
DIRECT MESHLESS LOCAL PETROV-GALERKIN (DMLPG)

METHOD: A GENERALIZED MLS APPROXIMATION

DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

Abstract. The Meshless Local Petrov–Galerkin method (MLPG) is one of

the popular meshless methods that has been used very successfully to solve

several types of boundary value problems since the late nineties. In this pa-

per, using a generalized moving least squares (GMLS) approximation, a new

direct MLPG technique, called DMLPG, is presented. Following the princi-

ple of meshless methods to express everything “entirely in terms of nodes”,

the generalized MLS recovers test functionals directly from values at nodes,

without any detour via shape functions. This leads to a cheaper and even

more accurate scheme. In particular, the complete absence of shape functions

allows numerical integrations in the weak forms of the problem to be done

over low–degree polynomials instead of complicated shape functions. Hence,

the standard MLS shape function subroutines are not called at all. Numeri-

cal examples illustrate the superiority of the new technique over the classical

MLPG.

1. Introduction

The Moving Least Squares method (MLS) was introduced as an approximation

technique by Lancaster and Salkauskas [7], inspired by the pioneering work of Shep-

ard [13] and McLain [8, 9]. Since the numerical approximations of MLS are based

on a cluster of scattered nodes instead of interpolation on elements, many meshless

methods for the numerical solution of differential equations were based on the MLS

method in recent years. As an important example of such methods, we mention the

Meshless Local Petrov-Galerkin (MLPG) method introduced by S.N. Atluri and his

colleagues [1, 2, 3]. It is a truly meshless method in weak form which is based on

local subdomains, rather than a single global domain. It requires neither domain

elements nor background cells in either the approximation or the integration.

In MLPG and other MLS based methods, the stiffness matrix is provided by

integrating over MLS shape functions or their derivatives. These shape functions

are complicated and have no closed forms. To get accurate results, numerical

Date: May 2, 2011.
2010 Mathematics Subject Classification. 65D10, 65D15, 41A25, 41A45, 41A63.

Key words and phrases. Generalized Moving least squares (GMLS) approximation; Meshless

methods; MLPG methods; DMLPG methods.

1

2 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

quadrature with many integration points is required. Thus the MLS subroutines

must be called very often, leading to high computational costs. In contrast to this,

the stiffness matrix in finite element methods (FEMs) is constructed by integrating

over polynomial basis functions which are much cheaper to evaluate. This relaxes

the cost of numerical integrations somewhat. For an account of the importance of

numerical integration within meshless methods, we refer the reader to [4].

This paper avoids integration over MLS shape functions in MLPG and replaces

it by the much cheaper integration over polynomials. It ignores shape functions

completely. Altogether, the method is simpler, faster and more accurate than the

original MLPG method. We use a generalized form of the MLS which directly

approximates boundary conditions and local weak forms, shifting the numerical

integration into the MLS itself, rather than into an outside loop over calls to MLS

routines. We call this approach Direct Meshless Local Petrov-Galerkin (DMLPG)

method. The convergence rate of MLPG and DMLPG seems to be the same, but

thanks to the simplified computation, the results of DMLPG often are more precise

than the results of MLPG. All of this is confirmed by numerical examples.

2. Meshless Methods

Whatever the given problem is, meshless methods construct solutions from a

trial space U whose functions are parametrized “entirely in terms of nodes” [5]. We

let these nodes form a set X := {x1, . . . , xN}. Then the functions u of the linear

trial space U are parametrizable by their values on X iff the linear functionals

δx1 , . . . , δxN are linearly independent on U . This implies that there must be some

basis u1, . . . , uN of U such that the N × N matrix of values uj(xk) is invertible,

but we are not interested in knowing or constructing this basis. We only assume

that the discretized problem is set up with a vector

u = (u(x1), . . . , u(xN))T

of unknowns in “meshless” style, and all data have to be expressed in terms of

these.

Furthermore, we assume the discretized problem to consist of equations

λk(u) = βk, 1 ≤ k ≤M, (2.1)

where we have M ≥ N linear functionals λ1, . . . , λM and M prescribed real val-

ues β1, . . . , βM . Section 4 will describe how this is done for standard linear PDE

problems, including the variations of the MLPG.

The upshot of all meshless methods now is to provide good estimates λ̂k of all

λk using only values at nodes. This means that one has to find real numbers aj(λk)

with

λ̂k(u) =

M∑
j=1

aj(λk)u(xj) ≈ λk(u) for all k, 1 ≤ k ≤M. (2.2)

12 3

Putting the aj(λk) into an M ×N matrix A, one has to solve the possibly overde-

termined linear system

Au = b (2.3)

with b = (β1, . . . , βM)T .

Note that we do not mention shape functions at all. They are not needed to

set up a linear system in terms of values at nodes. The goal just is to find good

estimates for the target functionals λk in terms of the values at nodes, e.g. via

(2.2), to set up the matrix A. Note that in some cases, e.g. when the functionals

λk are derivatives at points, this is just a variation of a finite–difference approach.

In a second stage, users might want to evaluate u at other places than in the

nodes xj . This is a problem of recovery of functions from discrete data values, and

completely independent of PDE solving. There are various possibilities to do so,

including the standard MLS with its shape functions, but we do not comment on

these techniques here.

3. Generalized Moving Least Squares (GMLS) Approximation

Before we show how to discretize PDEs in the form (2.1), we focus on how to find

good estimates of functional values λ(u) in terms of nodal values u(x1), . . . , u(xN).

The classical MLS approximates λ(u) = u(x) from nodal values, minimizing a

certain weighted discrete l2 norm. But in view of the previous section, we need

more general functionals. Therefore we employ a generalized version of Moving

Least Squares, adapted from [10].

Let u ∈ Cm(Ω) for some m ≥ 0, and let {µj(u)}Nj=1 be a set of continuous

linear functionals µj from the dual Cm(Ω)∗ of Cm(Ω). For a fixed given functional

λ ∈ Cm(Ω)∗, our problem is the approximate recovery of the value λ(u) from the

values {µj(u)}Nj=1. This fits into the preceding section for λ = λk, 1 ≤ k ≤M and

µj(u) = u(xj), 1 ≤ j ≤ N .

The functionals λ and µj , 1 ≤ j ≤ N , can, for instance, describe point evalu-

ations of u, its derivatives up to order m, or some local integrals that contain u

or its derivatives in their integrands. In particular, we shall use functionals of the

form (4.4) arising from local weak forms, or simple point evaluation functionals on

the Dirichlet part of the boundary.

The approximation λ̂(u) of λ(u) should be a linear function of the data µj(u), i.e.

it should have the form

λ̂(u) =

N∑
j=1

aj(λ)µj(u), (3.1)

and the coefficients aj should be linear in λ. We already saw this in (2.2). As in

the classical MLS, we assume the approximation equation (3.1) to be exact for a

4 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

finite dimensional subspace P = span{p1, p2, . . . , pQ} ⊂ Cm(Ω), i.e.

N∑
j=1

aj(λ)µj(p) = λ(p) for all p ∈ P. (3.2)

As in the classical MLS, we employ the standard technique of minimizing

1

2

N∑
j=1

a2
j (λ)/wj (3.3)

as a function of the coefficients aj(λ) subject to the linear constraints (3.2), where

we use positive weights w1, . . . , wN which later will be chosen in a specific way to

localize the approximation, provided that λ is a functional acting locally. Anyway,

the weights should depend on the functionals λ and µj . In most cases, the functional

λ will be localized at some point x, and then we shall use the standard MLS weights

for evaluation at x.

The GMLS approximation λ̂(u) to λ(u) can also be obtained as λ̂(u) = λ(p∗),

where p∗ ∈ P is minimizing the weighted least-squares error functional

N∑
j=1

(
µj(u)− µj(p)

)2
wj , (3.4)

among all p ∈ P. This problem is independent of the functional λ and can be effi-

ciently applied for several functionals λ for fixed functionals µj . This may simplify

certain calculations a lot, provided that several functionals have to be estimated

based on the same local data. Details are in [10], including error bounds for the

recovery and a proof that (3.1) holds for λ̂(u) = λ(p∗) with the optimal solution p∗

of (3.4) and the optimal solution a∗j (λ) of (3.3). However, in meshless methods, we

need more than the single value λ̂(u) = λ(p∗), since we finally need the solution as

a vector a∗(λ) ∈ RN with N values a∗j (λ), 1 ≤ j ≤ N .

In the special case

λ(u) = (δxD
α)(u), (3.5)

the derivatives of u of order |α| are recovered. They are called GMLS approximation

derivatives in [10]. Some authors call them diffuse derivatives, but they not “diffuse”

in any way. They are very good direct recoveries of the derivatives of u, but not

coincident with the corresponding derivatives of the shape functions of the classical

MLS solution. Our GMLS approach does not even have shape functions. Instead,

derivatives are estimated directly from nodal values, avoiding the inefficient detour

via classical derivatives of shape functions.

Note that the use of polynomials is not mandatory, and the resulting values aj(λ)

will be independent of the chosen basis of P. However, choosing a good basis of P
will improve stability, and the following discussion shows that P should have the

property that λ(p) should be easy to evaluate for p ∈ P.

12 5

Even if a different numerical method is used to minimize (3.3) or (3.4), the

optimal solution a∗(λ) ∈ RN can be written as

a∗(λ) = WBT (BW BT)−1λ(P) (3.6)

where W is the diagonal matrix carrying the weights wj on its diagonal, B is the

N × Q matrix of values µj(pk), 1 ≤ j ≤ N, 1 ≤ k ≤ Q, and λ(P) ∈ RQ is the

vector with values λ(p1), . . . , λ(pQ) of λ on the basis of P. Thus it suffices to

evaluate λ on the space P, not on a certain trial space spanned by certain shape

functions. This will significantly speed up numerical calculations, if the functional

λ is complicated, e.g. a numerical integration against a test function. Standard

examples are functionals of the form

λ(u) =

∫
K

w(x)Lu(x)dx

where L is a linear differential operator preserving polynomials or just the identity,

and w is some weight function. Such functionals will arise for PDE problems in

weak form in the next section. Then our generalized MLS technique will perform

integration only over polynomials, if we use polynomials as the space P. Note that

this generalizes to any type of functional: we finally just have to evaluate it on a

polynomial. No other calls to MLS routines are necessary, because we do not apply

the functional to shape functions.

4. Problems in Local Weak Forms

We now write linear PDE problems in the discretized form (2.1), with special

emphasis on the Meshless Local Petrov Galerkin Method.

Although the technique proposed in this paper can be used for a wide class of

PDEs, we illustrate our approach for the Poisson problem

∆u(x) = f(x), x ∈ Ω,

u(x) = uD(x), x ∈ ΓD,
∂u
∂n (x) = uN (x), x ∈ ΓN

(4.1)

where f is a given source function, the bounded domain Ω ⊂ Rd is enclosed by the

boundary Γ = ΓD ∪ ΓN , uD and uN are the prescribed Dirichlet and Neumann

data, respectively, on the Dirichlet boundary ΓD and on the Neumann boundary

ΓN , while n is the outward normal direction.

The simplest way of discretizing the problem in the form (2.1) is direct and

global collocation. In addition to the trial nodes x1, . . . , xN for obtaining nodal

solution values, we can choose finite point sets

YΩ ⊂ Ω, YD ⊂ ΓD, YN ⊂ ΓN , Y := YΩ ∪ YD ∪ YN , |Y | = M

6 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

and discretize the problem by M functionals

λi(u) = ∆u(zi) = f(zi), zi ∈ YΩ ⊂ Ω,

λj(u) = u(zj) = uD(zj), zj ∈ YD ⊂ ΓD,

λk(u) = ∂u
∂n (zk) = uN (zk), zk ∈ YN ⊂ ΓN

(4.2)

using some proper indexing scheme. In MLPG categories, this is MLPG2 [1, 2]. All

functionals are local, and strong in the sense that they do not involve integration

over test functions.

For FEM–style global weak discretization, one can keep the second and third

part of (4.2), but the first can be weakened using the Divergence Theorem. With

sufficiently smooth test functions vi, we get

λi(u) :=

∫
Γ

(∇u · n)vi dΓ−
∫

Ω

∇u · ∇vi dΩ =

∫
Ω

fvi dΩ

as a replacement of the first functionals in (4.2), leading again to (2.1).

Following the original MLPG method, instead of transforming (4.1) into a global

weak form, we construct weak forms over local subdomains Ωyσ which are small

regions taken around nodes y in the global domain Ω. The local subdomains could

theoretically be of any geometric shape and size. But for simplicity they are often

taken to be balls B(y, σ) intersected with Ω and centered at y with radius σ, or

squares in 2D or cubes in 3D centered at y with sidelength σ, denoted by S(y, σ)∩Ω.

The variable σ parametrizes the local subdomain’s size, and we denote the boundary

within Ω by Γyσ := Ω∩ ∂Ωyσ. We call a node y internal, if the boundary ∂Ωyσ of the

local subdomain Ωyσ does not intersect Γ.

The derivation of the local weak form starts with the local integral∫
Ωyσ

(
∆u− f

)
v dΩ = 0, (4.3)

where v is an appropriate test function on Ωyσ. Employing the Divergence Theorem,

we get an equation

λy,σ,v(u) :=

∫
Γyσ\ΓN

(∇u · n)v dΓ−
∫

Ωyσ

∇u · ∇v dΩ =

∫
Ωyσ

fv dΩ−
∫

Γyσ∩ΓN

uNv dΓ

(4.4)

of the form (2.1). For nodes whose subdomain boundary does not intersect ΓN , the

second term on the right–hand side vanishes.

Note that neither Lagrange multipliers nor penalty parameters are introduced

into the local weak form, because the Dirichlet boundary conditions are imposed

directly using the second line of (4.2) for suitable collocation points, usually taking

a subset of the trial nodes.

Some variations of MLPG differ in their choice of functionals (4.4). If the test

function v is chosen to vanish on Γyσ \ ΓN , the first integral in (4.4) is zero, and

we have MLPG1. If the local test function v is the constant 1, the second integral

vanishes, and we have MLPG5.

12 7

5. Implementation

In this section, we describe the implementation of GMLS approximations to solve

the Poisson problem (4.1) using the weak form equations (4.4).

At first we fix m, the maximal degree of polynomial basis functions we use.

These form the space P := Pdm of d–variate real–valued polynomials of degree at

most m. The dimension of this space is Q =
(
m+d
d

)
. If the problem has enough

smoothness, m will determine the convergence rate.

Then we choose a set X = {x1, x2, ..., xN} ⊂ Ω of scattered trial points which is

filling the domain reasonably well, without letting two points come extraordinarily

close to each other. To make this more precise, we need the quantities fill distance

and separation distance which are important to measure the quality of centers and

derive rates of convergence. For a set of points X = {x1, x2, ..., xN} in a bounded

domain Ω ⊆ Rd, the fill distance is defined to be

hX,Ω = sup
x∈Ω

min
1≤j≤N

‖x− xj‖2,

and the separation distance is defined by

qX =
1

2
min
i 6=j
‖xi − xj‖2.

A set X of data sites is said to be quasi-uniform with respect to a constant cqu > 0

if

qX ≤ hX,Ω ≤ cquqX . (5.1)

In this sense, we require the set X of trial nodes to be quasi–uniform.

We now have to define the functionals λ1, . . . , λM discretizing our PDE problem.

This requires a selection between MLPG1, MLPG2, and MLPG5, and the decision

to use oversampling or not, i.e. M > N or M = N . Oversampling will often

increase stability at increased cost, but we found that in our examples it was not

necessary. Since we have to execute the GMLS method for each functional λk,

approximating it in terms of function values at the trial nodes in B(yk, δ) ∩ X,

we have to make sure that the GMLS does not break down. This means that the

matrix B of (3.6) must have rank Q, if formed for the nodes in B(yk, δ) ∩ X. In

general:

Definition 5.1. A set Z of pairwise distinct points in Rd is called Pdm-unisolvent

if the zero polynomial is the only polynomial from Pdm which vanishes on Z.

To give a sufficient condition for unisolvency, we need

Definition 5.2. A set Ω ⊂ Rd is said to satisfy an interior cone condition if there

exists an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω a unit

vector ξ(x) exists such that the cone

C(x, ξ, θ, r) :=
{
x+ ty : y ∈ Rd, ‖y‖2 = 1, yT ξ ≥ cos θ, t ∈ [0, r]

}

8 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

is contained in Ω.

Theorem 5.3. ([12], see also [14])

For any compact domain Ω in Rd with an interior cone condition, and any m ≥ 0

there are positive constants h0 and c0 such that for all trial node sets X with fill

distance hX,Ω ≤ h0, all test points y ∈ Ω, and all radii δ ≥ c0 hX,Ω, the set

B(y, δ) ∩X is Pdm–unisolvent.

This means that the placement of test nodes and the choice of weight function

supports can be linked to the fill distance of the set of trial nodes. Oversampling

never causes problems, if the weight function support radius is kept proportional

to the fill distance of the trial nodes.

Some test nodes should be scattered over the Dirichlet boundary ΓD to im-

pose the Dirichlet boundary conditions. We denote the subset of these points by

YD ⊂ Y ∩ ΓD. For MLPG2, we similarly define YN , and then the setup of the

functionals simply follows (4.2), with or without oversampling. In principle, the

sets YΩ, YN , YD need not be disjoint.

For weak problems in MLPG1 or MLPG5 form, we just implement the function-

als λyk,σk,vk of (4.4) as described in Section 4. Altogether, we follow Section 2 by

implementing (2.1) via (2.2), and ending with the system (2.3).

The order of convergence of the approximated functional to its exact value is im-

portant in this case. Applying the same strategy presented in [10] for λy,α(u) :=

Dαu(y), we can prove

Theorem 5.4. Let

λ(u) = λy,σ,w(u) :=

∫
K

w(x)Lu(x)dx, K = Ωyσ or ∂Ωyσ, y ∈ Ωyσ.

In the situation of Theorem 5.3, define Ω∗ to be the closure of
⋃
x∈ΩB(x, δ). Define

λ̂(u) :=

N∑
j=1

a∗j (λ)u(xj),

where a∗j (λ) are functions derived from the GMLS approximation in (3.6). Then

there exists a constant c > 0 such that for all u ∈ Cm+1(Ω∗) and all quasi-uniform

X ⊂ Ω with hX,Ω ≤ h0 we have∥∥∥λ(u)− λ̂(u)
∥∥∥
L∞(Ω)

≤ chm+1−n
X,Ω |u|Cm+1(Ω∗), (5.2)

providing
∫
K
|w(x)|dx < ∞ and if λ(u) 6= 0,

∫
K
w(x)Lxαdx 6= 0 (λ(xα) 6= 0) for

some α with |α| = m. Here n is the maximal order of derivatives involved in linear

operator L and |u|Cm+1(Ω∗) := max|α|=m+1 ‖Dαu‖L∞(Ω).

12 9

However, we cannot guarantee that the system (2.3) has full rank, since we only

made sure that the rows of the system can be calculated via the GMLS if Theorem

5.3 applies. Oversampling will usually help if the system causes problems.

After the solution vector u of (2.3), consisting of values u(xj) of values at the

trial nodes is determined by solving the system, other values of the solution function

u(x) (and also its derivatives) can be calculated in every point x ∈ Ω again using

the MLS approximation.

Since we have direct approximations for boundary conditions and local weak

forms, this method is called direct meshless local Petrov-Galerkin (DMLPG) method.

It comes in the DMLPG1, DMLPG2, and DMLPG5 variations.

In contrast to MLPG2, if the GMLS derivatives (“diffuse” derivatives) [10] are

used instead of the standard derivatives of MLS shape functions, we have DMLPG2.

As investigated in [10], the accuracies for calculating the matrix A of (2.3) are

the same, but the computational cost of DMLPG2 is less. When looking into

the literature, we found that DMLPG2 coincides with the Diffuse Approximation

Method (DAM) [11]. But since we avoid using the word diffuse because there is

nothing “diffuse” about these derivatives [10], we will call the method DMLPG2 or

direct MLS collocation (DMLSC) method.

As we saw in Section 3, in DMLPG1/5 methods the integrations are done only

over polynomials, if the latter are used in the GMLS. For every functional λk,

1 ≤ k ≤ M ≥ N , the GMLS routine is called only once. There are no calls

to produce values of shape functions. The standard MLPG/MLS technique at

degree m implements numerical integration by calling shape function evaluations,

and thus the MLS routine is called approximatively M K times where K is the

average number of integration points. Moreover, in standard MLPG methods the

derivatives of MLS shape function must also be provided, while DMLPG has no

shape functions at all. Consequently, DMLPG is considerably faster than MLPG.

In addition, due to the error analysis presented in Theorem 5.4 for the new GMLS

method, the final accuracies of both MLPG and DMLPG methods are the same.

We will see experimentally that DMLPG is even more accurate than MLPG.

As highlighted in [4], numerical integration in FEM is simple because the inte-

grands of the elements of the stiffness matrix are polynomials. In contrast to this,

the shape functions used in standard meshless methods are much more costly to

evaluate, making numerical integration a much bigger challenge than for the FEM.

In MLPG methods, numerical integrations are simpler than for various other mesh-

less methods, since the local weak form breaks everything down to local well–shaped

subdomains. However, since the integrands are based on MLS shape functions and

their derivatives, a Gauss quadrature with many points is required to get accurate

results, especially when the density of nodes increases. Overcoming this drawback

10 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

is a major advantage of DMLPG methods, because the integrations are done over

polynomials, like in FEM.

It is interesting to note that if local sub-domains are chosen in DMLPG5 as

S(x, σ) (square or cube), a (d − 1)–times
⌈
m
2

⌉
–points Gauss quadrature gives the

exact solution for local boundary integrals around the nodes in the interior of Ω. In

DMLPG1, if again S(x, σ) is chosen as a local sub-domain and if a polynomial test

function is employed, a d-times
⌈

(m−1)(n−1)+1
2

⌉
–points Gauss quadrature is enough

to get exact interior local domain integrals. Here, n is the degree of the polynomial

test function. As a polynomial test function on the square or cube for DMLPG1

with n = 2, we can use

v(x;xk) =

d∏
i=1

(
1− 4

σ2
(ξi − ξki)2

)
, x ∈ S(xk, σ),

0, otherwise

where x = (ξ1, ..., ξd) and xk = (ξk1, ..., ξkd). In DMLPG1 with balls as sub-

domains, weight functions of the form function

wδ(x, y) = φ

(
‖x− y‖2

δ

)
, (5.3)

with δ = σ can be used as test functions. Both of these test functions vanish on

Γxkσ \ΓN , as required in DMLPG1.

Note that, if the second weak forms (Green forms) are taken over local sub-

domains and a modified fundamental solution is used as test function, the process

gives the DMLPG4 rather than MLPG4 or the meshless LBIE method presented in

[15]. In DMLPG4, it is better to use balls as local sub-domains, because in this case

the modified fundamental solution, used as a test function, can be derived easily.

But the test function is not a polynomial.

Both DMLPG3 and DMLPG6 can be formulated as well using our approach,

but they require more ingredients, so we leave them out here.

Instead, we add some remarks about selecting m, the degree of polynomial basis

functions in the GMLS. For m = 1, the variants DMLPG 1, 4, and 5 will necessarily

fail. The background is that the GMLS performs an optimal recovery of a functional

λ in terms of nodal values, and the recovery is exact on a subspace P, using minimal

coefficients at the nodal values. Thus, in all cases where the functional is zero on P
by some reason or other, the recovery formula will be zero and will generate a zero

row in the stiffness matrix. This happens for all variations based on functionals

(4.4) and functionals extracted from the second weak form on interior points, since

all those functionals are reformulations of

λy,σ,v(u) =

∫
B(y,σ)

v∆u dω

12 11

and thus vanish on harmonic functions u, in particular on linear functions. Thus,

for solving inhomogeneous problems, users should pick spaces P of non–harmonic

functions, if they employ GMLS with exactness on P. This rules out polynomials

with degree m ≤ 1.

Another closely related point arises from symmetry of subdomains. Since poly-

nomials in a ball B(x, σ) or a cube S(x, σ) have symmetry properties, the entries

of stiffness matrices in rows corresponding to internal points will often be the same

for m = 2k and m = 2k + 1. Thus convergence rates often do not increase when

going from m = 2 to m = 3, for instance. But this observation affects MLPG and

DMLPG in the same way.

6. Stability and Convergence

For the classical MLS and the generalized MLS from [10] and Theorem 5.4 it is

known that the recovery λ̂(u∗) of values of functionals λ on a true solution u∗ has

an error of order O(hm+1−k), if h is the fill distance of the trial nodes, m is the

degree of polynomials used locally, if the exact solution u∗ is at least Cm+1, k is

the maximal order of derivatives of u∗ involved in the functional, and if numerical

integration has an even smaller error. In particular, the classical MLS and the

new GMLS produce roughly the same stiffness matrices, but the GMLS has a

considerably smaller computational complexity.

However, the error committed in the approximation of the test functionals in

terms of function values at nodes does not always carry over to the convergence

rate of the full algorithm, since there is no stability analysis, so far. Even if perfect

stability would hold, the best one can expect is to get the convergence rate implied

by the local trial approximation, i.e. by local polynomials of degree m. This

would again mean a rate of O(hm+1−k), but only if the solution is indeed locally

approximated by polynomials of that degree. In fact, the next section will show

that this rate can often be observed. But our symmetry arguments at the end of

the previous section show that sometimes the degree m = 2k + 1 cannot improve

the behavior for m = 2k, because the odd–degree polynomials simply do not show

up in most of the calculations for the stiffness matrix.

7. Numerical results

In this section some numerical results are presented to demonstrate the efficiency

of DMLPG methods and its advantages over MLPG methods. We consider the Pois-

son equation (4.1) on the square [0, 1]2 ⊂ R2 with Dirichlet boundary conditions.

Since we want to study convergence rates without being limited by smnoothness of

12 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

the solution, we take Franke’s function [6]

u(x̄, ȳ) =
3

4
e−1/4((9x̄−2)2+(9ȳ−2)2) +

3

4
e−(1/49)(9x̄+1)2−(1/10)(9ȳ+1)2)

+
1

2
e−1/4((9x̄−7)2+(9ȳ−3)2) − 1

5
e−(9x̄−4)2−(9ȳ−7)2 ,

where (x̄, ȳ) denotes the two components of x ∈ R2, as analytical solution and cal-

culate the right hand side and boundary conditions accordingly. Note that Franke’s

function is a standard test function for 2D scattered data fitting. Regular mesh

distributions with mesh-size h are provided in all cases, though the methods would

work with scattered data. We do not implement oversampling in the results of this

paper. In fact, the trial and test points are chosen to be coincident. Also, the

shifted scaled polynomial {
(x− z)α

h|α|

}
0≤|α|≤m

,

where z is a fixed evaluation point such as a test point or a Gaussian point for

integration, is used instead of the natural polynomial basis {xα}0≤|α|≤m for MLS

approximation. In [10], it is shown that this choice of basis function leads to more

stable and accurate MLS approximation. We use the shifted scaled basis for both

MLPG5 and DMLPG5 methods with m = 2, 3 and 4. The Gaussian weight function

wδ(x, xj) =

exp

(
− (‖x− xj‖2/c)2

)
− exp

(
− (δ/c)2

)
1− exp

(
− (δ/c)2

) , 0 ≤ ‖x− xj‖2 ≤ δ,

0, ‖x− xj‖2 > δ

is employed where c = c0h is a constant controlling the shape of the weight function

and δ = δ0h is the size of the support domains.

Let m = 2 and set c0 = 0.6 and δ0 = 2m. At first the local sub-domains are

taken to be circles. To get the best results in MLPG we have to use an accu-

rate quadrature formula. Here a 20-points regular Gauss-Legendre quadrature is

employed for numerical integrations over local sub-domains.

Numerical results, for different mesh-sizes h, are presented in terms of maximum

errors, ratios and CPU times used for MLPG5 and DMLPG5 in Tables 1.

Table 1. The maximum errors, ratios and CPU times used for MLPG5 and DMLPG5 with m = 2

MLPG5 DMLPG5 CPU time used

h ‖e‖∞ ratio ‖e‖∞ ratio MLPG5 DMLPG5

0.2 0.44× 10−1 − 0.23× 10−1 − 1.4 sec. 0.2 sec.

0.1 0.15× 10−1 1.59 0.72× 10−2 1.68 9.0 0.5

0.05 0.73× 10−2 0.99 0.20× 10−2 1.84 45.0 2.2

0.025 0.24× 10−2 1.61 0.58× 10−3 1.80 215.2 9.4

0.0125 0.66× 10−3 1.85 0.14× 10−3 1.98 2456.9 59.6

12 13

The mesh-size h is divided by two row by row, therefore the ratios are computed

by

log2

(
‖e(h)‖∞
‖e(h/2)‖∞

)
.

Both methods have nearly the same order 2, which cannot be improved for this trial

space, since the expected optimal order is m + 1 − k = 3 − 1 = 2. But significant

differences occur in the columns with CPU times. As we stated before, this is due to

restricting local integrations to polynomial basis functions in DMLPG rather than

to integrate over MLS shape functions in the original MLPG. We could get the same

results with fewer integration points for DMLPG, but to be fair in comparison, we

use the same quadrature.

In addition, to give more insight into the errors, the maximum errors of MLPG5

and DMLPG5 are illustrated in Fig. 1. Once can see that DMLPG is more accurate,

maybe due to avoiding many computations and hence many roundoff errors.

0.2 0.1 0.05 0.025 0.0125

10
-3

10
-2

h

||
e

||

DMLPG5

MLPG5

Figure 1. Comparison of MLPG5 and DMLPG5 in terms of maximum

errors for m = 2.

In Table 2 and Fig. 2, we have compared MLPG5 and DMLPG5 in case m = 3.

The convergence rate stays at 2 for both methods, since the third–degree polynomi-

als cannot contribute to the weak form. The figure shows approximately the same

error results. But the CPU times used are indeed different.

14 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

0.2 0.1 0.05 0.025 0.0125

10
-3

10
-2

h

||
e

||

DMLPG5

MLPG5

Figure 2. Comparison of MLPG5 and DMLPG5 in terms of maximum

errors for m = 3.

Table 2. The maximum errors, ratios and CPU times used for MLPG5 and DMLPG5 with m = 3

MLPG5 DMLPG5 CPU time used

h ‖e‖∞ ratio ‖e‖∞ ratio MLPG5 DMLPG5

0.2 0.28× 10−1 − 0.23× 10−1 − 2.0 sec. 0.2 sec.

0.1 0.13× 10−1 1.08 0.74× 10−2 1.62 18.2 0.8

0.05 0.33× 10−2 1.98 0.20× 10−2 1.89 103.2 3.4

0.025 0.78× 10−3 2.09 0.58× 10−3 1.80 493.9 15.0

0.0125 0.19× 10−3 2.06 0.15× 10−3 1.98 3830.0 82.5

In the results presented up to here, we used balls (circles) as local sub-domains.

Now we turn to use squares for both MLPG5 and DMLPG5. Also, we run the

programs with m = 4 to see the differences. The parameters c0 = 0.8 and δ0 = 2m

are selected. In DMLPG5, a 2-points Gaussian quadrature is enough to get exact

numerical integrations. But for MLPG5 and the right hand sides we use a 10-points

Gaussian quadrature for every sides of squares. The results are depicted in Table 3

and Fig. 3. DMLPG is more accurate and approximately gives the full order 4 in

this case. Beside, as we expected, the computational cost of DMLPG is remarkably

less than MLPG.

12 15

0.2 0.1 0.05 0.025 0.0125

10
-5

10
-4

10
-3

10
-2

10
-1

h

||
e

||

DMLPG5

MLPG5

Figure 3. Comparison of MLPG5 and DMLPG5 in terms of maximum

errors for m = 4.

Table 3. The maximum errors, ratios and CPU times used for MLPG5 and DMLPG5 with m = 4

MLPG5 DMLPG5 CPU time used

h ‖e‖∞ ratio ‖e‖∞ ratio MLPG5 DMLPG5

0.2 0.10× 100 − 0.12× 100 − 2.2 sec. 0.3 sec.

0.1 0.25× 10−1 2.04 0.17× 10−1 2.87 28.4 0.9

0.05 0.78× 10−2 1.66 0.12× 10−2 3.75 189.6 4.2

0.025 0.79× 10−3 3.30 0.75× 10−4 4.04 1451.0 19.3

0.0125 0.55× 10−4 3.86 0.43× 10−5 4.12 8021.5 107.6

Results for MLPG1 and DMLPG1 turn out to behave similarly. As we know,

MLPG1 is more expensive than MLPG5 [1, 2], but there is no significant difference

between computational costs of DMLPG5 and DMLPG1. Therefore the differences

between CPU times used for MLPG1 and DMLPG1 are absolutely larger.

All routines were written using Matlab c© and run on a Pentium 4 PC with 2.50

GB of Memory and a twin–core 2.00 GHz CPU.

8. Conclusion

This article describes a new MLPG method, called DMLPG method, based on

generalized moving least squares (GMLS) approximation for solving boundary value

problems. The new method is considerably faster than the classical MLPG variants,

because

• direct approximations of data functionals are used for Dirichlet boundary

conditions and local weak forms,

16 DAVOUD MIRZAEI†, ROBERT SCHABACK‡,∗

• local integrations are done over polynomials rather than over complicated

MLS shape functions,

• numerical integrations can sometimes be performed exactly.

The convergence rate of both methods should be the same, but thanks to avoiding

many computations and roundoff errors, and of course by treating the numerical

integrations in a more elegant and possibly exact way, the results of DMLPG turn

often out to be more accurate than the results of MLPG.

On the downside, DMLPG does not work for m = 1 since it locally uses (har-

monic) linear functions instead of complicated shape functions. But most MLPG

users choose higher degrees anyway, in order to obtain better convergence rates.

Altogether, we believe that the DMLPG methods have great potential to replace

the original MLPG methods in many situations.

References

[1] S. N. Atluri. The meshless method (MLPG) for domain and BIE discretizations. Tech Science

Press, Encino, CA, 2005.

[2] S. N. Atluri and S. Shen. The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science

Press, Encino, CA, 2002.

[3] S.N. Atluri and T.-L. Zhu. A new meshless local Petrov-Galerkin (MLPG) approach in Com-

putational mechanics. Comput. Mech., 22:117–127, 1998.

[4] I. Babuska, U. Banerjee, J.E. Osborn, and Q. Zhang. Effect of numerical integration on

meshless methods. Comput. Methods Appl. Mech. Engrg., 198:27–40, 2009.

[5] T. Belytschko, Y. Krongauz, D.J. Organ, M. Fleming, and P. Krysl. Meshless methods: an

overview and recent developments. Computer Methods in Applied Mechanics and Engineer-

ing, special issue, 139:3–47, 1996.

[6] R. Franke. Scattered data interpolation: tests of some methods. Mathematics of Computation,

48:181–200, 1982.

[7] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Math.

of Comput., 37:141–158, 1981.

[8] D.H. McLain. Drawing contours from arbitrary data points. Comput. J., 17:318–324, 1974.

[9] D.H. McLain. Two dimensional interpolation from random data. Comput. J., 19:178–181,

1976.

[10] D. Mirzaei, R. Schaback, and M. Dehghan. On generalized moving least squares and diffuse

derivatives. Submitted, 2011.

[11] C. Prax, H. Sadat, and P. Salagnac. Diffuse approximation method for solving natural con-

vection in porous media. Transport in Porous Media, 22:215–223, 1996.

[12] R. Schaback. Kernel–based meshless methods. Lecture Note, Göttingen, 2011.

[13] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceed-

ings of the 23th National Conference ACM, pages 517–523, 1968.

[14] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2005.

[15] T. Zhu, J.D. Zhang, and S.N. Atluri. A local boundary integral equation (LBIE) method in

computational mechanics, and a meshless discretization approach. Comput. Mech., 21:223–

235, 1998.

12 17

†Department of Applied Mathematics, Faculty of Mathematics and Computer Sci-

ence, Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran.

E-mail address: d mirzaei@aut.ac.ir

‡Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzes-

traße 16-18, D–37073 Göttingen, Germany.

E-mail address: schaback@math.uni-goettingen.de

∗Corresponding author.

