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Abstract This is an analysis of the COVID-19 pandemic by comparably simple

mathematical and numerical methods. The final goal is to predict the peak of the

epidemic outbreak per country with a reliable technique. The difference to other

modelling approaches is to stay extremely close to the available data, using as few

hypotheses and parameters as possible.

For the convenience of readers, the basic notions of modelling epidemics are

collected first, focusing on the standard SIR model. Proofs of various properties of the

model are included. But such models are not directly compatible with available data.

Therefore a special variation of a SIR model is presented that directly works with the

data provided by the Johns Hopkins University. It allows to monitor the registered

part of the pandemic, but is unable to deal with the hidden part. To reconstruct data

for the unregistered Infected, a second model uses current experimental values of the

infection fatality rate and a data-driven estimation of a specific form of the recovery

rate. All other ingredients are data-driven as well. This model allows predictions of

infection peaks.

Various examples of predictions are provided for illustration. They show what

countries have to face that are still expecting their infection peak. Running the model

on earlier data shows how closely the predictions follow the transition from an un-

controlled outbreak to the mitigation situation by non-pharmaceutical interventions

like contact restrictions.
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1 Introduction and Overview

During an epidemic outbreak like COVID-19, everybody wants to know how hard

the impact will be. In particular:

– What is the health risk for me, my family, our friends, the city, the country, and

the world?

– Is the health system prepared properly?

– Should households fill up their reserves in time?

This is a situation that asks for mathematics, like in the old times when mathemati-

cians were needed to predict floods or solstices. Such predictions should be based on

data and arguments, and they should provide well-supported suggestions for what to

do. To understand the process and to make predictions, it should be modelled, and

the model should be computable. Then predictions will be possible, and reality will

decide later whether the model and the predictions were useful. Many models are

possible, and the approach presented here is just one of them. The specific goal is to

stay as close as possible to the available data, but it turns out that the available data

are not directly usable for the standard models that give the basic understanding. To

this end, two extensions to the standard SIR model are developed that get closer to

the available data and finally are able to make data-driven predictions.

The beginning is made in section 2 with an introduction to standard terms like Ba-

sic Reproduction Number, Herd Immunity Threshold, and Doubling Time, together

with some critical remarks on their use in the media. These notions are based on

the standard SIR model for epidemics that is treated in quite some detail, including

proofs for most of the mathematical properties. Experts can skip over this completely.

Readers interested in the predictions should jump right away to section 5. For sim-

plicity, the presentation ignores all delay-related issues like incubation period and

serial interval.

To bridge the gap between model and data, Section 3 describes the Johns Hopkins

data source with its limitations and flaws, and then presents a variation of a SIR

model that can be applied directly to the data. It allows to estimate basic parameters,

including the Basic Reproduction Number. But since the Johns Hopkins data provide

no information about the unregistered cases and the Susceptibles, the model cannot

yield reliable predictions of peaks of epidemics.

Therefore section 4 combines the data-compatible model of section 3 with a SIR

model dealing with the unknown Susceptibles and the unregistered Infectious. This

needs extra parameters that must be extracted from the literature. The first is the

infection fatality rate, as provided e.g. by an der Heiden/Buchholz [10], Streeck et al.

[24], Verity et al. [25]. Section 4.3.1 pairs it with the case fatality rate and shows how

the latter can be deduced from the Johns Hopkins data. Like in Bommer/Vollmer [1],

their combination gives a detection rate for the confirmed cases.

Section 4.4 introduces the second additional parameter: a recovery rate that can

be directly used in the model and estimated from the infection fatality rate and the

observable case fatality and case death rates. However, this parameter is not needed

for prediction, just for determination of the unknown variables from the known data

as long as the latter are available.
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Then section 5 combines all of this into a larger model that makes predictions

under the assumption that there are no further changes to the parameters by political

action. It estimates the parameters of a full SIR model from the available Johns-

Hopkins data by the techniques of section 4, using two additional technical parame-

ters: the number of days used backwards for estimation of constants, and the number

of days in which recovery or death can be expected on average, for estimation of case

fatality and recovery rates. This is where time delays enter, but not into the model,

only into internal estimation procedures. After the data-driven estimation of these pa-

rameters, the prediction uses only the infection fatality rate. All other ingredients are

derived from the Johns Hopkins data.

Results are presented in section 5. Given the large uncertainties in the Johns-

Hopkins data, the predictions are rather plausible. However, reality will have the final

word on this prediction model.

The paper closes with a summary and a list of open problems.

2 Classical SIR Modelling

This contains the basic notions for modelling epidemics, defined and explained in

mathematical terms. In particular, there will be a rigid mathematical underpinning of

what is precisely meant when media talk about

– flattening the epidemic outbreak (mitigation),

– basic reproduction number,

– Herd Immunity Threshold, and

– doubling time,

pointing out certain abuses of these notions. This will not work without calculus,

but things were kept as simple as possible. Readers from outside the mathematics

community should take the opportunity to brush up their calculus knowledge. Experts

should go over to section 3.

2.1 The Model

The simplest standard SIR model of epidemics, due to Kermack-McKendrick [15] in

1927 and easily retrievable from the Wikipedia [27], deals with three variables

Susceptible (S), Infectious (I), and Removed (R).

The Removed cannot infect anybody anymore, being either dead or immune. This is

the viewpoint of bacteria or viruses. The difference between death and immunity of

subjects is totally irrelevant for them: they cannot proliferate anymore in both cases.

The SIR model cannot say anything about death rates of persons.

The Susceptible are not yet infected and not immune, while the Infectious can in-

fect Susceptibles. Individuals move by infection from S to I, and by death or healing

from I to R. The three classes S, I, and R are disjoint and add up to a fixed total pop-

ulation count N = S+ I+R. All of these are ideally assumed to be smooth functions
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of time t, and satisfy the differential equations

Ṡ = −β
S

N
I,

İ = +β
S

N
I − γI,

Ṙ = γI.

(1)

where the dot stands for the time derivative, and where β and γ are positive param-

eters. The product S
N

I models the probability that an Infectious meets a Susceptible

and is actually infected.

Managing an SIR epidemic means modifying the constants β and γ . This is why

one should see the parameters as control variables, and we shall treat them even as

time series from section 3 on.

Note further that the Removed of the SIR model are not the Recovered of the

Johns Hopkins data that we treat later, and the SIR model does not account for the

Confirmed counted there. Similarly, there is no direct relation to the data published

by the Robert Koch Institute. It is a major problem to match models with the avail-

able data, and we shall explain the latter to some detail in section 3. The inventors

Kendrick and McKermack fitted their model already in 1927 [15] to data from the

plague in Bombay 1905-1906.

2.2 Other Models

In many publications concerning COVID-19 (e.g. an der Heiden/Buchholz [10], Dan-

dekar/Barbasthatis [2], De Brouwer et al. [3], Friston et al. [7], Khailaie et al. [16],

Kucharski et al. [17], Maier/Brockmann [18]), the SIR model is extended by Exposed

E that are infected, but not (yet) infectious. This introduces an additional parameter

and would require dealing with a latency delay properly. We avoid this complication

to keep the model as simple as possible. Note that there are extensions of SIR models

with 14 to 21 parameters, e.g. Friston et al. [7], Giordano et al. [8], Khailaie et al.

[16]. Fitting model parameters in the above papers is partially done numerically and

partially by Bayesian approaches using Markov chain sampling of prior distributions.

Here, we avoid fitting and time delays as far as possible.

Conceptually different are the agent-based model that is used by Ferguson et

al. [6] for parameter estimation, and the approach of Mohring et al. [19] working

consistently with time delays.

2.3 Simple Properties of the SIR Model

Since Ṅ = Ṡ+ İ+ Ṙ = 0 holds in (1), the equation N = S+ I +R is kept valid at all

times. The term β S
N

I moves Susceptibles to Infectious, while γI moves Infectious

to Removed. Thus β represents an infection rate while the removal rate γ accounts

for either healing or fatality after infection, i.e. immunity. Political decisions about
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reducing contact probabilities will affect β , while γ resembles the balance between

the medical aggressivity of the infection and the quality of the health care system.

As long as the Infectious I are positive, the Susceptibles S are decreasing, while

the Removed R are increasing. Excluding the trivial case of zero Infectious from now

on, the Removed and the Susceptible will be strictly monotonic. Therefore we can

use them to re-parameterise the model at certain places.

The SIR model is not really dependent on the total population N. Moreover, if we

scale time by τ := t · γ and go over to relative quantities

s(τ) :=
S(τ/γ)

N
,

r(τ) :=
R(τ/γ)

N
,

i(τ) :=
I(τ/γ)

N
,

we get the new system

s′(τ) =
ds

dτ
= −

β

γ
s(τ)i(τ) = −R0s(τ)i(τ)

i′(τ) =
di

dτ
=

(

β

γ
s(τ)− 1

)

i(τ) = (R0s(τ)− 1) i(τ)

r′(τ) =
dr

dτ
= i(τ)

(2)

only containing the Basic Reproduction Number

R0 :=
β

γ
(3)

that will turn out to be of central importance. Both β and γ vary under a change of

time scale in (1), but the basic reproduction number is invariant. Physically, β and γ
have the dimension time−1, but R0 = β/γ and the new “time” parameter τ in (2) are

dimensionless. Another interpretation of (2) is that after a time scale one can assume

γ = 1 and R0 = β . We call τ the unit removal parameter, because its unit can be

seen as the average time needed to get removed, i.e. either dead or immune. We use

a prime to denote derivatives with respect to τ . But in all later sections that make

real-world interpretations, we have to use real time, and then we shall go back to (1).

A standard mathematical trick is to divide the first equation by the third to get

ds

dr
= −R0s,

s(r) = s(r(0))exp(−R0(r− r(0))).

(4)

We shall use (4) in section 2.11 to study the long-term behaviour of solutions. The

introduction of (4) is a typical pitfall for mathematics: it is a nice theoretical simpli-

fication, but it obscures the most interesting practical aspect, in this case the fraction

i of infectious persons in the population. The same holds for the simplification by

setting dτ = γ I
N

dt that is ignored here, leaving it to interested readers.
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Fig. 1 Some typical SIR system solutions, relative to the total population. See the explanation in section

2.4. The peaked curves for the Infectious are “flattened” for small R0.

2.4 Examples

Figure 1 shows a series of test runs of a SIR model. Recall that the relative Recovered

r are increasing from zero, and the relative Susceptibles s are decreasing down from

one. The relative Infectious i are in between and can possibly show a sharp peak that

everybody tries to avoid. We shall deal with the mathematics of the peak in sections

2.8, 2.13, and 2.14, while the rest of the paper focuses on data-driven predictions of

peaks. The Infectious are usually not covered by the media who tend to focus on the

cumulative number of confirmed cases, containing the Removed.

In both plots we set r(0) = 0, γ = 1, and let R0 = β vary from 0.1 to 5. The

difference between the figures lies in the initial value i(0). Left, due to a realistically

small i(0) = 0.001, one cannot see the decaying peak-less cases of i near startup for

R0 < 1, while the right-hand plot has i(0) = 1/2 and shows them. Decreasing R0 ց 1

flattens the peaks of the Infectious i, and there is no peak for R0 ≤ 1. Furthermore,

one can observe that i always decays to zero, while s and r tend to fixed positive levels

in the long run. The final level of r is particularly interesting because part of it is the

total death toll. It decreases when R0 decreases. We shall prove all of this later. When

countries change parameters by administrative actions like a shutdown, they jump to

a more flat i curve, e.g. at an intersection point.

From the system, one can also infer that r has an inflection point where i has its

maximum, since r′′ = i′. If only r would be observable, one could locate the peak of

i via the inflection point of r. Finally, note that small initial values i(0) of i delay the

peak considerably, no matter how large R0 is. We shall prove this in section 2.14.

2.5 Interpretation of the Basic Reproduction Number R0

Media often say that R0 gives the number of persons an average Infectious infects

while being infectious. This is a rather mystical statement that needs underpinning.

In the SIR system (1) the quantity

1

γ
=

I

Ṙ
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is a value that has the physical dimension of time. It describes the ratio between

current Infectious and current newly Removed, and thus can be seen as the average

time needed for an Infectious to get Removed, i.e. the average time that an Infectious

can infect others. This is why we called the dimensionless τ = t · γ the unit removal

parameter in section 2.3. Correspondingly,

İ + γI = İ + Ṙ = β
S

N
I

are the newly Infected, and therefore

1

β

N

S
=

I

İ+ Ṙ

can be seen as the time it needs for an average Infectious to generate a new Infectious.

The ratio Rt := β
γ

S(t)
N

then gives how many new Infectious can be generated by an

Infectious while being infectious. This is the time-dependent Reproduction Number,

but it is only close to R0 if S(t)≈N, i.e. at the start of an outbreak. A correct statement

is that R0 is the average number of infections an Infectious generates while being

infectious, but within an unlimited supply of Susceptibles.

To let less new Infectious be generated, administrative actions try to change the

parameters of the epidemic towards small R0. We shall see that this is correct from a

mathematical viewpoint as well, and we shall study the influence of R0 to quite some

detail.

The above interpretation of R0 shows two major ways to make R0 small: reducing

the number of possibly infective contacts, and reducing the time an Infectious has to

infect others. The second works by putting all infectious persons into strict quaran-

tine, while first can be done by reducing contacts of all persons, even the Susceptibles,

and reducing the infection probability for each contact, e.g. by wearing masks.

SIR-based models of the COVID-19 pandemics estimate R0 between 2 and 6

during an uncontrolled outbreak (see e.g. the Robert Koch-Institute [21], De Brouwer

et al. [3], Dehning et al. [5], and Maier/Brockmann [18]), while non-pharmaceutical

interventions (NPI) bring R0 below 1. We shall see examples in 3.3.2 and 5.2.

The use of the Basic Reproduction Number R0 in the media suggests that large R0

are generally serious, because each Infectious infects several people. This is only true

at the beginning of an outbreak, because then there are enough Susceptibles. But it

will turn out in section 2.8 that the Infectious will always finally go to zero, whatever

the Basic Reproduction Number is. See Figure 1 as well.

2.6 Conditions for Outbreaks

The first interesting question in a beginning epidemic is:

Will there be a serious outbreak, or will the infection disappear quickly?

Therefore we first look at the initial conditions for the model. Since everything is

invariant under an additive time shift, we can start at time 0, and since time scales are

irrelevant to the problem at startup, we can use the simplified system (2).
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The relative Infectious i in (2) do not increase right from the start if İ(0)≤ 0, i.e.

s(0)≤
1

R0

, (5)

and then they decrease further since the Susceptibles s must decrease and

i(τ)′

i(τ)
= (log i(τ))′ = R0s(τ)− 1 < R0s(0)− 1 ≤ 0. (6)

There is no outbreak, and this must occur for all initial conditions if R0 ≤ 1. But if

R0 > 1, the outbreak depends on the initial condition (5). Altogether, outbreaks are

fully characterised by

1 > s(0)>
1

R0

. (7)

2.7 Herd Immunity Threshold

In connection with an outbreak, the Herd Immunity Threshold

HIT = 1−
1

R0

is often mentioned. The background question is:

If an uninfected population is threatened by an infection with Basic Reproduction

Number R0, what is the number of immune persons needed to prevent an outbreak

right from the start?

In the idealised situation i(0) = 0 and s(0)+ r(0) = 1,

r(0) = 1−
1

R0
= HIT

follows from (5) and (7) as the threshold between outbreak and decay for the relative

Removed. This does not refer to a whole epidemic scenario. It is to be checked before

anything happens, and useless within a developing epidemic, whatever the media say.

2.8 The Peak

In the outbreak case (7), the main questions are:

– When will the Infectious reach their maximum?

– How large will the maximal value be?
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More generally, we ask for a time tI or a unit removal parameter τI = γ tI where the

Infectious i are positive and do not change. Then we have

0 =
di

dτ
(τI) = (R0s(τI)− 1)i(τI), (8)

and the monotonicity of s implies uniqueness of τI and

s(τI) =
1

R0

. (9)

If i would increase without reaching a maximum in finite time, the first equation of

(2) would imply that s goes exponentially to zero, but then there is a τI with (9),

and (8) follows. Summarising, this proves that whenever there is an outbreak by (7),

there is a unique maximum of the relative Infectious i that we call the peak from

now on. Behind the peak, or apart from any outbreak situation, the Infectious must

go exponentially to zero due to (6), because the Susceptibles continue to decrease, no

matter how large R0 is.

Determining the peak is theoretically difficult, and in practice it requires good

estimates for β and γ . Mathematical results on the peak will be in sections 2.13 and

2.14, while data-driven predictions follow in section 5.2

In real life it is highly important to avoid the peak situation, and this can only be

done by administrative measures that change β and γ in (1) to the situation β < γ .

This is what management of epidemics is all about, provided that an epidemic follows

the SIR model. We shall see how countries perform.

In the peak situation of (8) and (9), the fraction

1−
1

R0

= 1− s(τI) = r(τI)+ i(τI)≥ i(τI) (10)

of the relative Non-Susceptible at the peak is exactly the Herd Immunity Threshold.

Thus it is correct to say that if the Immune of a population are below the Herd Im-

munity Threshold at startup, and if the Basic Reproduction Number is larger than

one, the sum of the Immune and the Infectious will rise up to the Herd Immunity

Threshold and then the Infectious will decay. This is often stated imprecisely in the

media.

2.9 Analysing the Outbreak

When an outbreak starts, almost everybody is susceptible, i.e. s(0)≈ 1, and then

i′ = R0s− 1 ≈ R0 − 1

models an exponential outbreak with exponent R0 −1 > 0 in unit removal parametri-

sation, with a solution

i(τ)≈ i(0)exp((R0 − 1)τ).

If this is done in real time t and discrete time steps ∆ t, the system (1) yields

I(t +∆ t)

I(t)
≈ exp((β − γ)∆ t).
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The severity of the outbreak in real time is not controlled by R0 = β/γ , but rather by

β −γ . Publishing single values I(t) does not give any information about β −γ . Better

is the ratio of two subsequent values

I(t2)

I(t1)
≈ exp((β − γ)(t2 − t1)), (11)

and if this gets smaller over time, the outbreak gets less dramatic because β − γ gets

smaller. But (11) is by mo means a correct way to estimate R0.

Therefore, really useful information about an outbreak must concern I, but should

not consist of single values. Increments in percent are much better, because their

logarithm is proportional to β − γ . However, it needs increments of increments to

see whether administrative actions are successful by changing β − γ . This is what

the media rarely provided during the outbreak. On the positive side, the severity of a

future outbreak in unit removal parameterisation is described correctly by estimates

of R0 > 1, if these have a solid mathematical and experimental basis. All changes of

R0 should be carefully monitored.

2.10 Doubling Time

Another information used by media during an outbreak is the doubling time, i.e. how

many days it takes until daily values double. It is n∆ t with the number n from

2 =
I(t + n∆ t)

I(t)
≈ exp((β − γ)n∆ t) = (exp((β − γ)∆ t)n

or

n =
log2

(β − γ)∆τ
,

i.e. it is inversely proportional to β − γ . If political action doubles the doubling time,

if halves β − γ . If politicians do this repeatedly, they never reach β < γ , and they

never escape an exponential outbreak if they do this any finite number of times. Ex-

tending the doubling time will never prevent a peak, it only postpones it and hopefully

flattens it. When presenting a doubling time, media should always point out that this

makes only sense during an exponential outbreak. And it is not related to the basic

reproduction number R0 = β/γ , but to the difference β − γ .

2.11 Long-term Behaviour

Aside from the peak, it is interesting to know the portions of the population that

get either permanently removed (by death or immunity) or never come into contact

with the infection. This concerns the long-term behaviour of the Removed and the

Susceptibles. Figure 1 demonstrates how r and s level out under all circumstances

shown, but is this always true, and what is the final ratio? And if one has additional

information on the percentage of casualties within the Removed, what is the total

death toll in the long run?
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Fig. 2 The asymptotic level r∞ of the relative Removed as a function of R0 for s(0) = 0.9, 0.99, 0.999 etc.

as curves from the top. Right: logarithmic scale.

Going back to (4), we get

s(r) = s(0)exp(−R0r) (12)

when assuming r(0) = 0 at startup. Since r is increasing, it has a limit 0 < r∞ ≤ 1 for

τ → ∞, and in this limit

s∞ = s(0)exp(−R0r∞)

holds, together with the condition r∞ + s∞ = 1, because there are no more Infectious.

The transcendental equation

s(0)exp(−R0r∞) = 1− r∞ (13)

has a unique solution in (0,1) dependent on s(0)< 1 and R0. Therefore the Infectious

always go to zero, but Susceptibles always remain. Then a new infection can always

arise as soon as an infected person enters the sanitised population. The outbreak risk

is dependent on the portion s∞ = 1− r∞ of the Susceptibles by (5). This illustrates the

importance of vaccination, e.g. against measles or influenza.

To see how r∞ and s∞ = 1− r∞ behave as functions of R0 and s(0), we solve the

equation (13) by the Lambert W function to get

r∞ = 1+
1

R0

W (−s(0)R0 exp(−R0)) (14)

with a surprising behaviour. See Figure 2 for illustration. Left, the curves for unreal-

istically small initial values s(0) = 0.9, 0.99 and 0.999 for Susceptibles can still be

distinguished from the more interesting curves below that coincide for all s(0) closer

to one and have a sharp turn at R0 = 1. The logarithmic plot to the right shows that

for R0 < 1 the curves separate, and that it pays off significantly to have R0 < 1 for

s(0) close to one.

This has some serious implications, if the model is correct for an epidemic situa-

tion. When politicians try to “flatten the curve” by bringing R0 below 1 at some early

time when the Susceptibles are still abundant, the asymptotic rate r∞ of Removed

will be dramatically smaller than for any other situation, because one stays left of the
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sharp turn in Figure 2. This is particularly important if the rate of fatalities within the

Removed is high.

Large values of R0 lead to large relative values of Removed to Susceptible in the

limit. The consequence is that systems with large R0 have a dramatic outbreak and

lead to a large portion of Removed. This is good news if the rate of fatalities within

the Removed is low, but very bad news otherwise. When pressing R0 below one,

the risk of re-infection rises due to the larger portion of Susceptibles, but the deaths

contained in the Removed are kept low.

The decay situation (5) implies that s∞ ≤ 1/R0 holds, and consequently

r∞ = 1− s∞ ≥ 1−
1

R0

= HIT.

Therefore the final rate of the Removed is not smaller than the Herd Immunity Thresh-

old. This is good news for possible re-infections, but only if the death rate among the

Removed is small enough.

2.12 Asymptotic Exponential Decay

If we go back to (6) for a unit removal parameter τD where i decreases, in an outbreak

or not, we have R0s∞ ≤ R0s(τD)< 1 and then

i(τD)exp((R0s∞ − 1)(τ − τD))≤ i(τ)≤ i(τD)exp((R0s(tD)− 1)(τ − τD))

for all τ ≥ τD. Therefore the exponential decay in unit removal parametrisation is not

ruled by R0 −1 as in the outbreak case with R0 > 1, but rather by R0s∞ −1. This also

holds for large R0 because s∞ counteracts. The bell shapes of the peaked i curves are

not symmetric with respect to the peak. Inserting (14), the relative Infectious always

decay asymptotically exponentially like

exp((R0s∞ − 1)τ) = exp((W (−s(0)R0 exp(−R0))− 1)τ) for τ → ∞

with the Lambert W function. By MAPLE, the slowest decay arises for R0 = 1.

2.13 Maximal Infectious at the Peak

At the peak of the Infectious i at τI in an outbreak (7) with r(0) = 0 we know

s(τI) =
1

R0

= s(r(τI)) = s(0)exp(−R0r(τI))

from (9) and (4), and get the Removed at the peak as

r(τI) =
1

R0

log(s(0)R0). (15)

Then the exact value of the Infectious i at the peak is

i(τI) = 1− s(τI)− r(τI) = 1−
1

R0

−
1

R0

log(s(0)R0), (16)
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Fig. 3 The effect of R0 on the peak value i(τi) of Infectious.

improving (10). Note that the log is positive due to the outbreak condition (7). It is

remarkable that the value of i at the peak does not depend on initial conditions, while

the next section proves that the position of the peak does.

For standard infections that have starting values s(0) = S(0)/N very close to one,

the maximal ratio of Infectious is

i(τi)≈ 1−
1

R0
−

1

R0
log(R0).

Figure 3 shows the behaviour of this function, as the lower curve. A value of R0 = 4

leads to a maximum of more than 40% of the population infectious at a single time. If

5% need hospital care, a country needs hospital beds for 2% of the population around

peak time. This disaster calls for mitigation by lowering R0.

The upper curve leaves the log term out, i.e. it marks the rate (9) of the Suscep-

tibles at the peak, and by (10) the difference is the rate r(τi) of the Recovered at the

peak. It also marks the extreme case in (7) with R0s(0) = 1, i.e. having the smallest

possible initial value of s(0) for a given R0 to generate an outbreak. Therefore all

s(0)-dependent possibilities vary between the two curves.

2.14 Localising the Peak

Knowing now how large the peak is, we want to find out where it is. We write the

unit removal parameter τ as a function of r by dτ
dr

= ( dr
dτ )

−1 = 1
i

and integrate from

r = 0 = r(0) to r = r(τI) to get the peak position

τI =

∫ r(τI )

0

1

i(r)
dr =

∫ log(s(0)R0)/R0

0

1

1− r− s(0)exp(−R0r)
dr

as a nasty function of s(0) and R0, using (2), (12), and 1 = i(r)+ s(r)+ r. To prove

that the peak moves towards zero for both limits R0 ր ∞ and R0 ց 1, we first observe
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that i ≥ i(0) holds left of the peak. Then we use (15) to get

τI ≤
r(τi)

i(0)
=

1

i(0)R0

log(s(0)R0)≤
1

i(0)R0

log(R0)≤
1

e · i(0)
≈

0.37

i(0)
(17)

by inserting the maximum of log(R0)/R0 at e. The upper bound gets large when i(0)
gets small, a realistic case by Figures 1 and 8. This calls for a lower bound.

For fixed s(0) and i(0) there will be a maximal peak position for a rather specific

R0. A MAPLE-based analysis shows that R0(s(0)) = −W (−s(0)/e)−1 with Lam-

bert’s W function yields

τI ≥
0.3(1− i(0))

√

i(0)
.

Therefore the peak can indeed move arbitrarily far out for small i(0) and large s(0) =
1− i(0). There is not much leeway for smaller R0 to bring the peak position to zero for

large s(0), namely 1
s(0) < R0 < R0(s(0)). Both bounds for R0 tend to one for s(0)→ 1.

The practical consequence is that keeping R0 > 1 close to one by mitigation is no

good idea, because the peak can move far into the future for realistically small i(0),
delaying the epidemic in an intolerable way. Countries should go for R0 considerably

smaller than one.

2.15 Turnaround Time

In a peak situation (7) one can consider the turnaround parameter τT at which the

Infectious i come back to their starting value i(0) behind the peak. At that point

the population has accumulated more Removed, dead or immune. We calculate the

integral
∫ ∞

0
i(τ)dτ =

∫ ∞

0
r′(τ)dτ = r∞ − r(0).

The rectangle of length τT and height i(0) fits under the i curve, and therefore

i(0)τT ≤ r∞ − r(0)≤ r∞ ≤ 1,

proving that the real turnaround time tT = τT /γ has a fixed bound tT ≤ r∞/(i(0)γ).
From Figure 2 one can see that making R0 smaller will decrease the bound via r∞.

2.16 Estimating and Varying Parameters

If real-time data for the SIR model (1) were fully available, one could solve for

γ =
Ṙ

I
, b := β

S

N
=

İ + γI

I
=

İ+ Ṙ

I
,

β =
N

N − I−R
·

İ+ Ṙ

I
, R0 =

N

N − I−R
·

İ+ Ṙ

Ṙ
=−

N

S

Ṡ

Ṙ
=−

1

s

ds

dr
,

(18)

and we shall use this in section 3.3. The validity of a SIR model can be tested by

checking whether the right-hand sides for β , γ and R0 are roughly constant. If data
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are sampled locally, e.g. before or after a peak, the above technique should determine

the parameters for the global epidemic and be useful for either prediction or backward

testing.

However, in pandemics like COVID-19, the parameters β and γ change over time

by administrative action. This means that they should be considered as functions in

the above equations, and then their changes may be used for conclusions about the

influence of such actions. From this viewpoint, one can go back to the SIR model

and consider β and γ as control functions that just describe the relation between the

variables.

But the main argument against using (18) is that the data are rarely available. This

is the concern of the next section.

3 Using Available Data

Now we confront the modelling of the previous section with available data. This

is crucial for manœuvering countries through the epidemics (Sentker [23])1. From

now on we have to work in real time and go back to (1) instead of all mathematical

simplifications.

3.1 Johns Hopkins Data

We work with the COVID-19 data from the Johns Hopkins University at GitHub [9].

They are the only source that provides comparable data on a worldwide scale, namely

1. Confirmed (C) or cumulative infected

2. Dead (D), and

3. Recovered (R), i.e. alive and immune,

as cumulative integer valued time series for days from Jan. 22nd, 2020. All these val-

ues are absolute numbers, not relative to a total population. Note that the unconfirmed

cases and the Susceptibles are not accessible at all, while the Confirmed contain the

Dead and the Recovered of earlier days.

The media, in particular German TV, present COVID-19 data in a rather debatable

way. When mentioning Johns Hopkins data, they provide C, D, and R separately

without stating the most important figures, namely I =C−D−R, their change, and

the change of their change. When mentioning data of the Infectious from the Robert

Koch institute alongside, they do not say precisely that these are non-cumulative and

should be compared to the I =C−R−D data of the Johns Hopkins University. And,

in most cases during the outbreak, they did not mention the change of the change.

Quite like all other media.

We take the data as presented, but there are many well-known flaws. In particular,

the values for specific days are partly belonging to previous days, due to delays in

the chains of data transmission in different countries. This is why, at some points, we

1 Original text in German, April 16th: Schnelle Modelle, die dem Abgleich mit der Wirklichkeit stand-

halten, sind eine wichtige Voraussetzung, das Land politisch durch die Seuche zu steuern.
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Fig. 4 Raw Johns Hopkins data in logarithmic presentation up to day 120, from top: UK, Germany, Brazil,

and France. Markers X for Confirmed, O for Infectious, ∧ for Recovered,+ for Deaths, not on all data

points.
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shall apply some conservative smoothing of the data. Finally, there are inconsisten-

cies that possibly need data changes. In particular, there are countries like Germany

who deliver data of Recovered in a very questionable way. The law in Germany did

not enforce authorities to collect data of Recovered, and the United Kingdom did not

report numbers of Dead and Recovered from places outside the National Health Sys-

tem, e.g. from Senior’s retirement homes. Both strategies have changed somewhat in

the meantime, as of early May, but the data still keep these flaws. See Figure 4 for

examples.

We might assume that the Dead plus the Recovered of the Johns Hopkins data

are the Removed of the SIR model, and that the Infectious I = C − R−D of the

Johns Hopkins data are the Infectious of the SIR model. But this is not strictly valid,

because the Johns Hopkins data concern only registered cases.

On the other hand, one can take the radical viewpoint that facts are not interesting

if they do not show up in the Johns Hopkins data. Except for the United Kingdom, the

important figures concern COVID-19 casualties that are actually registered as such,

others do not count, and serious cases needing hospitalisation or leading to death

should not go unregistered. If they do in certain countries, using such data will not be

of any help, unless other data sources are available.

An important point for what follows is that the data come as daily values. To

make this compatible with differential equations, we shall replace derivatives by dif-

ferences.

3.2 Examples

To get a first impression about the Johns Hopkins data, Figure 4 shows raw data up to

day 120, May 21st. For better visibility, not all data points have markers. Here, and

in all plots to follow, the x axis has the days after Jan. 22nd, 2020. It might be helpful

to remember that day 100 is May 1st. The y axis is logarithmic, because then linearly

increasing or decreasing parts in the figures correspond to exponentially increasing

or decreasing numbers in the real data.

Many presentations in the media are non-logarithmic, and then all exponential

outbreaks look similar. The most interesting data are the Infectious I = C −R−D

marked by O that show a peak or not, and the cumulative casualties D marked by +.

The data for other countries tell similar stories and are suppressed.

One can see in Figure 4 that Germany has passed the peak of the Infectious,

while France is roughly at the peak and the United States and Brazil are still in an

exponential outbreak. The early figures, below day 40, are rather useless, but then an

exponential outbreak is visible in all cases. This outbreak changes its slope due to

political actions, and we shall analyse this later. See Dehning et al. [5] for a detailed

early analysis of slope changes.

There are strange anomalies in the Recovered (∧ marker). France seems not to

have delivered any data between days 40 and 58, Germany changed the data delivery

policy between days 62 and 63, and the UK data for the Recovered are a mess. We

shall avoid using data on the Recovered as much as possible.



18 Robert Schaback

It should be noted that the available medical results on the COVID-19 disease of-

ten state that Confirmed will die or survive after a more or less fixed number of days.

This would imply that the curves marked + for the Dead and the curves marked ∧ for

the Recovered should roughly follow the curves marked X for the Confirmed with a

fixed but measurable delay. This is partially observable, but much less accurately for

the Recovered.

3.3 The Johns Hopkins Data Model

We now define a model that works exclusively with the Johns Hopkins data, but

comes close to a SIR model, without being able to use S. Since the SIR model does

not distinguish between recoveries and deaths, we set in obvious notation

RSIR ⇔ DJH +RJH

and let the Infectious be comparable, i.e.

ISIR ⇔ IJH :=CJH −DJH −RJH

which implies

(I +R)SIR ⇔CJH ,

and we completely omit the Susceptibles. From now on, we shall drop the subscript

JH when we use the Johns Hopkins data, but we shall use SIR when we go back to

the SIR model.

Now we take (18) of section 2.16 and insert differences:

γ =
ṘSIR

ISIR

≈
(D+R)n+1− (D+R)n

In

=: γn

b := β
SSIR

N
=

İSIR + γISIR

ISIR

=
İSIR + ṘSIR

ISIR

,

≈
Cn+1 −Cn

In

=: bn,

defining time series γn and bn that model γ and b = β ·SSIR/N without knowing SSIR.

This is equivalent to the model

Cn+1 −Cn = bnIn,
In+1 − In = bnIn − γnIn = (bn − γn)In,

(R+D)n+1 − (R+D)n = γnIn

(19)

that maintains C = I +R+D, and we may call it a Johns Hopkins Data Model. It is

very close to a SIR model if the time series bn is not considered to be constant, but

just an approximation of β ·SSIR/N.
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3.3.1 Estimating R

By brute force, one can take

rn =
bn

γn

=
Cn+1 −Cn

Rn+1 +Dn+1−Rn −Dn

(20)

as a data-driven substitute for

β

γ

SSIR

N
= R0

SSIR

N
.

Then there is a rather simple observation:

If rn is smaller than one, the Infectious decrease.

It follows using (20) via

In+1 − In = Cn+1 −Cn − (Rn+1 −Rn +Dn+1 −Dn)
= (rn − 1)(Rn+1 +Dn+1 −Rn −Dn),

but this is visible in the data anyway and not of much help.

Since rn models R0
SSIR

N
, it always underestimates R0. This underestimation gets

dramatic when it must be assumed that SSIR gets seriously smaller than N.

At this point, it is not intended to forecast the epidemics. The focus is on extract-

ing parameters from the Johns Hopkins data that relate to a background SIR-type

model.

3.3.2 Example

Figure 5 shows R0
SSIR

N
estimates via rn for the last four weeks before day 120, i.e.

March 21st. Except for the United States and Brazil, all countries were more or less

successful in pressing rn below one. In all cases, SSIR/N is too close to one to have

any influence. The variation in rn is not due to the decrease in SSIR/N, but should

rather be attributed to political action. As mentioned above, the estimates for R0 by

rn are always optimistic.

For the figure, the raw Johns Hopkins data were smoothed by a double action of

a 1/4,1/2,1/4 filter on the logarithms of the data. This smoother keeps constants

and linear sections of the logarithm invariant, i.e. it does not change local exponen-

tial behaviour. This smoothing was not applied to Figure 4. It was by far not strong

enough to eliminate the apparent 7-day oscillations that are frequent in the Johns

Hopkins data, see Figure 5, Data from the Robert Koch Institute in Germany have

even stronger 7-day variations.
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Fig. 5 Estimates of R0 via the time series rn up to day 120

3.3.3 Properties of the Model

As long as rn is roughly constant, the above approach will always model an exponen-

tial outbreak or decay, but never a peak, because the difference equations are linear. It

can only help the user to tell if there is a peak ahead or behind, depending on rn ≈ R0

being larger or smaller than 1. If rn is kept below one, the Confirmed Infectious will

not increase, causing no new threats to the health system. Then the S/N factor will

not decrease substantially, and a full SIR model is not necessary.

As long as countries keep rn clearly below one, e.g. below 1/2, this would mean

that R0 ≈ rn
N

SSIR
stays below one if SSIR ≥ N/2, i.e. as long as the majority of the

population has not been in contact with the SARS-CoV-2 virus. This is good news.

But observing a small rn can conceal a situation with a large R0 if SSIR/N is small.

This is one reason why countries need to get a grip on the Susceptibles nationwide.

So far, the above argument cannot replace a SIR model. It only interprets the

available data. However, monitoring the Johns Hopkins data in the above way will

be very useful when it comes to evaluate the effectively of certain measures taken by

politicians. It will be highly interesting to see how the data of Figure 5 continue, in

particular when countries relax their contact restrictions.

3.4 Extension Towards a SIR Model

For cases where one still has to expect R0 > 1, e.g. US and Brazil on day 120 (see

Figure 5), the challenge remains to predict a possible peak. Using the estimates from
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the previous section is impossible, because they concern the sub-population of Con-

firmed and are systematically underestimating R0. The “real” SIR model will have

different parameters, a possibly large amount of undetected Infectious, and it needs

the Susceptibles to model a peak and to make the rn estimates realistic.

For an unrealistic scenario, consider Total Registration, i.e. all Infected are au-

tomatically confirmed. Then the Susceptibles in the Johns Hopkins model would be

Sn = N −Cn = N − In −Rn −Dn. Now the estimate for R0 must be corrected to

rn
N

Sn

= rn
N

N −Cn

= rn

(

1+
Cn

N −Cn

)

but this change will not be serious during an early outbreak.

If the time series βn = bn
N
Sn

= bn
N

N−Cn
for β and γn for γ are boldly used as

predictors for β and γ in a SIR model, and if the model is started using Sn =N−Cn =
N − In −Dn −Rn in the discretised form

Sn+1 − Sn = −β
Sn

N
In,

In+1 − In = +β
Sn

N
In − γIn,

(R+D)n+1− (R+D)n = −γIn,

one gets a crude prediction of the peak in case R0 = β/γ > 1.

Figure 6 shows results for two cases. The left plot shows the United States, using

data from day 109 (May 10th) and estimating β and γ from the data one week before.

The peak is predicted at day 473 (May 9th, 2021) with a total rate of 33% Infectious,

i.e. about 124 million people. With an infection fatality rate of 0.5%, this means about

600,000 casualties in the two weeks around the peak. To see how crude the technique

is, the second plot shows Germany using data up to day 75 (April 6th, 2020), i.e.

before the peak, and the peak is predicted at day 230 (Sept. 8th, 2020) with about

16% Infected. This would imply about 65,000 casualties around the peak. At day 75,

R0 was estimated at 2.01, but a few days later the estimate went below 1 (Figure 5)

by political intervention changing bn considerably. See Figure 10 for a much better

prediction using data only up to day 67.

4 Extended SIR Model

To get closer to reality, one should combine the data-oriented Johns Hopkins Data

Model with a SIR model that accounts for what happens outside of the Confirmed.

We introduce the time series

S for the Susceptibles like in the SIR model,

M for the Infectious, not yet confirmed, (M standing for mysterious),

H for the unconfirmed Recovered (H standing for healed).

This implies that all deaths occur within the Confirmed, though this is a highly debat-

able issue. It assumes that persons with serious symptoms get confirmed, and nobody

dies of COVID-19 without prior confirmation.
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Fig. 6 Brute force SIR modelling for US and Germany using last week’s data, at days 109 and 75, with

R0 = 3.22 and R0 = 2.01, respectively.

4.1 The Hidden Model

The Removed from the viewpoint of a global SIR model including H and M are

H +C, and thus the SIR model is

Sn+1 − Sn = −β
Sn

N
Mn,

Mn+1 −Mn = β
Sn

N
Mn − γMn,

(H +C)n+1 − (H +C)n = γMn.

(21)

To run this hidden model with constant N = S+M+H +C, one needs initial values

and good estimates for β and γ , which are not the ones of the Johns Hopkins Data

Model of section 3.3. We need other ways to get them.

4.2 The Observable Model

The Johns Hopkins variables D and R are linked to the hidden model via C = I−R−
D. They follow an observable model

In = Cn −Rn −Dn,
Dn+1 −Dn = γiCDIn,
Rn+1 −Rn = γiCRIn

(22)

with instantaneous case death and recovery rates γiCD and γiCR for the Confirmed

Infectious. These rates can be estimated separately from the available Johns Hopkins

data, and we shall do this below. We call these rates instantaneous, because they

artificially attribute the new deaths or recoveries at day n+ 1 to the Infectious of

the previous day, not of earlier days. They are case rates, because they concern the

Confirmed. The difference between standard and instantaneous case rates will be

treated in sections 4.3.1 and 4.3.2.

The observable model is coupled to the hidden model only by Cn. Any data-

driven Cn from the observable model can be used to enter the H +C variable of the
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hidden model, but in an unknown ratio. Conversely, any version of the hidden model

produces H +C values that do not determine the C part. Summarising, there is no

way to fit the hidden model to the data without additional assumptions.

Various possibilities were tried to connect the Hidden to the Observable. Two will

be presented now.

4.3 Fatality Rates

4.3.1 Infection Fatality Rate

Recall that the parameter γiCD in the observable model (22) relates case fatalities to

the confirmed Infectious of the previous day. In contrast to this, the infection fatal-

ity rate in the standard literature, denoted by γIF here, is relating to the infection

directly, independent of the confirmation, and gives the probability to die of COVID-

19 after infection with the SARS-CoV-2 virus, whatever the delay between infection

and death is. It was estimated as γIF = 0.56% by an der Heiden/Buchholz [10] and

0.66% by Verity et al. [25], but specialised for China. Recent data of Streeck et. al.

[24] gives a value of 0.36% for the Heinsberg population in Germany. For the UK,

Ferguson et al. [6] arrive at 0.9%. We shall later use 0.5% for our predictions. But it

is very desirable to get more information on infection fatality rates, in particular for

different countries. So far, we use a single value globally.

The idea to use the infection fatality rate for information about the hidden system

comes from Bommer/Vollmer [1]. The infection fatality rate will be used below in

(26) and (28) together with case fatality rates that we consider next.

4.3.2 Estimation of Case Fatality Rates

We now focus on probabilities to die either after an infection or after confirmation

of an infection. The first is the infection fatality rate given in the literature, but what

is latter, the case fatality rate γCF when using the Johns Hopkins data? It is clearly

not the γiCD in (22), giving the ratio of new deaths at day n+ 1 as a fraction of the

confirmed Infectious at day n. The deaths at day n+ 1 must be assigned to various

earlier days instead.

Case fatality rates in the literature vary strongly, and they are country-dependent.

Countries have different ways to detect cases, and because the mortality is age-

dependent, different age structures will have a serious influence. The Robert-Koch-

Institute [21] mentions 10.5% for Europe and 4.6% for Germany, while De Brouwer

et al. [3] has 10.0% for Italy, 4.0% for China, 6.0% for Spain, and 4.3% worldwide.

According to Streeck et al.[24], the current estimate of the case fatality rate in Ger-

many by the World Health Organization (WHO) is between 2.2% and 3.4%.

We cannot clean up these inconsistencies. Instead, we now describe a way to esti-

mate case fatality rates per country from the Johns Hopkins data. The basic idealistic

assumption is that COVID-19 diseases end after k days from confirmation with either

death or recovery. Let us call this the k-day rule. Suggested values for k start from

14 days for mild cases (an der Heiden/Buchholz [10] WHO [26]) and go up to 30
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days, composed of an incubation time of about 5 days and various values between

11 and 25 days for hospitalisation, depending on the amount of intensive care (an der

Heiden/Buchholz [10], Robert Koch-Institut [21], Verity et al. [25], Mohring et al.

[19]).

Following Schaback [22], one can estimate the probability to survive on day k+1

after confirmation, and this works in a stable way per country, based only on C and

D, not on the unstable R data. In [22] this approach was used to produce R values that

comply with the k-day rule, but here we use it for estimating the case fatality.

The basic argument lets the new Confirmed Cn −Cn−1 at day n enter into the

new deaths Dn+1 −Dn at day n+1 with probability p1 =: q1, into Dn+2 −Dn+1 with

probability p2(1− p1) =: q2 and so on. The rest enters into the new Recovered at day

n+ k with probability qk+1 if we set pk+1 = 1 and define

qi = pi

i−1

∏
j=1

(1− p j), 1 ≤ i ≤ k+ 1. (23)

Then the estimated case fatality rate is 1−qk+1, while the case recovery rate is qk+1.

Therefore the technique of [22] performs a fit

Dn −Dn−1 ≈
k

∑
i=1

qi(Cn−i −Cn−i−1), (24)

over all possible probabilities pi with sum bounded by one connected to the qi by

(23). It assigns all new deaths at day n to previous new infections on previous days in

a hopefully consistent way, minimising the error in the above formula under variation

of the probabilities pi to die on day i after confirmation, and it delivers case fatality

and case recovery rates per country. It formally assigns all recoveries to day k+1 after

confirmation. Before that day, a living Confirmed cannot be declared to be recovered.

At this point, there is a hidden assumption. The change Cn+1 −Cn to the Con-

firmed is understood as the number of new registered infections, i.e. it is treated like

In+1 − In, disregarding short-time death or recovery. But replacing Cn−i −Cn−i−1 by

In−i − In−i−1 in (24) would connect a cumulative function to a non-cumulative func-

tion. Furthermore, this requires the unsafe data of the Recovered.

In fact, the estimation via the fit (24) is unexpectedly reliable, provided one looks

at 1 − qk+1 or qk+1, not at single probabilities p j, and if sufficiently many n are

used. This follows from a series of experiments that we do not document fully here,

except for Figure 7. In [22], data for 2k days backwards were used for the estimation,

and results did not change much when more or less data were used or when k was

modified. Here, the range 7 ≤ k ≤ 21 was tested, and backlogs of up to 50 days

from day 109. See Figure 7 below for an example. It is typical here and for many

other cases that a value of k = 14 performs well, with a backlog of 2k = 28 days

for the fit in (24). Using larger k needs a larger backlog, but then the estimation is

not time-local enough to produce up-to-date estimates, because outdated values are

used. Figure 7 shows the variation of the case fatality rate estimation when k and the

backlog are varied. The rates usually do not vary much and have plateaus for k ≥ 14,

but of course the errors decrease when k is taken larger, because there are more days

to assign deaths to.



On COVID-19 Modelling 25

5

10

15

20

25

10
20

30
40

50

0

0.02

0.04

0.06

0.08

0.1

5

10

15

20

25

10
20

30
40

50

0

20

40

60

80

Fig. 7 Left: case fatality rate for Germany based on data at day 109, as functions of k (right axis) and the

data backlog B ≥ 2k (left axis). Right: Root mean-square error for (24).

Country Death Detection

rate rate

Germany 0.047 0.106

Brazil 0.094 0.053

Italy 0.138 0.036

Spain 0.085 0.059

Sweden 0.157 0.032

Austria 0.052 0.096

France 0.122 0.041

UK 0.145 0.035

US 0.067 0.075

Table 1 Case fatality and detection rates, estimated on day 109 using the 14-day rule and a backlog of 28

days.

See the first column of Table 1 for estimates of case fatality rates for different

countries, calculated on day 109 (May 10th) for k = 14 and a backlog of 28 days.

They comply with the values from the literature cited above. Their interpretation

depends strongly on the strategy for confirmation. In particular, they are high when

only serious cases are confirmed, e.g. cases that need hospital care. If many more

people are tested, confirmations will contain plenty of much less serious cases, and

then the case fatality rates are low.

The instantaneous case death rate γiCD of (22) for the Johns Hopkins data comes

out around 0.004 for Germany on day 109 by direct inspection of the data via

γiCD ≈
Dn+1 −Dn

In

, (25)

while the Case Fatality Rate γCF in Table 1 is about 0.047. The deaths have to be

attributed to different days using the k-day rule, they cannot easily be assigned to the

previous day without making the rate smaller.
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4.3.3 The Detection Rate

A simple way to understand the quotient
γIF

γCF
of the infection fatality rate γIF and

the case fatality rate γCF as a detection rate is to ask for the probability p(C) for

Confirmation. If the probability to die after Confirmation is γCF , and if there are no

deaths outside confirmation, then

p(D) = p(C) · p(D|C),

by conditional probabilities, and

p(C) =
p(D)

p(D|C)
=

γIF

γCF

.

See the second column of Table 1, prepared for γIF = 0.005. The rate depends on

good estimates of the infection fatality rate, and the new value 0.0036 by Streeck

et al. [24] will decrease the detection rate for Germany from 10.6% to 7.7% for the

Heinsberg subpopulation.

All of this is comparable to the findings of Bommer/Vollmer [1] and uses the

basic idea from there, but with a somewhat different technique and different results.

There, the values were 7% for March 23rd and 9% for March 30th, while Mohring et

al. [19] assume 20% on April 29th.

4.3.4 Using Fatality Rates for the Hidden Model

If the case fatality rates γCF of Table 1 are used with a known infection fatality rate

γIF , one should obtain an estimate of the total Infectious. If the formula (24) is written

as
k

∑
i=1

qi(Cn−i −Cn−i−1)≈ Dn −Dn−1 ≈
k

∑
i=1

q̃i(Sn−i−1 − Sn−i)

in terms of the previous new infections Sn−i−1 − Sn−i in terms of Susceptibles with

daily infection fatality probabilities q̃i, one should maintain

γCF =
k

∑
i=1

qi and γIF =
k

∑
i=1

q̃i,

and this works by setting

Cn −Cn−1 =
γIF

γCF

(Sn−1 − Sn) (26)

in general, without using the unstable pi. This is the first connection of the Observable

to the Hidden, namely C to S. Like in the discussion following (24) one can argue to

use M instead of S in (26), but this would again connect a cumulative variable to a

non-cumulative one.
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4.3.5 Local Estimation of Fatality Rates

Because politicians change testing strategies and the parameters β and γ , the esti-

mation of the Case Fatality Rate should be made locally, not globally. Using the

experience of Schaback [22] and section 4.3.2, we shall use a fixed k = 14 for the

k-day rule and data for a fixed backlog of 2k days. Then the formula (26) has γCF

varying with n as far as Johns Hopkins data are available.

4.4 Recovery Rates

We need another parameter to connect the hidden to the observable model. There

are many choices, and after some failures we selected the constant γiIR in a model

equation

Hn+1 −Hn = γiIRMn.

Following what was mentioned about instantaneous rates in section 4.2, γiIR is an

instantaneous Infection Recovery Rate, relating the new unregistered Recovered to

the unregistered Infections the day before.

4.4.1 Estimation of Recovery Rates

A good value of γiIR can come out of a field experiment that produces time series

for M and H, i.e. for unregistered Infectious and unregistered Recovered. Then the

instantaneous Infection Recovery rate γiIR can be obtained directly by

Hn+1 −Hn

Mn

≈ γiIR.

The Infection Recovery rate γIR = 1− γIF does not help, because we need an instan-

taneous rate that has no interpretation as a probability.

With the risk of using unstable data of the Recovered, we can look at the instan-

taneous Case Recovery rate
Rn+1 −Rn

In
≈ γiCR (27)

that is available from the Johns Hopkins data, and comes out experimentally to be

rather stable, provided that countries have useful data for the Recovered. Otherwise,

we have to use the technique of Schaback [22] for estimating them. The rate γiIR must

be larger than γiCR because we now are not in the subpopulation of the Confirmed,

and nobody can die without going first into the population of the Confirmed. As long

as no better data are available, we shall use the formula

γiIR =
1− γIF

1− γCF

γiCR =
γIR

γCR

γiCR =
γiCR

γCR

γIR (28)

that implements two meaningful arguments:

1. the value γiCR is increased by the ratio
γIR

γCR
of Recovered probabilities for the

Infected and the Confirmed,
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2. the value γIR is multiplied by a factor
γiCR

γCR
for transition to immediate rates, and

this factor is the transition factor for the Confirmed Recovered.

The above strategy is debatable and may be the weakest point of this approach. How-

ever, others turned out to be worse, mainly due to instability of results. On the positive

side, the final prediction will not need it, see (33) below. It enters only the interme-

diate step when S, M, and H are calculated in the time range of the available Johns

Hopkins data, see (29) in section 4.5. And, finally, there is hope that there will be

field experiments that yield reliable values directly.

4.4.2 Practical Approximation of Recovery Rates

In (28) the rate γIR is fixed, and the rate γCR is determined locally via section 4.3.5.

The rate γiCR follows from the time series

Rn+1 −Rn

In

≈ γiCR

as in (22). This works for countries that provide useful data for the Recovered. In that

case, and in others to follow below, we can take the time series itself as long as we

have data. For prediction, we estimate the constant from the time series using a fixed

backlog of m days from the current day, i.e. we take the mean of the last m+1 values.

Since many data have a weekly oscillation, due to data being not properly delivered

during weekends, the backlog should not be less than 7.

But for certain countries, like the United Kingdom, the data for the Recovered

are useless. In such cases, we employ the technique of Schaback [22] to estimate the

Recovered using the k-day rule and a backlog of 2k days, like in section 4.3.5 for the

case fatality rates.

4.5 Model Calibration

We now have everything to run the hidden model, but we do it first for days with

Johns Hopkins data, delaying predictions to section 5. This is a calibration step that

leads to estimations of S, M, and H from the observed data of the Johns Hopkins

source, without any need for sophisticated fitting algorithms. With the parameters

from above, we use the new relations

Cn+1 −Cn =
γIF

γCF

(Sn − Sn+1),

Hn+1 −Hn = γiIRMn

(29)

in a specific way. We set up the second model equation in (21) for M as

Mn+1 −Mn = Sn − Sn+1 − γnMn

=
γCF

γIF

(Cn+1 −Cn)− γnMn

=
γCF

γIF

(Cn+1 −Cn)− (Cn+1 −Cn +Hn+1 −Hn)

=

(

γCF

γIF

− 1

)

(Cn+1 −Cn)− γiIRMn

(30)
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that can be solved if an initial value M̃0 is prescribed. Then (29) is run to produce

the Sn and Hn, with starting values that we describe in section 4.5.1. If βn and γn are

calculated by

βn
Sn

N
Mn = Sn − Sn+1,

γnMn = Cn+1 −Cn +Hn+1 −Hn,
(31)

respectively, the balance equation N = S+M+H +C follows from (30) and (31).

4.5.1 Starting Values

Since the populations are large, the starting values for S are not important. Beginning

at the full population N from a very early day, the S values are calculated from (29)

first, just to get values S j for actually starting at later days.

Then the first day j is taken where C j is at least 10, and k days later the start value

for H is set as

H j+k =C j
γCF

γIF

(32)

using the k-day rule with k = 14. This divides the C j > I j value by the detection rate,

i.e. roughly all estimated undetected Infectious at time j are assumed to be healed

k days later, i.e. at day j + k. Then the starting value for M j+k is calculated via the

balance equation N = S+M+H +C from the S j+k value calculated by the previous

paragraph. Finally, the calibration starts at day j+ k by the above formulae. Unfortu-

nately, this is a serious limit preventing application to very short time series.

The starting value for H is irrelevant for H itself, because only differences enter

into the model, but it determines the starting value for M due to the balance equation.

Anyway, it turns out experimentally that the starting values do not matter much, if

the model is started early. The hidden model (21) depends much more strongly on C

than on the starting values.

Figure 10 contains a wide variation of the starting value (32) for H at the starting

point, by multipliers between 1/32 and 32. This has hardly any effect on the results,

the lines getting somewhat thicker. The variation in starting values get more visible

in other cases, see the right-hand plot in Figure 10 for the United States. But the

influence on predictions is negligible.

4.5.2 Examples

The figures to follow in section 5.2 show the original Johns Hopkins data together

with the hidden variables S, M, and H that are calculated by the above technique.

The calibration runs up to the vertical line where predictions start. Note that the only

ingredients beside the Johns Hopkins data are the number k = 14 for the k-day rule,

the Infection Fatality Rate γIF from the literature, equations (29), and the backlog of

m = 7 days for estimation of constants from time series.
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5 Predictions using the Full Model

To let the combined model predict the future, or to check what it would have predicted

if used at an earlier day, we take the calibrated model of the previous sections up to

a day n and use the values Sn, Mn, Hn,Cn, In, Rn and Dn for starting the prediction.

With the variable HC := H +C, we use the recursion

Si+1 = Si −β
Si

N
Mi,

Mi+1 = Mi +β
Si

N
Mi − γMi,

HCi+1 = HCi + γMi,
Ci+1 = Ci + γIF(Si − Si+1)/γCF ,
Ri+1 = Ri + γiCRIi,
Di+1 = Di + γiCDIi,
Ii+1 = Ci+1 −Ri+1 −Di+1,

Hi+1 = HCi+1 −Ci+1.

(33)

This needs fixed values of β and γ that we estimate from the time series for βn and

γn by using a backlog of 7 days, following Section 4.5. The instantaneous rates γiCR

and γiCD can be calculated via their time series, as in (27) and (25), using the same

backlog. We do this at the starting point of the prediction, and then the model runs in

a no political change mode. Examples will follow in section 5.2.

5.1 Properties of the Full Model

The first part of the full model (33) is a standard SIR model for the variables S, M

and H +C, and inherits the properties of these as described in section 2. It does not

use the γiIR parameter of the second equation in (29), and it uses the first the other

way round, now determining C from S, not S from C.

The balances N = S+M+H+C and C = I+D+R are maintained automatically,

and the time series for S,C, R, H +C, and D stay monotonic as long as M and I are

non-negative. To check the monotonicity of H, consider

Hi+1 −Hi = HCi+1 −HCi −Ci+1 +Ci

= γMi −
γIF

γCF

(Si − Si+1)

=

(

γ −β
γIF

γCF

Si

N

)

Mi.

The bracket is positive if

R0 =
β

γ
<

γCF

γIF

N

Si

≥
γCF

γIF

,

which is enough for practical purposes as long as detection rates
γIF

γCF
are low and R0

is not excessively large. Anyway, H should be monitored.
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The slopes of S and C are always connected by (26), and those of R and D are

connected by

Ri+1 −Ri =
γiCR

γiCD

(Di+1 −Di) (34)

in the prediction part. But the figures below will show logarithms, and therefore the

slope parallelism will not be visible.

By section 2.11, the hidden Infectious M will always go to zero, and the variables

S and H +C will level out in the long run. Since C is increasing, it must level out as

well, and I must level out because R and D do. But due to the equations for R and D,

the final level of I must be zero.

The asymptotic levels of S and H +C follow from 2.11, but not the interesting

level of D, the total death toll. If the prediction is started at day n, then

R∞ −Rn =
γiCR

γiCD

(D∞ −Dn),

obtained by summation of (34), connects the asymptotic deaths and confirmed recov-

eries. From the connection of S and C we likewise get

C∞ −Cn =
γiIF

γCF

(Sn − S∞).

With C∞ = R∞ +D∞ we now have three independent equations for the unknowns

C∞, D∞, R∞. Because the theory of Section 2.11 yields S∞ and H∞+C∞ in terms of β
and γ , we know S∞ and can get H∞ from C∞. But if the simulation is run long enough,

one can easily read the asymptotic values off the plots.

5.2 Examples of Predictions

Figure 8 shows predictions on day 122, May 23rd, for Germany, Brazil, France, and

USA, from the top. The plots for countries behind their peak are rather similar to

those for Germany and France. The other two countries are selected because they

still have to face their peak, if no action is taken to change the parameters.

The plots show that Germany can expect to get away with no more than 10000

casualties in the long run, while Brazil goes for a peak of about 20 million hidden

Infectious in fall 2020 (M, symbol ✷) and a final death toll of about 1 million (D,

symbol +). The United States would have to face a peak of hidden Infectious of

about 25 million in mid-January 2021, and more than 1 million COVID-19 deaths

in October 2021, and still rising. But of course, these predictions assume that reality

follows the model and that there are no parameter changes by political action.

The estimated R0 values are 0.65, 2.19, 0.42, and 1.75, respectively. Note that

these are not directly comparable to Figure 5, because they are the fitted constants

to the backlog of a week, and using (31) instead of (20), avoiding the systematic

underestimation of the latter. The hidden M and H (symbols ✷ and ⋄) follow roughly

the observable I and C (symbols O and x), but with a factor due to the detection

rate that is different between countries, see Table 1. To enhance visibility, not all data

points in the plots are marked with symbols. The C, R, I and D data left of the vertical
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line are the original Johns Hopkins data. The S, M, H data there are calculated by

section 4, while to the right the data are predictions for all variables by the full model

(33).

All test runs were made for the infection fatality rate γIF = 0.005, the delay k = 14

for estimating case fatalities, and a backlog of 7 days when estimating constants out

of recent values of time series. The choice γIF = 0.005 is somewhat between 0.56%

from an der Heiden/Buchholz [10], 0.66% from Verity et al. [25], and 0.36% from

Streeck et al. [24]. New information on infection fatality rates should be included as

soon as they are available, and if possible per country, not global.

When used within estimation routines, the Johns Hopkins data were smoothed by

a double application of the 1/4, 1/2, 1/4 filter on the logarithms, like for Figure 5. But

the plots show the original Johns Hopkins and prediction data.

5.3 Evaluation of Predictions

To evaluate the prediction quality, one should go back and start the predictions on

earlier days, to compare with what happened later. Figure 9 shows over-plots of pre-

dictions for days 94, 108, and 122, each a fortnight apart, though there may be pa-

rameter changes in the meantime. The starting points of the predictions are marked

by vertical lines again. For better visibility, only the death count D (symbol +) and

the two non-cumulative variables M and I for the hidden and confirmed Infectious

(symbols ✷ and O) are shown. In particular, the case fatality rates and detection rates

of Table 1 change with the starting point of the prediction, and they determine S, M,

and H in the calibration step of section 4.5. This is why the S, M, and H values differ

left of the starting points.

The leftmost prediction on day 94 roughly matches the data available up to day

122 in all cases. It has to be taken into account that errors in such models must

proliferate exponentially, and then linearly in logarithmic plots. One can see that the

Brazil parameters do not change much, while the three predictions for the United

States get better. This might be used to assess effectivity of administrative efforts to

handle the pandemics.

For an early case in Germany, Figure 10 shows the prediction based on data of

day 67, March 27th. The peak of about 35 million hidden and 3.2 million confirmed

Infected is predicted on day 121, May 22nd, with about 82,000 casualties at the peak

and about 250,000 finally. A good reason to act politically. Note that the real death

count is about 8300 on May 23rd, and the prediction of the day, in Figure 8, targets a

final count of below 10,000.

Quantitative commitments to predictions are rare in the literature, except for

rough estimations of dramatic outbreak scenarios. On April 3rd, after the last pub-

lic restrictions in Germany of March 22nd, 2020, Germany had 1107 deaths and

Khailaie et al. [16] predicted “an order of 10,000 deaths” for the next four weeks.

This model predicts 15,500 for May 3rd when run on data of April 3rd, while the true

deaths were 6812 on May 3rd, after the interventions worked.

On March 16th, day 54, Ferguson et al. [6] predicted deaths in the order of

250,000 in Great Britain, and 1.1 to 1.2 million in the USA “in the most effective
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Fig. 8 Predictions for countries Germany, Brazil, France, and US on day 122 marked by the vertical line.

The S, M, H values to the left are obtained by calibration, the C, R, D, I values there are the original Johns

Hopkins data. Not all data points have marks.
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Fig. 9 Predictions for countries Germany, Brazil, France, and USA on days 122, 108, and 94, marked by

vertical lines. Legend as in Figure 8, but only M, I, and D shown (M=✷,I=O,D=+).
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mitigation strategy examined”, but not based on the data of the day. In an “unmiti-

gated epidemic” 520,000 deaths in the UK and 2.2 million in the US were predicted,

under assumption of R0 = 2.4 and a range of R0 tested between 2.2 and 2.6. Unfor-

tunately, the model (33) cannot be safely run on day 54 for these countries because

there are not enough reliable backlog data. The model can be run if the amount of

data used is cut down by choosing k = 7 for the k-day rule. Then the predictions on

day 54 are more than 30 million deaths for the US and 801,000 for the UK, with

a data-based estimation of R0 = 6.06 for the USA and 4.55 for the UK. There is no

reasonable data-driven estimate for R0 that comes close to R0 = 2.4 used by Ferguson

et. al. [6] for both countries. They had a much more serious outbreak than assumed

by Ferguson et al. on March 16th. See Figure 5 for much later data-based estimates

for the US that still are very large.

The use of the Infection Fatality Rate is somewhat different from Streeck et al.

[24] and Bommer/Vollmer [1], but results are similar. If the rate 0.0036 of [24] is used

in a test run based on data of May 2nd, the estimated number Mn+Cn of total Infected

comes out as 1.7 million, while [24] gets 1.8 million by the formula Dn/0.0036 for

the same day.

The parameter changes by political measures turned out to be rather effective, like

in many countries that applied similar strategies. But since parts of the population

want to go back to their previous lifestyle, all of this is endangered, and the figures

should be monitored carefully.

Of course, all of this makes sense only under the assumption that reality follows

the model, in spite of all attempts to design a model that follows reality.

6 Conclusion and Open Problems

So far, the model presented here seems to be useful, combining theory and practically

available data. It is data-driven to a very large extent, using only the infection fatality

rate from outside for prediction, and the approximation (28) for calibration. On the

downside, there is quite a number of shortcomings:

– Like the data themselves, the model needs regular updating. As far as the Johns

Hopkins data are concerned, the model updates itself by using the latest data for

its internal parameter estimation, but it needs changes as soon as new information

on the hidden infections come in.

– There may be better ways of estimating the hidden part of the epidemics. How-

ever, it will be easy to adapt the model to other parameter choices. If time series

for the unknown variables get available, the model can easily be adapted to being

data-driven by the new data.

– The treatment of delays is unsatisfactory. In particular, infected persons get infec-

tious immediately, and the k-day rule is not followed at all places in the model.

But the rule is violated as well in the data (Schaback [22]).

– There is no stochastics involved, except for simple things like estimating con-

stants by means, or for certain probabilistic arguments on the side, e.g. in section

4.3.2. But it is not at all clear whether there are enough data to do a proper prob-

abilistic analysis.
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Fig. 10 Predictions for Germany and USA on day 67, March 27th, with varying starting values. Legend

as in Figure 8.

– As long as there is no probabilistic analysis, there should be more simulations

under perturbations of the data and the parameters. A few were included, e.g.

for section 4.3.2 and Figures 7 and 10, but a large number was performed in

the background when preparing the paper, making sure that results are stable.

However, there are never too many test simulations.

– Totally different models were not considered, e.g. the classical ones with delays

(Hoppenstaedt/Waltman [13,14]), and agent-based approaches (Ferguson et al.

[6]) that model infections via contacts and can care for spatial distributions.

– The model needs quite an amount of backward data, making it useless at the very

beginning of an outbreak.

– Under certain circumstances, epidemics do not show an exponential outbreak, in

particular if they hit only locally and a prepared population. See Figure 11 for the

COVID-19 cases in Göttingen and vicinity.
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Fig. 11 Infectious in Göttingen city and county, as of April 22nd, 2020 in the local newspaper “Göttinger

Tageblatt”. No exponential outbreak.
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7 Additions

This is a very informal appendix containing additions, remarks, and changes to the

original version of the paper2 for the DMV. It will change regularly, and this version

is of August 1, 2020 . Changes in these additions will not be marked in red. Earlier

versions of these additions are on my webpage.3

As the only addition to the version of July 19th, a new section 9 below deals with

the situation of roughly constant new infections, as is the case for various countries in

mid-July 2020. This is a modification of the Johns Hopkins Data Model that allows

to assess the roughly constant death rate implied by a roughly constant rate of new

infections.

7.1 Errors and Typos

... if not already marked in red in sections 1 to 6 of the original text ...

1. line after (23): replace “with sum 1” by “with sum bounded by one”

2. Comment to Fig. 6 in 3.4: replace “The top shows” by “the left plot shows”.

7.2 Updated Predictions

In the meantime, new superspreading events took place in Germany, and the Infec-

tious were increasing again, but decreasing after fast intervention by the administra-

tion. Various countries seem to have a second outbreak. This calls for updates of the

figures in the paper. But also, the data quality gets worse over time, and predictions

get more difficult. For example, the UK figures of Recovered always were useless,

but on July 19th, even the registration of deaths will be suspended, making any pre-

dictions impossible.4Data of other states are suspected to be not only questionable,

but even manipulated.56

The updated predictions use certain changes to the programs, see section 7.5.

7.2.1 Predictions

The full model predictions replacing Figure 8 are in Figure 12, now based on data up

to day 179 (July 19th). Germany has overcome the small intermediate increase of the

registered Infectious I (black ✷) and the hidden Infectious M (cyan ✷) around day

150-160 due to outbreaks e.g. in the Tönnies factory on day 146. But lowering the

2 https://link.springer.com/article/10.1365/s13291-020-00219-9
3 http://num.math.uni-goettingen.de/schaback/research/group.html
4 July 19th: https://www.independent.co.uk/news/uk/politics/coronavirus-uk-death-toll-nhs-phe-covid-

19-government-england-scotland-a9626336.html
5 June 9th: https://www.telegraph.co.uk/news/2020/06/09/coronavirus-world-round-up-jair-bolsonaro-

accused-manipulating/
6 May 19th: https://kutv.com/news/coronavirus/states-accused-of-manipulating-covid-19-statistics-to-

make-situation-look-better
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Country Death Detection Death Detection

rate rate rate rate

Germany 0.039 0.128 0.017 0.300

Brazil 0.040 0.125 0.039 0.170

Italy 0.117 0.043 0.074 0.068

Spain 0.147 0.034 0.017 0.300

Sweden 0.033 0.151 0.023 0.215

Austria 0.041 0.123 0.011 0.449

France 0.083 0.060 0.054 0.092

UK 0.114 0.044 0.133 0.038

US 0.036 0.141 0.014 0.346

Table 2 Case fatality and detection rates, estimated on day 159 (June 29th) and day 179 (July 19th) using

the 14-day rule and a backlog of 28 days.

restrictions has stopped the rapid decline around day 100 and replaced it by a very

gradual decline. The same is visible for France, and in the plot for US one can see

that the increase of Infectious got larger. Anyway, Germany still has good chances

to stay below a total of 10,000 deaths, while the long-term prediction of the full

model for the US has an R0 of 1.93 and targets a final death toll of 2 million with a

peak of the Infectious around day 380 (Feb. 5th, 2021) if no actions are taken. Brazil

also showed a strong increase, but was taken out due to unreliable data. Spain was

included to show how fast the model reacts to new small outbreaks. But the results

for deaths are very questionable shortly after a new increase of Infectious, because

the instantaneous case fatality rate is near to zero until the deaths following the new

infections show up. This applies to Spain and Germany. For reasons to be explained

below, the results for France are somewhat questionable.

The update of Table 1 is Table 2, based on data up to day 159 (June 29th) and day

179 (July 19th), using the backlog of 28 days. Most death rates are smaller now, and

detection rates are mostly higher. The Recovered of Sweden and the UK had to be

estimated using the 14-day rule by [22].

For readers interested in what happened to Figure 11 describing the COVID-19

situation in Göttingen, here is Figure 13. The two superspreading events in rundown

apartment houses are clearly visible, and how the local authorities regained control.

7.3 Media Coverage in German TV

As of early July, the standard broadcast does not mention terms like Reproduction

Number or doubling time anymore. They give the 7-day mean of new infections and

the increase or decrease of it. This is information about the second derivative of the

Infectious, and therefore useful. The strong variations in the data provided by the

Robert Koch Institute are smoothed away by the 7-day mean. Daily values are not

provided anymore, avoiding any false positive interpretation of lower values on Mon-

days due to the transmission delays incurred by the weekend. See section 7.6.1 below

on how the RKI changes the data to be able to deal with transmission delays.
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Fig. 12 Predictions for countries Germany, Spain, France, and US on day 179 marked by the vertical line.

The S, M, H values to the left are obtained by calibration, the C, R, D, I values there are the original Johns

Hopkins data. Not all data points have marks. See Figure 8 for explanation of colours and markers.
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Fig. 13 Infectious in Göttingen city and county, as of end of July 2020 in the local newspaper “Göttinger

Tageblatt”. Still no exponential outbreak in the large, but two local superspreading events.

7.4 Shortcomings of the Models

The models in the paper rely strongly on the numbers for the deaths, when it comes to

estimating the hidden variables or the case fatalities. This has serious consequences

for re-infections after peaks. As long as only the Infectious re-increase without any

influence on deaths and recoveries, the new situation does not have a strong influence

on the hidden system. In particular, re-infections will quickly increase the R0 estimate

by the Johns Hopkins data model, but will only reluctantly increase the R0 estimate

by the full model, because the hidden part does not change as quickly.

This is one of the places where a major shortcoming of the models shows up:

the inadequate treatment of delays. Another case is that the prediction of a second

peak should work like a restart of the full model under new initial conditions. But

like startup data are discarded until at least 10 deaths and 100 Confirmed are present,

the restart requires again at least 10 new deaths and 100 new Confirmed. It cannot be

expected that the models produce useful results unless this condition is satisfied.

Some formulas rely strongly on monotonicity of the data, e.g. (20), (25), and (27).

And, when cumulative time series get near-stationary after a peak, the R0 estimation

of the Johns Hopkins Data Model by (20) comes close to 0/0 and thus becomes ex-

tremely unstable. In particular, the estimation by (20) will get very large when the

Confirmed already re-increase while deaths and Recovered do not yet follow up. This

is why the update of Figure 5 is delayed to section 8.1.

7.5 Technical Notes

The original programs for the published paper are frozen, and available via http://num.math.uni-

goettingen.de/schaback/research/papers/OC19M.zip from the author’s research web-

site. But there are certain changes made in the meantime that will be reported here.
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7.5.1 Useful Data

Basic Johns Hopkins data plots will still show all data. But for any prediction algo-

rithm, outbreak data are ignored before they reach at least 10 deaths and 100 Con-

firmed. This rule complies well with Figure 4.

But this has a serious consequence for modelling re-infections. As stated above,

one has to wait for 10 new deaths or 100 new Confirmed to get useful data for a re-

start of the models. See section 8.1 for changes concerning R0 estimates via the Johns

Hopkins data model.

7.5.2 Estimation of Case Fatalities

The optimizations in (24) and in (2) of [22] can be simplified by taking the qi as

variables under a nonnegativity constraint. This allows to use linear least squares

routines. The results are the same except for roundoff, for all cases seen, and the

solution now is unique. The interpretation of the p j as probabilities are lost, and the

qi describe nonnegative portions of the newly Confirmed. The constraint on the sum

of the qi turned out to be automatically satisfied in all test runs performed so far.

7.5.3 Changes in Model Calibration

This technique is strongly based on (28), but the constants in the formula can be esti-

mated both in the beginning and in the end of the available data, in particular in (27)

and in the estimation of γCF via section 4.3.5. The new software uses “startup” values

for using (28) in model calibration, but “final” values in the full model for prediction.

The old software always used the “final” values. The calculations for Tables 1 and 2

are not affected, but the plots in Figure 12 use the new strategy.

7.6 Additional References

From April 9th on, the Robert Koch Institute (An der Heiden & Hamouda [11]) pub-

lished its own way of preprocessing its data by Imputation and Nowcasting. I missed

this publication when working through the RKI website in March, and got it in June

via Dehning et al. [4].

So far, I tried my best not to change data. The data publishers can do that, but

not the users. Encouraged by the RKI case, an algorithm in section 8.1 will make

reasonable changes also to the Johns Hopkins data, eliminating the worst flaws and

contradictions, e.g. non-monotonicity.

7.6.1 RKI Imputation and Nowcasting

In [20] of May 15th, the Robert Koch Institute published its current way of estimating

R. This is based on the Imputation and Nowcasting data corrections described in [11]

and mentioned above. It roughly implements the logic of (11) because it takes delayed

ratios of Infectious and applies additional means. This is not estimating the R0 of the
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mathematics of the SIR model. It estimates Rt in the formulation of Section 2.5 of the

paper, namely as the multiplication factor for new Infections, restricted to registered

cases. This factor is quite sufficient in practice, since for the German situation the

impact on the health system is very strongly connected to the new daily registered

infections. See section 9 for a variation of the Johns Hopkins Data Model dealing

with this situation and making predictions.

Imputation by the RKI concerns the estimation of a fictitious symptom onset from

the known registration time, i.e. an estimation of the delay between symptom onset

and registration. The RKI found a delay between 5.3 and 9 days, time-varying, and

applied this to the 40% of all cases where the symptom onset was not known. For

about 60% of the data, the RKI knows the delay. To do this properly for the JH data,

one needs information about the correspondent delays in JH data. These are missing,

to my knowledge, and will anyway be strongly country-dependent.

Nowcasting a time series of counting “cases” with true unknown values Xn at

time step n uses the observed x j at time j to estimate Xn by some estimated value X̂n

that accounts for delays in data acquisition. The observations x j at time j contain true

cases Xi at time i for i ≤ j, which means that Xn contains parts of the xk for k ≥ n.

This requires the portions q j that should have been registered j steps later, such that

roughly

X̂n ≈
D−1

∑
j=0

q jxn+ j. (35)

The RKI seems to use imputation to assign the “right” n to uncertain x cases, and

then use the obtained xn for nowcasting. To do this properly one needs experimental

statistics about observed delays, or Bayesian priors to assume meaningful distribu-

tions of such delays. The RKI has such information, but what about Johns Hopkins

data?

From a deterministic viewpoint, (35) will have a smoothing effect, and this may

be a way to use it when no additional information is given. We shall apply (35) in

section 8.1 to mimic imputation and nowcasting without having additional data on

delays.

8 Repairs in JH Data

The JH data contain cases where cumulativity is violated, and where strong ≈ 7 day

oscillations occur that may, like in the RKI case, be due to delays in transmission, e.g.

by weekends. Furthermore, there are violations of the k-day rule, and predictions will

improve if certain conservative smoothing techniques are applied. “Conservative”

means here that counts of cases are kept in the mean. Missing or doubtful data for

Recovered can be roughly estimated using [22] and a k-day rule, if the Confirmed

and Deaths are reliable. A general goal is to find algorithms that detect errors and

plausibility flaws in the Johns Hopkins data, but this is ongoing work.
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8.1 Monotonicity and Smoothness

Assume that a time series Xn is required that is at least weakly monotonic, based

on observations xn that may be faulty. The goal is to find an algorithm that works

like imputation and nowcasting, combined with a smoothing technique. This will be

applicable to C, R, and D of the Johns Hopkins data.

The idea pursued here is to perform a fit like (35) under monotonicity con-

straints and non-smoothness penalties. For the latter, we may measure smoothness

by a vector-valued function f whose components f j(X) give a penalty for non-

smoothness of the X values around step j. One way is to use a time window around

time j, take the Xk in the window, fit them to a fixed local model and return the fitting

error. Then one might minimize a weighted sum of f j(X)2 and squared errors in (35)

under all X with monotonicity constraints and under all nonnegative q j. If necessary,

one can restrict the sum of the q j to be one, enforcing that no cases are lost in the

mean.

The implementation works via MATLAB’s lsqnonlin acting on the logarithms

of C, R, or D, the non-smoothness penalties being the fitting error to a quadratic poly-

nomial on a window of up to five points. The overall optimization problem thus is

quadratic with linear constraints, usually leading to a unique solution. If M data are

treated, this minimizes over the D+M nonnegative quantities (q,X) under mono-

tonicity constraints on X and 2M −D penalties consisting of M −D errors in (35)

and M non-smoothness penalties. Note that the non-smoothness penalties are inde-

pendent of the observed data. A more sophisticated technique of non-smoothness

penalties will not aim at local quadratics, but could fit data on 5 points by two line

segments with a breakpoint at one of the points. This is currently not implemented,

but would not iron out any breakpoints. Note that equation (5) in Höhle/an der Hei-

den [12] uses a local quadratic spline for smoothing within a Bayesian nowcasting

technique.

For Johns Hopkins data of France up to day 180 (July 20th), the C, D, and R

values have 20, 7, and 12 places of non-monotonicity, respectively. Figure 14 shows

the result of the algorithm for D = 7. Here and in many other cases, the new data

(dotted) are to the left of the original data. This is normal, because they contain values

that are possibly falsely registered on later days. Table 3 shows the resulting q j for the

data of France. They indicate that Recovered are possibly registered later and more

irregularly than Confirmed and Dead. This calls for further checks, if time permits.

For countries with useless R data, like the United Kingdom, Denmark, and Swe-

den, the C and D data are processed first, and then the R data are estimated from the

processed C and R data under the 14-day rule as proposed in [22].

It can be argued that (35) should be used on increments, i.e.

X̂n − X̂n−1 ≈
D−1

∑
j=0

q j(xn+ j − xn+ j−1),

but (35) implies this.

If Figure 5 containing the R0 estimates from the Johns Hopkins data is produced

for data up to day 179 (July 19th), results for France are useless due to non-monotone
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Fig. 14 The JH data for France, with repair, up to day 170 (July 20th). Dotted: Repaired data. Full data

and a closeup. Note that the black I curves are not monotonic.

j C R D

0 0.2085 0.0949 0.1261

1 0.1985 0.1369 0.1393

2 0.1965 0.1761 0.2284

3 0.1284 0.1907 0.1577

4 0.1090 0.1738 0.1922

5 0.1167 0.1326 0.0878

6 0.0428 0.0924 0.0685

sum 1.0004 0.9975 0.9998

Table 3 Quantities q j for monotonizing, nowcasting and smoothing the JH data of France up to day 170.

There was no constraint on the sum of the q j .
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Fig. 15 Estimates of R0 via the time series rn up to day 179, without and with data repair.

values and the 0/0 effect in (20). The left part of Figure 15 shows the results for

the standard (1/4,1/2,1/4)-smoothing of raw logarithmic data, while the right-hand

side is applied after applying the above technique. The missing x markers in the left-

hand plot are at places where the denominator in (20) was zero or the quotient was

negative. The results for France are still useless due to the 0/0 instability in (20), even

after monotonicity is enforced by taking the values of Figure 14. Overcoming the 0/0

instability of (20) is still an open problem. The r estimate there is connected to the

derivative of C reparametrized as a function of R+D, and this function necessarily

behaves badly when there are new confirmations but no new deaths and recoveries.

8.2 Testing the k-day Rule

A standard assumption is that the newly Confirmed Cn −Cn−1 at day n will end up

dead or alive until day n+ k for k large enough. This implies

Cn −Cn−1 ≤ Rn+k −Rn−1 +Dn+k −Dn−1. (36)

Conversely, the new Removed Dn −Dn−1 +Rn −Rn−1 at day n must have been con-

firmed between day n and day n− k. This means

Dn −Dn−1 +Rn −Rn−1 ≤Cn −Cn−k−1 (37)

and both inequalities admit that transition from Confirmed to Removed can be on

the same day. This is different from the treatment of the k-day rule in the paper and

in [22], where death and recovery can occur at least one day later than confirmation.

Altogether, this differs by just a shift by one day. The extreme case k = 0 now implies

that

Cn −Cn−1 = Rn −Rn−1 +Dn −Dn−1,

i.e. all new Registered at day n are either dead or recovered. Since the k-dependent

right-hand sides increase with increasing k, there should be a minimal kmin for which

the above relations hold for all reasonable n.

Table 4 shows the minimal k for which either (36) or (37) are satisfied for the full

range of data with D ≥ 10 and C ≥ 100 up to day 179 (July 19th). The data were
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preprocessed with the technique of section 8.1. Furthermore, for UK, Denmark, and

Sweden, the Recovered had to be estimated by the technique of [22] to get reasonable

values at all. If the calculation is repeated for the data between days 142 and 170,

all values (except for Spain) are considerably smaller. The unusually high value for

Spain is due to failing (36) by at most 300 cases out of about 250,000 Confirmed.

Altogether, even for the early phase of the outbreak, a 14-day rule is roughly satisfied,

supporting the strategy used so far for estimation of Recovered and of the case fatality

rate.

Passes (36) Passes (37)

Country for k for k

Austria 12 4

Brazil 18 1

Denmark 15 3

France 13 1

Germany 13 1

Italy 6 5

Russia 12 1

Spain 29 4

Sweden 15 1

Switzerland 14 4

UK 13 1

US 11 1

Table 4 The minimal k for which the JH data up to day 179 satisfy either (36) or (37).

9 Constant New Confirmations

A typical situation in Germany in mid-July 2020 was that there was a roughly con-

stant number ∆C of new Confirmed, varying between 200 and 500, slowly increasing.

This can be due to more travelling or relaxation of contact constraints, for instance,

but here we do not ask for reasons. Instead, we check how the Johns Hopkins data

model behaves under such an assumption. Equations (19) turn into

Cn+1 −Cn = ∆C,
In+1 − In = ∆C− γnIn,

(R+D)n+1− (R+D)n = γnIn

maintaining the balance C = R+D+ I. If the γn are considered to be constant, the

I values go exponentially to a level I = ∆C
γ , from below or above, depending on the

starting value for I. The qualitative behaviour of I now is logistic. There is no peak

and no long-term exponential decrease to zero. But a constant number of Infectious

means a constant increase of deaths, calling for political changes that stop this sce-

nario. Anyway, it cannot be valid over long time intervals because there is an upper

bound on the Confirmed.
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Fig. 16 Time series for estimates of γD and γR for Germany up to day 188

To get a grip on deaths and recoveries, we should split the last equation into

γR
n + γC

n = γn,
Rn+1 −Rn = γR

n In,
Dn+1 −Dn = γD

n In.

The γR
n and γD

n are now time series of the instantaneous case rates γiCR and γiCD of

(22), and it is easy to get estimates of them by just solving the equations. Figure 16

shows these values as time series, based on the Johns Hopkins data after applying the

technique of section 8.1. For Germany on day 188 (July 28th) using a mean over the

last 14 days, the values are

γD ≈ 0.0005, γR ≈ 0.064.

With a number of about I = 7600 Infectious on day 188, the critical value of ∆C

determining increase or decline of I is ∆C = Iγ ≈ 500. Then a constant I of about

7600 implies a daily death count of four due to COVID-19. This agrees quite well

with what actually happened in mid-July, but this must be expected because we used

the real data. If rates γR and γD stay as they are, doubling ∆C implies doubling the

asymptotic I level and the death rate in the long run. The logistic increase to the new

I level is rather fast, see Figure 17 for Germany with an assumed ∆C = 1000 from

day 188 on. The linear increase of C is still far from reaching saturation, and the total

death toll still stays below 10,000 in the period shown.

Italy has about 250 new daily infections around day 188, with values of γD ≈
0.00086 and γR ≈ 0.124 with Infectious around 12,350. The threshold for ∆C is

around 125, and a value of 400 new daily infections would imply about 11 daily

COVID-19 deaths in the long run.

Summarizing, there are situations where countries with a small and constant daily

increase ∆C of the Confirmed may get along for quite some time, but at the price of a

constant and hopefully low COVID-19 death rate. Societies and their politicians must

decide whether this rate is tolerable.

But various other countries like France, Spain, UK, or US cannot be treated that

way, because either the current ∆C values are not roughly constant or the γ values are

completely unreliable because the R or D values are. Finally, the γD values used in

the above examples were much smaller than what was observed in the early phase of
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Fig. 17 Prediction for ∆C = 1000 for Germany based on data up to day 188

the COVID-19 outbreak, see Figure 16. If health systems get under serious stress, and

if seniors are not properly protected, the above scenario will become much worse.
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