
1 INTRODUCTION AND OVERVIEW 1

Direct Discretizations
with Applications to Meshless Methods for PDEs

Robert Schaback, Univ. Göttingen
schaback@math.uni-goettingen.de

http://num.math.uni-goettingen.de/schaback/research/group.html

AMS classifications: 65M06, 65N06, 65D15, 65D25, 65D30, 65D32, 65D0, 41A05,
41A10, 41A55, 42A82

Abstract:
A central problem of Numerical Analysis is the approximate evaluation of integrals
or derivatives of functions. In more generality, this is theapproximate evaluation of
a linear functional defined on a space of functions. Users often just have values of a
functionu at scattered pointsx1, . . . ,xN in the domainΩ of u, and then the valueλ (u)
of a linear functionalλ must be approximated viadirect approximation formulae

λ (u)≈
N

∑
j=1

a ju(x j),

i.e. we approximateλ by point evaluation functionalsδxj : u 7→ u(x j). Suchdirect
discretizationsinclude classical cases like Newton–Cotes integration formulas or di-
vided differences as approximations of derivatives. They are central for many methods
solving partial differential equations, and their error analysis has a long–standing his-
tory going back to Peano and his kernel theorem. They also have a strong connection
to Approximation Theory.

Here, we apply certain optimizations to certain classes of such discretizations, and
we evaluate error norms in Beppo–Levi– and Sobolev spaces. This allows to compare
discretizations of very different types. including those that are based on exactness on
polynomials and those which are by definition optimal on certain function spaces but
lack sparsity. Special attention is given to discretizations that are used within current
meshless methodsfor solving partial differential equations.

Much of this work is based on recent collaboration with Oleg Davydov of the Uni-
versity of Strathclyde, Scotland, and Davoud Mirzaei of theUniversity of Isfahan, Iran.

1 Introduction and Overview

Meshless Methodsformulate PDE problems viatrial functionsparametrizedentirely
in terms of nodes[4]. Partial derivatives at points or local integrals against test func-
tions have to be expressed in terms of function values at neighbouring scattered points.
The resulting formulas are of finite–difference type, but they are by no means unique.
Various optimization criteria can be applied to produce “optimal” formulas, and this
contribution surveys some of these.

The most common idea is to ask for exactness of the formula formultivariate poly-
nomials up to a certain order. Thispolynomial consistencyneeds some requirements

2 MESHLESS METHODS 2

on the scattered points to be satisfied, but if more than a minimal number of local scat-
tered points is admitted, there are multiple solutions thatcall for optimization under
the constraints of exactness on polynomials. This optimization can be carried out in
various ways, and we study some of these, summarizing joint work with Oleg Davy-
dov, Univ. of Strathclyde [6]. One can go for optimal sparsity, or apply Moving Least
Squares techniques or optimize formulas with general weights in one way or another.
A general error analysis is carried out that indicates whichcriteria for optimization
are useful. In contrast to classical Moving Least Squares discretizations of Meshless
Methods, we do not take derivatives of shape functions here.This part is based on joint
work with Davoud Mirzaei, Univ. of Isfahan [11, 10, 12].

Derivative formulas produced by taking exact derivatives of kernel–based local in-
terpolants usually have no polynomial consistency, but they can be proven to compete
favourably with optimized polynomially consistent formulas, since they are optimal
estimators of derivatives for all functions in the native Hilbert space of the kernel. Fur-
thermore, all competing direct derivative formulas can be compared by explicitly cal-
culating the norms of their corresponding error functionals on Sobolev or Beppo–Levi
spaces.

A final section uses the latter fact to provide results of extensive numerical experi-
ments comparing all of these methods. It turns out that polynomially consistent formu-
las compete well with all the others as functionals on Sobolev or Beppo–Levi spaces,
though they are necessarily (but not too much) inferior to the optimized kernel–based
formulas on these spaces. For kernel–based formulas, one can use smooth kernels with
no problems caused by excessive smoothness. But one should ensure some form of
sparsity by careful point selection, and the selection of nearest neighbours comes out
to be a very good choice.

2 Meshless Methods

By the pioneering survey article [4],Meshless Methodsformulate PDE problems via
trial functionsparametrized“entirely in terms of nodes”. Let X = {x1, . . . ,xN} ⊂ Ω ⊂
R

N be a set of nodes. Then each trial functionu should take the form

u(x) =
N

∑
j=1

sj(x)u(x j) (1)

where usually, but not necessarily, theshape functions s1, . . . ,sN satisfy theLagrange
conditions

sj (xk) = δ jk, 1≤ j,k≤ N.

A very popular way to get shape functions at scattered nodes is to apply Moving Least
Squares, while another method uses translates of kernels orRadial Basis Functions.
We consider both cases later.

If a linear PDE problem is given in the form

Lu = f in Ω,
Bu = g in Γ := ∂Ω,

(2)

2 MESHLESS METHODS 3

with a linear differential operatorL and a linear “boundary operator”B, it can be dis-
cretized in strong or weak form as

λm(u) = fm, 1≤ m≤ M, (3)

with linearfunctionals. Then the problem is reformulated as a linear system

λm(u) =
N

∑
j=1

λm(sj)u(x j) = fm, 1≤ m≤ M (4)

in terms of values at nodes. This system may be overdetermined, but it will be ap-
proximately solvable, if the original problem has a true solution u∗ that has a good
approximationu from the meshless trial space. In fact,

fm = λm(u∗)
≈ λm(u)

=
N

∑
j=1

λm(sj)u(x j), 1≤ m≤ M.

The functionalsλm come in various forms. We explain part of them by consideringthe
standard elliptic problem

−∇ · (a(x)∇u(x)) = fΩ(x) in Ω,
u(y) = fD(y), in ΓD ⊂ Γ = ∂Ω,

∂u
∂n(y) = fD(y), in ΓN ⊂ Γ,

Strong PDE formulations will usecollocationvia functionals

λ j(u) := −∇(a(·)∇u(·))(x j) = f j , x j ∈ Ω
λk(u) := u(yk) = fk, yk ∈ ΓD,

λℓ(u) := ∂u
∂n(zℓ) = fℓ, zℓ ∈ ΓN ⊂ Γ

that evaluate differential operators at single points.Global weakmethods rewrite the
main equation as

∫

Ω
(a(x)∇u(x))T ∇v(x)dx=

∫

Ω
fΩ(x)v(x)dx

for test functionsv vanishing on the boundary. This leads to functionals

λ j(u) :=
∫

Ω
(a(x)∇u(x))T ∇v j(x)dx

for test functionsv j , and the valuesf j for the equationsλ j(u) = f j need integrations

f j =

∫

Ω
fΩ(x)v j (x)dx

against the same test functions.

2 MESHLESS METHODS 4

Localweak forms rewrite the differential equation on small subdomainsΩh as
∫

Ωh

(a(x)∇u(x))T ∇v(x)dx−
∫

∂Ωh

∂u
∂n

(x)v(x)dx=
∫

Ωh

fΩ(x)v(x)dx (5)

for test functionsv that vanish not necessarily on the boundary. If the boundaryof Ωh

hits the Neumann boundary, the factor∂u
∂n can be replaced byfN there. This gives the

additional local functionals

λℓ(u) :=
∫

∂Ωh∩(Γ\ΓN)

∂u
∂n

(x)vℓ(x)dx (6)

and
λ j(u) :=

∫

Ωh

(a(x)∇u(x))T∇v j(x)dx

for test functionsv j on Ωh. This arrangement of localized functionals is the main
variant MLPG1 of theMeshless Local Petrov Galerkinmethod of S.N. Atluri and col-
laborators [3].

A simplified case called MLPG5 arises when simply choosing the test functions to be
constant. Then the main PDE discretization takes the form

λΩh(u) :=−

∫

∂Ωh∩(Γ\ΓN)

∂u
∂n

(x)dx=
∫

∂Ωh∩ΓN

fN(x)dx+
∫

Ωh

fΩ(x)dx (7)

and involves only boundary integrals like (6) of the normal derivative.

In all of these cases, it is necessary to have cheap evaluations of the functionals on the
trial space, and this is the main topic of this contribution.Since numerical integration
is required in all weak formulations, it will pay off to have explicit formulas for exact
integration.

Time–dependent PDEs can in many cases be handled via meshless methods that follow
the above strategy in the spatial variablesx∈ Ω. The representation (1) is replaced by

u(x, t) =
N

∑
j=1

sj(x)u(x j , t)

using the spatial shape functions. IfD is a linear differential operator with respect to
time, one can use

Du(x, t) =
N

∑
j=1

sj(x)Du(x j , t)

to express everything in terms of time–dependent values at nodes. Together with the
other parts of the PDE, this connects valuesDu(x j , t) with valuesu(xk, t), and thus
leads to a system of ODEs that can be solved by the Method of Lines or by certain
time-stepping methods. There are plenty of papers that apply this to various types
of time–dependent PDEs. For details, we refer to the paper [10] which implements
discretizations that will be described below.

3 DIRECT DISCRETIZATIONS 5

3 Direct Discretizations

No matter which functionalsλ come from the PDE problem along the lines of the
previous section, meshless methods usually apply them to trial functions (1) as

λ (u) =
N

∑
j=1

λ (sj)u(x j).

This requires evaluation of the functional on all shape functionss1, . . . ,sN. This can
be a serious problem if the shape functions are implicitly defined, like in all meshless
methods that use Moving Least Squares shape functions.

But it is by no means necessary to use shape functions at all atthis point. The above
formula is just one way of approximatingλ (u) “in terms of values at nodes”. One can
generally go for

λ (u)≈
N

∑
j=1

a ju(x j) (8)

with certain coefficientsa j . It should be emphasized that the coefficientsa j in (8) are
considered asgivenvalues that are determined by some specific numerical method, e.g.
by one of the choices of discretization schemes discussed later in the paper.

If this is done for all functionalsλm of (3) similarly, one gets the linear system

λm(u)≈
N

∑
j=1

am ju(x j) = fm, 1≤ m≤ M (9)

instead of (4). Here, the matrix entries are more generic, replacing the specific values
λm(sj) in (4) that depended on shape functions. Being “entirely in terms of values at
nodes”, this still follows the philosophy of meshless methods, but without using any
shape functions. Once the system is approximately solved, valuesu(x j) are known and
can be used by any interpolation or approximation method to calculate values at other
locations. We call (8) adirect discretizationof the functionalλ , and the rest of this
contribution will deal with these. We use the termdirect to emphasize the fact that
these approximations avoid shape functions.

In particular, if functionals contain derivatives, directdiscretizations need not evaluate
derivatives of shape functions. The literature has the termdiffuse derivatives[13, 14]
for direct discretizations of derivative functionals. We strictly avoid the term “diffuse”
because there is nothing uncertain or diffuse there. Instead, the “diffuse” derivatives
are direct discretizations of derivatives. The papers [11,12] prove that there is no loss
of accuracy to use direct discretizations replacing derivatives of shape functions, and
they used the notiondirect derivativesfor direct approximations of derivatives.

For Dirichlet data, it makes sense [10] to couple the known nodal valueu(yk) at a point
yk on the Dirichlet boundary to neighbouring unknown nodal valuesu(x j) at pointsx j

4 DIRECT DISCRETIZATIONS VIA POLYNOMIALS 6

inside the domain via an additional formula of the type

u(yk)≈ ∑
j

a ju(x j),

which is another direct discretization. In should be interpreted as a formula providing
extrapolation to the boundary, and it generates an equationin (9) that connects given
Dirichlet datau(yk) to unknown nodal valuesu(x j).

The following sections will deal with several techniques for calculating direct dis-
cretizations (8) that determine useful coefficients in (9).In particular, we shall have
a close look at the error functional

ελ ,X,a := λ −
N

∑
j=1

a jδxj (10)

and try to make it small in one way or another, and we want a cheap calculation of the
discretization. We can focus on single functionals for thispurpose. In the context of
classical theory for numerical solution of PDEs, this dealswith consistencyonly, not
with stability. Stability will depend on which and how many functionals areused for
the whole setup of equations (9) in order to let the coefficient matrix have rankN and a
stable pseudoinverse. However, readers should keep in mindthat the notion of stability
of methods for solving time–dependent PDEs is different.

Note that in our setting (3) we always assume that the given data valuesf j are ex-
actly the valuesλ j(u) of the true solutionu of the problem. This is anoiseless situation
and allows us to interpret the approximation error in (9) as avalue of a continuous lin-
ear functional. If data are polluted by additive noise, e.g.f j = λ j(u)+δ j with nonzero
δ j , this approach fails and requires a completely new error analysis leading to regular-
ization techniques. See e.g. [8] for regularized discretizations of derivatives that can
deal with noise.

4 Direct Discretizations via Polynomials

We start with methods for (8) that use polynomials. This is well–known from the
univariate case. There, the standard technique is to requireexactnessof (8) for a fixed
given functional on a finite–dimensional space of polynomials, and error bounds are
obtained via Peano kernels. We shall come back to this in section 4.3.

In multivariate meshless methods, polynomially exact discretizations usually come via
Moving Least Squares, but with evaluation of the functionals on the shape functions,
which in turn need pointwise calculation. If the functionals contain some integration,
this means that one has to evaluate values or derivatives of shape functions on the
integration points. Here, we shall avoid the use of shape functions, and we generalize
the setting of Moving Least Squares.

We assume a polynomial order (= total degree plus one)m for which a formula (8)
for a single functionalλ should be exact, and we denote byPd

m the space of these

4 DIRECT DISCRETIZATIONS VIA POLYNOMIALS 7

polynomials ind variables. Its dimension
(m−1+d

d

)
will be abbreviated byQ, and we

choose a basisp1, . . . , pQ. The set of (usually local) nodes will beX = {x1, . . . ,xN}.
In what follows, we focus on a single functionalλ in the sense of (8), but we keep in
mind that this deals only with a row of the system (9).

With theQ×N matrixP= P(X,m,d) with valuespi(x j) and the vector

p := (λ (p1), . . . ,λ (pQ))
T ∈ R

Q,

exactness of (8) up to orderm means solvability of the linear system

Pa= p, i.e.
N

∑
j=1

a j pi(x j) = λ (pi), 1≤ i ≤ Q. (11)

This is satisfied if rank(P) = Q ≤ N, but this “unisolvency” condition is not neces-
sary. For example, takeλ (u) = ∆u(x) for some pointx ∈ R

2 and the five–point star
discretization. It hasN = 5 points, is exact for all polynomials ind = 2 variables up to
orderm= 4, and thus hasQ= 10.

For what follows, we always assume solvability of (11), but we will often have ad-
ditional degrees of freedom that we can use for some kind of optimization. We use
boldface notation as soon as we are in Linear Algebra, but nowhere else.

But we emphasize at this point that the system (11) requires only polynomials, no
shape functions, and the most expensive part will be the evaluation ofλ (pi) in case
of integrations of derivatives. But the integrands will be available in closed form, and
the integration error can be easily controlled, in particular if the domain has a regular
shape, e.g. a ball, a cube, or a polyhedron. In MLPG5, there isno test function, and
then there is no additional error induced by numerical integration, and no “background
mesh” for integration.

4.1 Sparse Polynomial Discretizations

If the system (11) is solvable, one can ask for a solution witha minimal number of
nonzero coefficients. Papers on sparsity often work by minimizing the number of
nonzero coefficients, called the zero–“norm”. This is a highly nontrivial task, but it
is relatively easy to come up with solutions that have onlyQ nonzero components, if
N ≥ Q. This can be done by the MATLAB backslash operator, for instance, or byOr-
thogonal Matching Pursuitin a simple implementation. In fact, one only has to project
the right–hand sidep of (11) into the column space of the matrixP and find a linear
combination by linear independent columns. Details are in [15], but there is a shortcut.
If a pivoted QR decomposition of the matrix of the linear system

(
P −p
1T

N 0

)(
a
α

)

=

(
0Q

1

)

4 DIRECT DISCRETIZATIONS VIA POLYNOMIALS 8

is performed that starts with the final column, there will be an automatic column se-
lection by a greedy choice of the columns that reduce theℓ2 error in an optimal way
[15].

However, none of these methods, including minimizing theℓ1 norm of the coeffi-
cients, yields the sparsest solution in all cases. But, of all the simplified methods, the
ℓ1 norm minimization often performs best with respect to sparsity. We shall include it
into our numerical examples, together with the Orthogonal Matching Pursuit (OMP)
solution and the simple MATLAB backslash operationa=P\p that also does a pivoted
QR decomposition, but not dependent on the right–hand side.

4.2 Moving Least Squares

A very popular case within meshless methods is the approach via Moving Least Squares
that we describe now.

In the standard form of Moving Least Squares, there is no connection to direct dis-
cretizations. Forgivenvaluesu(x1), . . . ,u(xN) at scattered pointsx1, . . . ,xN near a fixed
pointz, it tries to find a valueu(z) at z that matches the data well. It calculates a poly-
nomialp∗ ∈ Pd

m that minimizes

N

∑
j=1

(p∗(x j)−u(x j))
2w2(z,x j)

for weights coming from a weight functionw that is localized around some fixed
point z. If p∗ is found, the valuep∗(z) is taken asu(z). Numerically, this is the
minimization of‖Wz(PTc−u)‖2 for a coefficient vectorc ∈ R

Q, given vectorsu =
(u(x1), . . . ,u(xN))

T ∈ R
N for the data and putting the positive weightsw(z,x j) into a

diagonal matrixWz. Note that onlyWz depends onz. The standard variational argu-
ment then shows that the solution vectorc∗z = (c∗1(z), . . . ,c

∗
Q(z))

T ∈R
Q must satisfy the

Gaussian normal equationsPW2
zPTc∗z = PW2

zu. If P has rankQ, this is solvable, and
the resulting value atz is

p∗(z) =
Q

∑
i=1

c∗i (z)pi(z).

The vectorc∗z can formally be written asc∗z = Bzu with aQ×N matrix

Bz = (PW2
zPT)−1PW2

z.

Then the procedure yields

u(z) = p∗(z) =
Q

∑
i=1

N

∑
j=1

bi j (z)u(x j)pi(z) =
N

∑
j=1

u(x j)
Q

∑
i=1

bi j (z)pi(z)

︸ ︷︷ ︸

=:sj (z)

which is of the form (1) with the shape functionss1, . . . ,sN. These functions will not
necessarily be polynomials, unfortunately, unless the weights are chosen independent
of z.

4 DIRECT DISCRETIZATIONS VIA POLYNOMIALS 9

Standard applications of this for meshless methods would hit (1) byλ and proceed
to calculate the valuesλ (sj). This will lead to an approximation of the form (8). If
integrations are involved, the integrations do not run overpolynomials. Derivatives atz
in the functional are usually handled by taking derivativesof p∗ at z, but derivatives at
integration points need recalculation of the whole procedure at each integration point.
Diffusederivatives ignore the dependence of thebi j onzand just take derivatives of the
sj via derivatives of the polynomialspi . This will also lead to an approximation of the
form (8), but without taking derivatives of shape functions.

The connection to direct discretizations works as follows.We calculate coefficients
c∗i by solvingPW2PTc∗ = PW2u, and we define our discretization ofλ by

λ (u)≈ λ (p∗) =
Q

∑
i=1

c∗i λ (pi) = pTc∗ = pTBu = pT(PW2PT)−1PW2u

which is of the required form. This allows arbitrary weights, but it involves a least–
squares approach that is not general enough. By some standard calculations, the coef-
ficient vector

a= W2PT(PW2PT)−1p

minimizes

‖a‖2
2,1/w2 :=

N

∑
j=1

a2
j

w2
j

=
N

∑
j=1

a2
j

w(z,x j)2

with the reciprocals of the Moving Least Squares weights centered about a pointz.
Then one can use the identityλ (p∗) = uTa for calculating the direct discretization.
However, if one has to approximate several functionals fromvalues of functions at
the same nodes, it is better to calculate a polynomial interpolant p∗ with a coefficient
vectorc∗ first and then take the exact valuesλ (p∗) as approximations.

4.3 General Weights

We now stick to (8), make it exact onPd
m via (11), and use the additional degrees

of freedom to minimize some norm of the coefficient vectora ∈ R
N. For maximal

sparsity, one can use section 4.1, or go for the norm‖a‖1.
If solvability of (11) is assumed, each optimization of the weights will be feasible,

and will yield a possibly useful solution. A comparison should be made within the error
analysis. There are at least two sufficiently general approaches to error bounds in the
literature. In [12], results on stabilized polynomial reconstruction [17] are used, while
[6] derives error bounds in terms of growth functions [5]. With a certain simplified
shortcut, we explain these techniques by taking an arbitrary polynomialp ∈ Pd

m for

4 DIRECT DISCRETIZATIONS VIA POLYNOMIALS 10

bounding the error as

|ελ ,X,a(u)| =

∣
∣
∣
∣
∣
λ (u)−

N

∑
j=1

a ju(x j)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
λ (u− p)−

N

∑
j=1

a j(u− p)(x j)

∣
∣
∣
∣
∣

≤ |λ (u− p)|+

∣
∣
∣
∣
∣

N

∑
j=1

a j

wj
(u− p)(x j)wj

∣
∣
∣
∣
∣

≤ |λ (u− p)|+ ‖a‖q,1/w‖u−p‖r,w

with 1/q+1/r = 1 and arbitrary positive weightsw1, . . . ,wN. There are several differ-
ent views on this bound, and all of them give a specific insight.

First, assume that we restrict ourselves to a subset ofQ points ofX on which we
can perform interpolation as

p(x) =
Q

∑
j=1

p j(x)p(x j)

like in (1), and we interpolateu on these points byp. Thenu= p, and the error consists
just ofλ (u− p). Exactness then impliesa j = λ (p j), 1≤ j ≤ Q and there is nothing to
minimize. This is the standard situation known from 1D, e.g.for numerical quadrature
like Newton–Cotes formulae. The error of the discretization is exactly the evaluation
of the functional on the error function of the interpolation. Even in 1D this can be fine
or disastrous, depending on the locations of the points. Without oversampling, there
will always be at least a logQ growth in case of nicely placed points, while there is an
exponential growth withQ in case of regularly distributed data. To overcome this, the
techniques summarized in [17] use oversampling, and then they get bounded interpo-
lation processes that makeλ (u− p) manageable. Consequently, by a logic similar to
the above one, and using Taylor polynomials like in the fourth view below, the authors
of [12] get useful error bounds for these interpolation–based discretizations.

A second view would not takep as an interpolant, but rather argue with a best poly-
nomial approximantp to u. Then the first part of the error bound is again independent
of the discretization formula, but the second tells us that we should minimize‖a‖q,1/w
under the constraintPa= p, no matter how good the best polynomial approximation to
u actually is. But this leaves open how to choose the weights. Note that this approach
leads to “derivative–free” error bounds which were fashionable quite a while ago.

The caseq= 2 of the above argument already points towards Moving Least Squares,
for general weights. More specifically, our third view is to take p as the outcome of
Moving Least Squares, minimizing‖u−p‖2,w with MLS–specific weights. There are
good bounds onλ (u− p) in this case [1, 17], and one is left with minimizing‖a‖2,1/w
under the constraintPa= p, bringing us back to the previous approach. By the stan-
dard duality arguments of Moving Least Squares, the minimalsolution coefficientsa∗j
are exactlyλ (sj) if sj are the shape functions of MLS. This gives a possible reason
why many applications of MLS within meshless methods work this way, but note that

5 DIRECT KERNEL–BASED DISCRETIZATIONS 11

here the weights are chosen in a special way and a specific polynomial is constructed
first. This is by no means mandatory.

A fourth approach [6] views the bound locally around a fixed point z and inserts a
Taylor expansionpz of u aroundz, but does not use oversampled and thus uniformly
bounded polynomial recovery like in [17] and [12]. In addition, this approach gives an
indication of which weights could be useful. ForRz(x) := u(x)− pz(x), we have

|Rz(x)| ≤ ∑
|α |=m

|(x− z)α |

α!
‖∂ αu‖C(Ωz)

on a local subdomainΩz containingzandX. Then we have the two error terms|λ (Rz)|
and ∣

∣
∣
∣
∣

N

∑
j=1

a jRz(x j)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∑
|α |=m

‖∂ αu‖C(Ωz)

α!

N

∑
j=1

|a j ||(x j − z)α |

∣
∣
∣
∣
∣
.

If no assumptions on the anisotropy ofu and the point locations can be made, this
bound suggests to take the weightswj := ‖x j − z‖m

2 for minimization of‖a‖1,w.
We stop the argument here and refer to [6] for details, and in particular, for the

connection between this minimization problem andgrowth functions. In section 6
we shall come back to error bounds. In our examples, we denotethe discretizations
obtained by exactness of orderm and minimization of‖a‖1,w with wj := ‖x j − z‖m

2
optimal m–th order local polynomial discretizationsand write‖a‖1,m for short.

5 Direct Kernel–based Discretizations

We now go back to (8) and view direct discretizations in the most general way. Clearly,
they make sense only if the point evaluationsu 7→ u(x j) and the functional evaluation
u 7→ λ (u) are continuous operations. If we assume the functionsu to lie in some Hilbert
spaceH of functions onΩ with continuous point evaluationsδx : u 7→ u(x), the Riesz
representers of the functionalsδx define akernel K : Ω×Ω →R with the properties

K(x,y) = (δx,δy)H ∗ for all x,y∈ Ω,
= (K(x, ·),K(y, ·))H for all x,y∈ Ω,

f (x) = (f ,K(x, ·))H for all x∈ Ω, f ∈ H ,
(λ ,µ)H ∗ = λ xµyK(x,y) for all λ ,µ ∈ H ∗,

whereλ x acts with respect to the variablex. This is the setting ofReproducing Kernel
Hilbert Spaces[2, 9], and it provides a general and simple construction of optimal
direct discretizations for functionalsλ ∈ H ∗. In fact,

|ελ ,X,a(u)| ≤ ‖ελ ,X,a‖H ∗‖‖u‖H (12)

5 DIRECT KERNEL–BASED DISCRETIZATIONS 12

implies that optimal formulas should minimize

∥
∥ελ ,X,a

∥
∥2

H ∗ =

∥
∥
∥
∥
∥

λ −
N

∑
j=1

a jδxj

∥
∥
∥
∥
∥

2

H ∗

= (λ ,λ)H ∗ −2
N

∑
j=1

a j(λ ,δxj)H ∗ +
N

∑
j ,k=1

a jak(δxk ,δxj)H ∗

= λ xλ yK(x,y)−2
N

∑
j=1

a jλ xK(x,x j)+
N

∑
j ,k=1

a jakK(x j ,xk)

(13)

with respect to the coefficient vectora. There are no weights here, no polynomials, and
also no shape functions so far. Readers without a backgroundin kernel–based tech-
niques should consult [17] for details behind the argumentsin this and the following
section.

Equation (13) defines a positive semidefinite quadratic form, and the necessary and
sufficient condition for a minimizer is the linear system

N

∑
j=1

a jK(xk,x j) = λ xK(x,xk), 1≤ k≤ N. (14)

By Hilbert space projection arguments, this system is always solvable, and we get an
optimal kernel–baseddirect discretization this way. If point evaluations for different
points are always linearly independent, the form is positive definite and the solution is
unique. On the downside, these optimal discretizations areusually non–sparse, and the
evaluation of the valuesλ xK(x,xk) may be costly in case of weak functionals.

In the Hilbert space setting, these discretizations are by construction optimal, and
their error bound comes directly from (12) and (13). Note that (13) can be evalu-
ated explicitly, thus leaving only‖u‖H open in the error bound. In section 9 we shall
evaluate errors this way on Sobolev spaces, and then we shalluse the abbreviation
QS(a) := ‖ελ ,X,a‖

2
H ∗ to stand for the “Sobolev” quadratic form. Note that theWhittle–

Matérnkernel

K(x,y) := ‖x− y‖m−d/2
2 Km−d/2(‖x− y‖2), x,y∈R

d

is reproducing in Sobolev spaceWm
2 (Rd) for m> d/2, whereKν denotes the modified

Bessel function of orderν, and the Sobolev quadratic form uses this kernel in (13).

Clearly, these discretizations are exact on the span of functionsK(·,x j), 1≤ j ≤ N. It
is well–known [18] that generalized Hermite–Birkhoff interpolation of trial functions
u from this space is possible, i.e. one can find shape functionss1, . . . ,sN satisfying
Lagrange conditionsλk(sj) = δ jk, 1≤ j,k≤N. This implies that the coefficientsλ (sj)
also solve the optimality problem, and we get that this form of discretization can be
written as the exact evaluation of the functional on the shape functions. However,
the shape functions are not needed, but the quantitiesλ xK(x,xk), 1 ≤ k ≤ N have to

6 DIRECT DISCRETIZATIONS IN BEPPO–LEVI SPACES 13

be calculated. This can be a highly nontrivial task ifλ involves integration and if
there are no integration formulas for functions of the formK(·,x). Solving PDEs in
strong form is still convenient, because the kernels are usually easy to evaluate, but for
weak problems it can be more efficient to go back to methods based on evaluation of
polynomials. This makes a comparison of these techniques necessary, but we postpone
a fully general efficiency analysis to future work. In section 9 we present a special case
for MLPG5 [11].

We now show how to get sparsity in kernel–based discretizations. The system (14)
implies that the calculation of an optimal discretization for a given functionalλ in
terms of values at a setX of nodes is equivalent to an interpolation of the function
fλ := λ xK(x, ·) onX by kernel translatesK(·,x j), 1≤ j ≤N. This can be done stepwise
by choosing nodes one by one, by a greedy method from [16]. Another possibility for
working locally around a pointz is to order the nodesx j with respect to their distance
to z and then work only for then≤ N nearest neighbors toz. We shall compare both
approaches in section 9.

If users want discretizations on spaces of functions with a prescribed spectral behav-
ior, one can usually invoke some kind of harmonic analysis and come out with a re-
producing kernel Hilbert space that produces optimal discretizations. For instance, if
univariate functions are band–limited, the appropriate kernel is a scaled sinc function.
In general,r−d/2Jd/2(r) is the inverse Fourier transform of the characteristic function
on the unit ball inRd. Spaces with algebraic decay of frequencies towards infinity are
norm–equivalent to Sobolev spaces, and the appropriate kernels are of Whittle–Matérn
or Wendland form. We shall provide examples in section 9.

6 Direct Discretizations in Beppo–Levi Spaces

Having the above machinery at hand, we consider another way of dealing with error
bounds for polynomially exact discretizations with general weights. In case of (8),
we can consider the error functionalελ ,X,a of (10) on various spaces of functions. To
deal with exactness onPd

m via the standard Bramble–Hilbert technique, we should
define a linear differential operatorLm : H → F such thatPd

m ⊂ kerLm ⊂ H and
λ , δxj ∈ H ∗. The standard way to defineLm is

Lm(u) = (u(α), |α|= m)T ∈ L2(Ω)Q =: F

arranged into a vector of functions that has lengthQ. Clearly,F is a Hilbert space, and
we can define a semi–inner product onH by

(u,v)BLm(Ω) := ∑
|α |=m

m!
α!

(u(α),v(α))L2(Ω) = (Lm(u),Lm(v))L2(Ω)Q.

7 APPROXIMATION ORDERS 14

This yields a Beppo–Levi space [17, Definition 10.37] forH if m> d/2. It will have
a conditionally positive semidefinitepolyharmonicor thin–plate splineradial kernel

Km,d(r) :=

Γ(d/2−m)

22mπd/2(m−1)!
r2m−d d odd

(−1)m+(d−2)/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−d logr d even

(15)

of orderm [17, (10.11)], and if the functionalελ ,X,a is continuous on the Beppo–Levi
space (it must be zero onPd

m for that), it has an error bound

|ελ ,X,a(u)| ≤ QBL(a)|u|H = QBL(a)‖Lmu‖L2

with the quadratic form

Q2
BL(a) := ‖ελ ,X,a‖

2
H ∗ = εx

λ ,X,aεy
λ ,X,aKm,d(x,y)

on the Beppo–Levi space. The best way to optimizea would then be the minimization
of the above quadratic form under the constraint of polynomial exactness. If other co-
efficient vectorsa come via other minimizations, they can be compared to the optimal
formula in the Beppo–Levi space if they are exact onPd

m. We just evaluateQBL(a)
for them. Then users can decide whether a computationally effective formula based
exclusively on polynomials is still competitive to the optimal formula based on poly-
harmonic splines. We shall do this in section 9. But since allformulas, not just the
polynomially exact ones, can be checked for their performance on the Sobolev space
Wm

2 (Rd) instead of the Beppo–Levi space of orderm, we shall evaluateQS(a) as well,
in order to see the performance in (12).

7 Approximation Orders

But before we turn to numerical examples, we should explain what happens if direct
discretizations are used under scalingh→ 0 in the standard way of looking at finer and
finer samplings. In case of polynomial exactness onPd

m and the Beppo–Levi space
error bounds, we can use a scaling argument of Bramble–Hilbert type for this purpose.

Assume that we work in a domain containing a ball around zero,and we scale the setX
into hX with someh∈ (0,1]. For fixed functionsu in the Beppo–Levi–space of order
m, we then consider the functionsuh(x) := u(hx) and assume the functionalλ to scale
as

λ (uh) = hkλ (u).
This works for differential operators of orderk, and weighted integrals over them.

If we take a functionu on the full Beppo–Levi space of orderm on Ω ⊂ R
d, we get

|uh|
2
BLm(Ω) = ‖Lmuh‖

2
L2(Ω)Q

= h2m‖(Lmu)(h·)‖2
L2(Ω)Q

= h2m−d‖Lmu‖2
L2(hΩ)Q

≤ h2m−d‖Lmu‖2
L2(Ω)Q

= h2m−d|u|2BLm(Ω)

(16)

7 APPROXIMATION ORDERS 15

which does a poor job of localization that we shall comment onlater.

The scaling of the weights for working onhX should beh−ka and we get

|ελ ,hX,h−ka(u)| =

∣
∣
∣
∣
∣
λ (u)−

N

∑
k=1

h−kaku(hxk)

∣
∣
∣
∣
∣

= h−k

∣
∣
∣
∣
∣
λ (uh)−

N

∑
k=1

akuh(xk)

∣
∣
∣
∣
∣

= h−k|ελ ,X,a(uh)|
≤ h−k‖ελ ,X,a‖H ∗ |uh|BLm(Ω)

≤ hm−k−d/2‖ελ ,X,a‖H ∗ |u|BLm(Ω)

(17)

proving less than the expected approximation orderhm−k. All discretizations that are
exact onPd

m will have at least this asymptotic behavior, no matter if they are based
on polynomials or not. Comparison of such formulae can be done via Q2

BL(a) =
‖ελ ,X,a‖

2
H ∗ on afixedscale.

Readers will expect an orderhm−k in (17). First, our numerical experiments in section
9 will show that‖ελ ,X,a‖

2
H ∗ actually behaves not better thanO(hm−k−d/2). Second,

the well–known arguments along local Taylor formulas show that proofs ofO(hm−k)
convergenceneed a strongly localized norm of the functionsto be discretized, or simply
a condition likeu∈Cm in a neighborhood ofz. Looking at (16) tells us that we should
have used

‖(Lmu)(h·)‖2
L2(Ω)Q

= ∑
|α |=m

m!
α!

∫

Ω
(uα(hx))2dx (18)

which is bounded independent ofh as soon asu has bounded derivatives of orderm lo-
cally around zero. This proves that we would seeO(hm−k) convergenceof|ελ ,hX,h−ka(u)|
for u∈Cm(Ω).

But we want to compare errors in Hilbert or Beppo–Levi spaces, not inCm(Ω). There-
fore we look for a properly scaled and localized version thatshows the expected con-
vergence. The associated inner product to (18) is

(u,v)m,h := ∑
|α |=m

m!
α!

∫

Ω
u(α)(hx)v(α)(hx)dx= h−d(u,v)BLm(hΩ)

which suggests that we have a scaled version of a Beppo–Levi space onΩh here, and
we want to construct the reproducing kernel. Note that the factor h−d above seems to
care for the volume ofhΩ.

We start from the polyharmonic kernelKm,d for orderm on Ω ⊂ R
d. With a projector

Πm onto the polynomials onPd
m we have

f (x)− (Πm(f))(x) = (f ,Gm,d(·,x))BLm(Ω) for all f ∈ H

7 APPROXIMATION ORDERS 16

due to [17, Theorem 10.17, p. 144], where

Gm,d(·,x) = Km,d(·,x)− (Πy
mKm,d(·,y))(x).

We apply this forf := u(h·) to get

u(hx)−Πm(u(h·))(x) = (u(h·),Gm,d(·,x))BLm(Ω)

= hm ∑
|α |=m

m!
α!

∫

Ω
u(α)(hy)Gα ,y

m,d(y,x)dy

= ∑
|α |=m

m!
α!

∫

Ω
u(α)(hy)Gα ,y

m,d.h(hy,hx)dy

= (u,Gm,d,h(·,hx))m,h

= u(hx)− (Πm,h(u))(hx)

if we have
hmGα ,y

m,d(y,x) = Gα ,y
m,d.h(hy,hx)

and define the projector

(Πm,h(u))(y) := Πm(u(h·))(y/h).

Altogether, this is a localized reproduction equation

u(z)− (Πm,hu)(z) = (u,Gm,d,h(·,z))m,h

that we were looking for. To find the kernel, we start from

hmGα ,y
m,d(y,x) = hmKα ,y

m,d(y,x)−hm(Πz
mKα ,z

m,d(y,z))(x)

and define
Km,d,h(y,x) = h2mKm,d(y/h,x/h)

to get
Kα ,y

m,d,h(y,x) = hmKα ,y
m,d(y/h,x/h)

Kα ,y
m,d,h(hy,hx) = hmKα ,y

m,d(y,x)
hmGα ,y

m,d(y,x) = Kα ,y
m,d,h(hy,hx)−hm(Πz

mKα ,y
m,d(y,z))(x),

= Kα ,y
m,d,h(hy,hx)− (Πz

mKα ,y
m,d,h(hy,hz))(x)

= Kα ,y
m,d,h(hy,hx)− (Πw

m,hKα ,y
m,d,h(hy,w))(hx)

= Gα ,y
m,d.h(hy,hx).

This means the we can take

Gm,d.h(y,x) = h2mKm,d(y/h,x/h)− (Πw
m,hKm,d,h(y,w))(x)

modulo a polynomial iny with coefficients inx. Looking back at (15), we see that in
odd dimensions we just have to multiply the kernel withhd. In even dimensions, the
kernelr2m−d logr is to be replaced byhdr2m−d(logr − logh), which is a multiplication
with hd and an addition of a polynomial that cancels out whenever we calculate the
quadratic form. We could call this thescaledBeppo–Levi kernel, but as long as we

8 SPARSITY FIRST 17

compare quadratic forms, it just has a correctedhd factor to guarantee the expected
convergence rate. This is why we can ignore this detour altogether, knowing now that
this change of the norm would result in the expected approximation order.

For nonpolynomial discretizations without exactness on polynomials, we can proceed
similarly and use their optimality. If we work onhX, we get optimal coefficientsa∗(h)
that we can compare toh−kâ for any fixedPd

m–exact discretization with coefficientsâ
for work onX, following

‖ελ ,hX,a∗(h)‖
2
H ∗ ≤ ‖ελ ,hX,h−kâ‖

2
H ∗

= εu
λ ,hX,h−kâ

εv
λ ,hX,h−kâ

K(u,v).

If the error bound (17) is applied here, this quantity will behave likeh2m−2k times a
constant that depends onK, provided that the kernelK is smooth enough. This proves
that kernel–based optimal discretizations at least attainthe maximal convergence order
that is possible on a setX for polynomially exact formulae. They do this without being
exact on polynomials, but the price to be paid is that they will usually be based on the
whole setX, without sparsity, and they need evaluation ofλ on the functionsK(·,x j)
which can be expensive in case of weak functionals.

8 Sparsity First

For solving the system (9), sparsity of the coefficient matrix will be a highly important
issue. Thus we shall now focus on the problem how to get the smallest error for a given
sparsity, i.e. for the numberN of point locations being small and the points themselves
properly selected. We first ignore the point selection problem and assume that we take
the firstN points from a larger set of candidates, withN slowly increasing.

For polynomially exact formulas, it is reasonable to go for the maximal order of poly-
nomial exactness. If the points are in general position withrespect to a fixed orderm
in R

d, there is only one polynomially exact discretization and wehave no leeway for
further optimization of coefficients. If the number of points is increased somewhat, but
not enough to go for the next higher order of polynomial exactness, there is a formula
with the minimal number of nonzero coefficients, namely the one we get when ignoring
the additional points. We call this thegreedy‖.‖0 solution. But we can also minimize
‖a‖1 or ‖a‖1,m under the constraint of exactness of orderm. If N is increased further,
these solutions will coincide as soon as the next higher order of exactness is reached.
In parallel, one can also calculate kernel–based discretizations at these points, and we
know that they will also lead to maximal orders of approximation, but without polyno-
mial exactness, provided that we use smooth kernels. This iswhy we should look at
experiments with increasingN, letting all possible candidates compete, while the poly-
nomially exact formulae always go for the maximal order of exactness. Comparisons
should be made by checking the norm of the error functional ona fixed –order Sobolev
space. We shall provide such examples in the next section.

9 NUMERICAL EXAMPLES 18

But we still have to discuss how to select points effectively. If working locally around
a pointz, one can take neighbors ofz with increasing distance. Though this may be
unstable if two points are very close to each other, it turns out to be quite a good strategy
for all formulas in the competition so far.

There is a method [16] that chooses useful interpolation points adaptively, and it can
be applied here because (14) shows that the discretization problem is just interpolation
of the functionλ xK(x, ·). We shall compare it to the nearest–neighbor choice, but it
performs worse since it tends to prefer points further away fromz.

9 Numerical Examples

For examples that show the gain in computational efficiency by replacing standard
Moving Least Squares discretizations by direct discretizations via polynomials, we
refer to [11, 10].

From [11] we take an example for variation 5 of the Meshless Local Petrov–
Galerkin (MLPG5) method (7) in comparison to the DMLPG5 method, i.e. the stan-
dard versus the direct discretizations of normal derivatives along edges of squares in
R

2. The overall setting is a standard inhomogeneous Poisson problem on[0,1]2 with
Dirichlet boundary conditions and Franke’s function [7] asknown smooth solution.
Discretization was done via Moving Least Squares in the MLPG5 method, while a di-
rect discretization with the same weights was used in DMLPG5. For 0≤‖x−x j‖2 ≤ δ ,
the MLS used the truncated Gaussian weight function

wδ (x,x j) =
exp

(
− (‖x− x j‖2/c)2

)
−exp

(
− (δ/c)2

)

1−exp
(
− (δ/c)2

)

wherec= c0h is a constant controlling the shape of the weight function and δ = δ0h
is the size of the support domains. The parametersm= 4, c0 = 0.8 andδ0 = 2m were
selected. With direct discretizations in DMLPG5, a 2-pointGaussian quadrature is
enough to get exact numerical integration. But for MLPG5 andthe right hand sides we
used a 10-point Gaussian quadrature for every edge of the squares to ensure sufficiently
small integration errors. The results are depicted in Table1 and Fig. 1. DMLPG is more
accurate and approximately gives the full orderm= 4 in this case. Note that we have
k = 1 here, but we integrate over a line of lengthh. Besides, as is to be expected, the
computational cost of DMLPG is remarkably less than for MLPG.

For the remaining examples, we focus on direct discretizations of the Laplacian
λ (u) := ∆u(0) in R

2. Since the five–point discretization is exact onP2
4 with dimension

Q= 10, we choosem= 4. This leads to the Beppo–Levi space generated by the thin–
plate spliner6 logr and to Sobolev spaceW4

2 (R
2) with kernelr3K3(r). We want some

additional degrees of freedom in case of scattered data, so we takeN = 27 fixed points
in [−1,1]2 that include the five–point discretization at stepsize 1 andare in Figure 2.
Clearly, the sparsest discretization which is exact onP2

4 uses 5 points with coefficient
norm‖a‖1 = 8, but other discretizations will have betweenQ= 10 andN = 27 points.

9 NUMERICAL EXAMPLES 19

‖e‖∞ ‖e‖∞ CPU sec. CPU sec.
h MLPG5 rate DMLPG5 rate MLPG5 DMLPG5

0.2 0.10×10±0 − 0.12×10±0 − 0.5 0.2
0.1 0.25×10−1 2.04 0.17×10−1 2.87 2.7 0.2

0.05 0.78×10−2 1.66 0.12×10−2 3.75 19.2 0.9
0.025 0.79×10−3 3.30 0.75×10−4 4.04 142.2 4.7

0.0125 0.55×10−4 3.86 0.43×10−5 4.12 2604.9 43.9

Table 1: Results for MLPG5 methods

Figure 1:Comparison of MLPG5 and DMLPG5 in terms of maximum errors form= 4.

The rows of Tables 2 and 3 contain various discretization methods. They start with
the discretization OMP calculated by Orthogonal Matching Pursuit along the lines of
section 4.1, followed by what the backslash operator in MATLAB produces. The next
columns are minimization of‖a‖1 and‖a‖1,m, respectively, followed by the gener-
alized Moving Least Squares (GMLS) solution of [12] with global Gaussian weights
exp(−3‖x−x j‖

2
2). The next rows are based on minimizing quadratic forms:QBL on the

Beppo–Levi space forPd
m–exact discretizations, whileQBLF for bandlimited functions

andQS for Sobolev space are minimized without any exactness.

The columns contain comparison criteria. The first column counts the essentially
nonzero coefficients, and the others are self–explaining. The final column has no poly-
nomial exactness, and thus its evaluation inQBL is not supported by any theory, while
the methods of all other columns are competing for the optimal error in the final col-
umn.

Table 2 shows the results form= 4 and 27 points. Rows 2 and 3 pick the five–point
discretization. Minimizing the quadratic forms yields optimal formulae in the asso-

9 NUMERICAL EXAMPLES 20

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Points

Figure 2:27 points for discretization of Laplacian at zero

ciated spaces, but their coefficients get rather large and the formulae use all available
degrees of freedom. If two entries in one of the final two columns differ by a factor of
four, the convergence likehm−k = h2 implies that the same accuracy will be reached
when one of the methods usesh/2 instead ofh. In 2D this means that one method needs
four times as many unknowns as the other to get similar accuracy. If no sophisticated
solvers are at hand, this means a serious increase in computational complexity.

Surprisingly, all formulae are reasonably good in Sobolev space, showing that one
can use formulae based on polynomial exactness and sparsitywithout much loss.

The maximal possible polynomial exactness order for the same points ism= 6, and
the corresponding results are in Table 3. This corresponds to the kernelsr10 logr and
r5K5(r) for the Beppo–Levi and Sobolev spaces. The polynomial formulae lose their
sparsity advantage, and the weight norms of all discretizations do not differ dramati-
cally. Note that theh4 convergence now implies that a method can equalize a factor of
16 in the above numbers by going fromh to h/2. Again, the formulae with polyno-
mial exactness behave quite well in Sobolev and Beppo–Levi spaces. Since for weak
functionals they will be much cheaper to evaluate, it may notmake much sense to go
for Hilbert or Beppo-Levi space optimality in that case. Butthe latter will work fine
in strong discretizations, and in particular if users fix thenumber of neighboring nodes
to be considered. This will fix the bandwidth of the system, and each functional will
get an optimal discretization within the admitted bandwidth, disregarding exactness on
polynomials.

We now compare discretizations of the Laplacian at zero via various kernels, but
without polynomial exactness. We takeN = 14 fixed points in[−1,1]2 including the
five–point discretization points at stepsizeh= 1, and we take different discretizations

9 NUMERICAL EXAMPLES 21

‖a‖0 ‖a‖1 ‖a‖1,4 QBL(a) QS(a)
OMP 10 9.539 4.516 10.271 1.235

MATLAB 5 8.000 4.000 10.180 1.229
min ‖a‖1 5 8.000 4.000 10.180 1.229

min ‖a‖1,4 10 32.658 1.681 6.162 0.801
GMLS 27 18.183 2.533 7.799 0.988

min QBL(a) 27 264.145 82.249 3.083 0.435
min QBLF(a) 27 146.112 40.997 3.582 0.506

min QS(a) 27 271.955 84.131 3.131 0.431

Table 2: Results form= 4 on 27 points

‖a‖0 ‖a‖1 ‖a‖1,4 QBL(a) QS(a)
OMP 21 101.452 25.837 12.036 0.145

MATLAB 21 62.579 11.886 10.493 0.131
min ‖a‖1 21 59.061 9.932 9.515 0.120

min ‖a‖1,4 21 72.876 8.987 7.089 0.091
GMLS 27 70.798 11.312 9.090 0.114

min QBL(a) 27 223.053 68.925 4.202 0.056
min QBLF(a) 27 146.112 32.763 6.109 0.067

min QS(a) 27 246.868 78.200 5.720 0.047

Table 3: Results form= 6 on 27 points

there, constructed withm= 4 in mind whenever it makes sense, and takinghX for
h → 0. Then we measure errors onW4

2 (R
2) andW6

2 (R
2) to see how serious it is to

choose “wrong” kernels. All discretizations will be of order h2 in W6
2 (R

2) and of order
h in W4

2 (R
2), except the optimal formula ofW4

2 (R
2) evaluated inW6

2 (R
2). Figures

3 and 4 show the behavior of these errors forh → 0, evaluated as‖ελ ,hX,a∗(h)‖. The
results are another example confirming that excess smoothness does no damage error–
wise, but it increases instability of calculation. The formulas based on smooth kernels
always seem to reach the optimal order in a specific space of functions, but they never
show some superconvergence there. They just adapt nicely tothe smoothness of the
functions in the underlying space, if the kernel is smooth enough.

We finally present examples with increasingN. If we use nearest neighbors, work
for finally 27 points as in Figure 2 and evaluate the error inW6

2 , we get Figure 5 for
a single run and Figure 6 for the means of 24 sample runs with 27random points in
[−1,1]2 each. Before taking means, we divided the errors by the minimal error obtain-
able by using all points, i.e. the level of the bottom line in Figure 5. One can clearly
see that the minimization of‖a‖1,m performs best among the polynomial methods. We
added the optimal kernel–based formulae inW6

2 for both the nearest neighbor choice
and the greedy choice of [16] to see that the nearest neighborchoice is fine forN ≥ 5.
Note that the sparsity increases roughly linearly withN, because even the greedy‖.‖0

solution needs 3, 6, 10, 15, and 21 points when stepping through orders 2,3,4, 5, and 6.

Acknowledgement:Special thanks go to Oleg Davydov and Davoud Mirzaei for some
helpful comments on an earlier version of this article, and to a referee for a very thor-

9 NUMERICAL EXAMPLES 22

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

Errors evaluated on Sobolev space for m=4

5 pts
BL4 opt
Sob 4 opt
Sob 6 opt
G opt
BLF opt
MLS opt

Figure 3: Errors inW4
2 (R

2) as functions ofh

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

Errors evaluated on Sobolev space for m=6

5 pts
BL4 opt
Sob 4 opt
Sob 6 opt
G opt
BLF opt
MLS opt

Figure 4: Errors inW6
2 (R

2) as functions ofh

9 NUMERICAL EXAMPLES 23

0 5 10 15 20 25 30
10

1

10
2

10
3

Sobolev error norm for m=6 and N=27

n

Sob opt greedy
Sob opt closest
L1 opt
L0 opt greedy
L1m opt
optimal Sob

Figure 5: Errors inW6
2 (R

2) as functions ofN

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45
Mean relative Sobolev error norms for m=6 and N=27 and 24 samples

n

Sob opt greedy
Sob opt closest
L1 opt
L0 opt greedy
L1m opt
optimal Sob

Figure 6: Errors inW6
2 (R

2) as functions ofN

REFERENCES 24

ough and helpful report.

References

[1] M.G. Armentano. Error estimates in Sobolev spaces for moving least square
approximations.SIAM J. Numer. Anal., 39(1):38–51, 2001.

[2] N. Aronszajn. Theory of reproducing kernels.Trans. Amer. Math. Soc., 68:337–
404, 1950.

[3] S. N. Atluri. The meshless method (MLPG) for domain and BIE discretizations.
Tech Science Press, Encino, CA, 2005.

[4] T. Belytschko, Y. Krongauz, D.J. Organ, M. Fleming, and P. Krysl. Meshless
methods: an overview and recent developments.Computer Methods in Applied
Mechanics and Engineering, special issue, 139:3–47, 1996.

[5] O. Davydov. Error bound for radial basis interpolation in terms of a growth func-
tion. In A. Cohen, J. L. Merrien, and L. L. Schumaker, editors, Curve and Surface
Fitting: Avignon 2006, pages 121–130. Nashboro Press, Brentwood, 2007.

[6] O. Davydov and R. Schaback. Error bounds for kernel-based numerical differen-
tiation. Draft, 2013.

[7] R. Franke. Scattered data interpolation: tests of some methods.Mathematics of
Computation, 48:181–200, 1982.

[8] Y.C. Hon and T. Wei. Numerical differentiation by radialbasis functions approx-
imation. Advances in Computational Mathematics, 27:247–272, 2007.

[9] H. Meschkowski.Hilbertsche Räume mit Kernfunktion. Springer, Berlin, 1962.

[10] D. Mirzaei and R. Schaback. Solving heat conduction problems by the direct
meshless local Petrov-Galerkin (DMLPG) method. Preprint Göttingen, 2012.

[11] D. Mirzaei and R. Schaback. Direct Meshless Local Petrov-Galerkin (DMLPG)
method: A generalized MLS approximation.Applied Numerical Mathematics,
68:73–82, 2013. http://dx.doi.org/10.1016/j.apnum.2013.01.002.

[12] D. Mirzaei, R. Schaback, and M. Dehghan. On generalizedmoving least
squares and diffuse derivatives. IMA Journal of Numerical Analysis 2011, doi:
10.1093/imanum/drr030, 2011.

[13] B. Nyroles, G. Touzot, and P. Villon. Generalizing the finite element method:
Diffuse approximation and diffuse elements.Comput. Mech., 10:307–318, 1992.

[14] C. Prax, H. Sadat, and P. Salagnac. Diffuse approximation method for solving
natural convection in porous media.Transport in Porous Media, 22:215–223,
1996.

REFERENCES 25

[15] R. Schaback. An adaptive numerical solution of MFS systems. In C.S. Chen,
A. Karageorghis, and Y.S. Smyrlis, editors,The Method of Fundamental Solu-
tions - A Meshless Method, pages 1–27. Dynamic Publishers, 2008.

[16] R. Schaback and H. Wendland. Adaptive greedy techniques for approximate so-
lution of large RBF systems.Numer. Algorithms, 24(3):239–254, 2000.

[17] H. Wendland.Scattered Data Approximation. Cambridge University Press, 2005.

[18] Z. Wu. Hermite–Birkhoff interpolation of scattered data by radial basis functions.
Approximation Theory and its Applications, 8/2:1–10, 1992.

	Introduction and Overview
	Meshless Methods
	Direct Discretizations
	Direct Discretizations via Polynomials
	Sparse Polynomial Discretizations
	Moving Least Squares
	General Weights

	Direct Kernel–based Discretizations
	Direct Discretizations in Beppo–Levi Spaces
	Approximation Orders
	Sparsity First
	Numerical Examples

