
Inverse and Saturation Theorems for RadialBasis Function InterpolationRobert Schaback and Holger WendlandAbstract. While direct theorems for interpolation with radial basis func-tions are intensively investigated, little is known about inverse theorems sofar. This paper deals with both inverse and saturation theorems. As aninverse theorem we especially show that a function that can be approxi-mated su�ciently fast must belong to the native space of the basis functionin use. In case of thin plate spline interpolation we also give certain satu-ration theorems. 1. IntroductionDirect and inverse theorems play an important role in classical approximationtheory. Examples can be found in [2, 8]. The main idea can be described as fol-lows. Suppose the elements of a linear space (V; k �k) should be approximated byelements of �nite dimension subspaces Vh � V , where h serves as a discretisa-tion index. Denote the approximation process by Sh : V ! Vh. Then the directtheorems conclude error estimates from additional information on the elementsto be approximated: If f is an element of a subspace G � V then the error canbe bounded by kf � Shfk � cfh�:(1.1)On the other hand the inverse theorems try to conclude information on f fromthe way f can be approximated: If f 2 V satis�es (1.1) then f must belong toa certain subspace G � V . The situation is optimal if the subspaces and theapproximation orders coincide in both the direct and the inverse theorems.Finally, saturation theorems give upper bounds on the possible approximationorder: If f 2 G can be approximated bykf � Shfk � cfh� ;where � is a certain number larger than �, then f must belong to a trivialsubspace N � V .It is the aim of this paper to give both inverse and saturation theorems inthe context of radial basis function interpolation. In case of direct and inversetheorems we shall take the native space G
;�, which we introduce in the thirdAMS classi�cation: 41A05, 41A17, 41A27, 41A30, 41A40Key words and phrases: positive de�nite functions, approximation orders1



2 R. Schaback and H. Wendlandsection, as the space G of smoother functions. We will look for the approximationorder we can achieve from this fact and for the order we need, to show that afunction belongs to the native space.In case of saturation theorems we restrict ourselves to thin plate spline inter-polation and show that functions that can be approximated with a high orderare necessarily polyharmonic functions.2. Radial basis function approximationThe theory of interpolation by radial basis functions has become popular in thelast years to reconstruct multivariate functions from scattered data. The start-ing point of the reconstruction process is the choice of a conditionally positivede�nite function � : IRd ! IR.De�nition 2.1. A continuous and even function � : IRd ! IR is said to beconditionally positive de�nite of order m 2 IN0, i� for all N 2 IN, all setsof pairwise distinct centers X = fx1; : : : ; xNg � IRd; and all � 2 IRN n f0gsatisfying NXj=1 �jp(xj) = 0 for all p 2 Pdmthe quadratic form NXj;k=1�j�k�(xj � xk)is positive. Here, PdM denotes the set of all d-variate polynomials with a totaldegree less then m. We will denote the set of all conditionally positive de�nitefunctions of order m by cpd(m).Having a � 2 cpd(m) the interpolant sf;X to a function f in X = fx1; : : : ; xNgis given by sf;X(x) = NXj=1 �j�(x� xj) + QXj=1 �jpj(x)(2.2)where p1; : : : ; pQ form a basis of Pdm. To cope with the additional degrees offreedom, the interpolation conditionssf;X(xj) = f(xj); 1 � j � N;(2.3)are completed by the further conditionsNXj=1 �jpk(xj) = 0; 1 � k � Q:(2.4)We summarize some standard statements on the interpolation process in



Inverse Theorems for RBF 3Lemma2.2. The interpolating function sf;X is well de�ned and unique, if Xcontains a Pdm-unisolvent subset. In this case the operator that maps f to sf;Xis linear and reproduces polynomials up to degree m.In this paper we only want to deal with conditionally positive de�nite functionsof order m that possess a generalized Fourier transform that coincides with acontinuous function b� on IRd nf0g. We are mainly interested in cases, where thisFourier transform decays only algebraically, i. e. there exist constants 0 < c1 � c2with c1k!k�d�s12 � b�(!) � c2k!k�d�s12(2.5)for k!k ! 1. The upper bound is important for the direct theorems, whilethe lower bound is necessary for the inverse theorems. This decay conditionis, for instance, covered by the thin plate splines and the compactly supportedradial basis functions of minimal degree (cf. [13]). But we shall state the inversetheorems also in case of exponentially decaying Fourier transforms which coversGaussian and (inverse) multiquadrics.3. Direct theoremsThere are several papers dealing with direct theorems, but only few have triedto establish inverse theorems. We will briey repeat direct theorems as far as weneed them for our further analysis.To state error estimates two preparing steps have to be done. On the one handthe function space has to be introduced for which the error bounds shall apply.On the other hand a measure of the data density has to be given. We start withthe function space by introducing the native space.Let 
 � IRd be given. Let us denote by(Pdm)?
 = f��;X = MXj=1 �j�xj :M 2 IN; �j 2 IR; xj 2 
; ��;X jPdm � 0gthe set of all point evaluation functionals of �nite support in 
 vanishing on Pdm.Every conditionally positive de�nite function � of order m allows us to equip(Pdm)?
 with an inner product(�; �)� = �x�y�(x� y)where �x means the action of � with respect to the variable x.Then we can follow [6, 7] to introduce the function spaceG
;� = ff 2 C(
) : j�(f)j � cfk�k� for all � 2 (Pdm)?
g:We denote the smallest constant cf in the de�nition of G
;� by kfk�, i. e.kfk� := max�2(Pdm)?
nf0g j�(f)jk�k� :



4 R. Schaback and H. WendlandThen k � k� is a semi-norm on G
;� with null space Pdm. ThusF
;� := G
;�=Pdmis a normed linear space which turns out to be complete. There are severalother possiblities to introduce the native space (cf. [10, 11, 14]) but the chosenapproach serves our purposes best.Not only the space Pdm is a subspace of G
;�, but also all interpolating func-tions (2.2) are contained.Lemma3.1. The mapF : (Pdm)?
 ! F ((Pdm)?
) � G
;���;X 7! �y�;X�(� � y)is well de�ned and bijective. Furthermore, we have the relationsk��;Xk� = kF (��;X)k�and ��;X (F (��;Y )) = (��;X ; ��;Y )� = ��;Y (F (��;X )):The proof is straightforward and will be omitted.The �rst step in bounding the interpolation error is to de�ne the power func-tion as the norm of the pointwise error functionalPX;�(x) = supf2G
;�nPdm jf(x)� sf;X(x)jkfk� :which leads immediately tojf(x)� sf;X(x)j � PX;�(x)kfk�:Then the power function has to be bounded in terms of the �ll distance, de�nedby hX;
 � hX := supx2
 minxj2X kx� xjk2which was done in [14], for instance.Theorem3.2. Let � 2 cpd(m) satisfy (2.5). Let 
 be a bounded and opendomain satisfying an interior cone condition. Then there exist constants h0, C,such that for all sets of centers X with hX � h0 and all x 2 
 the power functioncan be bounded by PX;�(x) � Chs1=2X(3.6)yielding the error boundkf � sf;XkL1(
) � Chs1=2kfk�(3.7)for f 2 G
;�.



Inverse Theorems for RBF 5Actually, in [14] the theorem is stated in a more localized version, but the proofholds true in this situation. There are several other papers giving error boundsof this form, some of them are [1, 3, 5, 12].Next, we need a stability result on the interpolation process. Therefore, wede�ne the separation distanceqX := 12 minj 6=k kxj � xkk2and cite from [9]Theorem3.3. Let � 2 cpd(m) satisfy the decay condition (2.5). For X =fx1; : : : ; xNg � 
 denote by AX;� the matrixAX;� = (�(xj � xk))1�j;k�Nand by X the smallest non vanishing eigenvalue of AX;�. Then the followingholds true:1) (Stability) For all � 2 IRN satisfying (2.4) we have�TAX;�� � Xk�k2 � cqs1Xand therefore k(AX;�jVX )�1k2;2 � c�q�s1Xwith VX := f� : ��;X 2 (Pdm)?
g and a constant c� depending only on �.2) (Uncertainty Relation) For all x 2 
 nX we haveP 2X;�(x) � X[fxg:(3.8) 4. Inverse theorems concerning �Principally, there are two possibilities to state inverse theorems for interpolationby radial basis functions. The �rst one is based only on the basis function � anddraws conclusions on the basis function from the fact that the power functioncan be bounded like (3.6). This will be done in this section. The second is todraw conclusions on f from estimates like (3.7) which will be subject of the sixthsection.Theorem4.1. Let � 2 cpd(m) satisfy (2.5). Let 
 be bounded and open, sat-isfying an interior cone condition. If there exist constants �; c > 0 such that thepower function PX;� can bounded bykPX;�kL1(
) � ch�=2X(4.9)for all sets X � 
 with su�ciently small hX , thens1 � �must be satis�ed.



6 R. Schaback and H. WendlandProof. On account of the conditions on 
 there exists a � > 0 and quasi-uniform sets X = fx1; : : : ; xNg � 
 with respect to this � > 0. Here, we calla set of pairwise distinct centers X = fx1; : : : ; xNg � 
 quasi-uniform withrespect to � > 0, i�1) X n fxjg is Pdm-regular for 1 � j � N ,2) qX � �hX .Then we have (cf. [9]) hXnfxjg � 2hX for hX su�ciently small. Therefore wecan use (2.5), (4.9) and the Uncertainty Relation (3.8) to derivec2�h�X � ch�Xnfxjg � P 2Xnfxjg(xj) � X � c�qs1X � c��s1hs1X :Choosing a sequence of such X with hX ! 0, this leads to � � s1.Theorem 4.1 shows that the decay (4.9) of the power function determines thedecay of the generalized Fourier transform of the basis function and therefore thesmoothness of the basis function itself. It also shows that there is no possibilityto improve error estimates of the form (3.7) based on upper bounds of the powerfunction. 5. Characterisation of the native spaceOur next result characterises the functions f from the native space G
;� byuniform boundedness of their interpolating functions with respect to the semi-norm of the native space.Theorem5.1. Denote by sf;X the interpolant (2.2) to a function f 2 C(
) onX using a basis function � 2 cpd(m). Then f belongs to the native space G
;�if and only if there exists a constant cf such that ksf;Xk� � cf for all X � 
.Proof. Assume f 2 G
;�. Then sf;X is the best approximation to f fromspanf�(� � x) : x 2 Xg + Pdm. with respect to the k � k�-semi-norm. Thus wehave kf � sf;Xk2� + ksf;Xk2� = kfk2�;which gives the bound ksf;Xk� � kfk� at once.Now, let us assume ksf;Xk� � cf for all X � 
. For an arbitrary��;X := NXj=1 �j�xj 2 (Pdm)?
we choose sf;X to be the interpolant on X to f satisfying the interpolationconditions (2.3) and (2.4). Then sf;X belongs to G
;� and we have��;X(f � sf;X) = 0:



Inverse Theorems for RBF 7Thus we can estimatej��;X(f)j � j��;X(f � sf;X)j+ j��;X (sf;X)j� k��;Xk� ksf;Xk�� cfk��;Xk�As this holds for all ��;X we have f 2 G
;�.6. Inverse theorems concerning fNow we draw conclusions about a function from L1-convergence orders of itsinterpolants. To be more precise, we show that a function f 2 C(
) whichcan be approximated su�cently fast by radial basis function interpolants in theL1-norm must belong to the native space of the basis function.Theorem6.1. Let 
 � IRd be a bounded and open domain satisfying an in-terior cone condition. The basis function � 2 cpd(m) should satisfy the decaycondition (2.5). Suppose further that for some f 2 C(
) there exist constants� > 0 and cf > 0 such that kf � sf;XkL1(
) � cfh�X for all X � 
 with hXsu�ciently small. If 2� > s1 + d, then f must belong to the native space G
;�.Proof. All sets of centers X that may appear in this proof shall be quasi-uniform with respect to a �xed � > 0.Every interpolant sf;X de�nes a linear functional from (Pdm)?
 which we shalldenote by ��;X . From Theorem 3.3 and Lemma 3.1 we haveksf;Xk2� = k��;Xk2�= �TAX;��= �TAX;�(AX;�jVX)�1(AX;�jVX )�� k(AX;�jVX )�1k2;2 kAX�k2L2(X)= k(AX;�jVX )�1k2;2 ksf;X � pXk2L2(X)(6.10)Here, VX denotes again the space f� 2 IRjXj : ��;X 2 (Pdm)?
g, and pX denotesthe polynomial in the de�nition of sf;X .If we have two sets of centers X � Y and compare the two interpolatingfunctions sf;Y and sf;X , we can interpret sf;X as the interpolant to sf;Y and usethe polynomial reproduction property of Lemma 2.2 to getsf;X � sf;Y = jXjXj=1 �Xj �(� � xj)� jY jXj=1 �Yj �(� � yj):On the other hand the di�erence can be interpreted as the interpolating functionon Y to sf;Y � sf;X . This leads us to



8 R. Schaback and H. Wendlandksf;Y � sf;Xk2� � k(AY;�jVY )�1k2;2 ksf;Y � sf;Xk2L2(Y )� 1Y Xy2Y jf(y)� sf;X(y)j2� c�1� q�s1Y jY jc2fh2�X :In what follows c will denote a generic constant. Now we consider a special familyof quasi-uniform sets of centers. We assume Xn to satisfy jXnj � c2nd andc12�n � qXn � hXn � c22�n:Such a choice is always possible because of the assumption made on 
. If wetake X = Xk � Y = Xn with n � k we getksf;Xn � sf;Xkk2� � c2s1n+dn�2�k= c2(d+s1)n�2�k= c22�(n�k)�2�n;where � > 0 is de�ned by d+ s1 + 2� = 2�. Thus we can estimate the �-normof two succeeding interpolants byksf;Xk+1 � sf;Xkk� � c2�k� :A telescoping sum argument leads toksf;XKk� � KXk=0 ksf;Xk+1 � sf;Xkk� + ksf;X0k�� c 1Xj=0 2��k + ksf;X0k�:� c1� 2�� + ksf;X0k�:Thus, the sequence ksf;Xkk� is bounded. But for n � k the interpolant sf;Xkis also the interpolant to sf;Xn and therefore a best approximant to sf;Xn fromS(Xk) := spanf�(� � x) : x 2 Xkg+ Pdm. This leads toksf;Xn � sf;Xkk2� + ksf;Xkk2� = ksf;Xnk2�(6.11)which shows that the sequence ksf;Xkk� is also increasing and therefore conver-gent. Furthermore, (6.11) implies that sf;Xn is a Cauchy sequence in G
;� witha limit ~s, which is uniquely determined up to a polynomial of degree less thanm.



Inverse Theorems for RBF 9Finally, we have to show that f coincides on 
 with ~s modulo Pdm. Let uschoose a �xed Pdm-unisolvent set � = f�1; : : : ; �Qg � 
 and denote with uj(x) 2Pdm, 1 � j � Q a Lagrange basis with respect to �. Then the functional�(x) := �x � QXj=1 uj(x)��jlies in (Pdm)?
 for every x 2 
. Thus we havej�(x)(f � ~s)j � j�(x)(f � sf;Xn)j+ j�(x)(sf;Xn � ~s)j� k�(x)k�k~s� sf;Xnk� + j(f � sf;Xn)(x) + QXj=1 uj(x)(f � sf;Xn)(�j)j� k�(x)k� k~s� sf;Xnk� + ch�Xn :Thus we can derive �(x)(f) = �(x)(~s)for all x 2 
 or in other wordsf(x) = ~s(x) + NXj=1 uj(x)(~s � f)(�j):This implies ��;X(f) = ��;X (~s) � c~s k��;Xk�for general ��;X 2 (Pdm)?
 , which completes the proof.Note that there is a gap of d=2 between the necessary and su�cient approx-imation order for functions in the native space G
;�. A closer look shows thatthe direct theorem 3.2 implies for f 2 G
;�:kf � sf;XkL1(
) � C�hs1=2kf � sf;Xk�:(6.12)The hs1=2 term comes from the estimate on the power function and is optimalin the sense of Theorem 4.1. On the other handkf � sf;XkL1(
) � Cfhs1=2 hd=2+"is so far necessary for showing f 2 G
;� via Theorem 6.1. Thus the gap couldbe closed either by showingkf � sf;Xk� � Cfhd=2+";or by improving our inverse theorem.



10 R. Schaback and H. WendlandBefore we come to inverse theorems for Gaussian and multiquadrics, let usremark that in case of an unconditionally positive de�nite function � and aquasi-uniform set X equation (6.10) can be rewritten asksf;Xk� � ch�(s1+d)=2X ksf;XkL1(
);which can be seen as a kind of Bernstein inequality.Now, let us assume for the rest of the section that the Fourier transformsatis�es b�(!) � ce�~c1k!k�2 :(6.13)This leads to estimates of the formk(AX;�jVX )�1k2;2 � cec1h��X(6.14)where we used the subspace VX again and where c always denotes a genericconstant. In case of multiquadrics and Gaussians the constants �, ~c1 and c1 canbe found in [9].Theorem6.2. Let 
 � IRd be a bounded and open domain satisfying an in-terior cone condition. The basis function � 2 cpd(m) should satisfy the decaycondition (6.13). Suppose further that for some f 2 C(
) there exist constantsc2 > c1 and cf > 0 such that kf � sf;XkL1(
) � cfe�c2h�X for all X � 
 withhX su�ciently small. Then f must belong to the native space G
;�.Proof. The proof of Theorem 6.1 applies completely if we show that the nativespace norm of the di�erence of two interpolants can be bounded in such a waythat the telescoping sum argument still works. But this is the case: for X � Ywe can derive ksf;X � sf;Y k� � cec1h��X Xy2Y jf(y)� sf;X(y)j2� ce�c3h��x jY jwith c3 := c2 � c1 > 0. Taking the same sequence of sets of centers Xn as inTheorem 6.1 we see that the cardinality of Y is only polynomial in hY , whichmeans that we can bound two succeeding interpolants byksf;Xk+1 � sf;Xkk� � ce�~c32(n�)=2 :This ensures the convergence of the telescoping sum.



Inverse Theorems for RBF 117. Saturation for thin plate spline interpolationIn this section we concentrate on interpolation by thin plate or polyharmonicsplines. To be more precise we consider the functions �d;` = �d;`(k � k2) with�d;`(r) = � cd;` r2`�d for odd ded;` r2`�d log r for even d(7.15)with d � 2` where the constantscd;` = (�1)`� �d2 � `�22`�d=2� (`) ;ed;` = (�1)(d�2)=222`�1�d=2(`� 1)! �`� d2�! :are determined by the fact that these functions should be the fundamental so-lutions of the iterated Laplacian (see Lemma 7.2).The functions �d;` are conditionally positive de�nite of order m with m =` � bd=2c + 1 on IRd and possess a generalized Fourier transform b�d;` which isk � k�2`2 up to a constant factor. Thus interpolants come from the spaceS(X) = spanf�d;`(� � x) : x 2 Xg+ Pdmand Theorem 3.2 leads to the error boundkf � sf;XkL1(
) � ch`�d2X kfk�d;`:(7.16)For a restricted set of functions f , an improvement in [10] yieldskf � sf;XkL1(
) � cfh2`�dX :(7.17)In [1] the following improved error estimate is given:Theorem7.1. Suppose 
 is a cube in IRd and the set of centers Xh are givenby the grid points hZZd \
. If f 2 Lip(2`+1; 
), then the error can be boundedby kf � sf;XhkL1(K) � cfh2`(7.18)for every compact subset K of the interior of 
 as h! 0.See [1] for the exact de�nition of the space Lip(2`+1; 
). Note that this estimateis based on three additional assumptions:{ The function f is supposed to be smoother than f 2 G�;
 . This is a naturalassumption.{ The domain has to be a cube and the centers have to form a grid. This is aconsequence of the proof given in [1]. A generalization to arbitrary centerswould be useful.



12 R. Schaback and H. Wendland{ The estimates are restricted to compact subsets of the interior of the cube.This means that boundary e�ects are neglected.Nonetheless, the result gives a hint on the possible local convergence orderand we shall show that this order is also the saturation order. But before we cando that, we need two auxiliary results:Lemma7.2. For every test function  2 C10 (IRd) and every y 2 IRd we haveZIRd �d;`(x � y)�`(x)dx = (y):A proof can be found in [4].Lemma7.3. Suppose X = fx1; : : : ; xNg � 
 is given. Suppose further that 2 C10 (
) satis�es X \ supp  = ;. Then for every s 2 S(X):(�`s; )L2(
) = 0:Proof. Choose an arbitrary s(x) = PNj=1 �j�d;`(x � xj) + p(x) 2 S(X). As�`Pdm � 0 we can use Lemma 7.2 to obtain(�`s; )L2(
) = NXj=1 �j ZIRd �`(x)�d;`(x � xj)dx= NXj=1 �j(xj)= 0:Now we can give our saturation result.Theorem7.4. Let �d;` be any of the thin plate splines de�ned in (7.15). Sup-pose 
 � IRd to be open and bounded, satisfying an interior cone condition.Suppose that for f 2 C2`(
) the interpolating functions sf;X on X satisfykf � sf;XkL1(K) = o(h2X̀ ) as hX ! 0for every compact subset K of 
. Then f satis�es�`f = 0 on 
:Proof. Fix x0 2 
. Choose X � 
 to be quasi-uniform with respect to a �xed� > 0, such that minx2X kx� x0k2 = c0hX with c0 independent of hX . Choosea test function 0 2 C10 (IRd) with supp0 = B1(0) = fx 2 IRd : kxk2 � 1g andR 0(x)dx = 1. Set ~h = c0hX=2 and h := ~h�d0((� � x0)=~h). Then the support



Inverse Theorems for RBF 13of h is given by B~h(x0) and satis�es B~h(x0) \X = ;. Thus we can use Lemma7.3 to get (�`f; h)L2(
) = (�`(f � s); h)L2(
)= (f � s;�`h)L2(
)� kf � skL2(B~h(x0)) k�`hkL2(B~h(x0))� c ~h d2 kf � skL1(B~h(x0)) k�`hkL2(B~h(x0))with s = sf;X . And because ofk�`hk2L2(B~h(x0)) = ~h�2d ZIRd j�`h(x)j2dx= ~h�d�4` ZIRd j0(x)j2dx=: ~h�d�4`c20we can conclude (�`f; h)L2(
) � c~h�2`kf � skL1(B~h(x0)):On account of the assumptions this leads tolimh!0+(�`f; h)L2(
) = 0:On the other hand we havelimh!0+(�`f; h)L2(
) = limh!0+ ZIRd(�`f)(x0 + hx)0(x)dx = �`f(x0)which proves �`f(x0) = 0.Note that our proof also applies to the situation of classical splines. As inthe latter case, functions in the saturation class are already determined by theirvalues on the boundary of the domain:Corollary 7.5. Suppose in addition to the assumptions of the last theorem that
 has a C` boundary @
. Then f is already determined by the values of @jf=@j�,0 � j � `�1, on the boundary @
. Here � denotes the outer unit normal vector.This sheds some light on the inuence of boundary conditions on the possi-bilities to improve the approximation order `� d=2 of (7.16) towards 2`.Finally, we want to draw the reader's attention to the d=2-gap arising not onlyin the discussion around (6.12), but also in (7.17) when compared to (7.18). If(7.16) could be improved by hd=2, then (7.17) would by [10] improve to h2` andcoincide with (7.18). We consider closing the d=2-gap to be a challenging researchtask.
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