
Improved Error Boundsfor Scattered Data Interpolationby Radial Basis FunctionsR. SchabackUniversity of G�ottingenRevised for Math. Comp.30.04.1997



Contents1 Introduction 12 Native Spaces 23 Localization, Extension and Boundary Conditions 54 Fourier transforms 95 Improved Error Bounds 16

0



Abstract. If additional smoothness requirements and boundary conditions are met, thewell{known approximation orders of scattered data interpolants by radial functions canroughly be doubled.AMS classi�cation: 41A15, 41A25, 41A30, 41A63, 65D101 IntroductionConvergence orders of natural cubic spline interpolation to data f(x1); : : : ; f(xN ) on amesh 1 < a = x0 � x1 < : : : < xN � xN+1 = b <1are usually provided in three steps [1], [9]. First, in the spaceH22 [a; b] = ff : [a; b]! IR; f 00 2 L2[a; b]g (1.1)where the interpolant minimizes the seminormkfk22 := Z ba f 00(t)2dt;the approximation order is h3=2 forh := max0�j�N(xj+1 � xj);and this order is optimal on H22 [a; b]. In the second step one considersH42 [a; b] := ff : [a; b]! IR; f (4) 2 L2[a; b]gand imposes the boundary conditionsf (j)(a) = f (j)(b) = 0; 2 � j � 3 (1.2)to get approximation order 2 �(3=2) = 3. Both f (4) 2 L2[a; b] and the boundary conditions(1.2) are required to get this order. The third and �nal step adds the condition f 2 C4[a; b]and proves order 4, which can be shown to be a saturation order, i.e. it cannot be improvedby further restrictions on f .Radial basis function techniques can be considered as a generalization of splines to themultivariate case, and here the current status of known approximation orders is compa-rable to step 1 of the cubic spline case. The available approximation orders are optimalwith respect to certain \native" Hilbert spaces generalizing (1.1) in which the interpolantminimizes the norm under all other interpolating functions. This paper proceeds to Step2 and thus doubles the approximation order. To do this, the cubic spline case tells usthat increased smoothness and certain boundary conditions for f are required. Thus we�rst have to introduce the \native" Hilbert space and a suitable subspace. These two willreplace H22 [a; b] and H42 [a; b] and we shall read o� the additionally boundary conditionfrom the space of all interpolants (note that (1.2) is the usual property of all natural cubicsplines). Since we have to generalize two related spaces and a boundary condition, wehave to work out more details than earlier papers. To make the presentation independentof distribution theory and related theories of generalized Fourier transforms, we shall re-strict ourselves to Hilbert space techniques and the usual tools of real analysis. We hopethat this makes access to native spaces somewhat easier. In this respect, the followingthree sections provide a new formulation of the basic facts about native spaces.1



2 Native SpacesFor natural numbers d � 1 and m � 0 let IP dm denote all d{variate real polynomials oforder up to m, and let (IP dm)? be the linear space of all �nitely supported linear functionals� of the form �(f) := MXj=1�jf(xj) (2.1)de�ned on the linear space C(IRd) that vanish on IP dm. Here, M and x1; : : : ; xM 2 IRd areallowed to vary freely, but the xj should be distinct.A continuous function � : IRd ! IR is conditionally positive de�nite of order m on IRd, ifthe bilinear form (�; �)� := MXj=1�j NXk=1 �k�(xj � yk) (2.2)is symmetric and positive de�nite on (IP dm)?. Table 1 shows some conditionally positivede�nite functions with their minimal orders m. Any functional � 2 (IP dm)? of the form(2.1) generates a continuous functionf� := MXj=1�j�(� � xj) (2.3)on IRd. The map B de�ned on (IP dm)? by B(�) = f� is injective, because we have�(f�) = (�; �)� = �(f�) (2.4)for all �; � 2 (IP dm)?. Note that (IP dm)? is independent of �, while the topology induced by(�; �)� is not. The formula (2.4) shows that (IP dm)? and F0 := B((IP dm)?) form a dual pair,and this one{to{one correspondence between functionals and functions is a basic featureof spaces behind radial basis functions. Furthermore, we remark that the functions f�from F0 are the interpolants that occur in all applications. Thus the space F0 arises verynaturally, and we have to investigate the spaces of functions that can be approximatedby functions from F0. This in turn requires knowledge of completions of F0 with respectto various topologies. However, there is a speci�c topology that comes for free from thede�nition of F0, namely the topology induced by(f�; f�)� = (�; �)� (2.5)for all �; � 2 (IP dm)?. The completion F of F0 with respect to this topology (that isinduced by � itself) will be called native space for interpolation by translates of �. Thenext sections are devoted to the study of F by Hilbert space and Fourier transformtechniques, in order to provide the fundamentals for improved error bounds. At thisstage, however, we can already read o� (2.3), (2.4), and (2.5) what will later lead to theproper boundary condition in native spaces.Lemma 2.1 Two functions f� and f� are orthogonal, if f� coincides with a polynomialfrom IP dm on the support of � or f� coincides with a polynomial from IP dm on the supportof �. 2



radial basis function �(x) �̂(!) in IRd(�1)d�=2ekxk�; � > 0; � =2 2IN m � d�=2e 2d+��d=2� ((d+ �)=2)�(��=2) k!k�d��(�1)k+1kxk2k log kxk; k 2 2IN m > k 2d+2k�1�d=2� (d=2 + k) k!k!k�d�2ke��kxk2; � > 0; m � 0 ����d=2 e�k!k2=(4�)(�1)d�=2e �c2 + kxk2��=2 ;� > 0; � =2 2IN; c 6= 0; m � d�=2e (�1)d�=2e 2�d=2�(��=2)K(d+�)=2(ck!k) k!k2c !�(d+�)=2�c2 + kxk2��=2 ; m � 0�d < � < 0; � =2 2ZZ; c 6= 0 2�d=2�(��=2)K(d+�)=2(ck!k) k!k2c !�(d+�)=2Table 1: Radial basis functions and Fourier transformsBefore we proceed any further in the investigation of native spaces, we have to describethe interpolation process and the form of its error bounds.Interpolation of data f1; : : : ; fM on a set X = fx1; : : : ; xMg � IRd of M distinct pointsrequires X to be IP dm {nondegenerate, i.e. a polynomial from IP dm which vanishes on Xmust be identically zero. Then one looks for an interpolantsX;f = p + f� = QXj=1�jpj + MXk=1 �k�(� � xk) (2.6)with p 2 IP dm , a basis p1; : : : ; pQ of IP dm, and � 2 (IP dm)? supported onX. The interpolationconditions sX;f(xj) = p(xj) + f�(xj) = fj ; 1 � j �Mcan be written in obvious matrix form as� A PP T 0 � � �� � = � f0 � (2.7)with A = (�(xj � xk))1�j;k�M , P = (pk(xj)) 1�j�M1�k�Q. The system (2.7) is uniquely solvable,because � is conditionally positive de�nite of order m and X is IP dm {nondegenerate.3



Thus there exists a Lagrange basis u1; : : : ; uM for the space of functions (2.6) related tointerpolation on X, such that sX;f = MXj=1ujfj;and the functions uj solve the system� A PP T 0 � � uj(x)wk(x)� = ��(x� xj)pk(x) � 1 � j �M1 � k � Qfor all x 2 IRd. The interpolation error now takes a very simple form:f(x)� sX;f(x) = f(x)� MXj=1 uj(x)f(xj) =: �(x)f (2.8)with a functional �(x) 2 (IP dm)?. This leads to the error boundjf(x)� sX;f(x)j � k�(x)k�kfk� (2.9)for x 2 IRd and f 2 F , splitting the e�ect of x and f . The nonnegative function P (x) =PX(x) de�ned by P 2X(x) = k�(x)k2� = (�(x); �(x))�= �(0)� 2 MXj=1 uj(x)�(x� xj)+ MXj;k=1 uj(x)uk(x)�(xj � xk) (2.10)is the power function associated to interpolation on X by �{translates, and the errorbound (2.9) now reads as jf(x)� sX;f (x)j � kfk�PX(x) (2.11)where s and P depend on X and �. This is the usual �rst{stage error bound in the senseof the introduction. We note in passing that the function	(x; y) := (�(x); �(y))�is (in a slightly generalized sense) unconditionally positive de�nite on IRd nX.By rather complicated techniques (see [4], [5], [6], [8]) one can bound P 2(x) by functionsF (h) = F�(h) of the density h = supy2
 minxj2X ky � xjkof X in a compact domain 
, but we do not want to elaborate these facts (see Table 2and [7] for full details). The �nal goal of our paper is to introduce a stronger norm k�k���on a subspace H of the completion F of F0, and to provejf(x)� sX;f(x)j � kfk���P (x)kPkL2(
) (2.12)4



�(x) = �(r); r = kxk2 F (h)r�; � 2 IR>0 n 2IN h�thin{plate splines [10](�1)1+�=2r� log r; � 2 2IN h�thin{plate splines [10](
2 + r2)�=2; � 2 IR n 2IN�0 e� �hMultiquadrics � > 0e��r2; � > 0 e� �h2Gaussians � > 0 [6]2�d=2�(k) Kk�d=2(r)(r=2)k�d=2 h2k�d2k > d, as in [10]Sobolev splinesTable 2: All entries are modulo factors that are independent of r and h, but possiblydependent on parameters of �.for a compact domain 
 � IRd and all f 2 H. This will roughly double the approximationorders, and it corresponds to Step 2 in the sense of Section 1.The proper de�nition of H must include certain \boundary conditions", and the connec-tion to L2(
) is by no means evident at this stage. These things require a somewhatdetailed analysis of native spaces and boundary conditions when everything is restrictedto a bounded domain 
.3 Localization, Extension and Boundary ConditionsTo be able to study boundary conditions, we introduce a subset 
 � IRd which is supposedto contain the centers x1; : : : ; xM of functionals of the form (2.1). We only assume that
 is IP dm {nondegenerate, i.e. there is no nontrivial polynomial in IP dm that vanishes on
. Thus 
 may, for instance, be �nite, countable (with or without �nite accumulationpoints), a bounded open set or IRd itself, and no further restrictions are made at thispoint. Then (IP dm)?
 is the subspace of (IP dm)? with functionals having support in 
, andthe functions f� = B(�) from the spaceF0;
 = B((IP dm)?
)are the approximants whose limits we have to study. The completion of F0;
 with respectto (�; �)� will then form the native space F
.5



Elements of Hilbert space completions are usually de�ned as equivalence classes of Cauchysequences, and thus there is no apparent interpretation of elements f of the native spaceF
 as functions. At the same time, there is no direct meaning of elements ofL
 = clos(�;�)�(IP dm)?
as functionals supported on 
. But the identity (2.4) will carry over to the completionsby continuity, and this makes L
 and F
 a dual pair in the sense that�(f) := (�;B�1(f))� = (B(�); f)� (3.1)is meaningful for all � 2 L
; f 2 F
 and the continuous extension of the isometry B tothe respective completions.Theorem 3.1 Each element f from the native space F
 has an interpretation as a func-tion on 
, and this interpretation is unique modulo polynomials in IRdm .Proof: We �x a set � = f�1; : : : ; �Qg � 
 with Q = dim IP dm = �m� 1 � dd � that isIP dm{unisolvent, i.e. there is a Lagrange basis p1; : : : ; pQ of IP dm that satis�esp(�) = QXj=1 pj(�)p(�j)for all p 2 IP dm. Then for each x 2 
 the functional�(x) : f ) f(x)� QXj=1 pj(x)f(�j) (3.2)is in (IP dm)?
 and specializes (2.8) to X = �. Then one can de�nef(x) := (B�1(f); �(x))� (3.3)for all f 2 F
 and x 2 
, assigning function values to the abstract element f . It is easyto verify that this de�nition is consistent with (3.1) in the sense that the usual applicationof a functional � also yields �(f) = (B�1(f); �)�for all � 2 (IP dm)?
. Any other assignment of function values to f must satisfy this identity,and thus the di�erence of two assignments is a function g with �(g) = 0 for all � 2 (IP dm)?.Setting � = �(x) here, we get that g is in IP dm , proving the theorem.Note that (3.3) is a special assignment of function values such that f(�) = f0g, becauseof �(�j) = 0 for j = 1; : : : ; Q. Any other assignment can be generated in practice byadditional polynomial interpolation on �.Since (IP dm)?
 is a subspace of (IP dm )?IRd the completions L
 and LIRd satisfy L
 � LIRdin the sense that there is an injection J : L
 ! LIRd. Then for all f 2 F
 the elementJB�1f is in LIRd and BJB�1f is in F IRd. Because of�(BJB�1) = (�; JB�1f)� = (�;B�1f)�= �(f)6



for all � 2 (IP dm)?
 we see that assignments of function values to f and BJB�1f mustcoincide on 
 up to a polynomial in P dm . If we denote the interpolating polynomial to fon � by pf , then we can de�ne fe := pf +BJB�1fand see that fej
= f j
holds. This proves an extension theorem �rst observed by Iske [2], [3].Theorem 3.2 Any element f of a native space F
 has a canonical extension fe to afunction on IRd which lies in F IRd. This furnishes an isometric imbedding of F
 intoF IRd. 2This extension theorem implicitly contains boundary conditions for functions f 2 F
.In case of cubic splines and 
 = [a; b] it turns out that F
 coincides with H22 [a; b]=IP 12with inner product (f 00; g00)L2[a;b], and the canonical extensions of IP 12 {equivalence classesof functions from F
 are linear in (�1; a] and [b;1). For functions f with additionalsmoothness (e.g. f 2 H42 [a; b]) this implies the boundary conditions f (j)(a) = f (j)(b) =0; j = 2; 3.However, the boundary conditions are by no means apparent in general. Thus we nowexpress them by orthogonality relations that will be useful for other purposes, too.If F0
 := BJB�1F
 is the embedded image of F
 in F IRd, its orthogonal complement isgiven by the following result.Theorem 3.3 In F IRd, the spaces F0
 andF?
 := fg 2 F IRd : (J�)(g) = 0 for all � 2 L
gyield an orthogonal decomposition.Proof: It is straightforward to prove orthogonality. To �nd that F?
 is indeed the fullorthogonal complement of F0
 , let g 2 F IRd be orthogonal to F0
 . Then(g;BJ�)� = (J�)(g) = 0for all � 2 L
 implies g 2 F?
 . 2There are two other formulations that may be somewhat more handy.Corollary 3.4 The orthogonal complement of a native space F
, when embedded in F IRd,consists of all functions g on IRd that are assignments of function values to some elementof F IRd such that g coincides with a polynomial from IP dm on 
. 2Corollary 3.5 A function f� of the form (2.3) is orthogonal to an element g 2 F
 if gtakes values of a polynomial from IP dm on the support of �. 27



This generalizes Lemma 2.1 and can be possibly be used for multilevel methods withorthogonality between levels. Another question related to orthogonality concerns thesupport of generalized functionals � 2 L
. Of course, for any � 2 (IP dm)?
 we have�(u) = (f�; u)� = 0for all u 2 FIRd that vanish or coincide with a IP dm {polynomial on 
. This propertyextends to L
 by continuity and is a generalization of the statement \supp (�) � 
".So far we have de�ned the native space F
 as the completion of (IP dm)?
 with respect to(�; �)�. We now turn to another equivalent space introduced by Madych and Nelson.Theorem 3.6 The space F
 � IP dm is isometrically isomorphic to the space G
 of allreal{valued functions f on 
 for which there is a constant cf � 0 such thatj�(f)j � cfk�k�for all � 2 (IP dm)?
 . The topology on G
 is de�ned by the seminormjf j� := sup�2(IPdm)?
�6=0 j�(f)jk�k� � Cfwhich yields a norm on G
=IP dm that agrees with the norm k � k� on F
 �= G
=IP dm.Proof: The statements concerning the seminorm on G
 and the norm on G
=IP dm areeasy to prove. For every assignment of function values to f 2 F
 we havej�(f)j � kfk�k�k�for all � 2 L
, and for the �xed assignment of function values in the sense of (3.3) we getF
 � G
. Furthermore, fromIP dm � G
 and IP dm \ F
 = ;and kfk� = jf j�for f 2 F
 satisfying (3.3) we see thatF
 � IP dm � G
; F
 � G
=IP dmhold. The de�nition of G
 implies that G
 and G
=IP dm are closed. To prove that F
 isnot a proper subspace of G
=IP dm, we consider an element g + IP dm and the functional� 7! �(g)on (IP dm)?
. This is continuous and extends to L
. By the Fischer{Riesz theorem on L
there is an element �g 2 L
 such that�(g) = (�; �g)� = �(B(�g))for all � 2 L
. This implies that g and B(�g) 2 F
 coincide on 
 up to a polynomialin IP dm , and thus g + IP dm = B(�g) + IP dm as equivalence classes of functions on 
. Thisproves the assertion. 28



4 Fourier transformsTo get more information out of the results of the preceding section we now add an assump-tion that looks very restrictive but is satis�ed in all practical cases. For any �; � 2 (IP dm)?we assume that there is a representation of(�; �)� = MXj=1 NXk=1 �j�k�(xj � yk)= (2�)�dZIRd �̂(!)0@ MXj=1�jeixTj !1A NXk=1�ke�ixTk !! d! (4.1)as a Lebesgue integral with a nonnegative function�̂ : IRd n f0g ! IR�0 (4.2)that vanishes at most on a set of measure zero. For positive orders m of conditionalpositive de�niteness of �, the function �̂ may have a singularity at zero. This is cancelledby the zeros of order m at zero of the functions�̂(!) := MXj=1 �jeixTj ! (4.3)which results from the property � 2 (IP dm)? via Taylor expansion of the exponential. Moreprecisely, we assume �̂ to have a singularity�̂(!) � k!k�d��0 (4.4)for ! near zero, and we assume m to be minimal or �0 to be maximal under the restriction�0 � 2m (4.5)that makes the integral well{de�ned near zero. Table 1 shows the functions �̂ for variouschoices of �.As a referee correctly pointed out, the assumption (4.1) contains a subtlety, because itinsists on �̂ being a classical function, thus excluding �̂ to be a fully general L2(IRd)function or a distribution. Furthermore, the existence of the integral implicitly assumessome hidden decay condition on �̂ that is related to the order m of conditional positivede�niteness. We could elaborate on these delicate points, but we want to avoid detours.We have adopted generalized Fourier transform notation in (4.1), and (4.3), but we donot require any knowledge of generalized Fourier transform theory in what follows. Allthe integrals that arise will exist classically. Rewriting (4.1) with (4.3) in the form(�; �)� = (2�)�d ZIRd �̂(!)�̂(!)�̂(!)d!we shall assume �̂q�̂ 2 L2(IRd) for all � 2 (IP dm)?: (4.6)9



This implies existence of the integral in (4.1).We now have a tool to connect native spaces with L2 spaces. In particular,C : �) �̂q�̂maps (IP dm)? isometrically into L2(IRd), if we de�ne the L2 inner product as usual, butwith the factor (2�)�d.Theorem 4.1 Assume (4.1) | (4.6) to hold. Then the map C extends by continuity toLIRd, and it yields an isometry between LIRd and all of L2(IRd).Proof: It is evident that C is isometric, and thus C extends to LIRd. But the density ofC(L
) in L2(IRd) does not follow from abstract Hilbert space arguments. We thus needan additional analytic argument. We �rst prove the assertion for continuous �̂ with �̂ > 0on IRd n f0g. Let some function f 2 L2(IRd) and some " > 0 be given. Then there is acompactly supported C1 function g 2 L2(IRd) such that kf � gk2 � ". This is a standardargument in Fourier analysis, obtainable by convolution and \chopping near in�nity".Now de�ne û := g=q�̂ on IRd, where the (possible) singularity of �̂ at zero does no harm.Clearly û is continuous and compactly supported, thus in L2(IRd) and u is band{limited,of exponential type, and in L2(IRd). We now invoke the multivariate sampling theoremto recover u exactly from its function values on a grid in IRd with spacing h, where h issu�ciently small and related to the support of û.Thus we have u(x) = Xj2ZZd u(jh) Sincd �x� jhh � ; x 2 IRdwhere Sincd(x1; : : : ; xd) = dYj=1 sin�xj�xj ;and û(!) = Xj2ZZd u(jh)eihjT!; ! 2 IRdhas the form û = c�u for the functional�u(v) = Xj2ZZd v(jh)u(jh):We now have to make sure that �u 2 LIRd. If this is done, we are �nished because ofC(�u) = g and kf �q�̂c�uk2 = kf � gk2 � ":For all p 2 IP dm we have to show that �u(p) = 0. By a standard argument in Fourieranalysis this requires a zero of order at least m of û at zero. But our assumption (4.6) on�̂ and the minimality of m in (4.5) imply that û has a zero of order at least12 (d+ �0) > 12 (d + 2m� 2) = m� 1 + d2 ;10



thus of order � m.We �nally have to checkk�uk2� = kq�̂c�uk22 = kq�̂ûk22 = kgk22 <1;and this concludes the proof in case of �̂ > 0.Now let �̂ be positive up to a set of Lebesgue measure zero. We cover the set of zerosby intervals Ik, where k varies over some index set K and the total area Pk jIkj is lessthan some given �. Now let �̂�(!) � �̂(!) be a strictly positive continuous function thatdi�ers from �̂ only on the Ik. Then �̂� will also satisfy our assumptions, and we can use(4.1) in the form (�; �)�� := (2�)�d=2 ZIRd �̂�(!)��(!)��(!)d!as a de�nition of an inner product, but we do not need �� explicitly.Now we approximate a given f 2 L2(IRd) by someq�̂��̂ up to "=2 in the L2 norm, pickinga suitable � for each � and ". Thenkf �q�̂�̂k2 � kf � �̂q�̂�k2 + k�̂(q�̂� �q�̂)k2and k�̂(q�̂� �q�̂)k22 = k�̂q�̂�(1 �q�̂=�̂�)k22� Xk ZIk j�̂(!)j2�̂�(!)d!:The full integral ZIRd j�̂(!)j2�̂�(!)d! = k�̂q�̂�k22can be bounded independent of �, because it approximates kfk22 . Thus we are able topick � small enough to guaranteeXk ZIk j�̂(!)j2�̂�(!)d! � "=2yielding an overall bound kf �q�̂�̂k2 � ". 2We now use Theorem 4.1 to characterize the native space FIRd for � via L2(IRd). Startingwith an arbitrary h 2 L2(IRd), the functionfh(x) := (h;C�(x))L2(IRd) (4.7)is in GIRd, because �fh = (ĥ; C�)L2(IRd)11



follows easily from (4.7) for all � 2 (IP dm)?. We can rewrite (4.7) asfh(x) = (2�)�dZIRd ĥ(!)q�̂(!)0@eixT! � QXj=1 pj(x)ei�Tj !1A d!= (2�)�dZIRd f̂h(!)0@eixT! � QXj=1 pj(x)ei�Tj !1A d!where we de�ne f̂h := hq�̂;which is fully consistent with the usual notation for Fourier transforms in case of m = 0.Theorem 4.2 The native space FIRd for a conditionally positive de�nite function of orderm on IRd coincides with the space of all functions f on IRd that can be written asf(x) = (2�)�d ZIRd f̂(!)0@eixT! � QXj=1 pj(x)ei�Tj !1A d! (4.8)plus polynomials from IP dm , and where f̂ is a function that satis�esf̂=q�̂ 2 L2(IRd):The inner product on F IRd can be rewritten as(f; g)� = (2�)�d ZIRd f̂(!)ĝ(!)�̂(!) d!: 2Note that (4.8) yields f(�j) = 0, thus picking up the special assignment of function valuesthat we already used in (3.3). Given f 2 F IRd, the function f̂ is uniquely de�ned byf̂ = q�̂(C �B�1)f:There also is a way to describe the action of functionals � 2 LIRd on functions f 2 F IRdvia �(f) = (2�)�d ZIRd(C�)(!) f̂ (!)q�̂(!) d! = (C�;CB�1f)L2(IRd)where C� = q�̂�̂ is a function in L2(IRd).We now introduce a IP dm{nondegenerate subset 
 with � � 
 � IRd and want to studyF
 and L
 instead of FIRd and LIRd. This does not yield handy results directly, becauserestriction of supports does not nicely a�ect the Fourier transforms.In particular, the condition supp(�) � 
 does not enter directly into C(�) = q�̂�̂ 2L2(IRd), but it trivially a�ects � = (�̂)_ = (C(�)=q�̂)_, where _ stands for the inverseFourier transform. Formally, we haveC(�)q�̂ = �̂ = f̂�̂� ;12



and these functions are in L1(IRd) for � 2 (IP dm)?, but are not nicely controllable forgeneral � 2 L
. Since we want to take inverse Fourier transforms, we have to add anassumption that restricts the admissible functions, and this will lead to the subspaceH
 := ff 2 F
 : f̂e=�̂ 2 L2(IRd)gof F
.In most cases the space H
 is related to the native space of a conditionally positivede�nite function 	 that equals ��� or generalizes it. In cases where ��� is a meaningfulconvolution in IRd, this relation is obvious except for the boundary conditions. Note thatH
 inherits the boundary conditions from F
 (i.e. those de�ned by �), while the nativespace for � � � will have somewhat di�erent boundary conditions.Since we want to keep cubic splines as our major example, we still have to treat caseswhere � � � does not directly make sense. In fact, if �̂ satis�es bounds likej�̂(!)j � C0k!k�d��02 ; ! around zeroj�̂(!)j � C1k!k�d��12 ; ! around in�nity;�0 � 2m;�1 > 0;then one can directly see that q�̂�̂ 2 L2(IRd) for all � 2 (IP dm)?, making the aboveassumptions valid for practically every case in use. If we assume somewhat more, i.e.�1 > d=22�0 + d � 2n;then �̂�̂ 2 L2(IRd) for all � 2 (IP dn )?, and one can de�ne the quadratic form(2�)�d ZIRd(�̂(!))2�̂(!)�̂(!)d! (4.9)for all �; � 2 (IP dn )?. One way to use (4.9) to de�ne a (generalized) conditional positivede�nite function of order n is to introduce functionals of the form �(x) like in (3.2), butusing a (IP dn ){unisolvent set. Then	(x; y) := (2�)�d ZIRd(�̂(!))2�̂(x)(!)�̂(y)(!)d!is a generalized conditionally positive de�nite function of order n on IRd in the sense that(4.9) takes the form MXj=1 NXk=1 �j�k	(xj; yk)13



and de�nes a positive de�nite quadratic form on (IP dn )?.In the model case ��(!) = k!k�2 on IRd one has � = �0 = �1 and �̂�(!) = ck!k�d��2 .Then �̂2� (!) = c2k!k�2d�2�2 = �̂2�+d(!)up to a multiplicative constant. While �� is conditionally positive de�nite of order m ��=2 on IRd the function �2�+d has the order n � � + d=2. If we take d = 1 and � = 3,we have m = 2; 2�+ d = 7; n = 4. The boundary conditions for cubics require functionsto be linear outside 
 = [a; b], while the boundary conditions for septics require cubicsoutside 
. The smoothness of functions f in the related native spaces is f 00 2 L2 forcubics and f (4) 2 L2 for septics. But the appropriate space for proving approximationorder h7=2 = h(2�+d)=2 of interpolants requires f (4) 2 L2, i.e. smoothness for septics, andf (3)(x) = f (2)(x) = 0 for x outside 
, i.e. boundary conditions for cubics. This is why wede�ned H
 as a subspace of F
: it then inherits the boundary conditions from �, butthe smoothness is related to ���. In this example, it contains functions f with f (4) 2 L2which are linear outside of [a; b].Given f 2 H
, we have the two functionshf = f̂ê� ; gf = f̂eq�̂in L2(IRd). Now for any v 2 L2(IRd) \ F IRd we getZIRd hfv = (2�)�dZ hf v̂ = (2�)�d Z f̂ê� v̂= (2�)�d Z f̂eq�̂ v̂q�̂ = (fe; v)� = (f; v)� (4.10)such that the functional v 7! (f; v)� = (hf ; v)L2(IRd)is continuous in L2(IRd) \ F
 and represented by hf . Taking v 2 L2(IRd) \ F?
 we getZIRd hfv = 0;and from this variational equation we want to conclude that hf is supported in 
. Notethat for f = f� 2 F
 with � 2 (IP dm)?
 we formally havef̂� = �̂�̂; hf = �̂such that hf coincides up to a factor with the functional � that is indeed supported in 
.This makes perfect sense in the context of distributions, but it requires some additionalanalysis to carry this over to the case of f 2 H
.Theorem 4.3 If �̂ decays not faster than algebraically at in�nity (i.e. if � is of limitedsmoothness), then for any f 2 H
 and any closed set 
 � IRd the L2 function (f̂=�̂)_ = hfvanishes almost everywhere outside 
. 14



Proof: Our assumptions imply that all C10 functions v with support outside 
 are inF?
 \ L2(IRd). Thus ZIRd hfv = 0for all such functions, proving that hf vanishes almost everywhere outside 
. 2The converse is also true.Theorem 4.4 If f 2 F IRd has the property that (f̂ =�̂)_ = hf is in L2(IRd) with supportin 
, then f 2 H
.Proof: We need to show that f is orthogonal to F?
. Taking any g 2 F?
 \ L2(IRd) wecan assign function values to g modulo IP dm such that g j
= f0g. Then(f; g)� = ZIRd f̂ ĝ̂� = ZIRd ĥf ĝ = Z
 hfg = 0:The rest follows from density of L2(IRd) \ F IRd in F IRd by chopping Fourier transforms.2The additional assumption on �̂ excludes cases with exponential decay of the Fouriertransform (e.g. multiquadrics and Gaussians). To include these one needs a su�cientlylarge space of test functions with even faster decay of Fourier transforms. But sincein these cases the error bounds for interpolation are of exponential type, our goal of\squaring" the error bounds would not yield a signi�cant improvement anyway. We thusskip over further elaboration of details for such cases.We conclude this section by a sketch of the functional{analytic background of the spacesH
. The latter can be rede�ned as the subspace of functions f 2 F
 that make thefunctional v 7! (f; v)� continuous on L2(IRd), such that there is a function hf 2 L2(IRd)with hf = 0 outside 
 and(f; v)� = (hf ; v)L2(IRd) = (ĥf ; v̂)L2(
) = (Lf;Lv)L2(IRd) (4.11)for all v 2 L2(IRd) \ F
, where Lv = v̂q�̂ 2 L2(IRd):Thus hf = L�Lf with the L2{adjoint L� of L, such that (4.11) can be rewritten as(f; v)� = (L�Lf; v)L2(IRd) = (Lf;Lv)L2(IRd):Here the pseudodi�erential operator L is associated to q�̂, while L�L is associated to �̂.This is another analogy with the univariate spline case, where L usually is a di�erentialoperator of order m and the native space consists of f with Lf 2 L2, while improved con-vergence holds for f with L�Lf 2 L2 plus homogeneous boundary conditions concerningthe derivatives of order m to 2m� 1. 15



Theorem 4.5 Under the hypotheses of Theorem 4.3 the a{priori estimatekfk2� � khfkL2(
)kfkL2(
)holds for all f 2 H
 \ L2(
).Proof: From (4.10) and Theorem 4.3 we getkfk2� = (hf ; f)L2(IRd) = (hf ; f)L2(
)for all f 2 H
 \ L2(IRd) \ FIRd . This extends by continuity to all f 2 H
 \ L2(
). 2Corollary 4.6 Under the assumptions of Theorem 4.3 and with the notationkfk��� := k f̂ê� kL2(IRd) = k(f̂e=�̂)_kL2(
)for f 2 H
 we have j(f; v)�j � kfk���kvkL2(
) (4.12)for all v 2 L2(
) \ F IRd and f 2 H
.Proof: Same as for Theorem 4.5. 25 Improved Error BoundsWe now want to assemble the results of Section 3 and 4 into a proof of the error bound(2.12).Theorem 5.1 Let � : IRd ! IR be a continuous conditionally positive de�nite functionof order m � 0. It should have a nonnegative Fourier transform �̂ on IRd n f0g in thesense of Section 4, and the decay of �̂(!) at in�nity should not be faster than some k!k��for � > 0. Such a function � leads to a native space F = FIRd of functions f on IRdwhich have Fourier transforms f̂ in the sense of (4.8) such that f̂ =q�̂ 2 L2(IRd), thenorm being kfk2� = (2�)�d ZIRd jf̂(!)j2�̂(!) d!:For functions f 2 F there is the usual error bound (2.11) with PX de�ned by (2.10). Thenfor any compact set 
 � IRd there is a subspace H
 of F IRd with normkfk2��� = (2�)�d Z jf̂ (!)j2�̂2(!) d! (5.1)such that the error boundj(f � sX;f )(x)j � kfk���PX(x)kPXkL2(
) (5.2)holds for all f 2 H
 and x 2 
, where sX;f interpolates f on a discrete IP dm{nondegenerateX of 
. The subspace H
 consists of functions f 2 FIRd such that (5.1) is �nite and(f̂=�̂)_ is a function in L2 whose L2{Fourier transform is supported in 
.16



Proof: We �rst use the standard pointwise error bound (2.11) in its special formj(f � sX;f)(x)j � kf � sX;fk�PX (x) (5.3)to prove f � sX;f 2 L2(
) viakf � sX;fk2L2(
) � kf � sX;fk2� kPXk2L2(
)for all f 2 F IRd. Note that PX is continuous due to (2.10). Then we use the minimum{norm property of the interpolant sX;f in the form(f � sX;f ; sX;f)� = 0 (5.4)which also follows from Corollary 3.4, since f � sX;f takes the values zero on the pointswhere the functional associated to sX;f is supported. This yieldskf � sX;fk2� = (f � sX;f ; f � sX;f)�= (f; f � sX;f)�� kfk���kf � sX;fkL2(
)� kfk���kf � sX;fk�kPXkL2(
)due to (4.12) and (5.4). Cancelling a factor kf � sX;fk�, we getkf � sX;fk� � kfk���kPXkL2(
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