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Abstrat. We provide a lass of positive de�nite kernels that allow to solve ertain evolution

equations of paraboli type for sattered initial data by kernel�based interpolation or approximation,
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1. Introdution. There are plenty of appliation papers in whih kernels or

radial basis funtions are suessfully used for solving partial di�erential equations

by meshless methods. The usage of kernels is typially based on spatial interpolation

at sattered loations, writing the trial funtions �entirely in terms of nodes�[2℄. For

stationary partial di�erential equations, the disretization an take pointwise analyti

derivatives of the trial funtions to end up with a linear system of equations. This

started in [5℄ and was pursued in the following years, inluding a onvergene theory

in [7℄. There are also variations that use weak data, like the Meshless Loal Petrov�

Galerkin method [1℄ with a onvergene theory in [9℄. For the potential equation,

there are speial kernels that allow the use of trial funtions that satisfy the di�erential

equation exatly [8, 4℄. This is a variation of the general idea of Tre�tz [12℄ to use

trial funtions that satisfy the PDE exatly.

For time�dependent partial di�erential equations, meshless kernel�based methods

were similarly based on a �xed spatial interpolation, but now the oe�ients are time�

dependent, and one obtains a system of ordinary di�erential equations for these. This

is the well�known Method of Lines, sometimes also alled di�erential quadrature, and

it turned to be experimentally useful in various ases (see e.g. [13, 6, 3, 11℄). But

we follow the Tre�tz philosophy here and use speial kernels that satisfy a linear

evolution�type PDE

ut(x, t) = Lu(x, t)(1.1)

with a purely spatial and ellipti operator L exatly. This will eliminate time integra-

tion, but at the expense of using kernels de�ned via expansions into eigenfuntions

of the spatial di�erential operator L. Of ourse, this is a speial ase of a spetral

method, onveniently stated in terms of a time�dependent positive de�nite kernel.

We give a rigid error analysis of this tehnique and provide a few numerial

examples.

Instead of using trial funtions that satisfy the boundary onditions but violate

the di�erential equation, we approximate the solution by seleting funtions that

violate the boundary onditions but satisfy the di�erential equation.

2. Linear Ellipti Equations. We take a spatial domain Ω ⊂ R
d
and some

kind of homogeneous boundary ondition on ∂Ω. Then, for a linear self�adjoint ellipti
di�erential operator L, we assume to have eigenfuntions un on Ω for the assoiated

boundary value problem, i.e.

Lun = λnun in Ω, n ∈ N(2.1)
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with a ountable index set N . Our running example will be L = ∆ on Ω = [0, π]d

with homogeneous Dirihlet boundary onditions, leading to

uk(x) =

d∏

i=1

sin(kixi), λk = −‖k‖2
2
, k ∈ N := N

d
0
\ {0}(2.2)

in standard multi�index notation.

A solution of the problem

Lu = f

with homogeneous boundary onditions an then be written formally by expanding f
into the eigenfuntions as

f =
∑

n∈N

αnun

and then writing the solution u as

u =
∑

n∈N

αn

λn
un.

This needs a disussion of onvergene of the series. We shall do this in a way that is

losely linked to reproduing kernel Hilbert spaes.

3. Expansion Kernels. We now �x positive real numbers µn for all n ∈ N to

let an expansion kernel

Kµ(x, y) :=
∑

n∈N

µnun(x)un(y)(3.1)

satisfy the summability ondition

Kµ(x, x) =
∑

n∈N

µnun(x)
2 ≤ C2 < ∞ for all x ∈ Ω.

This kernel is positive semide�nite on Ω, i.e. for all seletions of �nite point sets X =
{x1, . . . , xM} ⊂ Ω, theM×M kernel matries A = A(X) with entriesKµ(xj , xk), 1 ≤
j, k ≤ M are symmetri and positive semide�nite.

By well�known results, suh a kernel is reproduing in the Hilbert spae Hµ of

all funtions of the form

fc(x) :=
∑

n∈N

cnun(x), x ∈ Ω

under the ondition

‖fc‖
2

µ :=
∑

n∈N

c2n
µn

< ∞

related to the inner produt

(fc, fd)µ :=
∑

n∈N

cndn
µn
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letting the reprodution follow the formula

fc(x) = (fc,Kµ(x, ·))µ for all x ∈ Ω, fc ∈ Hµ.

Note that this gives us a variety of Hilbert spaes, and we shall hek now how L
maps funtions between these spaes. Taking u ∈ Hµ with oe�ients cn, we get that
Lu has oe�ients λncn, and thus

L : Hµ → Hµ/λ2

allows to look at solutions of Lu = f for various regularity assumptions. Here, we

denote the sequene with values

µn

λ2
n

by µ/λ2
for short.

We require the initial funtion u0 to be in H , i.e.

u0(x) =
∑

n∈N

γnun(x)

with

‖u0‖
2

H =
∑

n∈N

γ2

n

µn
< ∞.

The basi idea now is to onstrut a time�dependent kernel K satisfying the di�eren-

tial equation exatly. We do this by de�ning

K(x, y, t) :=
∑

n∈N

µn(t)un(x)un(y), x, y ∈ Ω, t ≥ 0

with initial onditions

µn(0) = µn, n ∈ N

leading to

K(x, y, 0) = K0(x, y) for all x, y ∈ Ω.

To let the di�erential equation be satis�ed in the sense

Kt(x, y, t) = LxK(x, y, t) for all x, y ∈ Ω, t ≥ 0

where the supersript x indiates that L ats on the variable x, we have to satisfy

∑

n∈N

µ′

n(t)un(x)un(y) =
∑

n∈N

µn(t)L
xun(x)un(y)

=
∑

n∈N

µn(t)λnun(x)un(y)

and this leads to the ordinary di�erential equations

µ′

n(t) = µn(t)λn

with the solution

µn(t) = µn exp(λnt), t ≥ 0, n ∈ N.
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Thus our kernel is

K(x, y, t) =
∑

n∈N

µn exp(λnt)un(x)un(y), x, y ∈ Ω, t ≥ 0

and in ase of positive eigenvalues we need the ondition

∑

n∈N

µn exp(λnT )un(x)
2 < ∞ for all x ∈ Ω

to be able to work in [0, T ]. This approah generalizes the standard heat kernel. Note

that ellipti operators will have negative eigenvalues in (2.1), and then the oe�ients

µn(t) will deay with inreasing time.

4. Interpolatory Methods. Sine we have a positive semide�nite kernel K0

on the spatial domain, we an hoose a set X = {x1, . . . , xM} ⊂ Ω of points in

Ω and interpolate the initial funtion u0 by a linear ombination of the funtions

K0(x, xm), 1 ≤ m ≤ M via the linear system

u0(xi) =

M∑

m=1

αmK0(xi, xm)(4.1)

for 1 ≤ i ≤ M . If the initial funtion u0 lies in H , this problem is solvable, though

the kernel matrix is only positive semide�nite. We then de�ne

ũ(x, t) :=

M∑

m=1

αmK(x, xm, t)

to see that the di�erential equation and the boundary onditions are satis�ed.

The error satis�es the di�erential equation and the boundary onditions. Thus

the error is exatly the evolution of the initial error under the di�erential equation.

If the maximum priniple holds, the error for all positive times is thus bounded by

the L∞ interpolation error ‖ũ(·, 0) − u0‖∞ at startup. A theoretial analysis of this

error requires an appliation of kernel interpolation theory to K(x, y, 0).
The hoie of the weights in the kernel series (3.1) will depend on the smoothness

of the starting funtion u0, sine kernel interpolation theory [14, 10℄ tells us that

the smoothness of the kernel K(x, y, 0) should be not lower than the smoothness

of the funtion supplying the data. And sine, for example, the smoothness of the

funtions generated by trigonometri series is related to the deay of the oe�ients,

the smoothness of K(x, y, 0) will usually be ontrolled by deay of the λk.

Diret interpolation of initial data by linear ombinations of eigenfuntions is not

possible in general. The use of kernels always allows interpolation.

5. Examples . We start the simple example from (2.2) here.

The hoie µk = 1/k! gives a series whih generates an analyti kernel plotted in

Figure 5.1. It has an expliit representation

4K(x, y, 0) = exp(exp(π(x+ y))) + exp(exp(−π(x+ y)))
− exp(exp(π(x− y))) − exp(exp(−π(x− y)))

whih unfortunately su�ers from severe anellation. But the rapid onvergene of the

series (3.1) allows to sum the series up until the limit of double preision is reahed,
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Fig. 5.1. Kernel with weights 1/n!

i.e. at k = 19. This will, however, lead to inevitable rank loss in (4.1) for more

than n = 19 data points. Nonetheless, and in partiular if the initial funtion u0

is very smooth, there usually are good projetions of the right�hand side into the

olumn spae of the matrix, leading to unexpetedly good results. Figure 5.2 shows

an example for the starting funtion u0(x) = 1 − 2|x − 0.5| using only 12 interior

points. The error is bounded by the visible di�erene of the starting funtion and its

�rst interpolant.

By simple spetral shifts, this example generalizes to the ase Lu = ∆u+κu, and
similarly for other spatial operators that have known eigenfuntion expansions.
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Fig. 5.2. Solution of heat equation

If one tries to solve the heat equation bakwards this way, the solution must

inrease exponentially. Figure 5.3 shows two examples:

• starting with u0(x) = x(1 − x) up to time t = −0.005 in steps of 0.0001,
• starting with u0(x) = 1− 2|x− 0.5| up to time t = −0.001 in steps of 0.0001.

The �nal example onerns the wave equation. The time�dependent part now is

µn(t) = µn(0) cos(λnt) =
1

n!
cos(nπt)
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Fig. 5.3. Two bakward alulations

in this ase, using (2.2) in the spatial variables. The result is in Figure 5.4 for u0(x) =
1 − 2|x− 0.5| and times up to t = 1 in steps of 0.05. Note that the wave starts with

the interpolant and re�ets bak to it.
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Fig. 5.4. Solution of wave equation

6. Extensions. This approah generalizes to other ases where separation of

variables works, e.g. the wave equation. If there is a linear di�erential operator

D ating with respet to time, the problem Du(x, t) = Lu(x, t) an be split into

eigenvalue problems

Dvn(t) = λnvn(t), Lun(x) = λnun(x),

for appropriate homogeneous boundary onditions, and we an de�ne a kernel

K(x, y, t) :=
∑

n

µnun(x)un(y)vn(t)



7

under the summability ondition

K(x, x, t) =
∑

n

µnu
2

n(x)|vn(t)| < ∞

To make interpolation at t = 0 work, additional onditions must be satis�ed. In ase

of the wave equation utt = ∆u, we use trial funtions

u(x, t) :=

N∑

j=1

ajK(x, xj , t) +

N∑

j=1

bjKt(x, xj , t)

sine for a useful initial�value problem we have to presribe both u(x, 0) and ut(x, 0).
On the spatial domain [0, π] we an use un(x) = sin(nx) and vn(t) = cos(nt) to form

kernels. We pose interpolation onditions

u(xk, 0) =

N∑

j=1

ajK(xk, xj , 0) +

N∑

j=1

bjKt(xk, xj , 0)

=
N∑

j=1

ajK(xk, xj , 0)

ut(xk, 0) =

N∑

j=1

ajKt(xk, xj , 0) +

N∑

j=1

bjKtt(xk, xj , 0)

=

N∑

j=1

bjKtt(xk, xj , 0)

that simplify beause of v′n(0) = 0 and thus Kt(x, y, 0) = 0. The kernels K and

Ktt(x, y, t) =
∑

n

λnµnun(x)un(y)vn(t)

are both de�nite, and the interpolation problem is solvable.
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