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Abstract There are many application papers that solve elliptic boundary value
problems by meshless methods, and they use various forms of generalized stiffness
matrices that approximate derivatives of functions from values at scattered nodes
x1, . . . , xM ∈ Ω ⊂ R

d. If u∗ is the true solution in some Sobolev space S allowing
enough smoothness for the problem in question, and if the calculated approximate
values at the nodes are denoted by ũ1, . . . , ũM , the canonical form of error bounds is

max
1≤ j≤M

|u∗(x j ) − ũ j | ≤ ε ‖u∗‖S

where ε depends crucially on the problem and the discretization, but not on the solution.
This contribution shows how to calculate such ε numerically and explicitly, for any
sort of discretization of strong problems via nodal values, may the discretization use
Moving Least Squares, unsymmetric or symmetric RBF collocation, or localized
RBF or polynomial stencils. This allows users to compare different discretizations
with respect to error bounds of the above form, without knowing exact solutions, and
admitting all possible ways to set up generalized stiffness matrices. The error analysis
is proven to be sharp under mild additional assumptions. As a byproduct, it allows to
construct worst cases that push discretizations to their limits. All of this is illustrated
by numerical examples.

1 Introduction

Following the seminal survey [5] by Ted Belytschko et.al. in 1996, meshless methods
for PDE solving often work “entirely in terms of values at nodes”. This means that
large linear systems are set up that have values u(x1), . . . , u(xM ) of an unknown
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function u as unknowns, while the equations model the underlying PDE problem in
discretized way. Altogether, the discrete problems have the form

M∑
j=1

ak ju(x j ) ≈ fk, 1 ≤ k ≤ N (1)

with N ≥ M , whatever the underlying PDE problem is, and the N ×M matrix A with
entries ak j can be called a generalized stiffness matrix.

Users solve the system somehow and then get values ũ1, . . . , ũM that satisfy

M∑
j=1

ak j ũ j ≈ fk, 1 ≤ k ≤ N,

but they should know how far these values are from the values u∗(x j ) of the true
solution of the PDE problem that is supposed to exist.

The main goal of this paper is to provide tools that allow users to assess the quality
of their discretization, no matter how the problem was discretized or how the system
was actually solved. The computer should tell the user whether the discretization is
useful or not. It will turn out that this is possible, and at tolerable computational cost
that is proportional to the complexity for setting up the system, not for solving it.

The only additional ingredient is a specification of the smoothness of the true
solution u∗, and this is done in terms of a strong norm ‖.‖S , e.g. a higher-order
Sobolev norm or seminorm. The whole problem will then be implicitly scaled by
‖u∗‖S , and we assert an absolute bound of the form

max
1≤ j≤M

|u∗(x j ) − ũ j | ≤ ε ‖u∗‖S

or a relative bound
max1≤ j≤M |u∗(x j ) − ũ j |

‖u∗‖S
≤ ε

with an entity ε that can be calculated. It will be a product of two values caring
for stability and consistency, respectively, and these are calculated and analyzed
separately.

Section 2 will set up the large range of PDE or, more generally, operator equation
problems we are able to handle, and Section 3 provides the backbone of our error
analysis. It must naturally contain some versions of consistency and stability, and we
deal with these in Sections 5 and 7, with an interlude on polyharmonic kernels in
Section 6. For given Sobolev smoothness order m, these provide stable, sparse, and
error-optimal nodal approximations of differential operators. Numerical examples
follow in Section 8, demonstrating how to work with the tools of this paper. It turns
out that the evaluation of stability is easier than expected, while the evaluation of
consistency often suffers from severe numerical cancellation that is to be overcome
by future research, or that is avoided by using special scale-invariant approximations,
e.g. via polyharmonic kernels along the lines of Section 6.
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2 Problems and Their Discretizations

We have to connect the system (1) back to the original PDE problem, and we do this
in an unconventional but useful way that we use successfully since [30] in 1999.

2.1 Analytic Problems

For example, consider a model boundary value problem of the form

Lu = f in Ω ⊂ Rd
Bu = g in Γ := ∂Ω (2)

where f , g are given functions onΩ and Γ, respectively, and L, B are linear operators,
defined and continuous on some normed linear space U in which the true solution u∗

should lie. Looking closer, this is an infinite number of linear constraints

Lu(y) = f (y) for all y ∈ Ω ⊂ Rd
Bu(z) = g(z) for all z ∈ Γ := ∂Ω

and these can be generalized as infinitely many linear functionals acting on the
function u, namely

λ(u) = fλ for all λ ∈ Λ ⊂ U∗ (3)

where the set Λ is contained in the topological dual U∗ of U , in our example

Λ = {δy ◦ L, y ∈ Ω} ∪ {δz ◦ B, z ∈ Γ}. (4)

Definition 1. An admissible problem in the sense of this paper consists in finding
an u from some normed linear space U such that (3) holds for a fixed set Λ ⊂ U∗.
Furthermore, solvability via fλ = λ(u∗) for all λ ∈ Λ ⊂ U∗ for some u∗ ∈ U is
always assumed.

Clearly, this allows various classes of differential equations and boundary conditions.
in weak or strong form. For examples, see [27]. Here, we just mention that the
standard functionals for weak problems with L = −∆ are of the form

λv (u) :=
∫
Ω

(∇u)T∇v (5)

where v is an arbitrary test function from W1
0 (Ω).
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2.2 Discretization

The connection of the problem (3) to the discrete linear system (1) usually starts with
specifying a finite subset ΛN = {λ1, . . . , λN } ⊂ Λ of test functionals. But then it
splits into two essentially different branches.

The shape function approach defines functions u j : Ω→ R with the Lagrange
property ui (x j ) = δi j, 1 ≤ i, j ≤ M and defines the elements ak j of the stiffness
matrix as ak j := λk (u j ). This means that the application of the functionals λk on
trial functions

u(x) =
M∑
j=1

u(x j )u j (x)

is exact, and the linear system (1) describes the exact action of the selected test
functionals on the trial space. Typical instances of the shape function approach are
standard applications of Moving Least Squares (MLS) trial functions [32, 2, 3]. Such
applications were surveyed in [5] and incorporate many versions of the Meshless
Local Petrov Galerkin (MLPG) technique [4]. Another popular shape function method
is unsymmetric or symmetric kernel-based collocation, see [16, 9, 11, 12].

But one can omit shape functions completely, at the cost of sacrificing exactness.
Then the selected functionals λk are each approximated by linear combinations of
the functionals δx1, . . . , δxM by requiring

, λk (u) ≈
M∑
j=1

ak jδx j u =
M∑
j=1

ak ju(x j ), 1 ≤ k ≤ N, for all u ∈ U . (6)

This approach can be called direct discretization, because it bypasses shape functions.
It is the standard technique for generalized finite differences (FD) [22], and it comes
up again in meshless methods at many places, starting with [24, 31] and called
RBF-FD or local RBF collocation by various authors, e.g. [34, 10]. The generalized
finite difference approximations may be calculated via radial kernels using local
selections of nodes only [25, 36, 35], and there are papers on how to calculate
such approximations, e.g. [7, 18]. Bypassing Moving Least Squares trial functions,
direct methods in the context of Meshless Local Petrov Galerkin techniques are in
[21, 20], connected to diffuse derivatives [24]. For a mixture of kernel-based and
MLS techniques, see [17].

This contribution will work in both cases, with a certain preference for the direct
approach. The paper [27] focuses on shape function methods instead. It proves that
uniform stability can be achieved for all well-posed problems by choosing a suitable
discretization, and then convergence can be inferred from standard convergence
rates of approximations of derivatives of the true solution from derivatives of trial
functions. The methods of [27] fail for direct methods, and this was the main reason
to write this paper.
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2.3 Nodal Trial Approximations

In addition to Definition 1 we now assume that U is a space of functions on some set
Ω, and that point evaluation is continuous, i.e. δx ∈ U∗ for all x ∈ Ω. We fix a finite
set XM of M nodes x1, . . . , xM and denote the span of the functionals δx j by DM .

For each λ ∈ Λ we consider a linear approximation λ̃ to λ from DM , i.e.

λ(u) ≈
M∑
j=1

a j (λ)u(x j ) =: λ̃(u) (7)

Note that there is no trial space of functions, and no shape functions at all, just nodal
values and approximations of functionals from nodal values. It should be clear how
the functionals in (4) can be approximated as in (7) via values at nodes.

In the sense of the preceding section, this looks like a direct discretization, but it
also covers the shape function approach, because it is allowed to take a j (λ) = λ(u j )
for shape functions u j with the Lagrange property.

2.4 Testing

Given a nodal trial approximation, consider a finite subset ΛN of functionals
λ1, . . . , λN and pose the possibly overdetermined linear system

λk (u∗) = fλk =
M∑
j=1

a j (λk )u j (8)

for unknown nodal values u1, . . . , uM that may be interpreted as approximations to
u∗(x1), . . . , u∗(xM ). We call ΛN a test selection of functionals, and remark that we
have obtained a system of the form (1).

For what follows, we write the linear system (8) in matrix form als

f = Au (9)

with
A = (a j (λk ))1≤k≤N,1≤ j≤M ∈ R

N×M

f = ( fλ1, . . . , fλN )T ∈ RN

u = (u(x1), . . . , u(xM ))T ∈ RM .

Likewise, we denote the vector of exact nodal values u∗(x j ) by u∗, and ũ will be the
vector of nodal values ũ j that is obtained by some numerical method that solves the
system (8) approximately.

It is well-known [14] that square systems of certain meshless methods may be
singular, but it is also known [27] that one can bypass that problem by overtesting,
i.e. choosing N larger than M . This leads to overdetermined systems, but they can be
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handled by standard methods like the MATLAB backslash in a satisfactory way. Here,
we expect that users set up their N × M stiffness matrix A by sufficiently thorough
testing, i.e. by selecting many test functionals λ1, . . . , λN so that the matrix has rank
M ≤ N . Section 7 will show that users can expect good stability if they handle a well-
posed problem with sufficient overtesting. Note further that for cases like the standard
Dirichlet problem (2), the set ΛN has to contain a reasonable mixture of functionals
connected to the differential operator and functionals connected to boundary values.
Since we focus on general worst-case error estimates here, insufficient overtesting
and an unbalanced mixture of boundary and differential equation approximations
will result in error bounds that either cannot be calculated due to rank loss or come
out large. The computer should reveal whether a discretization is good or not.

3 Error Analysis

The goal of this paper is to derive useful bounds for ‖u∗ − ũ‖∞, but we do not care
for an error analysis away from the nodes. Instead, we assume a postprocessing step
that interpolates the elements of ũ to generate an approximation ũ to the solution u∗

in the whole domain. Our analysis will accept any numerical solution ũ in terms of
nodal values and provide an error bound with small additional computational effort.

3.1 Residuals

We start with evaluating the residual r := f − Aũ ∈ RN no matter how the numerical
solution ũ was obtained. This can be explicitly done except for roundoff errors, and
needs no derivation of upper bounds. Since in general the final error at the nodes
will be larger than the observed residuals, users should refine their discretization
when they encounter residuals that are very much larger than the expected error in
the solution.

3.2 Stability

In Section 2.4 we postulated that users calculate an N × M stiffness matrix A that
has no rank loss. Then the stability constant

CS (A) := sup
u,0

‖u‖p
‖Au‖q

(10)

is finite for any choice of discrete norms ‖.‖p and ‖.‖q on RM and RN , respectively,
with 1 ≤ p, q ≤ ∞ being fixed here, and dropped from the notation. In principle, this
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constant can be explicitly calculated for standard norms, but we refer to Section 7 on
how it is treated in theory and practice. We shall mainly focus on well-posed cases
where CS (A) can be expected to be reasonably bounded, while norms of A get very
large. This implies that the ratios ‖u‖p/‖Au‖q can vary in a wide range limited by

‖A‖−1
q,p ≤

‖u‖p
‖Au‖q

≤ CS (A). (11)

If we assume that we can deal with the stability constant CS (A), the second step of
error analysis is

‖u∗ − ũ‖p ≤ CS (A)‖A(u∗ − ũ)‖q
≤ CS (A)(‖Au∗ − f‖q + ‖f − Aũ‖q)
≤ CS (A)(‖Au∗ − f‖q + ‖r‖q)

(12)

and we are left to handle the consistency term ‖Au∗ − f‖q that still contains the
unknown true solution u∗. Note that f is not necessarily in the range of A, and we
cannot expect to get zero residuals r.

3.3 Consistency

For all approximations (7) we assume that there is a consistency error bound

|λ(u) − λ̃(u) | ≤ c(λ)‖u‖S (13)

for all u in some regularity subspace US of U that carries a strong norm or seminorm
‖.‖S . In case of a seminorm, we have to assume that the approximation λ̃ is an exact
approximation to λ on the nullspace of the semminorm, but we shall use seminorms
only in Section 6 below. If the solution u∗ has plenty of smoothness, one may expect
that c(λ)‖u∗‖S is small, provided that the discretization quality keeps up with the
smoothness. In section 5, we shall consider cases where the c(λ) can be calculated
explicitly.

The bound (13) now specializes to

‖Au∗ − f‖q ≤ ‖c‖q ‖u∗‖S

with the vector
c = (c(λ1), . . . , c(λN ))T ∈ RN,

and the error in (12) is bounded absolutely by

‖u∗ − ũ‖p ≤ CS (A)
(
‖c‖q ‖u∗‖S + ‖r‖q

)
and relatively by
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‖u∗ − ũ‖p
‖u∗‖S

≤ CS (A)
(
‖c‖q +

‖r‖q
‖u∗‖S

)
. (14)

This still contains the unknown solution u∗. But in kernel-based spaces, there are ways
to get estimates of ‖u∗‖S via interpolation. A strict but costly way is to interpolate the
data vector f by symmetric kernel collocation to get a function u∗f with ‖u

∗
f ‖S ≤ ‖u

∗‖S ,
and this norm can be plugged into (14). In single applications, users would prefer to
take the values of u∗f in the nodes as results, since they are known to be error-optimal
[28]. But if discretizations with certain given matrices A are to be evaluated or
compared, this suggestion makes sense to get the right-hand side of (14) independent
of u∗.

3.4 Residual Minimization

To handle the awkward final term in (14) without additional calculations, we impose
a rather weak additional condition on the numerical procedure that produces ũ as an
approximate solution to (9). In particular, we require

‖Aũ − f‖q ≤ K (A)‖Au∗ − f‖q, (15)

which can be obtained with K (A) = 1 if ũ is calculated via minimization of the
residual ‖Au − f‖q over all u ∈ RM , or with K (A) = 0 if f is in the range of A.
Anyway, we assume that users have a way to solve the system (9) approximately such
that (15) holds with a known and moderate constant K (A).

Then (15) implies
‖r‖q = ‖Aũ − f‖q

≤ K (A)‖Au∗ − f‖q
≤ K (A)‖c‖q ‖u∗‖S

and bounds ‖r‖q in terms of ‖u∗‖S .

3.5 Final Relative Error Bound

Theorem 1. Under the above assumptions,

‖u∗ − ũ‖p
‖u∗‖S

≤ (1 + K (A))CS (A)‖c‖q . (16)

Proof. We can insert (15) directly into (12) to get

‖u∗ − ũ‖p ≤ CS (A)(1 + K (A))‖Au∗ − f‖q
≤ (1 + K (A))CS (A)‖c‖q ‖u∗‖S
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and finally (16), where now all elements of the right-hand side are accessible.

This is as far as one can go, not having any additional information on how u∗ scales.
The final form of (16) shows the classical elements of convergence analysis, since the
right-hand side consists of a stability term CS (A) and a consistency term ‖c‖q . The
factor 1 + K (A) can be seen as a computational accuracy term.

Examples in Section 8 will show how these relative error bounds work in practice.
Before that, the next sections will demonstrate theoretically why users can expect that
the ingredients of the bound in (16) can be expected to be small. For this analysis, we
shall assume that users know which regularity the true solution has, because we shall
have to express everything in terms of ‖u∗‖S .

At this point, some remarks on error bounds should be made, because papers
focusing on applications of meshless methods often contain one of the two standard
crimes of error assessment.

The first is to take a problem with a known solution u∗ that supplies the data,
calculate nodal values ũ by some hopefully new method and then compare with u∗ to
conclude that the method is good because ‖u∗ − ũ‖ is small. But the method may be
intolerably unstable. If the input is changed very slightly, it may produce a seriously
different numerical solution û that reproduces the data as well as ũ. The “quality” of
the result ũ may be just lucky, it does not prove anything about the method used.

The second crime, usually committed when there is no explicit solution known, is to
evaluate residuals r = Aũ− f and to conclude that ‖u∗ − ũ‖ is small because residuals
are small. This also ignores stability. There even are papers that claim convergence
of methods by showing that residuals converge to zero when the discretization is
refined. This reduces convergence rates of a PDE solver to rates of consistency, again
ignoring stability problems that may counteract against good consistency. Section 8
will demonstrate this effect by examples.

This paper will avoid these crimes, but on the downside our error analysis is a
worst-case theory that will necessarily overestimate errors of single cases.

3.6 Sharpness

In particular, if users take a specific problem (2) with data functions f and g and a
known solution u∗, and if they evaluate the observed error and the bound (16), they
will often see quite an overestimation of the error. This is due to the fact that they
have a special case that is far away from being worst possible for the given PDE
discretization, and this is comparable to a lottery win, as we shall prove now.

Theorem 2. For all K (A) > 1 there is some u∗ ∈ US and an admissible solution
vector ũ satisfying (15) such that

(K (A) − 1)CS (A)‖u∗‖S ‖c‖∞ ≤ ‖u∗ − ũ‖∞ ≤ (K (A) + 1)CS (A)‖u∗‖S ‖c‖∞ (17)

showing that the above worst-case error analysis cannot be improved much.
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Proof. We first take the worst possible value vector uS for stability, satisfying

‖uS ‖∞ = CS (A)‖AuS ‖∞

and normalize it to ‖uS ‖∞ = 1. Then we consider the worst case of consistency, and
we go into a kernel-based context.

Let the consistency vector c attain its norm at some index j, 1 ≤ j ≤ N , i.e.
‖c‖∞ = c(λ j ). Then there is a function u j ∈ US with

|λ j (u j ) − λ̃ j (u j ) | = c(λ j )‖u j ‖S = c(λ j )2,

namely by taking the Riesz representer u j := (λ j − λ̃ j )xK (x, ·) of the error functional.
The values of u j at the nodes form a vector uj , and we take the data f as exact values
of u j , i.e. fk := λk (u j ), 1 ≤ k ≤ N to let u j play the role of the true solution u∗, in
particular u∗ = uj and ‖u∗‖S = ‖u j ‖S = c(λ j ) = ‖c‖∞.

We then define ũ := u∗ + αCS (A)uS as a candidate for a numerical solution and
check how well it satisfies the system and what its error bound is. We have

‖Aũ − f‖∞ = ‖A (u∗ + αCS (A)uS ) − f‖∞
≤ ‖Au∗ − f‖∞ + |α |CS (A)‖AuS ‖∞

= |α | + ‖Au∗ − f‖∞
= K (A)‖Au∗ − f‖∞

if we choose
α = (K (A) − 1)‖Au∗ − f‖∞.

Thus ũ is a valid candidate for numerical solving. The actual error is

.

‖u∗ − ũ‖∞ = (K (A) − 1)‖Au∗ − f‖∞CS (A)
= (K (A) − 1)CS (A) max1≤k≤N |λk (u j ) − λ̃k (u j ) |
≥ (K (A) − 1)CS (A) |λ j (u j ) − λ̃ j (u j ) |
= (K (A) − 1)CS (A)‖u j ‖S ‖c‖∞

(18)

proving the assertion.

We shall come back to this worst-case construction in the examples of Section 8.

4 Dirichlet Problems

The above error analysis simplifies for problems where Dirichlet values are given
on boundary nodes, and where approximations of differential operators are only
needed in interior points. Then we have N approximations of functionals that are
based on MI interior nodes and MB boundary nodes, with M = MI + MB. We now
use subscripts I and B to indicate vectors of values on interior and boundary nodes,
respectively. The linear system now is
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BuI = fI − CgB

while the previous section dealt with the full system

A
(

uI

uB

)
=

(
fI

gB

)
with A =

(
B C
0 IB

)
that has trivial approximations on the boundary. Note that this splitting is standard
practice in classical finite elements when nonzero Dirichlet boundary conditions are
given. We now use the stability constant CS (B) for B, not for A, and examples will
show that it often comes out much smaller than CS (A). The consistency bounds (13)
stay the same, but they now take the form

‖Bu∗I + Cu∗B − fI ‖q = ‖Bu∗I + CgB − fI ‖q ≤ ‖cI ‖q ‖u∗‖S .

The numerical method should now guarantee

‖BũI + CgB − fI ‖q ≤ K (B)‖Bu∗I + CgB − fI ‖q

with a reasonable K (B) ≥ 1. Then the same error analysis applies, namely

‖u∗I − ũI ‖p ≤ CS (B)‖B(u∗I − ũI )‖q
≤ CS (B)‖Bu∗I − CgB − fI ‖q + CS (B)‖BũI − CgB − fI )‖q
≤ CS (B)(1 + K (B))‖Bu∗I − CgB − fI ‖q
≤ CS (B)(1 + K (B))‖cI ‖q ‖u∗‖S .

5 Consistency Analysis

There are many ways to determine the stiffness matrix elements a j (λk ) arising in (9)
and (7), but they are either based on trial/shape functions or on direct discretizations
as described in Section 2.2. We do not care here which technique is used. As a
by-product, our method will allow to compare different approaches on a fair basis.

To make the constants c(λ) in (13) numerically accessible, we assume that the
norm ‖.‖S comes from a Hilbert subspace US of U that has a reproducing kernel

K : Ω ×Ω→ R.

The squared norm of the error functional λ − λ̃ of the approximation λ̃ in (7) then is
the value of the quadratic form
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Q2(λ, λ̃) := ‖λ − λ̃‖2
U∗

S

= λxλyK (x, y) − 2
M∑
j=1

a j (λ)λx
j λ

yK (x, y)

+

M∑
j,k=1

a j (λ)ak (λ)λx
j λ

y
k
K (x, y)

(19)

which can be explicitly evaluated, though there will be serious numerical cancellations
because the result is small while the input is not. It provides the explicit error bound

|λ(u∗) − λ̃(u∗) |2 ≤ Q2(λ, λ̃)‖u∗‖2S

such that we can work with
c(λ) = Q(λ, λ̃).

As mentioned already, the quadratic form (19) in its naïve form has an unstable
evaluation due to serious cancellation. In [7], these problems were partly overcome by
variable precision arithmetic, while the paper [18] provides a very nice stabilization
technique, but unfortunately confined to approximations based on the Gaussian kernel.
We hope to be able to deal with stabilization of the evaluation of the quadratic form
in a forthcoming paper.

On the positive side, there are cases where these instabilities do not occur, namely
for polyharmonic kernels. We shall come back to this in Section 6.

Of course, there are many theoretical results bounding the consistency error (13),
e.g. [21, 7] in terms of ‖u∗‖S , with explicit convergence orders in terms of powers of
fill distances

h := sup
y∈Ω

min
x j

‖y − x j ‖2.

We call there orders consistency orders in what follows. Except for Section 6, we do
not survey such results here, but users can be sure that a sufficiently fine fill distance
and sufficient smoothness of the solution will always lead to a high consistency order.
Since rates increase when more nodes are used, we target p-methods, not h-methods
in the language of the finite element literature, and we assume sufficient regularity
for this.

Minimizing the quadratic form (19) over the weights a j (λ) yields discretizations
with optimal consistency with respect to the choice of the space US [7]. But their
calculation may be unstable [18] and they usually lead to non-sparse matrices unless
users restrict the used nodes for each single functional. If they are combined with a best
possible choice of trial functions, namely the Riesz representers vj (x) = λyj K (x, y)
of the test functionals, the resulting linear system is symmetric and positive definite,
provided that the functionals are linearly independent. This method is symmetric
collocation [9, 11, 12], and it is an optimal recovery method in the space US [28]. It
leads to non-sparse matrices and suffers from severe instability, but it is error-optimal.
Here, we focus on non-optimal methods that allow sparsity.
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Again, the instability of optimal approximations can be avoided using polyharmonic
kernels, and the next section will describe how this works.

6 Approximations by Polyharmonic Kernels

Assume that we are working in a context where we know that the true solution u∗

lies in Sobolev space Wm
2 (Ω) for Ω ⊂ Rd , or, by Whitney extension also in Wm

2 (Rd).
Then the consistency error (13) of any given approximation should be evaluated in
that space, and taking an optimal approximation in that space would yield a system
with optimal consistency.

But since the evaluation and calculation of approximations in Wm
2 (Rd) is rather

unstable, a workaround is appropriate. Instead of the full norm in Wm
2 (Rd) one takes

the seminorm involving only the order m derivatives. This originates from early work
of Duchon [8] and leads to Beppo-Levi spaces instead of Sobolev spaces (see e.g.
[33]), but we take a summarizing shortcut here. Instead of the Whittle-Matérn kernel
reproducing Wm

2 (Rd), the radial polyharmonic kernel

Hm,d (r) :=
{

(−1) dm−d/2er2m−d, 2m − d odd
(−1)1+m−d/2r2m−d log r, 2m − d even

}
(20)

is taken, up to a scalar multiple




Γ(m − d/2)
22mπd/2(m − 1)!

2m − d odd
1

22m−1πd/2(m − 1)!(m − d/2)!
2m − d even




(21)

that is used to match the seminorm in Sobolev space Wm(Rd). We allow m to
be integer or half-integer. This kernel is conditionally positive definite of order
k = bm − d/2c + 1, and this has the consequence that approximations working in
that space must be exact on polynomials of al least that order (= degree plus one). In
some sense, this is the price to be paid for omitting the lower order derivatives in the
Sobolev norm, but polynomial exactness will turn out to be a good feature, not a bug.

As an illustration for the connection between the polyharmonic kernel Hm,d (r)
and the Whittle-Matérn kernel Km−d/2(r)rm−d/2 reproducing Wm

2 (Rd), we state the
observation that (up to constants) the polyharmonic kernel arises as the first term
in the expansion of the Whittle-Matérn kernel that is not an even power of r. For
instance, up to higher-order terms,

K3(r)r3 = 16 − 2r2 +
1
4

r4 +
1
24

r6 log(r)

containing H4,2(r) = r6 log(r) up to a constant. This seems to hold in general for
Kn(r)rn and n = m − d/2 for integer n and even dimension d. Similarly,
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1
√

2π
K5/2(r)r5/2 = 3 −

1
2

r2 +
1
8

r4 −
1
15

r5

contains H4,3(r) = r5 up to a constant, and this generalizes to half-integer n with
n = m−d/2. A rigid proof seems to bemissing, but the upshot is that the polyharmonic
kernel, if written with r = ‖x − y‖2, differs from the Whittle-Matérn kernel only by
lower-order polynomials and higher-order terms, being simpler to evaluate.

If we have an arbitrary approximation (7) that is exact on polynomials of order
k, we can insert its coefficients a j into the usual quadratic form (19) using the
polyharmonic kernel there, and evaluate the error. Clearly, the error is not smaller
than the error of the optimal approximation using the polyharmonic kernel, and let us
denote the coefficients of the latter by a∗j .

We now consider scaling. Due to shift-invariance, we can assume that we have a
homogeneous differential operator of order p that is to be evaluated at the origin, and
we use scaled points hx j for its nodal approximation. It then turns out [29] that the
optimal coefficients a∗j (h) scale like a∗j (h) = h−pa∗j (1), and the quadratic form Q of
(19) written in terms of coefficients as

Q2(a) = λxλyK (x, y) − 2
M∑
j=1

a j (λ)λx
j λ

yK (x, y)

+

M∑
j,k=1

a j (λ)ak (λ)λx
j λ

y
k
K (x, y)

scales exactly like
Q(a∗(h)) = h2m−d−2pQ(a∗(1)),

proving that there is no approximation of better order in that space, no matter how
users calculate their approximation. Note that strong methods (i.e. collocation) for
second-order PDE problems (2) using functionals (4) have p = 2 while the weak
functionals of (5) have p = 1. This is a fundamental difference between weak and
strong formulations, but note that it is easy to have methods of arbitrarily high
consistency order.

In practice, any set of given and centralized nodes x j can be blown up to points
H x j of average pairwise distance 1. Then the error and the weights can be calculated
for the blown-up situation, and then the scaling laws for the coefficients and the error
are applied using h = 1/H . This works for all scalings, without serious instabilities.

Now that we know an optimal approximation with a simple and stable scaling, why
bother with other approximations? They will not have a smaller worst-case consistency
error, and they will not always have the scaling property a j (h) = h−pa j (1), causing
instabilities when evaluating the quadratic form. If they do have that scaling law, then

Q(a(h)) = h2m−d−2pQ(a(1)) ≥ h2m−d−2pQ(a∗(1)) = Q(a∗(h))

can easily be proven, leading to stable calculation for an error that is not smaller
than the optimal one. In contrast to standard results on the error of kernel-based
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approximations, we have no restriction like h ≤ h0 here, since the scaling law is exact
and holds for all h.

If the smoothness m for error evaluation is fixed, it will not pay off to use
approximations with higher orders of polynomial exactness, or using kernels with
higher smoothness. They cannot beat the optimal approximations for that smoothness
class, and the error bounds of these are sharp. Special approximations can be better
in a single case, but this paper deals with worst-case bounds, and then the optimal
approximations are always superior.

The optimal approximations can be calculated for small numbers of nodes, leading
to sparse stiffness matrices. One needs enough points to guarantee polynomial
exactness of order k = bm − d/2c + 1. The minimal number of points actually
needed will depend on their geometric placement. The five-point star is an extremely
symmetric example with exactness of order 4 in d = 2, but this order will normally
need 15 points in general position because the dimension of the space of third-degree
polynomials in R2 is 15.

The upshot of all of this is that, given a fixed smoothness m and a dimension
d, polyharmonic stencils yield sparse optimal approximations that can be stably
calculated and evaluated. Examples are in [29] and in Section 8 below. See [15] for
an early work on stability of interpolation by polyharmonic kernels, and [1] for an
example of an advanced application.

7 Stability Analysis

We now take a closer look at the stability constantCS (A) from (10). It can be rewritten
as

CS (A) = sup{‖u‖p : ‖Au‖q ≤ 1} (22)

and thus 2CS (A) is the p-norm diameter of the convex set {u ∈ RM : ‖Au‖q ≤ 1}.
In the case p = q = ∞ that will be particularly important below, this set is a
polyhedron, and the constant CS (A) can be calculated via linear optimization. We
omit details here, but note that the calculation tends to be computationally unstable
and complicated. It is left to future research to provide a good estimation technique
for the stability constant CS (A) like MATLAB’s condest for estimating the L1
condition number of a square matrix.

In case p = q = 2 we get

CS (A)−1 = min
1≤ j≤M

σ j

for the M positive singular values σ1, . . . , σM of A, and these are obtainable by
singular value decomposition.

To simplify the computation, one might calculate the pseudoinverse A† of A and
then take the standard (p, q)-norm of it, namely
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‖A†‖p,q := sup
v,0

‖A†v‖p
‖v‖q

.

This overestimates CS (A) due to

‖A†‖p,q ≥ sup
v=Au,0

‖A†Au‖p
‖Au‖q

= sup
u,0

‖u‖p
‖Au‖q

= CS (A)

since CS (A) is the norm of the pseudoinverse not on all of RN , but restricted to the
M-dimensional range of A in RN . Here, we again used that A has full rank, thus
A†A = IM×M .

Calculating the pseudoinverse may be as expensive as the numerical solution if
the system (8) itself, but if a user wants to have a close grip on the error, it is worth
while. It assures stability of the numerical process, if not intolerably large, as we shall
see. Again, we hope for future research to produce an efficient estimator.

A simple possibility, restricted to square systems, is to use the fact that MATLAB’s
condest estimates the 1-norm-condition number, which is the L∞ condition number
of the transpose. Thus

C̃S (A) :=
condest(A′)
‖A‖∞

(23)

is an estimate of the L∞ norm of A−1. This is computationally very cheap for sparse
matrices and turns out to work fine on the examples in Section 8, but an extension to
non-square matrices is missing.

We now switch to theory and want to show that users can expect CS (A) to be
bounded above independent of the discretization details, if the underlying problem is
well-posed. To this end, we use the approach of [27] in what follows.

Well-posed analytic problems of the form (3) allow a stable reconstruction of
u ∈ U from their full set of data fλ(u), λ ∈ Λ. This analytic stability can often be
described as

‖u‖WP ≤ CWP sup
λ∈Λ
|λ(u) | for all u ∈ U, (24)

where the well-posedness norm ‖.‖WP usually is weaker than the norm ‖.‖U . For
instance, elliptic second-order Dirichlet boundary value problems written in strong
form satisfy

‖u‖∞,Ω ≤ ‖u‖∞,∂Ω + C‖Lu‖∞,Ω for all u ∈ U := C2(Ω) ∩ C(Ω), (25)

see e.g. [6, (2.3), p. 14], and this is (24) for ‖.‖WP = ‖.‖∞.
The results of [27] then show that for each trial space UM ⊂ U one can find a test

set ΛN such that (24) takes a discretized form

‖u‖∞ ≤ 2CWP sup
λk ∈ΛN

|λk (u) | for all u ∈ UM,

and this implies



Error Analysis of Nodal Meshless Methods 17

|u(x j ) | ≤ 2CWP sup
λk ∈ΛN

|λk (u) | for all u ∈ UM

for all nodal values. This proves a uniform stability property of the stiffness matrix with
entries λk (ui). The functional approximations in [27] were of the form a j (λ) = λ(u j ),
and then

‖u‖∞ ≤ 2CWP supλk ∈ΛN
|λk (u) |

= 2CWP supλk ∈ΛN
|λk

(∑M
i=1 u(xi)ui

)
|

= 2CWP supλk ∈ΛN
|
∑M

i=1 u(xi)λk (ui) |
= 2CWP ‖Au‖∞

and thus
CS (A) ≤ 2CWP .

This is a prototype situation encouraging users to expect reasonably bounded norms
of the pseudoinverse, provided that the norms are properly chosen.

However, the situation of [27] is much more special than here, because it is
confined to the trial function approach. While we do not even specify trial spaces here,
the paper [27] relies on the condition a j (λ) = λ(u j ) for a Lagrange basis of a trial
space, i.e. exactness of the approximations on a chosen trial space. This is satisfied in
nodal methods based on trial spaces, but not in direct nodal methods. In particular, it
works for Kansa-type collocation and MLS-based nodal meshless methods, but not
for localized kernel approximations and direct MLPG techniques in nodal form.

For general choices of a j (λ), the stability problem is a challenging research area
that is not addressed here. Instead, users are asked to monitor the row-sum norm of
the pseudoinverse numerically and apply error bounds like (16) for p = q = ∞. Note
that the choice of discrete L∞ norms is dictated by the well-posedness inequality (25).
As pointed out above, chances are good to observe numerical stability for well-posed
problems, provided that test functionals are chosen properly. We shall see this in the
examples of Section 8. In case of square stiffness matrices, users can apply (23) to
get a cheap and fairly accurate estimate of the stability constant.

For problems in weak form, the well-posedness norm usually is not ‖.‖∞,Ω but
‖.‖L2 (Ω) , and then we might get into problems using a nodal basis. In such cases, an
L2-orthonormal basis would be needed for uniform stability, but we refrain from
considering weak formulations here.

8 Examples

In all examples to follow, the nodal points are x1, . . . , xM in the domain Ω =
[−1,+1]2 ⊂ R2, and parts of them are placed on the boundary. We consider the
standard Dirichlet problem for the Laplacian throughout, and use testing points
y1, . . . , yn ∈ Ω for the Laplacian and z1, . . . , zk ∈ ∂Ω for the Dirichlet boundary data
in the sense of (4). Note that in our error bound (16) the right-hand sides of problems
like (2) do not occur at all. This means that everything is only dependent on how the
discretization works, it does not depend on any specific choice of f and g.
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We omit detailed examples that show how the stability constant CS (A) decreases
when increasing the number N of test functionals. An example is in [27], and (22)
shows that stability must improve if rows are added to A. Users are urged to make
sure that their approximations (6), making up the rows of the stiffness matrix, have
roughly the same consistency order, because adding equations will then improve
stability without serious change of the consistency error.

We first take regular points on a 2D grid of sidelength h in Ω = [−1,+1]2 ⊂ R2

and interpret all points as nodes. On interior nodes, we approximate the Laplacian by
the usual five-point star which is exact on polynomials up to degree 3 or order 4. On
boundary nodes, we take the boundary values as given. This yields a square linear
system. Since the coefficients of the five-point star blow up like O(h2) for h → 0, the
row-sum norm of A and the condition must blow up like O(h−2), which can easily
be observed. The pseudoinverse does not blow up since the Laplacian part of A just
takes means and the boundary part is the identity. For the values of h we computed,
its norm was bounded by roughly 1.3. This settles the stability issue from a practical
point of view. Theorems on stability are not needed.

Consistency depends on the regularity space US chosen. We have a fixed classical
discretization strategy via the five-point star, but we can evaluate the consistency error
in different spaces. Table 1 shows the results for Sobolev space W4

2 (Rd). It clearly
shows linear convergence, and its last column has the major part of the worst-case
relative error bound (16). The estimate C̃S (A) from (23) agrees with CS (A) to all
digits shown. Note that for all methods that need continuous point evaluations of
the Laplacian in 2D, one cannot work with less smoothness, because the Sobolev
inequality requires Wm

2 (R2) with m > 2+ d/2 = 3. The arguments in Section 6 show
that the consistency order then is at most m − d/2 − p = m − 3 = 1, as observed.
Table 2 shows the improvement if one uses the partial matrix B of Section 4.

M = N h CS (A) ‖c‖∞ CS (A) ‖c‖∞
25 0.5000 1.281250 0.099045 0.126901
81 0.2500 1.291131 0.051766 0.066837
289 0.1250 1.293783 0.026303 0.034030
1089 0.0625 1.294459 0.013222 0.017116

Table 1 Results for five-point star on the unit square, forW 4
2 (R2) and the full matrix A

MI = NI h CS (B) ‖cI ‖∞ CS (B) ‖cI ‖∞
9 0.5000 0.281250 0.099045 0.027856

49 0.2500 0.291131 0.051766 0.015071
225 0.1250 0.293783 0.026303 0.007727
961 0.0625 0.294459 0.013222 0.003893

Table 2 Results for five-point star on the unit square, forW 4
2 (R2) and the partial matrix B
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We now demonstrate the sharpness of our error bounds. We implemented the
construction of Section 3.6 for K (A) = 2 and the situation in the final row of Table 1.
This means that, given A, we picked values of f and g to realize worst-case stability
and consistency, with known value vectors u∗ and ũ. Figure 1 shows the values of
uS and uj = u∗ in the notation of the proof of Theorem 2, while Figure 2 displays ũ.
The inequality (17) is in this case

0.000226 = CS (A)‖u∗‖S ‖c‖∞ ≤ ‖u∗−ũ‖∞ = 0.000226 ≤ 3CS (A)‖u∗‖S ‖c‖∞ = 0.000679

and the admissibility inequality (15) is exactly satisfied with K (A) = 2. Even though
this example is worst-case, the residuals and the error ‖u∗ − ũ‖∞ are small compared
to the last line of Table 1, and users might suspect that the table has a useless
overestimation of the error. But the explanation is that the above bounds are absolute,
not relative, while the norm of the true solution is ‖u∗‖S = ‖c‖∞ = 0.0132. The
relative form of the above bound is

0.0171 =
‖u∗ − ũ‖∞
‖u∗‖S

≤ 0.0513,

showing that the relative error bound 0.0171 in Table 1 is attained by a specific
example. Thus our error estimation technique covers this situation well. The lower
bound in the worst-case construction is attained because this example has equality in
(18).

Note that our constructed case combines worst-case consistency with worst-case
stability, but in practical situations these two worst cases will rarely happen at the
same time. Figure 1 shows that the worst case for stability seems to be a discretization
of a discontinuous function, and therefore it may be that practical situations are
systematically far away from the worst case. This calls for a redefinition of the stability
constant by restricting the range of A in an appropriate way. The worst case for
stability arises for vectors of nodal values that are close to the eigenvector of the
smallest eigenvalue of A, but the worst case for consistency might systematically
have small inner products with eigenvectors for small eigenvalues.

If we take the polyharmonic kernel H4,2(r) = r6 log r (up to a constant), the
five-point star is unique and therefore optimal, with consistency order 1, see Section
6. This means that for given smoothness order m = 4 and gridded nodes, the five-
point star already has the optimal convergence order. Taking approximations of the
Laplacian using larger subsets of nodes might be exact on higher-order polynomials,
and will have smaller factors if front of the scaling law, but the consistency and
convergence order will not be better, at the expense of losing sparsity.

To see how much consistency can be gained by using non-sparse optimal approxi-
mations by polyharmonic kernels, we worked at h = 1, approximating the error of
the Laplacian at the origin by data in the integer nodes (m, n) with −1 ≤ m, n ≤ K
for increasing K . This models the case where the Laplacian is approximated in a
near-corner point of the square. Smaller h can be handled by the scaling law. The
consistency error in W4

2 (R2) goes down from 0.07165 to 0.070035 when going from
25 to 225 neighbors (see Figure 3), while 0.08461 is the error of the five-point star
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at the origin. The gain is not worth the effort. The optimal stencils decay extremely
quickly away from the origin. This is predicted by results of [19] concerning expo-
nential decay of Lagrangians of polyharmonic kernels, as used successfully in [13]
to derive local inverse estimates. See [23] for an early reference on polyharmonic
near-Lagrange functions.

We now show how the technique of this paper can be used to compare very
different discretizations, while a smoothness order m is fixed, in the sense that the
true solution lies in Sobolev space Wm

2 (Ω). Because we have p-methods in mind,
we take m = 6 for the standard Dirichlet problem for the Laplacian in 2D and can
expect an optimal consistency order m − d/2 − 2 = 3 for a strong discretization.
Weak discretizations will be at least one order better, but we omit such examples.
The required order of polynomial exactness when using the polyharmonic kernel
is 1 + m − d/2 = 6, which means that one should use at least 21 nodes for local
approximations, if nodes are in general position, without symmetries. The bandwidth
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Fig. 3 Consistency error as a function of points offered, and stencil of optimal approximation for
225 nodes, as a function on the nodes

of the generalized stiffness matrix must therefore be at least 21. For convenience, we
go to the unit square and a regular grid of meshwidth h first, to define the nodes. But
then we add uniformly distributed noise of ±h/4 to each interior node, keeping the
boundary nodes. Then we approximate the Laplacian at each interior node locally
by taking n ≥ 25 nearest neighbor nodes, including boundary nodes, and set up
the reduced generalized square stiffness matrix B using the optimal polyharmonic
approximation based on these neighboring nodes. On the boundary, we keep the
given Dirichlet boundary values, following Section 4.

Table 3 shows results for local optimal approximations based on the polyharmonic
kernel H6,2(r) = r10 log r and n = 30 nearest neighbors. The stability constant was
estimated via (23), for convenience and efficiency. One cannot expect to see an exact
h3 behavior in the penultimate column, since the nodes are randomly perturbed, but
the overall behavior of the error is quite satisfactory. The computational complexity
is roughly O(Nn3), and note that the linear system is not solved at all, because we
used MATLAB’s condest. Comparing with Table 4, it pays off to use a few more

N = M NI = MI h C̃S (B) ‖cI ‖∞ CS (B) ‖cI ‖∞
81 49 0.2500 2.3244 0.00075580 0.00175682
289 225 0.1250 0.3199 0.00005224 0.00001671
1089 961 0.0625 0.2964 0.00000872 0.00000259
4225 3969 0.0313 0.2961 0.00000147 0.00000044

Table 3 Optimal polyharmonic approximations using 30 neighbors

neighbors, and this also avoids instabilities. Users unaware of instabilities might
think they can expect a similar behavior as in Table 3 when taking only 25 neighbors,
but the third row of Table 4 should teach them otherwise. By resetting the random
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number generator, all tables were made to work on the same total set of points, but
the local approximations still yield rather different results.

The computationally cheapest way to calculate approximations with the required
polynomial exactness of order 6 on 25 neighbors is to solve the linear 20 × 25 system
describing polynomial exactness via the MATLAB backslash operator. It will return
a solution based on 21 points only, i.e. with minimal bandwidth, but the overall
behavior in Table 5 may not be worth the computational savings, if compared to the
optimal approximations on 30 neighbors.

N = M NI = MI h C̃S (B) ‖cI ‖∞ CS (B) ‖cI ‖∞
81 49 0.2500 8.0180 0.00318328 0.02552351
289 225 0.1250 66.7176 0.00039055 0.02605641
1089 961 0.0625 417.8094 0.00003877 0.01620053
4225 3969 0.0313 75.5050 0.00000663 0.00050082

Table 4 Optimal polyharmonic approximations using 25 neighbors

N = M NI = MI h C̃S (B) ‖cI ‖∞ CS (B) ‖cI ‖∞
81 49 0.2500 9.0177 0.00354151 0.03193624
289 225 0.1250 25.6153 0.00058952 0.01510082
1089 961 0.0625 73.9273 0.00005482 0.00405249
4225 3969 0.0313 19.6458 0.00001186 0.00023305

Table 5 Backslash approximation on 25 neighbors

A more sophisticated kernel-based greedy technique [26, 29] uses between 21 and
30 points and works its way through the offered 30 neighbors to find a compromise
between consistency error and support size. Table 6 shows the results, with an average
of 23.55 neighbors actually used.

N = M NI = MI h C̃S (B) ‖cI ‖∞ CS (B) ‖cI ‖∞
81 49 0.2500 3.6188 0.00104016 0.00376411
289 225 0.1250 0.6128 0.00006821 0.00004180
1089 961 0.0625 0.3061 0.00000961 0.00000294
4225 3969 0.0313 0.2980 0.00000123 0.00000037

Table 6 Greedy polyharmonic approximations using at most 30 neighbors

For these examples, one can plot the consistency error as a function of the nodes,
and there usually is a factor of 5 to 10 between the error in the interior and on the
boundary. Therefore it should be better to let the node density increase towards the
boundary, though this may lead to instabilities that may call for overtesting, i.e. to use
N >> M. For the same M and N as before, but with Chebyshev point distribution,
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see Table 7. The additive noise on the interior points was 0.01, and we used the
greedy method for up to 30 neighbors. This leads to a larger bandwidth near the
corners, and to a consistency error that is now small at the boundary, see Figure 4.
The average number of neighbors used was 23.3. Unfortunately, the scaling laws of
stencils go down the drain here, together with the proven consistency order, but the
results are still unexpectedly good.

N = M NI = MI h C̃S (B) ‖cI ‖∞ CS (B) ‖cI ‖∞
81 49 0.2500 111.1016 0.00433490 0.48161488
289 225 0.1250 0.4252 0.00006541 0.00002781
1089 961 0.0625 1.2133 0.00000677 0.00000821
4225 3969 0.0313 0.4353 0.00000120 0.00000052

Table 7 Greedy polyharmonic approximations using at most 30 neighbors, but in Chebyshev node
arrangement
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For reasons of space and readability, we provide no examples for local approxima-
tions to weak functionals, and no comparisons with local approximations obtained
via Moving Least Squares or the Direct Meshless Petrov Galerkin Method.

9 Conclusion and Outlook

The tables of the preceding section show that the numerical calculation of relative error
bounds for PDE solving in spaces of fixed Sobolev smoothness can be done efficiently
and with good results. This provides a general tool to evaluate discretizations in a
worst-case scenario, without referring to single examples and complicated theorems.
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Further examples should compare a large variety of competing techniques, the
comparison being fair here as long as the smoothness m is fixed.

Users are strongly advised to use the cheap stability estimate (23) anytime to
assess the stability of their discretization, if they have a square stiffness matrix. And,
if they are not satisfied with the final accuracy, they should evaluate and plot the
consistency error like in Figure 4 to see where the discretization should be refined.
For all of this, polyharmonic kernels are an adequate tool.

It is left to future research to investigate and improve the stability estimation
technique via (23), and, if the effort is worth while, to prove general theorems on
sufficient criteria for stability. These will include assumptions on the placement of
the trial nodes, as well as on the selection of sufficiently many and well-placed test
functionals. In particular, stabilization by overtesting should work in general, but the
examples in this paper show that overtesting may not be necessary at all. However, this
paper serves as a practical workaround, as long as there are no theoretical cutting-edge
results available.
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