Its corre-
sponding norm is
lerylle =fayle,

because its representer via the bilinear form is fx y. The square of this norm
can be explicitly evaluated as

leavlls = 1Ayls
Ny Ny, (13)
= ZZx\j/\kCI)(yk —y;j)

Now we specialize ¢y to be the error functional of some quasi-interpolant

Spax(z) = Zui(x)f(xi) (14)
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that depends only on the data of a function f on a set X = {xy,...,2n,}
and which is exact on qu. Here, the point z is fixed in 2\ X and the values
ur(x),...,uny () are just real numbers. We set Y := X U {z} and \ :=
(1, —uq(x),...,—uny(2)) € RV to get (A, Y) € V from the exactness of
the quasi-interpolant (14) on qu. Then we use (13) to derive the error bound

(f(2) = spux())” <|flG ( - QZU (2 — i)

Nx Nx

+ > uwiw)uj(e)®(x; — ;)

i=1j=1

for all f € Fg. We call

Px yo(z) = ( — QZU (v — ;)

1
Ny 1/2 (15)
+ > wilw)u(x)®(w; — )
i j=1
the power function of the quasi-interpolant (14), because it precisely describes

the quality of the quasi-interpolant at x. This is reminiscent of the notion of
a power function of a statistical decision function.

Theorem 2. Let the radial basis function ® be conditionally positive definite
of order ¢ on R? in the sense of Definition 1. Then any quasi-interpolant (14)
that is exact on qu satisfies

wp H@) = srax(@)
fEFg\PY | fle

= Px ya(2). (16)

Discussion:

1. The sup in (16) can be extended to the Hilbert space completion of Fg
without change of Px , (x). This is why we do not care about comple-
tions in this paper.

2. Though Fs will depend on the domain €2, the right-hand side of (16) is
independent of €, which is a rather startling fact at first sight. It can
be explained by the observation that the sup is attained for the special

function

fely) = ®(x —y) Zu )
which is in Fg and its completion Whenever Y := X U{z} is contained
in €.

3. The expression (15) for the power function Px , ¢(z) can be numerically
evaluated at any = where the quasi-interpolant is defined. This allows a
convenient numerical comparison between different quasi-interpolants on
the same space Fgp. We shall do this in section 6.
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65. Optimal Interpolants on Radial Function Spaces

Following Wu and Schaback [22] we now optimize the function (15) with
respect to the Ny real variables uyi(x),...,uny(2) under the constraints of
exactness on qu, which read as

pe(z) = i%(l‘)m(%% 1<0<Q.

This yields a finite-dimensional convex optimization problem with linear con-

straints, and the solution vector uj(z),...,u}, (z) with Lagrange multipliers
vi(2),...,v5(x) is characterized by the necessary and sufficient optimality
conditions

(o 5 () = (5) -

Re) = (B(x — 21),.... 2(x — any )", S(@) = (pa(e),....po(e)"

with vectors

and matrices as in (5). Thus (17) is uniquely solvable for all z € R, and
since for + = w; the right-hand side coincides with the j-th column of the
coefficient matrix, we get uf(x;) = ¢;;. This proves

Theorem 3. Among all linear quasi-interpolants of the form (14) that are
exact on qu and have data points in X, the radial basis function interpolation
with centers in X is pointwise optimal with respect to minimization of the

function (16).

Classical spline theory would minimize the seminorm induced by (9) un-
der all interpolants in the space Fg. This variational approach was used in
the radial basis function context by Duchon [3,4,5] and Madych and Nelson
[11,12,13]. It is

a) a minimization of a “smoothness functional”

b) on an infinite-dimensional space

c¢) under all interpolants in the space,

while the approach of Wu and Schaback [22] is

a) a minimization of the norm of the pointwise error functional

b) on a finite-dimensional space

¢) under all quasi-interpolants that need not necessarily lie in the space.
Under general conditions these two approaches are not equivalent. To
give a short account of the relation between the two problems, we include a

simple proof of

Theorem 4. The optimal radial basis function interpolant in the sense of
Theorem 3 is also optimal with respect to the minimization of the seminorm
induced by (9) under all interpolants in the space Fg.
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Proof: The optimal interpolant s¢ x to a function f with data on X which
minimizes the seminorm induced by (9) is characterized by the usual interpo-
lation conditions and the property

(sf.x,9)e = (sg,x, fay)e =0

for all ¢ = p+ fa,y € Fo with (A\,Y) € V that vanish on X. It suffices to
show that this orthogonality condition is satisfied by the interpolant s% =
foar,x + p* of the form (3) with (a*,X) € V. But with (12) we easily get

(57 x,9)e = (s x: fay)e
= (far x, fry)e
= @a*,x(fAy)
= Yar x(9)
=0.

|

We note that Laurent [10] has a beautiful result that guarantees equiv-
alence of the two variational approaches considered here, provided that they
both have solutions and that they are based on inner-product spaces. Going
further back, the minimization of the norm of the representer of a linear func-
tional on a Hilbert space dates seems to have been started by Golomb and
Weinberger [7] and was carried forth by a series of others, including de Boor
and Lynch [2], Sard [17], Larkin [9], and Dyn [6]. Somewhat related to this
approach is the theory of optimal recovery, as given by Micchelli and Rivlin
in [15].

§6. Numerical Results

We now perform numerical comparisons between different radial basis
function interpolations on different spaces. Each space will be defined via a
radial basis function ®g, and each interpolation will be carried out with a ra-
dial basis function ®;, where the corresponding orders of conditional positive
definiteness are ¢s and ¢y, respectively.

We do not compare the interpolants themselves, but evaluate the func-
tions (15). This will require g5 > ¢g, because the exactness order of the inter-
polant must at least equal the order of positive definiteness of the radial basis
function defining the space (see the hypothesis of Theorem 2). Otherwise the
interpolation error at = simply is not a continuous linear functional on the
space in question. Tables 1 and 2 thus will have no entries in case ¢; < ¢s.

If &5 = @7, there will be no better interpolant on Fg, because of Theo-
rem 3. We underlined these cases in Tables 1 and 2.

The numerical results were obtained in space dimension d = 1 for simplic-
ity. The sets X contained 2n points in [—1,4+1] with spacing h :=2/(2n — 1),
and we set © = 0 to evaluate (15). Table 2 contains the actual values of (15)
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for n = 50 being fixed, while Table 1 gives approximate error orders prs for
interpolation with ®; in Fg, in the sense that (15) behaves like O(hP’$s) for
h — 0.

Spaces = | Mq iMq r® W3 rl Wy
Interpolations || |[¢gs =1¢s =0¢gs =2¢s=0¢s =1¢gs =0

Mq,qgr=1] o 00 - 1.5 0.5 0.5
Mg, gy = 2] o0 00 1.5 1.5 0.5 0.5
i.Mq, s =0] - o) - 1.5 - 0.5
1.Mq,qr=1] o 00 - 1.5 0.5 0.5

1.Mq, gy =2| o0 00 1.5 1.5 0.5 0.5
Pogr=2 40 40 15 15 05 05
W2 g =2 40 40 15 15 05 0.5

Wi, qr=0| - 4.0 : 1.5 : 0.5

rlgr=1] 2 2 - 15 05 05
Wl qg=1| 2 2 - 1.5 05 0.5
Wi qr=0] - 2 - 15 - 05

Table 1. Estimated convergence orders.

Mq = Multiquadrics with 8 =1/2
1.Mq = inverse Multiquadrics, f = —1/2

WF = Sobolew function
Spaces = | Mq 1.Mq 3 W3 rl Wy
Interpolations || | gs =1 ¢gs=0 ¢gs=2 ¢qs=0 g¢gs=1 qgs=0
Mq, ¢r = 1]0.002178 0.061979 - 0.001675 0.155065 0.206437
Mq, ¢r = 210.002178 0.061979 0.003082 0.001675 0.155065 0.206437
1.Mq, ¢r =0 - 0.061883 - 0.001665 - 0.205494
1.Mq, ¢r = 110.002182 0.061883 - 0.001665 0.154357 0.205494

1.Mq, ¢r = 210.002182 0.061833 0.003064 0.001665 0.154357 0.205494
r3 qr = 20.002672 0.070031 0.002986 0.001623 0.148943 0.198287
W3, qr = 2]0.002672 0.070038 0.002986 0.001623 0.148941 0.198284

W2, ¢qr=0| - 0070038 -  0.001623 -  0.198284

vl qr =1/0.010857 0.182091 - 0.002215 0.142857 0.190178
W3, q; =1/0.010893 0.182285 -  0.002230 0.148941 0.190178
Wl q =0 - 0182285 -  0.002241 -  0.190178

Table 2. Power function value at zero for 50 data points.

There are some remarkable observations to be made from the tables:

1. Quasi-optimal convergence: Nonoptimal interpolation processes with ra-
dial basis functions ®; on spaces defined by radial basis functions ®g #
&1 seem to achieve the order of the optimal interpolation on Fg, if the
optimal orders satisfy prr > pss. That is, radial basis function inter-
polants that are optimal on small and very smooth spaces apparently are
quasi-optimal on larger and less smooth spaces.
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2. Superconvergence: On even smoother spaces than their native space, a
radial basis function interpolant may show an even better behavior. That
is, nonoptimal interpolation processes with radial basis functions ®; on
spaces defined by radial basis functions ®¢ # ®; achieve a higher order
than their optimal order on their basic space, if prr < pss.

3. There i1s hardly any difference induced by variations of the polynomial
orders ¢r and ¢gs. The only visible deviation is in the last two entries of
the W3 column of Table 2.

4. The values of (15) are astonishingly close to each other and to the optimal
value.

The first two observations can be commented within the context of clas-
sical one-dimensional natural splines, which also solve a variational problem
and which are a special case of the theory of this paper. On the Sobolew space
HE¥[—1,41] with seminorm |f|? := || f®||2, the natural polynomial splines of
order 2k are optimal and have the optimal error order & —1/2, which is a sat-
uration order (see Schumaker [18]). Natural splines of higher order 2n > 2k
attain this order on HY[—1,41], too, and are quasi-optimal in the sense of
the first observation. On the space C?*[a, b], however, natural splines of order
2k will have an error order 2k in the interior of the domain, and this phe-
nomenon was called superconvergence in the second observation. Since 2k is a
saturation order on C?¥[a, b], no improvement is possible in this special case.
These facts were proven by Swartz and Varga in [20] for the univariate spline
case, but there is no proof so far for multivariate splines or general radial
basis functions. This raises the question of saturation orders and saturation
spaces for general cases of radial basis function interpolation. The underlined
optimal orders py;r for &5 = ®; were theoretically proven by Madych and
Nelson [11,12,13] and Wu and Schaback [22].

Of course, the above experiments were only done in the interior of the
domain and for uniform meshes. Performance may be quite different if these
assumptions are not satisfied. The classical spline case teaches us that the
behavior near the boundary will not show superconvergence, and there is
some theoretical investigation under way that suggests quasi-optimality to be
dependent on asymptotically quasi-uniform meshes.
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