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Summary. The standard error bounds for interpolation by kernels or radial basis func-
tions are generalized to symmetric PDE collocation problems. This involves generalized
Power Functions, and these can be explicitly calculated. Final error bounds then are a
product of Power Function values and the norm of the solution in the native space of
the kernel. Since the latter can also be estimated well, the whole procedure yields error
bounds of the symmetric collocation solution on all points of the domain. Some numerical
examples are given for illustration, including a greedy method for choosing good collo-
cation points. On the theoretical side, a short proof of optimal convergence rates for
problems with smooth solutions is provided.

1 INTRODUCTION

If a general linear PDE problem of the form

Lu = f in Ω
Bu = g in Γ := ∂Ω

(1)

with a differential operator L and a “boundary” operator B is posed in a bounded domain
Ω ⊂ IRd, users can collocate both operators at discrete points of Ω and the boundary.
Whatever the operators are, the discretized equations take the form

λk(u) = fk ∈ IR, 1 ≤ k ≤ N (2)

for functionals λk that are of the form λ(u) = (Lu)(x) or λ(u) = (Bu)(y) for certain
points x ∈ Ω or y ∈ ∂Ω.

The equations (2) can be posed on a trial space, and the resulting linear system, if
solvable, provides an approximate solution. If the trial space is not directly related to the
functionals, solvability of the system is not guaranteed [7].
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However, if users take a reproducing kernel Hilbert space N of functions on Ω with a
smooth positive definite kernelK such that all functionals λ1, . . . , λN are continuous onN ,
the trial space spanned by the functions uk(y) := λx

kK(x,y) guarantees unique solvability
of the system (2). Here and later on, a functional λx acts with respect to the variable
x. The coefficient matrix has entries λy

j λ
x

kK(x,y), 1 ≤ j.k ≤ N and is positive definite.
This setup goes back to [15] in the form of Hermite–Birkhoff interpolation and has been
applied to PDE solving by various authors, e.g. [16] in the context of Computational
Mechanics. A variant with fast evaluation is in [8], and the method is treated in detail in
the books [1, 14, 3], while a comparison of symmetric and unsymmetric collocation is in
[10].

A first convergence proof of the symmetric collocation technique appeared in [4, 5],
while a much better convergence analysis is in [6]. We shall provide a simplified version
below.

By standard techniques of reproducing kernel Hilbert spaces, the error of an interpolant
s to a function u in the Hilbert space N can be bounded pointwise as

|s(x)− u(x)| ≤ PΛ(x)‖u‖N (3)

for all functions u ∈ N with the Power Function

PΛ(x) := sup{u(x) : u ∈ N , ‖u‖N ≤ 1, λk(u) = 0, 1 ≤ k ≤ N}

= inf
ak∈IR

‖δx −
N
∑

k=1

akλk‖N ∗ .
(4)

Using standard methods from quadratic optimization and a Lagrange basis u1, . . . , uN of
the trial space with λk(uj) = δjk, 1 ≤ j, k ≤ N , the Power Function can be explicitly
evaluated pointwise [12, 14] via

P 2
Λ(x) = K(x,x)−

N
∑

k=1

uk(x)λ
y

kK(x,y). (5)

Following the computational issues in [13], we shall provide some numerical examples in
the next section.

The upshot for practical applications lies in the fact that PΛ(x) can be evaluated ev-
erywhere in the domain and is by (3) an upper bound for the error, but relative to a
multiplicative factor of the true solution. If ‖u∗‖N were known, (3) would provide a full
error bound at reasonable cost. In demonstrations of numerical methods, one can take
problems with known solutions and then evaluate the quality of the error bound (3) di-
rectly. In general, one can take ‖s‖N instead of ‖u∗‖N . This quantity is numerically
available and usually a good approximation of ‖u∗‖N , but always from below, unfortu-
nately.

Anyway, the Power Function tells us where to expect large errors, and where errors
will be relatively small due to having enough meshless data there. We shall show in the
next section how to interpret plots of the Power Function.
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2 EXAMPLES

As a warm–up, let us start with the Poisson equation on the square [−1, 1]2 with
Dirichlet boundary conditions for y = ±1 and Neumann boundary conditions for x = ±1.
We thus have three kinds of functionals when discretizing, and we fix the discretization
given in Figure 1. It has 11 × 11 regular collocation points for the Laplacian, inclusing
boundary points, and two sets of 11 points on each boundary line for the Dirichlet and
Neumann data.
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Figure 1: Discretization of Poisson problem

The Power Function for these data, calculated using the Wendland kernel φ3,4 of C8

smoothness with support radius 10, is in Figure 2. This means that whichever problem
is solved on this discretization, the absolute error will be bounded by 0.0016 times the
native space norm of the true solution, which in this case is equivalent to the W 5.5

2 [−1, 1]2

norm. At this point, it should be remarked that the normalization of the kernel and/or
the inner product in the native Hilbert space must be properly done. In fact, if the norm
in (3) gets a large artificial factor, then the power function gets the inverse factor. We
avoided this problem by normalizing the inner product in such a way that the 11 × 11
interpolant sG to the Gaussian G(x, y) = exp(−x2−y2) has native space norm one. Thus
the Power Function is in particular a strict error bound for the specific problem with true
solution sG ≈ G, whichever kernel is taken. Another possibility of normalization is to let
the kernel take the value 1 at zero. This leads to similar results.

The Power Function for the Gaussian kernel at scale 0.4 is in Figure 3. For other
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Figure 2: Power Function for C8 Wendland function, scale 10−3 on y axis

Figure 3: Power Function for Gaussian

kernels, the situation is similar. Inspecting these plots, we see that there are not enough
Neumann points, since the Power Function takes its maximum on the Neumann boundary.

The second set of examples works in the unit disc with the third quadrant cut away,

4



Robert Schaback

and we pose the Poisson problem with Dirichlet data. On the points in Figure 4 we get
the Power Function of Figure 5. Since the maxima are on the boundary, this tells us that
we need more boundary points, while keeping the collocation points for the Laplacian.
This yields Figures 6 and 7 where there now are interior and boundary maxima at the
same level, i.e. there is some equilibrium between boundary and interior data. These
plots were done for the Wendland function φ3,4 at scale 5, and results are very similar for
other kernels.
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Figure 4: Data Locations for Wendland Function
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Figure 5: Power Function for Wendland Function

This raises the question of optimal placement of collocation points. In [2], new colloca-
tion points are chosen one by one as points where the Power Function attains a maximum.
It is tempting to apply this directly to the Power Functions in the preceding plots, but
it may happen (and actually happens) that interior maxima of the Power Function occur
at collocation points for the Laplacian, and then the method breaks down.

This can be avoided by using the Power Function (4) only on the Dirichlet bound-
ary, and placing new boundary points at extrema of this function. In the interior, the
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Figure 6: Data Locations for Wendland Function
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Figure 7: Power Function for Wendland Function

generalized Power Function

PΛ,∆(x) := sup{∆u(x) : u ∈ N , ‖u‖N ≤ 1, λk(u) = 0, 1 ≤ k ≤ N}

= inf
ak∈IR

‖δx ◦∆−
N
∑

k=1

akλk‖N ∗ .
(6)

is used, and its maxima are candidates for new collocation points for the Laplacian. Note
that in general

inf
ak∈IR

‖λ−
N
∑

k=1

akλk‖
2
N ∗

= inf
ak∈IR



(λ, λ)N ∗ − 2
N
∑

k=1

ak(λ, λk)N ∗ +
N
∑

j,k=1

ajak(λj, λk)N ∗





(7)

which can be reduced to numerical linear algebra by the standard identity (λ, µ)N ∗ =
λxµyK(x,y) in the dual of a reproducing kernel Hilbert space.
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It remains open to choose either an extremal point of PΛ on the boundary or an
extremal point of PΛ,∆ in the domain. We chose extrema of max(10 · PΛ, PΛ,∆) with the
factor 10 being fixed experimentally to get a balance between boundary and interior data.
This choice is related to the ratio of the constants in inequalities like

‖u‖Ω ≤ C∂Ω‖u‖∂Ω + CΩ‖∆u‖Ω (8)

describing well–posedness of the Dirichlet problem. The relative size of the two constants
describes the relative influence of boundary and interior recovery precision on the actual
solution. Figure 8 shows the final result of a run of this greedy algorithm, using the same
Wendland function again. It should be finally noted that we always work with smooth

Figure 8: Optimized Power Function for Wendland Function

solutions that lie in native Hilbert spaces of a smooth kernel. This means that there will
be no derivative singularities induced by incoming corners, and thus our setting will not
deteriorate in the incoming corner. If boundary data are just continuous, the solutions
may have derivative singularities and are only in W 1

2 (Ω). This case cannot be handled by
the setting in this section, since point evaluation of the Laplacian is not continuous. By
choosing other data functionals and other kernels, weak problems can also be treated and
Power Functions can be evaluated, using (7). But this is beyond the scope of this paper.

3 ERROR BOUNDS AND CONVERGENCE

For simplicity, we focus on the Dirichlet problem

∆u = f in Ω
u = g in Γ := ∂Ω

(9)

for the Poisson equation in a bounded domain Ω ⊂ IRd, with well–posedness

‖u‖k,Ω ≤ C
(

‖∆u‖k−2,Ω + ‖u‖k−1/2,Γ

)

(10)
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in Sobolev norm notation, for k ≥ 2. We assume the true solution u∗ to be in Wm
2 (Ω) for

some f ∈ Wm−2
2 (Ω) and g ∈ W

m−1/2
2 (Γ), m ≥ 2. Then (10) holds for all 2 ≤ k ≤ m.

We use two discrete sets Xh ⊂ Ω and Yh ⊂ Γ for symmetric collocation of f and g,
respectively, in a RKHS with a smooth kernel K such that its native space N is contained
in Wm

2 (Ω). The sets should have a fill distance h which is the maximum of the separate
fill distances

hΩ,Xh
:= sup

y∈Ω

min
xj∈Xh

‖y− xj‖2

hΓ,Yh
:= sup

z∈Γ

min
yj∈Yh

‖z− yj‖2
(11)

in the interior and on the boundary.
We assume sampling inequalities of the form

‖v‖ℓ,Ω ≤ C(hn−ℓ‖v‖n,Ω + ‖v‖RMSE,Xh
), 0 ≤ ℓ ≤ n

‖v‖ℓ,Γ ≤ C(hn−ℓ‖v‖n,Γ + ‖v‖RMSE,Yh
), 0 ≤ ℓ ≤ n

(12)

in the domain and the boundary, taking discrete root–mean–square norms in the second
terms of the right–hand sides. Such inequalities are proven in [9], and are treated in more
generality in [11]. They hold for sufficiently small h in a sense that we do not want to
explain in detail here. But to make the discrete norms on the right–hand side meaningful,
these inequalities require point evaluation to be continuous, i.e. n > d/2 in the first and
n > (d− 1)/2 in the second case.

The true solution of the problem should be in N . This implies

‖û‖N ≤ ‖u∗‖N (13)

for the (existing) collocation solution û ∈ N .
Then we use (10) and (12) to get

‖u∗ − û‖k,Ω ≤ C
(

‖∆u∗ −∆û‖k−2,Ω + ‖u∗ − û‖k−1/2,Γ

)

≤ C(hm−k‖∆u∗ −∆û‖m−2,Ω + ‖∆u∗ −∆û‖RMSE,Xh
)

+C(hm−k‖u∗ − û‖m−1/2,Γ + ‖u∗ − û‖RMSE,Yh
)

≤ Chm−k(‖∆u∗ −∆û‖m−2,Ω + ‖u∗ − û‖m−1/2,Γ)

(14)

since the discrete terms vanish due to collocation. The choice of n = m−2 in the first case
requires n > d/2, and this means m > 2+d/2. With (13) and Sobolev embedding we can
conclude that the norms in the right–hand side are uniformly bounded independent of h.
This proves a convergence rate of order m − k in the k–norm for 0 ≤ k ≤ m > 2 + d/2,
which is an optimal rate.

Theorem 1 Consider the symmetric collocation method for Poisson problems with Dirich-

let data in d variables with a smooth solution u∗ ∈ Wm
2 (Ω), based on a kernel whose native

space is contained in Wm
2 (Ω), and with m > 2+d/2. Then, if collocation is done on point

sets of fill distance at most h, the convergence is of the form O(hm−k) for h → 0 in the

Sobolev k–norm for 0 ≤ k ≤ m.
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It should be clear how this proof pattern generalizes to other situations. Note that we did
not use ellipticity, but well–posedness, and note the crucial rôle of sampling inequalities
in the argument.
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